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Abstract. Partial evaluation specializes terms, but traditionally this
specialization does not apply to the type of these terms. As a result,
specializing, e.g., an interpreter written in a typed language, which re-
quires a “universal” type to encode expressible values, yields residual
programs with type tags all over. Neil Jones has stated that getting rid
of these type tags was an open problem, despite possible solutions such
as Torben Mogensen’s “constructor specialization.” To solve this prob-
lem, John Hughes has proposed a new paradigm for partial evaluation,
“Type Specialization,” based on type inference instead of being based on
symbolic interpretation. Type Specialization is very elegant in principle
but it also appears non-trivial in practice.
Stating the problem in terms of types instead of in terms of type en-
codings suggests a very simple type-directed solution, namely, to use
a projection from the universal type to the specific type of the resid-
ual program. Standard partial evaluation then yields a residual program
without type tags, simply and efficiently.

1 The Problem

1.1 An example

Say that we need to write an evaluator in a typed language, such in Figure 1. To
this end we use a “universal” data type encoding all the expressible values. As
witnessed by the type of the evaluator, evaluating an expression yields a value
of the universal type.

- eval (LAM ("x", ADD (VAR "x", LIT 1))) Env.init;

val it = FUN fn : univ

-

We can visualize the text of this universal value by using partial evaluation [3,
10], i.e., by specializing the evaluator of Figure 1 with respect to the expression
above. In that, specializing an interpreter with respect to a program provides



datatype exp = LIT of int

| VAR of string

| LAM of string * exp

| APP of exp * exp

| ADD of exp * exp

datatype univ = INT of int

| FUN of univ -> univ

exception TypeError

(* eval : exp -> univ Env.env -> univ *)

fun eval (LIT i) env

= INT i

| eval (VAR x) env

= Env.lookup (x, env)

| eval (LAM (x, e)) env

= FUN (fn v => eval e (Env.extend (x, v, env)))

| eval (APP (e0, e1)) env

= (case (eval e0 env) of

(FUN f) => f (eval e1 env)

| _ => raise TypeError)

| eval (ADD (e1, e2)) env

= (case (eval e1 env, eval e2 env) of

(INT i1, INT i2) => INT (i1 + i2)

| _ => raise TypeError)

signature ENV

= sig

type ’a env

exception UndeclaredIdentifier

val extend : string * ’a * ’a env -> ’a env

val init : ’a env

val lookup : string * ’a env -> ’a

end

Fig. 1. An example evaluator in Standard ML

a mechanized solution to the traditional exercise in denotational semantics of
exhibiting the denotation of a program [13, Exercises 1 and 2, Chapter 5].

A simple partial evaluator would perform the recursive descent and the en-
vironment management of the evaluator, and yield a residual term such as the
following one.

FUN (fn v => (case (v, INT 1) of

(INT i1, INT i2) => INT (i1 + i2)

| _ => raise TypeError))



A slightly more enterprising partial evaluator would propagate the constant 1
and fold the corresponding computation, essentially yielding the following resid-
ual term.

FUN (fn (INT i1) => INT (i1 + 1)

| _ => raise TypeError)

In both cases, the residual program is cluttered with the type tags FUN and
INT.

1.2 The problem

Obtaining a residual program without type tags by specializing an interpreter
expressed in a typed language has been stated as an open problem for about
ten years now [8, 9]. This problem has become acute with the advent of partial
evaluators for typed languages, such as SML-Mix [2].

We note that this problem does not occur for command interpreters, which
essentially have the functionality cmd -> sto -> sto. No matter which command
such an interpreter is specialized with respect to, the result is of type sto.

The problem only arises for expression interpreters, whose codomain depends
on their domain. Indeed, the type of an expressible value depends on the type
of the corresponding source expression.

2 A Sophisticated Solution: “Type Specialization”

Partial evaluation is traditionally performed by non-standard interpretation [3,
10]: during specialization, part of the source term is interpreted, and the rest is
reconstructed, yielding a residual term.

Recently, John Hughes has proposed to shift perspective and to perform
partial evaluation by non-standard type inference instead of by non-standard
interpretation [6]. In doing so, he has achieved both term and type specializa-
tion. His new approach has been favorably met in the functional-programming
community [7].

The resulting type specialization is very elegant in principle but so far it ap-
pears non-trivial in practice. Like all other partial evaluators in their infancy, in
its current state, it requires expert source annotations to work. Correspondingly,
no efficient implementations seem to exist yet, despite recent progress [14].

3 A Simpler Solution: Projecting from the Universal
Type

Let us go back to the example of Section 1.1. There is an obvious embed-
ding/projection between the native types of ML and the universal type univ.
Noting ε for the embedding and π for the projection, it reads as follows.






εint i = INT i
εt1→t2 f = FUN λv.εt2 (f (πt1 v))

πint (INT i) = i
πt1→t2 (FUN f) = λv.πt2 (f (εt1 v))

Thus equipped, we can project the expressible value of Section 1.1 from the
universal type to the type of the original expression, i.e., int -> int. In doing
so, we obtain

1. a value of type int -> int by evaluation; and
2. a residual program without type tags by partial evaluation, that reads:

fn v => v + 1

Our simple solution thus amounts to composing the projection with the in-
terpreter prior to partial evaluation. In effect, the projection specializes the type,
and in practice, the partial evaluator specializes the term, including its projec-
tion.

4 A Case Study

We have paired the embedding/projection described above with type-directed
partial evaluation [4], both in Scheme and in ML. Here is a typical measure in
Standard ML of New Jersey, Version 0.93, on a 150Mhz Pentium running Linux.
The ML measures are more significant than the Scheme measures because they
do not depend on our particular tagged representation of typed values. For lack
of an interactive timer, we are not able to report similar measures in Caml [1].

For this measure, we have extended the interpreter of Figure 1 to handle a
more substantial language including booleans, conditional expressions, recursive
functions, and extra numerical operations.

We repeated the following computations 1000 times. The resulting numbers
should thus be divided by 1000. They include garbage collection.

We consider the functional F associated to the factorial function (but using
addition instead of multiplication, to avoid numeric overflow).

Term overhead and type overhead: Let m denote the result of applying the
interpreter to F . The value m has type univ. Applying the fixed point of m to
100 and projecting its result, i.e.,

πint (fixuniv m (εint 100))

(repeated 1000 times) yields 5050 in 4.1 seconds.



Term overhead and type overhead, plus the projection: We then project m, ob-
taining a value of type (int -> int) -> int -> int. Applying the fixed point of
this value to 100, i.e.,

fix(int→int)→int→int (π(int→int)→int→int m) 100

(repeated 1000 times) yields 5050 in 4.9 seconds.
The projection slows down the computation by about 20%.

No term overhead, but type overhead: We now consider M , the result of spe-
cializing the interpreter with respect to F . The meaning of M has type univ.
Applying the fixed point of this meaning to 100 and projecting its result, i.e.,

πint (fixuniv [[M ]] (εint 100))

(repeated 1000 times) yields 5050 in 0.5 seconds.

No term overhead and no type overhead: We now consider M ′, the result of
specializing the projected interpreter with respect to F . The meaning of M ′ is
of type (int -> int) -> int -> int. Applying the fixed point of this meaning
to 100, i.e.,

fix(int→int)→int→int [[M ′]] 100

(repeated 1000 times) yields 5050 in 0.3 seconds.

Overhead of type-directed partial evaluation: specializing the projected denota-
tion of F (repeated 1000 times) takes 0.4 seconds.

Analysis: Specializing the interpreter removes the term overhead: the residual
computation is about 88% faster than the original one. Specializing the pro-
jected interpreter removes both the term and the type overhead: the residual
computation is about 94% faster than the original one with the projection and
about 92% faster than the original one without the projection. Finally, the type
overhead slows down the residual code by about 67%.

As for the cost of specialization, it is immediately amortized since the time
spent running the residual code plus the time spent for partial evaluation is less
than the time spent running the source code.

Using Standard ML, we were not able to measure the time spent compil-
ing the residual code. However, we could estimate it using Caml and Chez
Scheme. Our Caml implementation combines type-directed partial evaluation
and run-time code generation [1], and Chez Scheme offers run-time code gen-
eration through eval [11]. In both cases, the time spent specializing, compiling
the residual code, and running it is vastly inferior to the time spent running the
source code.



local datatype ’a Fix = FIX of ’a Fix -> ’a

in fun fix_univ (FUN f)

= let fun g (FIX x)

= f (FUN (fn a => let val (FUN h) = x (FIX x)

in h a

end))

in g (FIX g)

end

end

Fig. 2. Universal fixed-point operator

structure Ep

= struct

datatype ’a ep

= EP of (’a -> univ) * (univ -> ’a)

val ep_int

= EP (fn e => (INT e), fn (INT e) => e)

fun ep_fun (EP (embed1, project1), EP (embed2, project2))

= EP (fn f => FUN (fn x => embed2 (f (project1 x))),

fn (FUN f) => fn x => project2 (f (embed1 x)))

end

fun ts (Ep.EP (embed, project)) x = project x

fun tg (Ep.EP (embed, project)) x = embed x

val int = Ep.ep_int

infixr 5 -->; val op --> = Ep.ep_fun;

Fig. 3. Embeddings and projections in ML (after Andrzej Filinski and Zhe Yang)



5 Implementation

We have specified and implemented the embedding/projection of Section 3 to
make it handle unit, booleans, products, disjoint sums, lists, and constructor spe-
cialization [12]. Except for constructor specialization, the embedding/projection
is trivial since ML supports unit, booleans, products, disjoint sums and lists.
Constructor specialization is handled with an encoding in ML. Other type con-
structs that are not native in ML would be handled similarly, i.e., with an en-
coding. Recursion is handled through a fixed-point operator (see Figure 2).

It is not completely immediate to implement embedding/projection pairs in
ML. We did it using a programming technique due to Andrzej Filinski (personal
communication, Spring 1995) and Zhe Yang (personal communication, Spring
1996) [15], originally developed to implement type-directed partial evaluation in
ML. The technique works in two steps:

1. defining a polymorphic constructor of embedding/projection pairs for each
type constructor; and

2. constructing the corresponding pair, following the inductive structure of the
type.

Given such a pair, one can achieve type specialization with its projection
part, and type generalization with its embedding part, as defined in Figure 3
and illustrated in the following interactive session.

- tg (int --> int) (fn x => x + 1);

val it = FUN fn : univ

- ts (int --> int) (FUN (fn (INT x) => INT (x + 1)));

std_in:22.24-22.48 Warning: match nonexhaustive

INT x => ...

val it = fn : int -> int

-

And along the same lines, one can add a polymorphic component to univ.

6 An Improvement

With its pairs of type-indexed functions reify and reflect [4], type-directed partial
evaluation is defined very similarly to the embedding/projection pairs consid-
ered in this article. It is therefore tempting to compose them, to specialize the
interpreter at the same time as we are projecting it.

The results are two-level versions of the embedding/projection pairs:



εt1→t2 f = FUN λv.εt2 (APP (f, πt1 v))

πint (INT i) = LIT i

πt1→t2 (FUN f) = LAM (x, πt2 (f (εt1 (VAR x)))) where x is fresh.



Each projection now maps a universal value into the text of its normal form
(if it exists), and each embedding maps a text into the corresponding universal
value. As usual in offline type-directed partial evaluation, one cannot embed a
dynamic integer. (Base types can only occur positively in the source type [5].)

The following ML session illustrates how to residualize universal values, using
the two-level embedding/projection pairs defined just above.

- residualize (a --> a) (FUN (fn x => x));

val it = LAM ("x1",VAR "x1") : exp

- residualize ((int --> a) --> a) (FUN (fn (FUN f) => f (INT 42)));

std_in:53.14-53.37 Warning: match nonexhaustive

FUN f => ...

val it = LAM ("x1",APP (VAR "x1",LIT 42)) : exp

- residualize (a --> int) (FUN (fn x => INT (1+1)));

val it = LAM ("x1",LIT 2) : exp

-

The last interaction illustrates the normalization effect of residualization (1+1
was calculated at residualization time).

7 Conclusion and Issues

Traditionally, partial evaluators have mostly been developed for untyped lan-
guages, where type specialization is not a concern. Type specialization, however,
appears to be a real issue for typed languages [9]. The point is that to be satisfac-
tory, partial evaluation of typed programs must specialize both terms and types,
and traditional partial evaluators specialize only terms. Against this shortcom-
ing of traditional partial evaluation, John Hughes has proposed an elegant new
paradigm to specialize both terms and types [6, 7]. We suggest the simpler and
more conservative solution of (1) using a projection to achieve type specializa-
tion, and (2) reusing traditional partial evaluation to carry out the corresponding
term specialization. This solution requires no other insight than knowing the type
of the source program and, in the case of definitional interpreter, its associated
type transformer.1 In combination with type-directed partial evaluation, it also
appears to be very efficient in practice.

Given a statically typed functional language such as ML or Haskell, and using
Andrzej Filinski and Zhe Yang’s inductive technique, it is very simple to write
embedding/projection pairs. This simplicity, plus the fact that, as outlined in
Section 6, they mesh very well with type-directed partial evaluation, counter-
balance the fact that one needs to write such pairs for every new universal type
one encounters.
1 For example, the type transformation associated to an interpreter in direct style

is the identity transformation, the type transformer associated to an interpreter in
continuation style is the CPS transformation, etc.



As several anonymous referees pointed out, using embedding/projection pairs
is not as general as John Hughes’s approach. It however has the advantage of
being directly usable since it builds on all the existing partial-evaluation tech-
nology.

But getting back to the central issue of type specialization, i.e., specializing
both terms and types, and how it arose, i.e., to specialize expression interpreters,
the author is struck by the fact that such interpreters are dependently typed.
Therefore, he conjectures that either the partial-evaluation technology we are
building will prove useful to implement dependently typed programs, or that
conversely the wealth of work on dependent types will provide us with guidelines
for partially evaluating dependently typed programs – probably a little of both.
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