1,269 research outputs found

    Stable and Efficient Linear Scaling First-Principles Molecular Dynamics for 10,000+ atoms

    Get PDF
    The recent progress of linear-scaling or O(N) methods in the density functional theory (DFT) is remarkable. We expect that first-principles molecular dynamics (FPMD) simulations based on DFT can now treat more realistic and complex systems using the O(N) technique. However, very few examples of O(N) FPMD simulations exist so far and the information for the accuracy or reliability of the simulations is very limited. In this paper, we show that efficient and robust O(N) FPMD simulations are now possible by the combination of the extended Lagrangian Born-Oppenheimer molecular dynamics method, which was recently proposed by Niklasson et al (Phys. Rev. Lett. 100, 123004 (2008)), and the density matrix method as an O(N) technique. Using our linear-scaling DFT code Conquest, we investigate the reliable calculation conditions for the accurate O(N) FPMD and demonstrate that we are now able to do actual and reliable self-consistent FPMD simulation of a very large system containing 32,768 atoms.Comment: 26 pages, 10 figures, accepted by J. Chem. Theory Compu

    Time-reversible Born-Oppenheimer molecular dynamics

    Full text link
    We present a time-reversible Born-Oppenheimer molecular dynamics scheme, based on self-consistent Hartree-Fock or density functional theory, where both the nuclear and the electronic degrees of freedom are propagated in time. We show how a time-reversible adiabatic propagation of the electronic degrees of freedom is possible despite the non-linearity and incompleteness of the self-consistent field procedure. Time-reversal symmetry excludes a systematic long-term energy drift for a microcanonical ensemble and the number of self-consistency cycles can be kept low (often only 2-4 cycles per nuclear time step) thanks to a good initial guess given by the adiabatic propagation of the electronic degrees of freedom. The time-reversible Born-Oppenheimer molecular dynamics scheme therefore combines a low computational cost with a physically correct time-reversible representation of the dynamics, which preserves a detailed balance between propagation forwards and backwards in time.Comment: 4 pages, 4 figure

    Wavefunction extended Lagrangian Born-Oppenheimer molecular dynamics

    Full text link
    Extended Lagrangian Born-Oppenheimer molecular dynamics [Niklasson, Phys. Rev. Lett. 100 123004 (2008)] has been generalized to the propagation of the electronic wavefunctions. The technique allows highly efficient first principles molecular dynamics simulations using plane wave pseudopotential electronic structure methods that are stable and energy conserving also under incomplete and approximate self-consistency convergence. An implementation of the method within the planewave basis set is presented and the accuracy and efficiency is demonstrated both for semi-conductor and metallic materials.Comment: 6 pages, 3 figure
    • …
    corecore