313 research outputs found

    Mechanized semantics

    Get PDF
    The goal of this lecture is to show how modern theorem provers---in this case, the Coq proof assistant---can be used to mechanize the specification of programming languages and their semantics, and to reason over individual programs and over generic program transformations, as typically found in compilers. The topics covered include: operational semantics (small-step, big-step, definitional interpreters); a simple form of denotational semantics; axiomatic semantics and Hoare logic; generation of verification conditions, with application to program proof; compilation to virtual machine code and its proof of correctness; an example of an optimizing program transformation (dead code elimination) and its proof of correctness

    Introduction to the Literature on Semantics

    Get PDF
    An introduction to the literature on semantics. Included are pointers to the literature on axiomatic semantics, denotational semantics, operational semantics, and type theory

    A Transformation-Based Foundation for Semantics-Directed Code Generation

    Get PDF
    Interpreters and compilers are two different ways of implementing programming languages. An interpreter directly executes its program input. It is a concise definition of the semantics of a programming language and is easily implemented. A compiler translates its program input into another language. It is more difficult to construct, but the code that it generates runs faster than interpreted code. In this dissertation, we propose a transformation-based foundation for deriving compilers from semantic specifications in the form of four rules. These rules give apriori advice for staging, and allow explicit compiler derivation that would be less succinct with partial evaluation. When applied, these rules turn an interpreter that directly executes its program input into a compiler that emits the code that the interpreter would have executed. We formalize the language syntax and semantics to be used for the interpreter and the compiler, and also specify a notion of equality. It is then possible to precisely state the transformation rules and to prove both local and global correctness theorems. And although the transformation rules were developed so as to apply to an interpreter written in a denotational style, we consider how to modify non-denotational interpreters so that the rules apply. Finally, we illustrate these ideas by considering a larger example: a Prolog implementation

    Forms of Semantic Specification

    Get PDF
    The way to specify a programming language has been a topic of heated debate for some decades and at present there is no consensus on how this is best done. Real languages are almost always specified informally; nevertheless, precision is often enough lacking that more formal approaches could benefit both programmers and language implementors. My purpose is to look at a few of these formal approaches in hope of establishing some distinctions or at least stirring some discussion

    A Simple Solution to Type Specialization

    Get PDF
    Partial evaluation specializes terms, but traditionally thisspecialization does not apply to the type of these terms. As a result, specializing, e.g., an interpreter written in a typed language, which requires a "universal" type to encode expressible values, yields residual programs with type tags all over. Neil Jones has stated that getting rid of these type tags was an open problem, despite possible solutions such as Torben Mogensen's "constructor specialization." To solve this problem, John Hughes has proposed a new paradigm for partial evaluation, "Type Specialization," based on type inference instead of being based on symbolic interpretation. Type Specialization is very elegant in principle but it also appears non-trivial in practice. Stating the problem in terms of types instead of in terms of type encodings suggests a very simple type-directed solution, namely, to use a projection from the universal type to the specific type of the residual program. Standard partial evaluation then yields a residual programwithout type tags, simply and efficiently

    Programming with Algebraic Effects and Handlers

    Full text link
    Eff is a programming language based on the algebraic approach to computational effects, in which effects are viewed as algebraic operations and effect handlers as homomorphisms from free algebras. Eff supports first-class effects and handlers through which we may easily define new computational effects, seamlessly combine existing ones, and handle them in novel ways. We give a denotational semantics of eff and discuss a prototype implementation based on it. Through examples we demonstrate how the standard effects are treated in eff, and how eff supports programming techniques that use various forms of delimited continuations, such as backtracking, breadth-first search, selection functionals, cooperative multi-threading, and others

    Interaction Trees: Representing Recursive and Impure Programs in Coq

    Get PDF
    "Interaction trees" (ITrees) are a general-purpose data structure for representing the behaviors of recursive programs that interact with their environments. A coinductive variant of "free monads," ITrees are built out of uninterpreted events and their continuations. They support compositional construction of interpreters from "event handlers", which give meaning to events by defining their semantics as monadic actions. ITrees are expressive enough to represent impure and potentially nonterminating, mutually recursive computations, while admitting a rich equational theory of equivalence up to weak bisimulation. In contrast to other approaches such as relationally specified operational semantics, ITrees are executable via code extraction, making them suitable for debugging, testing, and implementing software artifacts that are amenable to formal verification. We have implemented ITrees and their associated theory as a Coq library, mechanizing classic domain- and category-theoretic results about program semantics, iteration, monadic structures, and equational reasoning. Although the internals of the library rely heavily on coinductive proofs, the interface hides these details so that clients can use and reason about ITrees without explicit use of Coq's coinduction tactics. To showcase the utility of our theory, we prove the termination-sensitive correctness of a compiler from a simple imperative source language to an assembly-like target whose meanings are given in an ITree-based denotational semantics. Unlike previous results using operational techniques, our bisimulation proof follows straightforwardly by structural induction and elementary rewriting via an equational theory of combinators for control-flow graphs.Comment: 28 pages, 4 pages references, published at POPL 202
    corecore