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Abstract

The recent progress of linear-scaling or O(N) methods in the density functional theory

(DFT) is remarkable. Given this, we might expect that first-principles molecular dynamics

(FPMD) simulations based on DFT could treat more realistic and complex systems using the

O(N) technique. However, very few examples of O(N) FPMD simulations exist so far and the

information for the accuracy or reliability of the simulations is very limited. In this paper, we
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show that efficient and robust O(N) FPMD simulations are now possible by the combination of

the extended Lagrangian Born-Oppenheimer molecular dynamics method, which was recently

proposed by Niklasson et al (Phys. Rev. Lett. 100, 123004 (2008)), and the density matrix

method as an O(N) technique. Using our linear-scaling DFT code CONQUEST, we investigate

the reliable calculation conditions for the accurate O(N) FPMD and demonstrate that we are

now able to do practical, reliable self-consistent FPMD simulation of a very large system

containing 32,768 atoms.

1 Introduction

First-principles molecular dynamics (FPMD) based on density functional theory (DFT) is a well-

established and highly-successful tool for studying reactions or processes of materials at the atomic

scale. Due to the increase of the computer power, the variety and complexity of the materials and

phenomena investigated by FPMD simulations have been growing. However, the size of the sys-

tems modelled with FPMD simulations have remained limited to systems of a few hundred atoms

in most cases, because the computational cost of standard DFT methods grow rapidly, proportional

to the cube of the number of atoms N in the system. There are many demands to enlarge the system

size in diverse fields, including computational physics, chemistry, materials science, biology and

so on. Examples of these problems include chemical reactions at liquid/solid interfaces, various

processes in complex biological systems, or the growth mechanism of the nano-structured materi-

als at atomic scale; in all these cases, we have to treat systems containing many thousands or tens of

thousands of atoms. In this respect, recent advances in developing linear-scaling or O(N) methods

are encouraging.1 There have been several demonstrations that efficient and reliable linear-scaling

DFT calculations are now available to calculate the electronic structure, total energy and atomic

forces of very large systems, including up to millions of atoms.2,3

Although it is now possible to calculate the total energy and atomic forces of very large sys-

tems using O(N) DFT methods,4–7 this does not guarantee that stable, efficient and accurate FPMD

simulations are possible in practice.8 With conventional DFT methods, there are two widely-used
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methods to achieve efficient FPMD simulations. The first method is known as Car-Parrinello MD

(CPMD),9 where the propagation of electronic structure and the atomic positions are treated si-

multaneously by introducing a fictitious mass for the electronic degree of freedom. This method

is efficient, but the accuracy of the CPMD simulations can depend on the choice of the fictitious

mass. By contrast, Born-Oppenheimer MD (BOMD) deals with the electronic and nuclear prob-

lems separately. In this method, the electronic structure in the ground state is calculated at each

set of atomic positions, usually by the optimization of the Kohn-Sham orbitals using an iterative

method.10 The BOMD method thus needs more CPU time than CPMD for each MD step, but

the method is robust and stable, and allows us to adopt a longer time step. As a result, the CPU

time needed for a whole MD simulation is tractable because the number of force calculations is

smaller (the cost of calculating atomic forces is usually much higher than the update of the Kohn-

Sham orbitals). The main problem facing this method, however, is that both the stability and the

reliability of the MD depend on the accuracy of the calculated forces. If the optimization of the

Kohn-Sham orbitals or the convergence of SCF is not sufficiently accurate, the method suffers

from a systematic energy drift in micro-canonical MD simulations, due to the violation of time-

reversal symmetry. This can also result in poor reliability for canonical MD simulations. Recently

this problem has been solved using the extended Lagrangian Born-Oppenheimer MD (XL-BOMD)

proposed by Niklasson et al.,11–13 whose Lagrangian includes auxiliary electronic degrees of free-

dom as dynamical variables to recover time-reversal symmetry in BOMD simulations. They have

shown that BOMD simulations with long-term conservation of total energy are possible.

It is reasonable to expect that this recent progress with the XL-BOMD method could be used

with O(N) DFT techniques. However, since linear-scaling methods rely on the locality of the

electronic structure and need to introduce approximations to utilize this locality, the accuracy of

O(N) method may change during the MD simulations, and it is not clear how accurate or stable

MD can be with O(N) DFT methods. Although there have been already a few reports showing

the examples of O(N) FPMD14–17 or O(N) self-consistent tight-binding18 simulations, they use

different linear scaling techniques and the information about the accuracy, stability or efficiency
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of the simulations is rather limited. In this paper, we report the stability and accuracy of the

XL-BOMD simulations with a density matrix minimization (DMM) technique,19,20 which is one

of the most common O(N) DFT methods. The accuracy of the forces calculated by the DMM

method is high because the method satisfies the variational principle.5 To our knowledge, the

combination of DMM and XL-BOMD methods has not been investigated so far. Since the original

XL-BOMD methods assume the orthogonality of the basis functions, the formulation of the method

for non-orthogonal basis functions is also presented. We show that the XL-BOMD method can be

introduced to our linear-scaling DFT code CONQUEST,21–23 and report that robust, accurate and

efficient FPMD is possible with the DMM method. The reliable calculation conditions for the

accurate O(N) FPMD are also investigated. In the end, we demonstrate that it is now possible to

do actual FPMD simulations of a 32,768-atom system.

The rest of the paper is organized as follows. In the next section, we show the methods and

algorithms which are used or introduced in this work. In Sec. 3, we report the results of the test

calculations, investigation of the reliable calculation conditions, and some examples of the FPMD

simulations, including that of 32,768-atom system. Finally, concluding remarks are given in Sec.

4.

2 Methods and Algorithms

The implementation of molecular dynamics and all calculations were performed with CONQUEST,

which is a linear scaling, pseudopotential DFT code.21–23 In order to achieve linear-scaling both

in computational time and memory consumption, the code works with the density matrix ρ rather

than the wavefunctions, because of its spatial locality:

ρ
(
r,r′
)
→ 0 as |r− r′| → ∞. (1)
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CONQUEST assumes that the density matrix can be described in a separable form:

ρ(r,r′) = ∑
iα, jβ

φiα(r)Kiα, jβ φ jβ (r
′), (2)

where φiα is a non-orthogonal localised orbital called a support function, which is only non-zero

within a sphere centred at atom i, and α denotes the support functions of a given atom.

Support functions are represented in terms of localised basis functions; in CONQUEST we can

use systematically improvable basis functions (B-splines24) or pseudoatomic-orbitals (PAOs).4,25

Kiα, jβ is the density matrix represented in terms of the support functions. We find the electronic

ground state by minimising the total energy with respect to the density matrix, while impos-

ing the correct electron number and weak idempotency. The complete minimisation combines

two algorithms:26 McWeeny’s iterative purification;27,28 and the auxiliary density matrix (ADM)

method proposed by Li, Nunes and Vanderbilt.19 An initial density matrix is generated starting

from the Hamiltonian (scaled to have the right trace and eigenvalue spectrum), using the extension

of McWeeny’s approach for the canonical case.28

In the ADM method, weak idempotenty is imposed by expressing the density matrix K in terms

of an auxiliary density matrix L, and the overlap S between support functions, Siα, jβ =< φiα |φ jβ >,

as

K = 3LSL−2LSLSL (3)

The spatial truncation on the density matrix is actually imposed on the matrix L, such that Liα, jβ =

0 once |Ri−R j| ≥ RL; this is referred as L-range in the rest of this report.

The McWeeny’s procedure is applied until the energy rises (a sign of reaching truncation er-

ror28). The L matrix is then passed into the ADM, which is a variational approach, using a modi-

fied Pulay/Broyden algorithm. This part of the minimisation is referred to as DMM (density matrix

minimisation).
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In this paper, we represent each support function φi,α(r) in terms of one PAO (the approach

given here is easily extended to the case where we also minimise the energy with respect to the

PAOs, which will be presented in a future publication). In running BOMD simulations with the

DMM method, we have two ways to optimize the electronic structure. One is to initialise the

density matrix using McWeeny’s procedure at every atom movement. The initial charge density

is made from the superposition of the atomic charge density. Since the Hamiltonian and overlap

matrices are recalculated after the movement of atoms, the initial matrix L and subsequent opti-

mised L matrix will maintain time-reversal symmetry; we hence expect that BOMD simulations

should conserve energy and be stable. The other method is to utilize the auxiliary density matrix

found from the previous MD step to start the present DMM. In this case, the initial charge density

is made from the initial density matrix L prepared for the present DMM, and is updated with the

L matrix simultaneously during the DMM. This method will be more efficient, but will break time

reversal symmetry, potentially leading to unphysical energy drift.

To maintain time-reversal symmetry while keeping the efficiency of density matrix re-use, we

will use the extended Lagrangian scheme proposed by Niklasson et al.12 We introduce an auxiliary

degree of freedom to the Born-Oppenheimer Lagrangian L XBO, X . This is associated with LS,

rather than L to maintain the correct non-orthogonal metric.29

L XBO (X , Ẋ ,R, Ṙ
)
= L BO (R, Ṙ)+ µ

2
Tr
[
Ẋ2]− µω2

2
Tr
[
(LS−X)2

]
(4)

X is a sparse matrix with the range of the matrix LS, µ the fictitious electronic mass, and ω is the

curvature of the electronic harmonic potential. As in the original XL-BOMD method, if we take

the limit µ → 0, L XBO becomes L BO and we have equations of motion for nuclear positions and

X . If we apply the time-reversible Verlet scheme to calculate X using the equation of motion, we

have

X(t +δ t) = 2X(t)−X(t−δ t)+δ t2
ω

2(L(t)S(t)−X(t)) (5)
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which shows that X(t) is time reversible and evolves in a harmonic potential centered around the

ground-state L(t)S(t). This also implies that a good initial guess for the L-matrix, which will obey

time reversal symmetry, can be calculated by multiplying X and S−1 (in CONQUEST, the sparse

approximate inverse S is computed using Hotelling’s method30).

Even though the time-reversibility is maintained during propagation, the X-matrix tends to

move away from the harmonic centre over time. As a result, the number of iterations to reach

the ground state at each MD step gradually increases in the course of a simulation. To remove

accumulated numerical errors, we add a dissipative force to the propagation of X following Ref.,31

X(t +δ t) = 2X(t)−X(t−δ t)+κ(L(t)S(t)−X(t))+α

M

∑
m=0

cmX(t−mδ t). (6)

Here, the parameters κ , α and cm are determined so that the dissipation term does not signifi-

cantly break the time-reversal symmetry; we use the values in Ref.31 The amount of dissipation is

controlled with a single parameter M, which determines the order of the polynomial, and we use

M = 5 in this paper. With the dissipation term, we can keep the kinetic energy of Ẋ small and thus

the X(t) is kept close to the present ground-state L(t)S(t). As a result, we expect that the number

of DMM steps would be reduced. The effect of the dissipation term in the practical calculations is

reported and discussed in Sec. 3.1.

3 Results

We will present our tests of the implementation of O(N) DFT in different stages: first, considering

approaches that permit energy conservation and their efficiencies; second, the effect of density

matrix range and minimisation tolerance; and finally presenting practical calculations.
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3.1 Effective schemes for linear-scaling BOMD

First, we explore methods to achieve energy conservation with O(N) DFT and BOMD. We monitor

the Born-Oppenheimer total energy EBO, which is defined as a sum of the ionic kinetic energy T

and the DFT total energy VBO. In the micro-canonical ensemble, EBO should be constant and so

is a good indicator to judge whether a simulation is accurately carried out. In what follows, RL is

set to 16 bohr (the effect of changing this is explored below in Sec. 3.2). A single-ζ (SZ) PAO

is used to represent support functions,32 and the local density approximation (LDA) is adopted to

the exchange-correlation functional with the parametrization by Perdew and Zunger.33 MD simu-

lations are conducted via the velocity-Verlet integrator34 with a time step being 0.5 femtoseconds

(fs) in a micro-canonical ensemble; the initial velocities are given randomly so that the Maxwell-

Boltzmann distribution holds with 300 K. The same conditions are set in other simulations in this

report unless otherwise specified.

For a first run, we perform BOMD on a 64-atom crystalline silicon with density-matrix ini-

tialisation by McWeeny step, so that the density matrix is initialised from the Hamiltonian at each

MD step. The density matrix is updated until the residual in the DMM step, 1
N Tr(σS−1σS−1) with

σ = δE ′/δL, becomes smaller than a given tolerance εL. Here, E ′ is defined as VBO− µNel, the

number of electrons is Nel and the Lagrange multiplier µ is used to keep the electron number fixed.

The profile of the Born-Oppenheimer energy EBO is shown by a solid line in Fig. 1, and it is clear

that the total energy is conserved even for a low DMM tolerance, εL = 1.6×10−5. This simulation

is, however, time-consuming since the electronic structure is calculated from scratch at every atom

movement.

We now consider the re-use of the optimised L-matrix from the previous MD step. When the

optimised L-matrix from the previous step is used to initialise the density matrix, the CPU time

is significantly reduced. However, as well as this improved efficiency, we observe a significant

and undesired energy drift, as shown in Fig. 1 with symbols. Here, we consider various values for

the tolerance applied to the density matrix minimisation, εL. The energy drift can be reduced by

using a tighter εL, but tighter tolerance rapidly increases the number of DMM iterations and the
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computational cost.

In order to solve the problem of both accuracy and efficiency, we carry out XL-BOMD with a

DMM tolerance, εL = 1.6× 10−5. Its EBO profile (crosses in Fig. 2) agrees extremely well with

that of BOMD with density-matrix initialisation by means of McWeeny step (solid line in Fig. 2),

implying that XL-BOMD yields a well conserved energy with lower computational requirements.

However, there is a problem in the efficiency with the method, as explained in Sec. 2. After a long

simulation time, the number of DMM iterations required to find the ground state density matrix

grows. This growing cost can be suppressed by applying a dissipative force, and the resulting EBO

profile, circles in Fig. 2, is still very close to the profile without dissipation. A comparison of

the required number of DMM iterations at each step for these different approaches is shown in

Table. 1. The reduction of computational cost by using XL-BOMD with dissipation is significant.

Besides the smaller number of DMM iterations, the method does not require McWeeny steps which

typically include a few tens of matrix multiplications for purification (as in Eq. 3).

Figure 1: Born-Oppenheimer total energy profiles obtained with McWeeny initialisation at every
step (solid line) and by reusing the L-matrix from the previous step for different tolerances (sym-
bols). Symbols stand for tolerance εL taking values 1.6×10−5 (circle), 1.6×10−7 (square) and
1.6×10−9 (triangle).
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Figure 2: Born-Oppenheimer total energy profiles with tolerance εL 1.6×10−5, and different ini-
tialisations: McWeeny initialisation at each MD step (solid line); XL-BOMD with dissipative force
(circles); and XL-BOMD without dissipative force (crosses).

Table 1: DMM iterations required for each MD step; BOMD with density-matrix initialisation
by McWeeny step, and XL-BOMD in the presence (Y) and absence (N) of a dissipative force.
Averages taken over 1,000 steps.

type of run dissipation average max min
BOMD N 10 12 8
XL-BOMD N 6.7 8 2
XL-BOMD Y 3.9 4 2

3.2 Effects of density matrix tolerance and range on XL-BOMD

In the last section, we showed that XL-BOMD simulation with DMM method was robust and ef-

ficient using one typical set of calculation conditions. We now investigate how MD results are

affected by the parameters which control the accuracy and efficiency of linear-scaling DFT calcu-

lations with DMM. There are two key parameters: the range applied to the auxiliary density matrix

(L-range or RL); and the tolerance applied to the minimisation, εL. In both tests, XL-BOMD is

performed on a 64-atom crystalline silicon with a dissipative force.
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3.2.1 RL-dependence

The key approximation made in linear scaling is to localize the density matrix, and it is vital to

examine how the conservation of energy, EBO, is affected by the range, the parameter RL. We have

tested three values of RL: 13, 16 and 20 bohr, each with a strict DMM tolerance, εL = 1.6×10−7.

Simulations are performed for 2ps (or 4,000 steps).

The time-averaged BO total energies are very different for the three ranges (-106.830 eV/atom,

-106.930 eV/atom and -106.987 eV/atom) simply because the potential energy is lower for longer

ranges. We plot the instantaneous energy fluctuations for the three ranges in Fig. 3; the time-

averaged absolute fluctuations, 〈|∆EBO|〉, are 0.24 meV/atom, 0.15 meV/atom and 0.075 meV/atom.

These fluctuations become smaller as the range increases, and no energy drift is seen for any of the

ranges.

During MD, atoms will move in and out of the density matrix range, and we might expect to see

energy drift and deviations at small ranges, compared to long ranges. The lack of drift is extremely

encouraging, showing that the XL-BOMD approach is well-suited both to orthogonal and non-

orthogonal basis sets, and linear scaling approaches. It is also encouraging that, for relatively

modest ranges, good accuracy is seen. We plot the kinetic energy of the ions in Fig. 4, which

shows that, while there is a deviation for 13 bohr range after 2-300 femtoseconds, the 16 bohr

range profile is extremely close to the 20 bohr range profile, and therefore this range can be used

with confidence over at least 1ps.35
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Figure 3: The instantaneous energy fluctuations calculated by three RL values; 13 bohr (top), 16
bohr (middle) and 20 bohr (bottom).
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Figure 4: The ionic kinetic energy profiles by three RL values; 13 bohr, 16 bohr and 20 bohr.

3.2.2 εL-dependence

The other main parameter which must be tested for its effect on the accuracy and stability of linear-

scaling MD is the DMM tolerance εL. From the results of the last section, we fix the L-range to 16

bohr and apply a wide range of εL from 10−4 to 10−7; we assume that the results with εL = 10−7

can be regarded as reference values. We plot the BO total energy over a set of 1ps simulations

in Fig. 5. First we note that EBO with εL = 10−4 (circles) is not fully converged, and is higher in

energy by about 2 meV/atom than the converged one. However, as we see in Fig. 6, the kinetic

energy profile shows almost perfect agreement with the reference profile of εL = 10−7, indicating

that forces and hence the ionic kinetic energy converge faster than the total energy. Note that we

can achieve good convergence for both EBO and T with εL = 10−5. In addition, the EBO profiles

are close to each other for all tolerances except for a constant shift of the energy. Given the fast

convergence in ionic kinetic energy, and the similarities in EBO profiles, the calculated trajectories

will be very close. Hence, the DMM tolerance of 10−4 will give an accurate simulation.
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Figure 5: The Born-Oppenheimer total energy profiles calculated for different εL values: circles,
squares and triangles denote the profiles given by εL = 10−4,5×10−5 and 10−5, respectively. The
solid line shows the profile calculated with εL = 10−7.
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Figure 6: The ionic kinetic energy profiles calculated for different εL values: circles, crosses and
triangles denote the profiles given by εL = 10−4,5× 10−5 and 10−5, respectively. A solid line
shows the profile calculated with εL = 10−7.

3.3 Practical O(N)-MD simulations

Having investigated the effects of the parameters on simulations, we now present applications of

the CONQUEST code to practical MD simulations using a double-ζ + polarisation (DZP) PAO

basis, which is commonly used as a converged basis set. Three different systems are presented:

8-atom crystalline silicon; 32 water molecules; and a 32,768-atom crystalline silicon cell to demon-

strate application to a large system. For all systems, L range is set to 16 bohr. The initial tempera-

ture is 300K and the time step of the simulation is 0.5 femtosecond, unless stated otherwise.

3.3.1 Eight atom bulk silicon

Our first example is a small sample of crystalline silicon. We show the BO energy, EBO, calculated

with εL set to 1.3×10−4 in Figure 7. This plot demonstrates excellent energy conservation, though

there are large fluctuations for the first few femtoseconds. This initial large amplitude is probably
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caused by the system not being in an equilibrium state at the start of the simulation, and is not

a significant problem. In the inset of Fig. 7, we also show the result of a simulation where we

set S = 1 in Eq. 4 or Eq. 5 (by supposing that L is expressed using orthogonal basis sets). By

comparing the result (dotted line) with the correct one (solid line), we see that the former energy

exhibits significant drift, while the latter one is well behaved. This indicates the importance of the

metric used for non-orthogonal basis functions.

Figure 7: Main: Born-Oppenheimer total energy profile of crystalline Si with a DZP basis set.
Inset: comparison of two approaches to XL-BOMD, solid and dotted lines indicating the corrected
and non-corrected propagators, respectively.

We performed another MD simulation on the same system using the same calculation condi-

tions except that the time step is increased to 2.0 femtoseconds (this result is shown in Supporting

Information). We see that the large oscillations observed in the early stage are even larger and the

time to suppress them becomes longer. However, it is found that the time evolution of the kinetic

energy of Si atoms is almost the same between these two MD simulations. This result means that

time step of 2.0 femtoseconds can be used to do reliable MD simulations on this silicon system.

It is encouraging that we can use such a large time step for O(N) FPMD simulations. Here, we
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should note that a new efficient method which does not require self-consistent field optimization

has been recently proposed36 within the XL-BOMD framework. Introducing such new techniques

to the CONQUEST code may even further accelerate the speed of O(N) FPMD simulations.

3.3.2 Box of 32 water molecules

We take a box of water made up of 32 molecules as our next target. Water is important as a

system in its own right, as well as forming the environment for most biological simulations. We

performed linear scaling XL-BOMD with εL set to 10−4, and using the GGA-PBE functional37,38

for exchange-correlation, as it describes water better than LDA (we note that the convergence with

respect to the grid may be slower for GGA). In Fig. 8 we show the total energy and the ionic and

potential energies, T and VBO. We see that there are no initial large oscillations unlike the silicon

case, and that T appears to keep increasing during the run. This behavior is seen because we used

the micro-canonical ensemble and the simulation time is too short to reach a steady state. Even in

such a situation showing fast changes, the averaged fluctuations are ∼ 1.1 meV atom−1 and good

energy conservation is found without any energy drift. These results clearly demonstrate that there

are no effects from the grid on the stability and accuracy of MD.
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Figure 8: The Born-Oppenheimer total energy profiles of the waterbox system with DZP and PBE:
a solid line represents EBO, and red dashed and blue dotted lines characterise its components, VBO
and T , respectively (color online).

3.3.3 32,768-atom crystalline silicon

Finally, as a demonstration of the scalability of our approach, we apply our algorithm to a large

system: a 32,768 atom crystalline silicon sample. The time evolution of the BO and potential

energy are shown in Fig. 9. This is our first substantial attempt to examine the stability of an MD

simulation on massive systems. This simulation is conducted under the same conditions as those

in the 8-atom system in Fig. 7, except that the time step is set to 2.0 femtoseconds.

We observe some similarities to the previous results. In the early stage of a simulation, large

oscillations are seen in the energy, but are gradually suppressed during the MD run. The time to

suppress the large oscillations is longer than the one in Fig. 7, but similar to the case using 2.0

femtoseconds for 8-atom crystalline silicon. (See Fig. S1 in the Supporting Information.) Thus,

this comes from the difference of the time step, not from the system size. The energy fluctuations

after 100 femtoseconds is smaller than 1 meV atom−1 and there is no energy drift, as shown in
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Fig. 9. Although we only carried out a short MD run, the simulation is expected to remain stable

in longer cases without any drift, based on the preceding example of an 8-atom system. Moreover,

our approach is expected to ensure great stability on even larger and more complex systems by

virtue of high computational efficiency realised in the CONQUEST code.2,3,39 The average time

required for 1 MD step was 1085 seconds using 1024 CPUs (with 16 cores/CPU) of Fujitsu FX10.

We are confident that this wall-clock time will be greatly reduced in the near future, because the

code is not optimized at present, especially for the part updating X matrices; for simplicity, we

now use a simple disk-based I/O procedure to read and write matrix elements of Xs in the previous

steps and this part will be improved in the near future.

Figure 9: Profiles of the Born-Oppenheimer total energy and potential energy of a 32,768-atom
crystalline silicon system with a DZP basis set and LDA functional.

4 Conclusions

In this paper, we have investigated the efficiency, stability and accuracy of MD simulations with

the CONQUEST code using the DMM linear scaling approach, to demonstrate large-scale O(N)
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FPMD simulations in practice. We first found that accurate MD simulations can be performed by

calculating the electronic structure from scratch using the McWeeny procedure at every atomic

configuration. This gives excellent energy conservation even with a rather rough tolerance on

the convergence of the density matrix minimisation. However, this method requires considerable

computational time because it initialises the density matrix at each step, rather than re-utilising it.

Direct re-use of the optimised density matrix reduces computational costs considerably, but

causes an unphysical energy drift. In order to achieve both accuracy and efficiency, we have intro-

duced the XL-BOMD formalism, proposed by Niklasson et al., to the CONQUEST code, formulated

for non-orthogonal basis functions. The application of XL-BOMD turned out to be much more ef-

ficient than the McWeeny approach, especially with the aid of a dissipative force, and good energy

conservation was observed. We studied how calculated results depend on two parameters specific

to the DMM method: the cutoff range of the L matrix and the tolerance applied to the density ma-

trix minimisation. We found that larger L-ranges resulted in smaller energy fluctuations. Moreover,

we found that the MD trajectories from runs with different ranges are almost identical, even when

the Born-Oppenhimer total energy was not fully converged. This indicates that, as is well known,

the atomic forces converge much faster than the total energy with respect to these two parameters.

As practical applications, we treated crystalline silicon with LDA and liquid water with GGA.

For the crystalline silicon, we demonstrated that accurate MD runs can be performed on very large

systems, in this case containing 32,768 atoms, but scalable to significantly larger systems. The

algorithms presented in this paper are applicable to a canonical ensemble and thus will open doors

to more practical calculations on very large and complex systems.
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