2,118 research outputs found

    Beam Loss Monitors at LHC

    Full text link
    One of the main functions of the LHC beam loss measurement system is the protection of equipment against damage caused by impacting particles creating secondary showers and their energy dissipation in the matter. Reliability requirements are scaled according to the acceptable consequences and the frequency of particle impact events on equipment. Increasing reliability often leads to more complex systems. The downside of complexity is a reduction of availability; therefore, an optimum has to be found for these conflicting requirements. A detailed review of selected concepts and solutions for the LHC system will be given to show approaches used in various parts of the system from the sensors, signal processing, and software implementations to the requirements for operation and documentation.Comment: 16 pages, contribution to the 2014 Joint International Accelerator School: Beam Loss and Accelerator Protection, Newport Beach, CA, USA , 5-14 Nov 201

    Improving reconfigurable systems reliability by combining periodical test and redundancy techniques: a case study

    Get PDF
    This paper revises and introduces to the field of reconfigurable computer systems, some traditional techniques used in the fields of fault-tolerance and testing of digital circuits. The target area is that of on-board spacecraft electronics, as this class of application is a good candidate for the use of reconfigurable computing technology. Fault tolerant strategies are used in order for the system to adapt itself to the severe conditions found in space. In addition, the paper describes some problems and possible solutions for the use of reconfigurable components, based on programmable logic, in space applications

    X-By-Wire via ISOBUS Communication Network

    Get PDF
    Rosana G. Moreira, Editor-in-Chief; Texas A&M UniversityThis is a paper from International Commission of Agricultural Engineering (CIGR, Commission Internationale du Genie Rural) E-Journal Volume 9 (2007): X-By-Wire via ISOBUS Communication Network. Manuscript ATOE 07 002. Vol. IX. July, 2007

    Reasoning about the Reliability of Diverse Two-Channel Systems in which One Channel is "Possibly Perfect"

    Get PDF
    This paper considers the problem of reasoning about the reliability of fault-tolerant systems with two "channels" (i.e., components) of which one, A, supports only a claim of reliability, while the other, B, by virtue of extreme simplicity and extensive analysis, supports a plausible claim of "perfection." We begin with the case where either channel can bring the system to a safe state. We show that, conditional upon knowing pA (the probability that A fails on a randomly selected demand) and pB (the probability that channel B is imperfect), a conservative bound on the probability that the system fails on a randomly selected demand is simply pA.pB. That is, there is conditional independence between the events "A fails" and "B is imperfect." The second step of the reasoning involves epistemic uncertainty about (pA, pB) and we show that under quite plausible assumptions, a conservative bound on system pfd can be constructed from point estimates for just three parameters. We discuss the feasibility of establishing credible estimates for these parameters. We extend our analysis from faults of omission to those of commission, and then combine these to yield an analysis for monitored architectures of a kind proposed for aircraft

    Dependability Issues for Intelligent Transmitters and Reliability Pattern Proposal

    Get PDF
    International audienceNew technologies make way for "intelligent" transmitters by integrating new functionalities: error measurement corrections, self-adjustment, self-diagnosis for measurement and transmitter status, on-line reconfiguration, and digital bidirectional communication. Industrialists are taking advantage of more accurate measurements, cost reductions and facilities. For industrial risk prevention, new dependability issues are arising. Functionalities such as self-diagnosis and digital communication seem to be in favour of control systems availability. On the other hand, the high amount of electronics and programmable units implies new failure causes and modes which are usually not well known. In this paper, dependability issues for intelligent transmitters are discussed and a reliability model is proposed. By using a Goal Tree - Success Tree (GTST) technique, both functional and material aspects of an intelligent transmitter pattern are included. Material-material, material-function, and function-function relationships are then demonstrated in Master Logic Diagrams (MLD). These results are proposed as support for further case studies. For example, the impact of any material failure on any function, and the reliability of the main functions, can be assessed using this kind of model. Other dependability tools can take advantage of this reliability pattern, for example when the behavioural aspects of complex systems are undetermined
    • …
    corecore