
WMF 2003 Preliminary Version

Concurrent Transaction Frame Logic
Formal Semantics for UML

Activity and Class Diagrams

Franklin Ramalho a,1,2, Jacques Robin b,3 and Ulrich Schiel a,4

a Departamento de Sistemas e Computação

Universidade Federal de Campina Grande

Campina Grande, Brazil

b Centro de Informática

Universidade Federal de Pernambuco

Recife, Brazil

Abstract

We propose Concurrent Transaction Frame Logic (CTFL) as a language to provide
formal semantics to UML activity and class diagrams. CTFL extends first-order
Horn logic with object-oriented class hierarchy and object definition terms, and with
three new logical connectives that declaratively capture temporal and concurrency
constraints on updates and transactions. CTFL has coinciding, sound and refuta-
tion complete proof and model theories. CTFL allows using a single language to (1)
formally describe the semantics of both activity and class diagrams, (2) verify UML
models based on these two diagrams using theorem proving and (3) implement the
model as an executable, object-oriented logic program.

Key words: UML semantics, Object-oriented logic programming,
Concurrent Transaction Frame Logic.

1 Introduction

The Unified Modeling Language (UML) [16] provides an intuitive, visually
clarifying standard notation for specifying and modeling computational sys-
tems. UML specifications and models are far more precise and less ambiguous

1 Currently at Centro de Informática at Universidade Federal de Pernambuco, Brazil. This
research was supported by grants from CNPq of the Brazilian Federal Government.
2 Email: franklin@dsc.ufcg.edu.br
3 Email: jr@cin.ufpe.br
4 Email: ulrich@dsc.ufcg.edu.br

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/191800809?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Ramalho, Robin and Schiel

than their natural language counterparts. They go a long way into facilitat-
ing communication between all the actors involved in the development of a
system. However, the current UML standard is merely semi-formal, since its
semantics is only defined in natural language rather than in some rigorous
mathematical notation. This severely hinders the construction and use of au-
tomatic development tools for model verification, behavioral code generation
and code testing in UML-based system engineering processes. To overcome
this limitation, various proposals have recently been put forward to provide
formal semantics to various UML diagrams [8], [5], [4], [19], [7], [1] , [14], [28].
These proposals are very diverse in terms of the formal languages they use to
describe UML diagrams and the development task automation functionalities
that can be provided by tools relying on these languages. However, proposals
covering Activity Diagrams (AD) share a common tendency to:

• focus only on activity and statechart diagrams, in isolation, outside of their
structural context provided by Class Diagrams (CD) and other structural
diagrams;

• provide only operational semantics, which are often seen as helpful in prac-
tice mainly to CASE tool developers, with axiomatic semantics better geared
towards application designers and denotational semantics better geared to-
wards language designers [9];

• rely on structurally impoverished imperative or functional formal languages
that do not fit well the structure rich Object-Oriented (OO) paradigm used
in most UML-based development processes;

• rely on low-level, and often quite arcane formal languages [24] that forces
the analyst to get into minute algorithmic details, that ought to be ab-
stracted until implementation, or entirely through the use of declarative
programming [25];

• rely on a combination of several languages, typically one language to formal-
ize the UML diagram structure, another one to formalize desired temporal
properties, another one to implement CASE tools reasoning about models
using these two formal notations, and often yet a different one to implement
the system under development from the UML model.

As a result, a development team wishing to leverage these proposals to
combine the intuitive visual clarity of UML with the rigor, robustness and
CASE-tool automation of formal methods faces a steep learning curve as well
as a significant development time overhead at the modeling stage. Given
that time to market is the most critical factor in most real-life development
projects, alternative approaches are needed to widen the applicability scope
of formal, UML-based development.

In this paper, we propose such an alternative approach to provide formal
semantics to UML models. It is based entirely on a non-monotonic variant
of First-Order Horn Logic (FOHL). Although this approach has the potential

2

Ramalho, Robin and Schiel

to provide semantics and CASE tools for the whole of UML, in this paper,
we present a proposal focused on the formal semantics of an activity diagram
contextualized by a class diagram 5 .

We show how Concurrent Transaction Frame Logic (CTFL) [12] [3] can
provide formal semantics for both activity and class diagrams. CTFL is
the straightforward integration of two orthogonal yet synergetic extensions
of FOHL:

• Frame Logic (FL), an object-oriented extension dealing with complex struc-
tural modeling with inheritance hierarchies,

• Concurrent Transaction Logic (CTL), a non-monotonic extension dealing
with complex behavioral modeling with concurrent logical database up-
dates, transactions, process communication and temporal execution con-
straints.

Our approach is based on a mapping between the elements of UML activity
and class diagrams and the constructors of CTFL. Through this mapping,
these UML diagrams are given proof theoretical and model theoretical formal
semantics: that of the CTFL program onto which they are mapped.

The rest of the paper is organized as follows. In section 2, we review the
main elements of UML activity and class diagrams, illustrating each of them
on a simple example model. In section 3, we review the object-oriented and
non-monotonic constructs of CTFL illustrating them on the same example. In
section 4, we provide a systematic mapping between the elements presented in
section 2 and the constructs presented in section 3. This mapping defines our
UML activity and class diagram formal semantics proposal. In section 5, we
point out the main differences and advantages of our approach as compared
to related work. In section 6 we review the contributions of the paper and
outline directions for future work.

2 UML Class and Activity Diagrams

UML is a diagrammatic and textual language for specification and modeling
in Object-Oriented Software Engineering (OOSE). In OOSE, the key software
structure is the class. A class is an encapsulated, generic description of ob-
jects with similar structure, behavior, and relationships. An illustrative class
diagram example is given in Figure 1. It is an extension of the Royal & Loyal
(R&L) company information system class diagram presented in [29]. R&L
manages fidelity programs for various companies, offering regular customers
diverse bonuses such as air miles or discount points. A class diagram specifies
the signature of each class, i.e., the attributes used to represent the state of the
objects of the class, together with constraints on their types, and the methods

5 We do not cover here the whole complexity of class diagrams, leaving this topic for a
separate publication. Instead, we concentrate on the main features of class diagrams that
are relevant to provide context to activity diagrams.

3

Ramalho, Robin and Schiel

Fig. 1. An example of UML class diagram

used to represent the behavior of these objects together with constraints on
the type of their input parameters and return values. For example in Fig-
ure 1, the class customer models a fidelity program customer with attributes
name and title of type string, a boolean attribute isMale, a dateOfBirth

attribute of type date, and an integer returning method age().

A class diagram also specifies the relationships between the defined classes.
There are three main types of relationships: the specialization relationship to
specify the hierarchy along which classes inherits attributes and methods, the
aggregation and composition relationships to assemble complex objects from
simpler ones viewed as parts, and the general purpose association for other
relationships. These relationships can be labeled with cardinality constraints
on the number of elements involved at each end of them. For example in
Figure 1, Earning and Burning transactions are defined as subclasses of the
general Transaction class, and each member of this class is associated to one
member of the CustomerCard class.

What a class diagram does not specify is the behavior encapsulated in the

4

Ramalho, Robin and Schiel

methods of the classes. UML provides various other diagrams to that effect.
A State Diagram is essentially a graph that represents a state machine. Its use
is recommended to specify the changes that occur in the attribute values of a
single object as a result of invocating its methods and that of other objects.
It specifies the conditions that trigger such change and the resulting, new
values. In contrast, an activity diagram is essentially a flowchart, and its use
is recommended to represent the state changes that occur in the attribute
values of several objects that are involved in the implementation of a use-case
[20]. Use-cases are requirement diagrams that divide the functionalities of a
system into a set of distinct elementary usages. They describe the actors and
purpose involved in each such usage. In strictly object-oriented development,
each use-case must in the end be implemented by one method of some class.
An activity diagram can also be used to describe the behavioral decomposition
and control flow of complex methods implemented by way of invoking methods
of objects from various other classes [26]. Although all UML diagrams are
useful and complementary for complex system development, use-case, class
and activity diagrams can be viewed as the minimal core of UML with which
simple object-oriented systems can be specified and modeled. This is why
we chose activity and class diagrams as the initial focus of our research on a
simple and practical UML model formal semantics.

An illustrative activity diagram example is given in Figure 2. It models
the realization of the burn method of the LoyaltyAccount class from the
class diagram of Figure 1. This method itself realizes the use-case of the
same name in the R&L system requirement document. An activity diagram
is a graph where nodes are activities or control constructs and arcs repre-
sents transitions between them. Activities are decomposed into atomic action
states than can be neither decomposed nor interrupted, and activity states
than can be interrupted and further decomposed into sub-activities. Such
decomposition can then be represented by another finer-grained activity dia-
gram. A complex activity can thus be modeled by a hierarchy of activity dia-
grams, linked to one another through activity states. In addition to its name,
an action state can also contain a specification of the operation that it exe-
cutes. Such specification can be precisely written using the Object Constraint
Language (OCL) a textual annotation language, part of the UML standard,
that incorporates most basic constructs of logic and algorithms in an intu-
itive syntax [29]. In the activity diagram of Figure 2, the BurnServiceItem

node is an example of activity state which behavior is specified by another
activity diagram (shown in Figure 3). All the other nodes of this activity
diagram are examples of either action states or control constructs. Activity
states can also include entry and exit actions to be executed immediately
before entering and immediately after leaving the state (respectively). The
control constructs of an activity diagram are: (1) if/merge pairs, that repre-
sent conditional branching to mutually exclusive threads, (2) fork/join pairs,
that represent concurrent threads, and (3) synch states, that represent inter-

5

Ramalho, Robin and Schiel

Fig. 2. UML activity diagram modeling the burn method of the LoyaltyAccount
class in the class diagram of Figure 1

thread synchronization constraints. For example in the diagram of Figure 2,
the branching node below the IsGasOption action node models that either
the action GetDesiredServiceItem or the action GetGasDiscount must im-
mediately follow (depending on the user’s choice in that action in a given
invocation of the burn method). In contrast, the fork node at the top of
the diagram of Figure 3, models that the CheckStockOfServiceItem and
CheckPointsAvailability actions must both always concurrently follow the
execution of the GetDesiredServiceItem action. In the same diagram, the
synch state below the CheckPointsAvailability action models that the ex-
ecution of the action UpdateLoyaltyAccount that follows in the same thread
must wait for the completion of CheckStockServiceItem in the other con-
current thread.

6

Ramalho, Robin and Schiel

Fig. 3. UML sub-activity diagram for BurnServiceItem activity state

Transitions arcs can be labeled by an event whose occurrence triggers the
transition from one state to the next or by a guard, i.e., a pre-condition that
must be verified for the transition to occur. Both events and guards can be
precisely modeled with OCL expressions.

An activity diagram can also include object flows that link it to a related
class diagram. An object flow associates an action or activity state to a class.
An incoming flow specifies the class of the objects that the action expects
as input parameters. A simple outgoing flow specifies the class of the ob-
ject returned as output by the action or activity. An outgoing flow with side
effects specifies the class of the objects whose attributes are altered by the
execution of the action or activity. Which attributes are altered and how
can be precisely modeled with OCL expressions. For example in Figure 3,
two object flows model that the UpdateLoyaltyAccount action takes objects
of the classes ServiceItem and LoyaltyAccount as input parameters and a
third one that models the parameter of class LoyaltyAccount has its points
attribute altered by that action.

7

Ramalho, Robin and Schiel

3 Concurrent Transaction Frame Logic (CTFL)

CTFL is the integration of FL and CTL, two orthogonal extensions of First-
Order Horn Logic (FOHL), the subset of classical first-order logic where all
formulas are in implicative normal form [21] with only one conclusion in each
implication. A FOHL formula (also called a logic program) is thus a conjunc-
tion of implicitly universally quantified implications, each one either:

• A definite clause of the form c ← p1 ∧ ... ∧ p
n
., where c, p1, ..., p

n
are

positive literals;

• A fact of the form c← true, where c is a positive literal - usually abbreviated
as c ←.

3.1 Frame Logic (FL)

FL extends first-order Horn logic with two new classes of object-oriented logi-
cal terms: class definition terms and object creation terms. A class definition
term specifies the superclass of a class together with its proper attribute filler
and method return type constraints, following the syntactic pattern:

class :: superclass[...attritypOpitypei, ...,
methj(..., param

k
j, ...)typOpjtypej...]

There are four typing operators in FL that instantiate the typOpn in the
above pattern: ∗ =>, ∗ =>>, => and =>>. The presence or absence of
the ∗ prefix distinguishes between inheritable and non-inheritable type con-
straints, whereas the > and >> suffixes indicates whether the attribute or
method is single valued or set valued.

An object definition term creates a new object instance of a class and
assigns its proper attribute and method return values, follow the syntactic
pattern:

object : class[...attriassignOp1valuei, ...,
methj(..., param

k
j, ...)assignOpjvaluej...]

There are four value assignment operators, that instantiate the assignOpn
in the above pattern: ∗− >, ∗− >>, − > and − >>. They follow the same
prefix and suffix conventions than the typing operators. In FL, methods do not
have bodies as in imperative object-oriented languages. A method is executed
when its return result logical variable unifies with a value during theorem
proving. The only difference between attributes and methods is thus that a

8

Ramalho, Robin and Schiel

method can take parameters.

FL class definition and object creation terms are called F-Molecules. Log-
ical variables can appear in any position inside these molecules: as object
name, class name, attribute name, method name, attribute value, method
value or method parameter. This freedom provides FL with a high-order syn-
tax that allows for very concise meta-level specifications. However, there exists
a simple, tractable mapping from any F-Molecule to a conjunction of First-
Order Horn Logic literals, which guarantees that semantically, FL remains a
first-order logic [30].

In order to illustrate FL more concretely, let us examine some facts of
Figure 4 that shows the FL facts representing the R&L class diagram of
Figure 1. Facts 3 and 10 define loyaltyAccount and transaction as top-
level classes (in which the : superclass element of the pattern is simply
omitted), while facts 11 and 12 define earning and burning as two sub-
classes of transaction. These four facts also define the type signature con-
straints on the attributes of these classes, such as points∗ => integer in
the loyaltyAccount class, and on their methods parameters and return value,
such as getServiceOption(string) ∗ − > {supermarket; fly; gas}. This last
constraint illustrates the disjunctive value syntax of FL, used in this example
to codify a UML enumeration type. These FL facts also define associations
through attributes which types are constrained to other classes of the diagram,
such as card∗ => customerCard in the definition of the transaction class.

A pair of proof and model theories of FL is given [11]. The proof the-
ory consists of one isaReflexivity axiom, three inference rules for first-order
Horn logic with equality, resolution, factoring and paramodulation, and nine
new inference rules covering the object-oriented semantics: isaTransitivity,
isaAcyclicity, subclassInclusion, typeInheritance, inputRestriction, outputRe-
striction, scalarity, merging and elimination. The model theory consists of
a Herbrand model over a F-Molecule universe. In the same paper, the two
semantics are proven to be coinciding, sound and refutation-complete.

3.2 Concurrent Transaction Logic (CTL)

Sequential Transaction Logic (STL) extends first-order Horn logic with two
new transactional connectives: n-ary serial conjunction ⊗, and n-ary serial
disjunction ⊕. Concurrent Transaction Logic (CTL) further extends STL
with three additional ones: n-ary concurrent conjunction |, n-ary concurrent
disjunction ϑ and unary atomic modality �. These three connectives allow
representing in a purely declarative and logical way ordering and synchroniza-
tion constraints on the execution order of logical proof steps. They provide
declarative proof-theoretic and model-theoretic semantics to logic programs
and database updates and transactions, as well as to multi-agent and inter-
process communication protocols.

9

Ramalho, Robin and Schiel

• Fact 1: customer[name*=> string, title*=> string, isMale*=> void,
dateOfBirth*=> date, cards*=� customerCard,
programs*=� loyaltyProgram, memberships*=� membership,
age()*=> integer] ←.

• Fact 2: customerCard[valid *=> void, validFrom *=> date,
goodThru *=> date, color *-� silver;gold, printedName *=> string,
owner *=> customer, membership *=> membership,
transactions *=� transaction, checkCard() *=> void] ←.

• Fact 3: loyaltyAccount[points*=> integer, membership*=> membership,
transactions*=� transaction, earn(integer)*=> void,
burn(integer)*=> void, isEmpty()*=> void, getPoints()*=> integer,
updateLoyaltyAccount(integer)*=> void,
cancelledBurning()*=> void, completedBurning(integer)*=> void,
checkPointsAvailability(integer, integer)*=> void,
getDesiredServiceItem(string)*=> serviceItem, getGasDiscount()*=>void,
getServiceOption(string)*-> {supermarket;fly;gas}]←.

• Fact 4: loyaltyProgram[customers*=� customer, memberships*=� membership,
serviceLevel(integer)*=> serviceLevel, partners*=� programPartner,
enroll(customer)*=> void, checkEnrolled(customer)*=> void] ←.

• Fact 5: membership[loyaltyAccount*=> loyaltyAccount,
actualLevel*=> serviceLevel, card*=> customerCard,
program*=� loyaltyProgram, customer*=� customer] ←.

• Fact 6: programPartner[numberOfCustomers*=> integer,
loyaltyPrograms*=� loyaltyprogram, deliveredServices*=� service] ←.

• Fact 7: service[condition*=> void, pointsEarned*=> integer,
pointsBurned*=> integer, description*=> string,
programPartner*=> programPartner, serviceLevel*=> serviceLevel,
serviceItem*=� serviceItem, transactions*=� transaction] ←.

• Fact 8: serviceLevel[name*=> string, loyaltyProgram*=> loyaltyprogram,
membership*=� membership, availableServices *=� service] ←.

• Fact 9: serviceItem[option*-> {supermarket;fly;gas}, points*=> integer,
name*=> string, quantity*=> integer] ←.

• Fact 10: transaction[points*=> integer, date*=> date,
status*=> {inProgress; cancelled; completed}, card*=> customerCard,
loyaltyAccount*=> loyaltyAaccount,
service*=> service, program()*=> loyaltyProgram]←.

• Fact 11: burning::transaction[]←.

• Fact 12: earning::transaction[]←.

Fig. 4. CTFL fact base giving formal semantics and implementing CD of Figure 1

The semantics of these new connectives is based on the logic programming
concept of execution as proof attempt :

• The semantics of a serial conjunction p ⊗ q is: first execute p; then, if the
execution of p succeeded i.e., if it was proven true), execute q; if either of
the two executions failed, so does p ⊗ q; if they both succeeded, then does
p ⊗ q.

10

Ramalho, Robin and Schiel

• The semantics of a serial disjunction p ⊕ q is the negation of p ⊕ q: first
execute p, then irrespective of the result, execute q; if either of the two
execution succeeded, so does p ⊕ q; if they both failed, so does p ⊕ q.

• The semantics of a concurrent conjunction p | q is: concurrently execute
both p and q. If either of the two executions failed, so does p | q. If they
both succeeded, so does p | q.

• The semantics of a concurrent disjunction p ϑ q is the negation of p | q:
concurrently execute both p and q; if either of the two execution succeeded,
so does p ϑ q; if they both failed, so does p ϑ q.

• In this context, the semantics of classical conjunction p ∧ q becomes: exe-
cute both p and q, either sequentially or concurrently in any order; if both
succeeded, so does p ∧ q; if either one failed, so does p ∧ q.

• Similary, the semantics of classical disjunction p ∨ q remains the negation
of the classical conjunction p ∧ q: execute both p and q, either sequentially
or concurrently in any order; if both failed, so does p ∨ q; if either one
succeeded, so does p ∨ q.

The truth tables of these sequential and concurrent conjunctions (respec-
tively disjunctions) are identical to that of classical conjunction (respectively
disjunction). The difference between these new connectives and their classi-
cal counterpart lies only in their execution order constraints: specified and
sequential for ⊗ and ⊕ , concurrent for | and ϑ, and unspecified for ∧ and ∨.
Thus, whereas |, ϑ, ∧ and ∨ are commutative, ⊗ and ⊕ are not.

The atomic modality connective �, prevents the formula within its scope
to be partially executed. If one element of an atomic conjunction scoped by �
fails, or if its execution is interrupted by some event, the other elements must
be rolled back and all the objects that had been changed must be restored
to their states prior to the start of the atomic conjunction execution. For
example, if q fails in the formula �(p ⊗ q), then all the state changes resulting
from the execution of p must be rolled back.

A key characteristic of TL is its deliberate focus on defining complex ac-
tions and transactions out of simpler ones. It does not include any atomic
change nor synchronization primitives in itself. To be used in practice, it must
thus be parameterized with a set of such primitives. Atomic change primitives
useful for our purpose are insertion and deletion of logical facts in a logical
database. Synchronization primitives useful for our purpose are sending and
receiving synchronization messages across channels shared by several threads.
Thus, CTL({insert(Fact), delete(Fact), send(Channel,Fact), receive(Channel,
Fact)}) provides a fully declarative formal semantics for non-monotonic first-
order Horn logic and database with concurrent updates and transactions.

A pair of coinciding, sound and refutation complete proof and model the-
ories of STL are given in [2]. Their respective extensions to CTL are given
in [3]. The model theory is based on a multi-path structure that captures
the possible states that a logical database can pass through when complex

11

Ramalho, Robin and Schiel

transactions are applied to it. These transactions use the classical and trans-
actional connectives of CTL to combine primitive updates. The proof-theory
relies on one axiom that states database invariance through the application
of the empty transaction, together with four inference rules for transaction
definition application, database query, database primitive update and atomic
transaction execution.

3.3 Integrating Frame Logic with Transaction Logic

Given that FL extends first-order Horn logic by introducing new terms and
STL and CTL extends it by introducing new connectives, these extensions
are orthogonal and can be straightforwardly combined, respectively yield-
ing STFL and CTFL. To be precise, it is CTFL({insert(Fact), delete(Fact),
send(Channel, Fact), receive(Channel, Fact)}) that we propose as a formal
language for UML activity and class diagram semantics.

While there is no currently available compiler for CTFL, execution plat-
forms are available for two of its subsets: (1) Flora [30], compiles and effi-
ciently executes STFL programs, and (2) CTR 6 interprets CTL programs.
Both these platform are implemented as layers on top of the tabled deductive
engine XSB [22], a variant of Prolog that relies on an alternative resolution-
based First-Order Horn Logic theorem proving procedure called SLG. This
procedure makes XSB both far more declarative and efficient than standard
Prolog. It implements the well-founded semantics [27] for negation and it
caches partial proof results to avoid both the inefficient redundant computa-
tion and the left-recursion termination problems of standard Prolog.

To visually summarize the relationships among the CTFL formalisms and
tools and the UML activity diagram and class diagram, we give a UML meta-
model [16] of our approach in Figure 5.

4 Mapping a UML class diagram and set of activity
diagrams to a CTFL program

In this section, we present our mapping of UML activity diagram and class
diagram elements to the CTFL constructs. A CTFL class definition fact base
gives the semantics of the class diagram. A CTFL rule base gives the seman-
tics of the activity diagram. In what follows, we associate a generic pattern of
each main class diagram and activity diagram element with the corresponding
CTFL construct pattern that defines its formal semantics in our proposal.

6 http://www.cs.toronto.edu/ bonner/

12

Ramalho, Robin and Schiel

Fig. 5. Meta-Model of our CTFL semantics proposal for UML AD and CD

4.1 Mapping a UML class diagram to a CFTL class definition fact base

(1) Class mapping

A UML class signature is mapped directly onto a FL class definition term
as shown in Figure 6. Attribute and methods with Boolean values in UML,
do not possess any return value in FL. This is because, every FL attribute or
method implicitly has two results: its logical truth value, which is Boolean
and its object identifier.

Fig. 6. Class mapping

13

Ramalho, Robin and Schiel

(2) Association mapping

A UML association is mapped onto FL attributes of the associated classes,
following the multiplicity constraints. For example, in Figure 7, class1 has a
set valued attribute referencing classe2 and vice-versa.

Fig. 7. Association mapping

(3) Specialization mapping

A UML specialization relationship is mapped onto a FL subclass ”::” op-
erator, as in the second F-Molecule of Figure 8. The default inheritability of
UML attributes and methods is mapped onto the type constraint operators
prefixed by * that captures such semantics in FL. Examples from the R&L
case study of these three mappings above were discussed in section 3.1.

Fig. 8. Inheritance mapping

4.2 Mapping a UML activity diagram to a CTFL Rule Base

Each path in an activity diagram is mapped onto a CTFL clause which con-
clusion corresponds to the overall activity modeled by the diagram. The nodes
and transitions of each path are then mapped onto the premises of the corre-
sponding CTFL clause following the rules below.

14

Ramalho, Robin and Schiel

(1) Mapping action states

An action state A with no OCL constraint to further specify the behavior
of this action is mapped onto an atomic premise that appears in each of the
clauses that represent the activity diagram paths where A appears. This
general mapping is shown in Figure 9. This is the case for example of the
mapping from action state A7 in Figure 2 and the getGasDiscount premise
of rule 4 in Figure 10. Such mapping is also carried out for actions with OCL
constraints. However, in this case, an additional clause is added, with the ac-
tion as conclusion and the OCL constraints as premises 7 . This is the case for
example of the mapping from action state A1 in Figure 2 to rule 8 in Figure 10.

(2) Mapping activity states

An activity state D is mapped onto one to four premises that appear in each of
the clauses that represent the activity diagram paths where D appears. This
general mapping is shown in Figure 11. In the simplest case, where the activity
has neither entry condition, nor exit action nor interrupting event, the single
premise consist only of the name activity D and its parameters. This is the case
for example of the mapping from the A5 activity state in Figure 2 onto the
¬burnServiceItem(SI, LA) premise in rule 5 and burnServiceItem(SI, LA)
premise in rule 6 of Figure 10.

Fig. 9. Action state mapping

7 Mapping a logical OCL expression to a CTFL premise is beyond the scope of this paper.

15

Ramalho, Robin and Schiel

• Rule 1: Path �A0, A8�
burnActivity ← �(¬checkEnrolled(C1:customer) ⊗ cancelBurning).

• Rule 2: Path �A0, A1, A8�
burnActivity ← �(checkedEnrolled(C1:customer) ⊗

¬checkCard(CC:customerCard) ⊗ cancelBurning).

• Rule 3: Path �A0, A1, A2, A8�
burnActivity ← �(checkedEnrolled(C1:customer) ⊗

checkCard(CC:customerCard) ⊗ ¬checkPoints(LA:loyaltyAccount) ⊗
cancelBurning).

• Rule 4: Path �A0, A1, A2, A3, A7�
burnActivity ← �(checkedEnrolled(C1:customer) ⊗

checkCard(CC:customerCard) ⊗ checkPoints(LA:loyaltyAccount) ⊗
isGasOption(SI:serviceItem) ⊗ getGasDiscount).

• Rule 5: Path �A0, A1, A2, A3, A4, A5, A8�
burnActivity ← �(checkedEnrolled(C1:customer) ⊗

checkCard(CC:customerCard) ⊗ checkPoints(LA:loyaltyAccount) ⊗
¬isGasOption(SI:serviceItem) ⊗ getDesiredServiceItem(SI) ⊗
¬burnServiceItem(SI, LA) ⊗ cancelBurning.

• Rule 6: Path �A0, A1, A2, A3, A4, A5, A6�
burnActivity ← �(checkedEnrolled(C1:customer) ⊗

checkCard(CC:customerCard) ⊗ checkPoints(LA:loyaltyAccount) ⊗
¬isGasOption(SI:serviceItem) ⊗ getDesiredServiceItem(SI) ⊗
burnServiceItem(SI, LA) ⊗ completeBurning(SI)).

• Rule 7: state A0
checkEnrolled(C1) ← C1:customer.

• Rule 8: action state A1
checkCard(CC) ← CC:customerCard ∧ CC.valid.

• Rule 9: action state A2
checkPoints(LA) ← LA:loyaltyAccount ∧ LA.points > 0.

• Rule 10: action state A3
isGasOption(SI) ← SI:serviceItem ∧ SI[option→gas].

• Rule 11: action state A6
completeBurning(SI) ← SI:serviceItem ∧

(insert(:burning[points→SI.points, status→completed])).

• Rule 12: action state A8
cancelBurning ← SI:serviceItem ∧ �(insert (:burning[status→cancelled])).

Fig. 10. CTFL rule base giving formal semantics and implementing AD of Figure 2

Fig. 11. Activity state mapping

In the most complex case, with all the optional elements present, there is

16

Ramalho, Robin and Schiel

one additional premise per element. Three are grouped in a serial conjunction
in the following order: the entry action, then the complex activity D, and
finally the exit action. These three premises are surrounded by an atomic
transaction operator. This rolls back the side effects of the entry action and
the complex activity D if an interruption occurs before the execution of the
exit action. This complex transaction is conjoined with a possible interrupting
event in a concurrent disjunction.

In all cases, the entire activity diagram mapping process is recursively re-
applied onto the sub-activity diagram that further specifies the behavior D.
This results in the introduction of new clauses in the CTFL program. This
is the case for example of the recursive mapping of the activity diagram in
Figure 3 onto the rules of Figure 12.

• Rule 1: activity state A5
burnServiceItem(SI, LA) ← (SI:serviceItem ∧ LA:loyaltyAccount) ⊗

(checkStockOfServiceItem(SI) ⊗ send(ch1, done) ⊗
receive(ch2, done) ⊗ updateLoyaltyAccount(SI, LA))
| ¬(checkPointsAvailability(SI,LA) ⊗ receive(ch1, done) ⊗ cancelBurning).

• Rule 2: activity state A5
burnServiceItem(SI, LA) ← (SI:serviceItem ∧ LA:loyaltyAccount) ⊗

((checkStockOfServiceItem(SI) ⊗ send(ch1, done) ⊗
receive(ch2, done) ⊗ updateLoyaltyAccount(SI, LA))
| (checkPointsAvailability(SI,LA) ⊗ receive(ch1, done) ⊗
send(ch2, done) ⊗ updateServiceItem(SI,LA)).

• Rule 3: action state A9
checkStockOfServiceItem(SI) ← SI:serviceItem ∧ SI.quantity > 0.

• Rule 4: action state A10
checkPointsAvailability(SI, LA) ← SI:serviceItem ∧ LA:loyaltyAccount ∧

LA.points > SI.points.

• Rule 5: action state A11
updateLoyaltyAccount(SI, LA) ← �(Pre = LA:loyaltyAccount.points ⊗

delete(LA.points) ⊗ insert(LA[points→(Pre− SI.points)])).

• Rule 6: action state A12
updateServiceItem(SI) ← �(Pre = SI:serviceItem.quantity ⊗

delete(SI.quantity) ⊗ insert(SI[quantity→(Pre− 1)])).

Fig. 12. CTFL rule base giving formal semantics and implementing AD of Figure 3

(3)Mapping fork and join pairs

The concurrent nodes between a fork and a join in an activity diagram are
mapped directly onto a CFTL concurrent conjunction. This concurrent con-
junction is the central element of a serial conjunction that starts with the
guard on the transition leading to the fork and ends with the guard out on

17

Ramalho, Robin and Schiel

the transition following the join. This general mapping is shown in Figure 13.

(4) Mapping fork and join pairs with synch states

In a UML activity diagram, synch state bars may be used within concurrent
threads to represent synchronized states. These synch states are mapped to
the synchronization primitives that parametrize CTFL in our formal seman-
tics proposal. An incoming arc to such a synch state from another thread is
mapped onto a receive(Channel, done) premise in each of the CTFL clauses
that represent the activity diagram paths where the synch state appears. An
outgoing arc from such a synch state to another thread is mapped onto a
send(Channel, done) premise in each the CTFL clauses that represent the ac-
tivity diagram paths where the synch state appears. The Channel parameter
is used to identify the other thread from which the incoming arc is coming or
to where the outgoing arc is going. These send and receive actions are joint
in serial conjunctions with the other actions of the thread where the synch
state occurs. This general mapping is shown in Figure 14.

Fig. 13. Fork and join control flow mapping

Fig. 14. Fork and join control flow with synch states mapping

An example of a bi-lateral synchronization between two threads is given
in the activity diagram of Figure 3. One thread includes action states A9 and
A12, while the other concurrent thread includes action states A10 and A11.

18

Ramalho, Robin and Schiel

These two threads are synchronized by two arcs between four synch states,
two in each thread. The arc that goes out from the top synch state in the
A9-A12 thread to the top synch state in A10-A11 thread forces the execution
of the branching test below latter to wait for the completion of A9 in addition
to the completion of A10. It is mapped onto the synchronization predicate
send(ch1, done) and receive(ch1, done) in the premise of CTFL rules 1 and
2 of Figure 12. Similarly, the arc that goes out from the bottom synch state
in the A10-A11 thread to the bottom synch state in the A9-A12 thread forces
the execution of A12 to wait for the completion of the branching node in
the A10-A11 thread in addition to the completion of A9. It is mapped onto
the synchronization predicate send(ch2, done) and receive(ch2, done) in the
same two CTFL rules 1 and 2 of Figure 12.

(5) Mapping branching nodes

A UML activity diagram can contain two different kinds of branching nodes:
(1) Boolean ones, with two outgoing transitions, one corresponding to the
result of the previous activity being true and the other corresponding to
the result of that activity being false, and (2) multiple choice ones, with
at least three outgoing transitions, each one distinguished by a guard. A
sub-branch leading from an activity A to an activity B through a Boolean
branching node is mapped onto a serial conjunction in the premise of the
clause that represent the activity diagram paths where the branching node
appears. If the sub-branch includes the positive outgoing transition of the
node, this serial conjunction starts with A. If it includes the negative out-
going transition, the serial conjunction starts with ¬A. In both cases, the
serial conjunction ends with B. This is the case for example of the mapping
from the top Boolean branching node in the diagram of Figure 2, onto the
checkEnrolled(C1 : customer) premise of the CTFL rule 2 in Figure 10 and
the ¬checkEnrolled(C1 : customer) premise of the CTFL rule 1 in the same
figure. A sub-branch leading from activity A to activity B through a multiple
choice guarded outgoing transition is mapped onto a serial conjunction start-
ing with A, followed by the guard and then by B. These three mappings are
illustrated in Figure 15.

19

Ramalho, Robin and Schiel

Fig. 15. Branching nodes mapping

4.3 Mapping Object Flows

In UML, object flows link the behavioral activity diagrams to the structural
class diagram. They are mapped onto predicates that link the behavioral CTL
clauses with the structural FL clauses in CTFL.

(1) Mapping input parameter object flows

An action state input parameter specification object flows is mapped onto
an CTFL F-Molecule (representing the object specification) that appears as
argument in the CTFL predicate occurrences named after the action state.
This general mapping is shown in Figure 16. It is the case for example of
the mapping from the object flow that links object c1 with action state A0 in
the diagram of Figure 2 onto the C1 : customer F-Molecule that appears as
argument of the checkedEnrolled predicate occurrences in the CTFL clause
of Figure 10.

Fig. 16. Input parameter object flow mapping

(2) Mapping object creation object flows

An action state object creation object flow is mapped onto an additional
atomic insert primitive database update premise with an anonymous object
in each of the CTFL clauses that represent the activity diagram path where
the action state appears. This general mapping is illustrated in Figure 17.
This is the case for example of the mapping from the object flow outgoing
from action state A6 in the diagram of Figure 2 onto the
insert(: burning[pointsSI.points, statuscompleted]) premise of CTFL
rule 11 in Figure 10.

20

Ramalho, Robin and Schiel

Fig. 17. Object creation object flow mapping

(3) Mapping attribute value update object flows

An action state object attribute alteration object flow is mapped onto an
atomic serial conjunction of two primitive database updates, one that deletes
the old value of the attribute, followed by one that inserts the new value. The
atomic modality operator guarantees that no intervening event can occur be-
tween the deletion and insertion. This general mapping is shown in Figure 18.
This is the case for example of the mapping from the object flow outgoing
from action state A11 in the diagram of Figure 3 onto the premises of CTFL
rule 5 in Figure 12. Applying the general mappings defined in Figures 6-9,

Fig. 18. Object creation object flow mapping

11, and 13-18 above to the particular class diagram of Figure 1 and activity
diagrams of Figures 2 and 3 yields the CTFL program shown in Figures 4, 10
and 12. This CTFL program represents both the formal semantics of the three
UML diagram and their implementation as an executable object-oriented logic
program.

In our mapping, we do not consider the following UML activity diagrams
constructs: swimlanes, deferred events. Swimlanes correspond to organiza-
tional units in a business model that are used to organize responsibility for
action and sub-activities. They do not impact the execution semantics. De-
ferring an event e can be simulated by using the guard [e occurred] [7].

5 Related Work

We encountered three main previous proposals to provide formal semantics to
UML activity diagrams.

[4] proposed a semantics based on a mapping of activity diagram elements
onto transition rules of a multiagent ASM, i.e., an Abstract State Machine
with extensions for concurrency. An ASM is essentially a finite automaton
where transitions are labeled with rules defining its preconditions and effects.
ASM rules appear to capture the operational semantics of an activity diagram
in a low-level language of imperative flavor.

[19] proposed a semantics based on mapping an activity diagram onto
a Labelled Transition System (LTS) in two steps, through an intermediate
representation called a Finite State Process (FSP). [7] proposed a semantics

21

Ramalho, Robin and Schiel

also based on a mapping to an LTS in two steps, but through a different
intermediate representation called an Activity Hypergraph. One advantage of
these last two approaches is the availability of automatic model checkers that
take as input an LTS model description, together with some temporal or modal
logic description of execution ordering and timing constraints.

These previous proposals have in common to define only the operational
semantics for activity diagrams. In addition, they do not cover object flows nor
class diagrams, therefore providing semantics for activity diagrams in isolation
from their structural context in a UML model. They thus seem more relevant
for the use of activity diagrams in modeling purely procedural concurrent
systems, than for their use in object-oriented software engineering.

Our proposal is different in two ways. First, it provides a model-theoretic
and a coinciding proof-theoretic semantics for activity diagrams, based on a
non-monotonic extension of first-order Horn logic. As pointed out in [9], se-
mantics based on such logic unify the flavor of denotational semantics brought
about by the model theory with those of both axiomatic and operational se-
mantics brought about by the proof theory. Second, our proposal provides a
formal semantics for both activity and class diagrams, linked together through
object flows, which makes it more geared towards object-oriented software en-
gineering.

6 Conclusion

In this paper, we proposed to provide a formal semantics to UML activity
and class diagrams by mapping their elements to constructors of CTFL, a
non-monotonic, object-oriented extension of first-order Horn logic. Through
this mapping, the semantics of the UML diagrams derives from the coinciding,
sound and refutation-complete proof theory and model theory of CTFL. This
semantics presents a number of advantages over previous proposals. Foremost,
it makes possible to use a single language to:

(i) Formalize the structure of various UML diagrams;

(ii) Formalize desired temporal execution properties over them, simple ones
directly in CTFL and arbitrary complex ones using an additional Event
Calculus [23] layer that is straightforward to axiomatize on top of CTFL;

(iii) Verify their internal and cross-diagram consistency, completeness and
temporal correctness through a combination of theorem proving and
model checking;

(iv) Implement the verified model as executable code.

This multiple purpose, single language approach smoothens the learning
curve of integrating formal methods with standard object-oriented develop-
ment. It also brings into the same fold the fast prototyping convenience of the
logic programming paradigm. UML is a high-level, declarative, object-oriented
language. Representing its formal semantics in a language like CTFL that is

22

Ramalho, Robin and Schiel

also high-level, declarative and object-oriented, rather than in a low-level, pro-
cedural, purely behavioral language - as in most previous approaches - greatly
simplifies automatic translation of UML diagrams into their formalization. In
addition, CTFL is both a formal specification language and a general purpose,
Turing-complete programming language. Consequently, the verified, formal
CTFL semantics of a UML model is already an implementation. This shuts
down the major loophole of dual language formal development, one for formal
specification, and a different one for implementation, namely that program-
ming errors can easily be introduced during the implementation of a verified
model.

Our plans for future work are shown in Figure 19.

Fig. 19. Envisioned architecture

We are currently developing XSLT transformation rule bases to automat-
ically map a UML model consisting of class diagrams and sequential activity
diagrams onto an STFL program. One rule base will implement, in XML
syntax, the mappings presented in this paper starting from a standard XMI
format for these diagrams together with an XOCL format [18] for the OCL
constraints. The other one will simply convert the resulting STFL program
from the XTFL syntax onto the syntax accepted as input by the Flora-2 STFL
theorem prover. We intend to use this prover to verify the UML model. Verifi-
cation will be implemented declaratively using STFL meta-level rules. In that
perspective, it is interesting to mention the XMC model checker [17], which,
like Flora-2, is also implemented on top of XSB. XMC verifies concurrent sys-
tems specified in a CCS-based [15] modeling language with respect to desired
temporal properties specified in the modal µ-calculus [13]. The performance
of XMC has proven comparable on a set of benchmarks to procedural model

23

Ramalho, Robin and Schiel

checkers such as SPIN [10] and Murphi [6].

References

[1] Aredo, D. B. A Framework for Semantics of UML Sequence Diagrams in PVS,
Journal of Universal Computer Science (JUCS), 8(7), (2002), pp. 674-697, July.

[2] Bonner, A. J. and Kifer, M. “Transaction logic programming, a logic for
procedural and declarative knowledg”, Technical Report CSRI-323, Computer
Systems Research Institute,University of Toronto, 1995.

[3] Bonner, A.J. and Kifer, M. Concurrency and communication in transaction

logic. In Proceedings of the Joint International Conference and Symposium on
Logic Programming, (1996), pp. 142-156. MIT Press.

[4] Börger, E., Cavarra, A. and Riccobene, E. An ASM semantics for UML activity

diagrams. Algebraic Methodology and Software Technology (AMAST 2000), T.
Rus, volume 1816 of Lecture Notes in Computer Science, (2000), Springer.

[5] DeLoach, S. Hartrum, T. and Smith, J. “A Theory-Based Representation for
Object-Oriented Domain Models”, IEEE Transactions on Software Engineering,
Volume 26 no. 6, (1999), June.

[6] Dill, D. L. “he Murphi verification system”, Computer Aided Verification
(CAV’96), volume 1102 of Lecture Notes in Computer Science, New Brunswick,
New Jersey, July, Spring-Berlag, (1996), pages 390-393.

[7] Eshuis, R. and Wieringa, R. “A formal semantics for UML activity diagrams
-Formalising workflow models”. Technical Report CTIT-01-04, University of
Twente, Department of Computer Science, 2001.

[8] Gogolla, M. and Parisi-Presicce, F. State diagrams in UML: A formal semantics

using graph transformations. ICSE’98 Workshop Precise Semantics of Modeling
Techniques, Manfred Broy, Derek Coleman, Tom Maibaum, and Bernhard
Rumpe, Technical Report TUM-I9803, (1998), pages 55-72.

[9] Gupta, G. “Horn logic denotations and their applications”, The Logic
Programming Paradigm: A 25 year perspective, Springer-Verlag, 1999.

[10] Holzmann, G. J. and Peled, D. “The state of SPIN”, Computer Aided
Verification (CAV’96), volume 1102 of Lecture Notes in Computer Science, New
Brunswick, New Jersey, July, Spring-Berlag, (1996), pages 385-389.

[11] Kifer, M. Lausen, G. and Wu, J. “Logical foundations of object-oriented and
frame-based languages”, Journal of the ACM, pp.741-843. 1995.

[12] Kifer, M. Deductive and Object Data Languages: A Quest for Integration,
4th International Conference on Deductive and Object-Oriented Databases,
Singapore, December, Lecture Notes in Computer Science, no. 1013, (1995),
Springer Verlag, New York.

24

Ramalho, Robin and Schiel

[13] Kozen, D. “Results on the propositional µ-calculus”. Theoretical Computer
Science, 27:333-354, 1983.

[14] Kuske, S., Gogolla M. Kollmann, R. and Kreowski, J. An Integrated Semantics

for UML Class, Object, and State Diagrams based on Graph Transformation,
3rd Int. Conf. Integrated Formal Methods (IFM’02), Butler, M. and Sere, K.,
(2002), Springer.

[15] Milner, R. “Communication and Concurrency”. International Series in
Computer Science. Prentice Hall, 1989.

[16] OMG (2003) OMG Unified Modeling Language Specification - Version 1.5,
March 2003, OMG URL: http://www.omg.uml.com/

[17] Ramakrishna, Y. S., Ramakrishnan, C. R., Ramakrishnan, I. V., Smolka, S. A.,
Swift, T. W. and Warren, D. S. Efficient model checking using tabled resolution,
9th International Conference on Computer-Aided Verification (CAV ’97), Haifa,
Israel, (1997), July, Springer-Verlag.

[18] Ramalho, F., Robin, J. and Barros, R. S. M. XOCL - An XML

language for specifying logical constraints in object oriented models,
Journal of Universal Computer Science (2003), 9(8), Springer, URL:
http://www.jucs.org/jucs 9 8/xocl an xml language.

[19] Rodrigues, R. W. S. Formalising UML Activity Diagrams using Finite State

Processes. Dynamic Behaviour in UML Models: Semantic Questions, York.
UML 2000, 2000.

[20] Rumbaugh, J., Jacobson, I. and Booch, G. “The Unified Modeling Language
-Reference Manual”, (1999), Addison-Wesley.

[21] 02 Russell, S. and Norvig, P. “Artificial Intelligence: A Modern Approach”,
Prentice Hall, second edition, 2002.

[22] Sagonas, K., Swift, T. and Warren, D. S. XSB as an efficient deductive database

engine, Snodgrass, R. T. and M. Winslett, M., ACM SIGMOD Int. Conf. on
Management of Data (SIGMOD’94), (1994), pages 442-453.

[23] Shanahan, M. P. “The Event Calculus Explained”, Artificial Intelligence
Today, Wooldridge, M. J. and Veloso, M. Springer Lecture Notes in Artificial
Intelligence no. 1600, (1999), pages 409-430, Springer.

[24] Schmidt, D. A. “On the need for a popular formal semantics”. ACM SIGPLAN
Notices, (1997), 32(1):115-116.

[25] Schmidt, D.A. Should UML Be Used for Declarative Programming? Proc. ACM
Conf. on Principles and Practice of Declarative Programming (PPDP’01), 2001.

[26] Stevens, P. and Pooley, S. “Using UML Software Engineering with Objects and
Components”, Object Techinology, (2000), Addison-Wesley.

[27] Van Gelder, A., Ross, K.A., and Schlipf, J.S. “The Well-Founded Semantics for
General Logic Programs”. Journal of the ACM 38(3):620–650, 1991.

25

http://www.omg.uml.com/
http://www.jucs.org/jucs_9_8/xocl_an_xml_language

Ramalho, Robin and Schiel

[28] Varro, D. A formal semantics of UML Statecharts by model transition systems.
ICGT 2002: International Conference on Graph Transformation, 2002.

[29] Warmer, J. and Kleppe, A. “The object constraint language: precise modeling
with UML”, Object technology series, Addison-Wesley, 1999.

[30] Yang, G. and Kifer, M. “Flora: Implementing an efficient DOOD system using
a tabling logic engine”, Lloyd, J., Dahl, V., Furbach, U., Kerber, M., Lau, K.,
Palamidessi, C., Pereira, L. M., Sagiv, Y. and Stuckey, P. J., Computational
Logic - CL-2000, number 1861 in LNAI, pages 1078–1093. Springer, (2000),
July.

26

	Introduction
	UML Class and Activity Diagrams
	Concurrent Transaction Frame Logic (CTFL)
	Frame Logic (FL)
	Concurrent Transaction Logic (CTL)
	Integrating Frame Logic with Transaction Logic

	Mapping a UML class diagram and set of activity diagrams to a CTFL program
	Mapping a UML class diagram to a CFTL class definition fact base
	Mapping a UML activity diagram to a CTFL Rule Base
	Mapping Object Flows

	Related Work
	Conclusion
	References

