5 research outputs found

    Denoising using local projective subspace methods

    Get PDF
    In this paper we present denoising algorithms for enhancing noisy signals based on Local ICA (LICA), Delayed AMUSE (dAMUSE) and Kernel PCA (KPCA). The algorithm LICA relies on applying ICA locally to clusters of signals embedded in a high-dimensional feature space of delayed coordinates. The components resembling the signals can be detected by various criteria like estimators of kurtosis or the variance of autocorrelations depending on the statistical nature of the signal. The algorithm proposed can be applied favorably to the problem of denoising multi-dimensional data. Another projective subspace denoising method using delayed coordinates has been proposed recently with the algorithm dAMUSE. It combines the solution of blind source separation problems with denoising efforts in an elegant way and proofs to be very efficient and fast. Finally, KPCA represents a non-linear projective subspace method that is well suited for denoising also. Besides illustrative applications to toy examples and images, we provide an application of all algorithms considered to the analysis of protein NMR spectra.info:eu-repo/semantics/publishedVersio

    Reconstructing diffusion kurtosis tensors from sparse noisy measurements

    Get PDF
    Diffusion kurtosis imaging (DKI) is a recent MRI based method that can quantify deviation from Gaussian behavior using a kurtosis tensor. DKI has potential value for the assessment of neurologic diseases. Existing techniques for diffusion kurtosis imaging typically need to capture hundreds of MRI images, which is not clinically feasible on human subjects. In this paper, we develop robust denoising and model fitting methods that make it possible to accurately reconstruct a kurtosis tensor from 75 or less noisy measurements. Our denoising method is based on subspace learning for multi-dimensional signals and our model fitting technique uses iterative reweighting to effectively discount the influences of outliers. The total data acquisition time thus drops significantly, making diffusion kurtosis imaging feasible for many clinical applications involving human subjects. © 2010 IEEE.published_or_final_versionThe 17th IEEE International Conference on Image Processing (ICIP 2010), Hong Kong, China, 26-29 September 2010. In Proceedings of the 17th ICIP, 2010, p. 4185-418

    A Study of Nonlinear Approaches to Parallel Magnetic Resonance Imaging

    Get PDF
    Magnetic resonance imaging (MRI) has revolutionized radiology in the past four decades by its ability to visualize not only the detailed anatomical structures, but also function and metabolism information. A major limitation with MRI is its low imaging speed, which makes it difficult to image the moving objects. Parallel MRI (pMRI) is an emerging technique to increase the speed of MRI. It acquires the MRI data from multiple coils simultaneously such that fast imaging can be achieved by reducing the amount of data acquired in each coil. Several methods have developed to reconstruct the original image using the reduced data from multiple coils based on their distinct spatial sensitivities. Among the existing methods, Sensitivity Encoding (SENSE) and GeneRally Autocalibrating Partially Parallel Acquisition (GRAPPA) are commercially used reconstruction methods for parallel MRI. Both methods use linear approaches for image reconstruction. GRAPPA is known to outperform SENSE because no coil sensitivities are needed in reconstruction. However, GRAPPA can only accelerate the speed by a factor of 2-3. The objective of this dissertation is to develop novel techniques to significantly improve the acceleration factor upon the existing GRAPPA methods. Motivated by the success of recent study in our group which has demonstrated the benefit of nonlinear approaches for SENSE, in this dissertation, nonlinear approaches are studied for GRAPPA. Based on the fact that GRAPPA needs a calibration step before reconstruction, nonlinear models are investigated in both calibration and reconstruction using a kernel method widely used in machine learning. In addition, compressed sensing (CS), a nonlinear optimization technique will also be incorporated for even higher accelerations. In order to reduce the computation time, a nonlinear approach is proposed to reduce the effective number of coils in reconstruction. The imaging speed is expected to improve by a factor of 4-6 using the proposed nonlinear techniques. These new techniques will find many applications in accurate brain imaging, dynamic cardiac imaging, functional imaging, and so forth

    Técnicas baseadas em subespaços e aplicações

    Get PDF
    Doutoramento em Engenharia ElectrónicaEste trabalho focou-se no estudo de técnicas de sub-espaço tendo em vista as aplicações seguintes: eliminação de ruído em séries temporais e extracção de características para problemas de classificação supervisionada. Foram estudadas as vertentes lineares e não-lineares das referidas técnicas tendo como ponto de partida os algoritmos SSA e KPCA. No trabalho apresentam-se propostas para optimizar os algoritmos, bem como uma descrição dos mesmos numa abordagem diferente daquela que é feita na literatura. Em qualquer das vertentes, linear ou não-linear, os métodos são apresentados utilizando uma formulação algébrica consistente. O modelo de subespaço é obtido calculando a decomposição em valores e vectores próprios das matrizes de kernel ou de correlação/covariância calculadas com um conjunto de dados multidimensional. A complexidade das técnicas não lineares de subespaço é discutida, nomeadamente, o problema da pre-imagem e a decomposição em valores e vectores próprios de matrizes de dimensão elevada. Diferentes algoritmos de préimagem são apresentados bem como propostas alternativas para a sua optimização. A decomposição em vectores próprios da matriz de kernel baseada em aproximações low-rank da matriz conduz a um algoritmo mais eficiente- o Greedy KPCA. Os algoritmos são aplicados a sinais artificiais de modo a estudar a influência dos vários parâmetros na sua performance. Para além disso, a exploração destas técnicas é extendida à eliminação de artefactos em séries temporais biomédicas univariáveis, nomeadamente, sinais EEG.This work focuses on the study of linear and non-linear subspace projective techniques with two intents: noise elimination and feature extraction. The conducted study is based on the SSA, and Kernel PCA algorithms. Several approaches to optimize the algorithms are addressed along with a description of those algorithms in a distinct approach from the one made in the literature. All methods presented here follow a consistent algebraic formulation to manipulate the data. The subspace model is formed using the elements from the eigendecomposition of kernel or correlation/covariance matrices computed on multidimensional data sets. The complexity of non-linear subspace techniques is exploited, namely the preimage problem and the kernel matrix dimensionality. Different pre-image algorithms are presented together with alternative proposals to optimize them. In this work some approximations to the kernel matrix based on its low rank approximation are discussed and the Greedy KPCA algorithm is introduced. Throughout this thesis, the algorithms are applied to artificial signals in order to study the influence of the several parameters in their performance. Furthermore, the exploitation of these techniques is extended to artefact removal in univariate biomedical time series, namely, EEG signals.FCT - SFRH/BD/28404/200

    Denoising using local projective subspace methods

    No full text
    In this paper we present previous termdenoisingnext term algorithms for enhancing noisy signals based on previous termLocalnext term ICA (LICA), Delayed AMUSE (dAMUSE) and Kernel PCA (KPCA). The algorithm LICA relies on applying ICA locally to clusters of signals embedded in a high-dimensional feature space of delayed coordinates. The components resembling the signals can be detected by various criteria like estimators of kurtosis or the variance of autocorrelations depending on the statistical nature of the signal. The algorithm proposed can be applied favorably to the problem of previous termdenoisingnext term multi-dimensional data. Another projective subspace previous termdenoisingnext term method using delayed coordinates has been proposed recently with the algorithm dAMUSE. It combines the solution of blind source separation problems with previous termdenoisingnext term efforts in an elegant way and proofs to be very efficient and fast. Finally, KPCA represents a non-linear projective subspace method that is well suited for previous termdenoisingnext term also. Besides illustrative applications to toy examples and images, we provide an application of all algorithms considered to the analysis of protein NMR spectra
    corecore