171 research outputs found

    Concurrent Transaction Frame Logic Formal Semantics for UML Activity and Class Diagrams

    Get PDF

    A discrete geometric model of concurrent program execution

    Get PDF
    A trace of the execution of a concurrent object-oriented program can be displayed in two-dimensions as a diagram of a non-metric finite geometry. The actions of a programs are represented by points, its objects and threads by vertical lines, its transactions by horizontal lines, its communications and resource sharing by sloping arrows, and its partial traces by rectangular figures. We prove informally that the geometry satisfies the laws of Concurrent Kleene Algebra (CKA); these describe and justify the interleaved implementation of multithreaded programs on computer systems with a lesser number of concurrent processors. More familiar forms of semantics (e.g., verification-oriented and operational) can be derived from CKA. Programs are represented as sets of all their possible traces of execution, and non-determinism is introduced as union of these sets. The geometry is extended to multiple levels of abstraction and granularity; a method call at a higher level can be modelled by a specification of the method body, which is implemented at a lower level. The final section describes how the axioms and definitions of the geometry have been encoded in the interactive proof tool Isabelle, and reports on progress towards automatic checking of the proofs in the paper

    From distributed coordination to field calculus and aggregate computing

    Get PDF
    open6siThis work has been partially supported by: EU Horizon 2020 project HyVar (www.hyvar-project .eu), GA No. 644298; ICT COST Action IC1402 ARVI (www.cost -arvi .eu); Ateneo/CSP D16D15000360005 project RunVar (runvar-project.di.unito.it).Aggregate computing is an emerging approach to the engineering of complex coordination for distributed systems, based on viewing system interactions in terms of information propagating through collectives of devices, rather than in terms of individual devices and their interaction with their peers and environment. The foundation of this approach is the distillation of a number of prior approaches, both formal and pragmatic, proposed under the umbrella of field-based coordination, and culminating into the field calculus, a universal functional programming model for the specification and composition of collective behaviours with equivalent local and aggregate semantics. This foundation has been elaborated into a layered approach to engineering coordination of complex distributed systems, building up to pragmatic applications through intermediate layers encompassing reusable libraries of program components. Furthermore, some of these components are formally shown to satisfy formal properties like self-stabilisation, which transfer to whole application services by functional composition. In this survey, we trace the development and antecedents of field calculus, review the field calculus itself and the current state of aggregate computing theory and practice, and discuss a roadmap of current research directions with implications for the development of a broad range of distributed systems.embargoed_20210910Viroli, Mirko; Beal, Jacob; Damiani, Ferruccio; Audrito, Giorgio; Casadei, Roberto; Pianini, DaniloViroli, Mirko; Beal, Jacob; Damiani, Ferruccio; Audrito, Giorgio; Casadei, Roberto; Pianini, Danil

    The ss-semantics approach; theory and applications

    Get PDF
    AbstractThis paper is a general overview of an approach to the semantics of logic programs whose aim is to find notions of models which really capture the operational semantics, and are, therefore, useful for defining program equivalences and for semantics-based program analysis. The approach leads to the introduction of extended interpretations which are more expressive than Herbrand interpretations. The semantics in terms of extended interpretations can be obtained as a result of both an operational (top-down) and a fixpoint (bottom-up) construction. It can also be characterized from the model-theoretic viewpoint, by defining a set of extended models which contains standard Herbrand models. We discuss the original construction modeling computed answer substitutions, its compositional version, and various semantics modeling more concrete observables. We then show how the approach can be applied to several extensions of positive logic programs. We finally consider some applications, mainly in the area of semantics-based program transformation and analysis

    Programming Languages and Systems

    Get PDF
    This open access book constitutes the proceedings of the 29th European Symposium on Programming, ESOP 2020, which was planned to take place in Dublin, Ireland, in April 2020, as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The actual ETAPS 2020 meeting was postponed due to the Corona pandemic. The papers deal with fundamental issues in the specification, design, analysis, and implementation of programming languages and systems
    • …
    corecore