460 research outputs found

    Just-in-time Pastureland Trait Estimation for Silage Optimization, under Limited Data Constraints

    Get PDF
    To ensure that pasture-based farming meets production and environmental targets for a growing population under increasing resource constraints, producers need to know pastureland traits. Current proximal pastureland trait prediction methods largely rely on vegetation indices to determine biomass and moisture content. The development of new techniques relies on the challenging task of collecting labelled pastureland data, leading to small datasets. Classical computer vision has already been applied to weed identification and recognition of fruit blemishes using morphological features, but machine learning algorithms can parameterise models without the provision of explicit features, and deep learning can extract even more abstract knowledge although typically this is assumed to be based around very large datasets. This work hypothesises that through the advantages of state-of-the-art deep learning systems, pastureland crop traits can be accurately assessed in a just-in-time fashion, based on data retrieved from an inexpensive sensor platform, under the constraint of limited amounts of labelled data. However the challenges to achieve this overall goal are great, and for applications such as just-in-time yield and moisture estimation for farm-machinery, this work must bring together systems development, knowledge of good pastureland practice, and also techniques for handling low-volume datasets in a machine learning context. Given these challenges, this thesis makes a number of contributions. The first of these is a comprehensive literature review, relating pastureland traits to ruminant nutrient requirements and exploring trait estimation methods, from contact to remote sensing methods, including details of vegetation indices and the sensors and techniques required to use them. The second major contribution is a high-level specification of a platform for collecting and labelling pastureland data. This includes the collection of four-channel Blue, Green, Red and NIR (VISNIR) images, narrowband data, height and temperature differential, using inexpensive proximal sensors and provides a basis for holistic data analysis. Physical data platforms built around this specification were created to collect and label pastureland data, involving computer scientists, agricultural, mechanical and electronic engineers, and biologists from academia and industry, working with farmers. Using the developed platform and a set of protocols for data collection, a further contribution of this work was the collection of a multi-sensor multimodal dataset for pastureland properties. This was made up of four-channel image data, height data, thermal data, Global Positioning System (GPS) and hyperspectral data, and is available and labelled with biomass (Kg/Ha) and percentage dry matter, ready for use in deep learning. However, the most notable contribution of this work was a systematic investigation of various machine learning methods applied to the collected data in order to maximise model performance under the constraints indicated above. The initial set of models focused on collected hyperspectral datasets. However, due to their relative complexity in real-time deployment, the focus was instead on models that could best leverage image data. The main body of these models centred on image processing methods and, in particular, the use of the so-called Inception Resnet and MobileNet models to predict fresh biomass and percentage dry matter, enhancing performance using data fusion, transfer learning and multi-task learning. Images were subdivided to augment the dataset, using two different patch sizes, resulting in around 10,000 small patches of size 156 x 156 pixels and around 5,000 large patches of size 240 x 240 pixels. Five-fold cross validation was used in all analysis. Prediction accuracy was compared to older mechanisms, albeit using hyperspectral data collected, with no provision made for lighting, humidity or temperature. Hyperspectral labelled data did not produce accurate results when used to calculate Normalized Difference Vegetation Index (NDVI), or to train a neural network (NN), a 1D Convolutional Neural Network (CNN) or Long Short Term Memory (LSTM) models. Potential reasons for this are discussed, including issues around the use of highly sensitive devices in uncontrolled environments. The most accurate prediction came from a multi-modal hybrid model that concatenated output from an Inception ResNet based model, run on RGB data with ImageNet pre-trained RGB weights, output from a residual network trained on NIR data, and LiDAR height data, before fully connected layers, using the small patch dataset with a minimum validation MAPE of 28.23% for fresh biomass and 11.43% for dryness. However, a very similar prediction accuracy resulted from a model that omitted NIR data, thus requiring fewer sensors and training resources, making it more sustainable. Although NIR and temperature differential data were collected and used for analysis, neither improved prediction accuracy, with the Inception ResNet model’s minimum validation MAPE rising to 39.42% when NIR data was added. When both NIR data and temperature differential were added to a multi-task learning Inception ResNet model, it yielded a minimum validation MAPE of 33.32%. As more labelled data are collected, the models can be further trained, enabling sensors on mowers to collect data and give timely trait information to farmers. This technology is also transferable to other crops. Overall, this work should provide a valuable contribution to the smart agriculture research space

    Global 10 m Land Use Land Cover Datasets: A Comparison of Dynamic World, World Cover and Esri Land Cover

    Get PDF
    The European Space Agency’s Sentinel satellites have laid the foundation for global land use land cover (LULC) mapping with unprecedented detail at 10 m resolution. We present a cross-comparison and accuracy assessment of Google’s Dynamic World (DW), ESA’s World Cover (WC) and Esri’s Land Cover (Esri) products for the first time in order to inform the adoption and application of these maps going forward. For the year 2020, the three global LULC maps show strong spatial correspondence (i.e., near-equal area estimates) for water, built area, trees and crop LULC classes. However, relative to one another, WC is biased towards over-estimating grass cover, Esri towards shrub and scrub cover and DW towards snow and ice. Using global ground truth data with a minimum mapping unit of 250 m2 , we found that Esri had the highest overall accuracy (75%) compared to DW (72%) and WC (65%). Across all global maps, water was the most accurately mapped class (92%), followed by built area (83%), tree cover (81%) and crops (78%), particularly in biomes characterized by temperate and boreal forests. The classes with the lowest accuracies, particularly in the tundra biome, included shrub and scrub (47%), grass (34%), bare ground (57%) and flooded vegetation (53%). When using European ground truth data from LUCAS (Land Use/Cover Area Frame Survey) with a minimum mapping unit of <100 m2 , we found that WC had the highest accuracy (71%) compared to DW (66%) and Esri (63%), highlighting the ability of WC to resolve landscape elements with more detail compared to DW and Esri. Although not analyzed in our study, we discuss the relative advantages of DW due to its frequent and near real-time data delivery of both categorical predictions and class probability scores. We recommend that the use of global LULC products should involve critical evaluation of their suitability with respect to the application purpose, such as aggregate changes in ecosystem accounting versus site-specific change detection in monitoring, considering trade-offs between thematic resolution, global versus. local accuracy, class-specific biases and whether change analysis is necessary. We also emphasize the importance of not estimating areas from pixel-counting alone but adopting best practices in design-based inference and area estimation that quantify uncertainty for a given study area. accuracy; deep learning; Earth observation; Sentinel-2; validationpublishedVersio

    Assessment of plot-scale sediment transport on young moraines in the Swiss Alps using a fluorescent sand tracer

    Get PDF
    Glacial retreat uncovers large bodies of unconsolidated sediment that are prone to erosion. However, our knowledge of overland flow (OF) generation and sediment transport on moraines that have recently become ice-free is still limited. To investigate how the surface characteristics of young moraines affect OF and sediment transport, we installed five bounded runoff plots on two moraines of different ages in a proglacial area of the Swiss Alps. On each plot we conducted three sprinkling experiments to determine OF characteristics (i.e., total OF and peak OF flow rate) and measured sediment transport (turbidity, sediment concentrations, and total sediment yield). To determine and visualize where sediment transport takes place, we used a fluorescent sand tracer with an afterglow as well as ultraviolet (UV) and light-emitting diode (LED) lamps and a high-resolution camera. The results highlight the ability of this field setup to detect sand movement, even for individual fluorescent sand particles (300–500 µm grain size), and to distinguish between the two main mechanisms of sediment transport: OF-driven erosion and splash erosion. The higher rock cover on the younger moraine resulted in longer sediment transport distances and a higher sediment yield. In contrast, the higher vegetation cover on the older moraine promoted infiltration and reduced the length of the sediment transport pathways. Thus, this study demonstrates the potential of the use of fluorescent sand with an afterglow to determine sediment transport pathways as well as the fact that these observations can help to improve our understanding of OF and sediment transport processes on complex natural hillslopes

    Monitorización 3D de cultivos y cartografía de malas hierbas mediante vehículos aéreos no tripulados para un uso sostenible de fitosanitarios

    Get PDF
    En esta Tesis Doctoral se han utilizado las imágenes procedentes de un UAV para abordar la sostenibilidad de la aplicación de productos fitosanitarios mediante la generación de mapas que permitan su aplicación localizada. Se han desarrollado dos formas diferentes y complementarias para lograr este objetivo: 1) la reducción de la aplicación de herbicidas en post-emergencia temprana mediante el diseño de tratamientos dirigidos a las zonas infestadas por malas hierbas en varios cultivos herbáceos; y 2) la caracterización tridimensional (arquitectura y volumen) de cultivos leñosos para el diseño de tratamientos de aplicación localizada de fitosanitarios dirigidos a la parte aérea de los mismos. Para afrontar el control localizado de herbicidas se han estudiado la configuración y las especificaciones técnicas de un UAV y de los sensores embarcados a bordo para su aplicación en la detección temprana de malas hierbas y contribuir a la generación de mapas para un control localizado en tres cultivos herbáceos: maíz, trigo y girasol. A continuación, se evaluaron los índices espectrales más precisos para su uso en la discriminación de suelo desnudo y vegetación (cultivo y malas hierbas) en imágenes-UAV tomadas sobre dichos cultivos en fase temprana. Con el fin de automatizar dicha discriminación se implementó en un entorno OBIA un método de cálculo de umbrales. Finalmente, se desarrolló una metodología OBIA automática y robusta para la discriminación de cultivo, suelo desnudo y malas hierbas en los tres cultivos estudiados, y se evaluó la influencia sobre su funcionamiento de distintos parámetros relacionados con la toma de imágenes UAV (solape, tipo de sensor, altitud de vuelo, momento de programación de los vuelos, entre otros). Por otra parte y para facilitar el diseño de tratamientos fitosanitarios ajustados a las necesidades de los cultivos leñosos se ha desarrollado una metodología OBIA automática y robusta para la caracterización tridimensional (arquitectura y volumen) de cultivos leñosos usando imágenes y modelos digitales de superficies generados a partir de imágenes procedentes de un UAV. Asimismo, se evaluó la influencia de distintos parámetros relacionados con la toma de las imágenes (solape, tipo de sensor, altitud de vuelo) sobre el funcionamiento del algoritmo OBIA diseñado

    A Critical Evaluation of Remote Sensing Based Land Cover Mapping Methodologies

    Get PDF
    A novel, disaggregated approach to land cover survey is developed on the basis of land cover attributes; the parameters typically used to delineate land cover classes. The recording of land cover attributes, via objective measurement techniques, is advocated as it eliminates the requirement for surveyors to delineate and classify land cover; a process proven to be subjective and error prone. Within the North York Moors National Park, a field methodology is developed to characterise five attributes: species composition, cover, height, structure and density. The utility of land cover attributes to act as land cover ‘building blocks’ is demonstrated via classification of the field data to the Monitoring Landscape Change in the National Parks (MLCNP), National Land Use Database (NLUD) and Phase 1 Habitat Mapping (P1) schemes. Integration of the classified field data and a SPOT5 satellite image is demonstrated within per-pixel and object-orientated classification environments. Per-pixel classification produced overall accuracies of 81%, 80% and 76% at the field samples for the MLCNP, NLUD and P1 schemes, respectively. However, independent validation produced significantly lower accuracies. These decreases are demonstrated to be a function of sample fraction. Object-orientated classification, exemplified for the MLCNP schema at 3 segmentation scales, achieved accuracies approaching 75%. The aggregation of attributes to classes underutilises the potential of the remotely sensed data to describe landscape variability. Consequently, classification and geostatistical techniques capable of land cover attribute parameterisation, across the study area, are reviewed and exemplified for a sub-pixel classification. Land cover attributes provide a flexible source of field data which has been proven to support multiple land cover classification schemes and classification scales (sub-pixel, pixel and object). This multi-scaled/schemed approach enables the differential treatment of regions, within the remote sensing image, as a function of landscape characteristics and the users’ requirements providing a flexible mapping solution

    Real-time Aerial Vehicle Detection and Tracking using a Multi-modal Optical Sensor

    Get PDF
    Vehicle tracking from an aerial platform poses a number of unique challenges including the small number of pixels representing a vehicle, large camera motion, and parallax error. For these reasons, it is accepted to be a more challenging task than traditional object tracking and it is generally tackled through a number of different sensor modalities. Recently, the Wide Area Motion Imagery sensor platform has received reasonable attention as it can provide higher resolution single band imagery in addition to its large area coverage. However, still, richer sensory information is required to persistently track vehicles or more research on the application of WAMI for tracking is required. With the advancements in sensor technology, hyperspectral data acquisition at video frame rates become possible as it can be cruical in identifying objects even in low resolution scenes. For this reason, in this thesis, a multi-modal optical sensor concept is considered to improve tracking in adverse scenes. The Rochester Institute of Technology Multi-object Spectrometer is capable of collecting limited hyperspectral data at desired locations in addition to full-frame single band imagery. By acquiring hyperspectral data quickly, tracking can be achieved at reasonableframe rates which turns out to be crucial in tracking. On the other hand, the relatively high cost of hyperspectral data acquisition and transmission need to be taken into account to design a realistic tracking. By inserting extended data of the pixels of interest we can address or avoid the unique challenges posed by aerial tracking. In this direction, we integrate limited hyperspectral data to improve measurement-to-track association. Also, a hyperspectral data based target detection method is presented to avoid the parallax effect and reduce the clutter density. Finally, the proposed system is evaluated on realistic, synthetic scenarios generated by the Digital Image and Remote Sensing software
    corecore