336 research outputs found

    Wireless Sensing System for Load Testing and Rating of Highway Bridges

    Get PDF
    Structural capacity evaluation of bridges is an increasingly important topic in the effort to deal with the deteriorating infrastructure. Most bridges are evaluated through subjective visual inspection and conservative theoretical rating. Diagnostic load test has been recognized as an effective method to accurately assess the carrying capacity of bridges. Traditional wired sensors and data acquisition (DAQ) systems suffer drawbacks of being labor intensive, high cost, and time consumption in installation and maintenance. For those reasons, very few load tests have been conducted on bridges.;This study aims at developing a low-cost wireless bridge load testing & rating system that can be rapidly deployed on bridges for structural evaluation and load rating. Commercially available wireless hardware is integrated with traditional analogue sensors and the appropriate rating software is developed. The wireless DAQ system can work with traditional strain gages, accelerometers as well as other voltage producing sensors. A wireless truck position indicator (WVPI) is developed and used for measuring the truck position during load testing. The software is capable of calculating the theoretical rating factors based on AASHTO Load Resistance Factor Rating (LRFR) codes, and automatically produces the adjustment factor through load testing data. A simplified finite element model was used to calculate deflection & moment distribution factors in order to reduce the amount of instrumentation used in field tests. The system was used to evaluate the structural capacity of Evansville Bridge in Preston County, WV. The results show that the wireless bridge load testing & rating system can effectively be implemented to evaluate the real capacity of bridges with remarkable advantages: low-cost, fast deployment and smaller crew

    Review on smartphone sensing technology for structural health monitoring

    Get PDF
    Sensing is a critical and inevitable sector of structural health monitoring (SHM). Recently, smartphone sensing technology has become an emerging, affordable, and effective system for SHM and other engineering fields. This is because a modern smartphone is equipped with various built-in sensors and technologies, especially a triaxial accelerometer, gyroscope, global positioning system, high-resolution cameras, and wireless data communications under the internet-of-things paradigm, which are suitable for vibration- and vision-based SHM applications. This article presents a state-of-the-art review on recent research progress of smartphone-based SHM. Although there are some short reviews on this topic, the major contribution of this article is to exclusively present a compre- hensive survey of recent practices of smartphone sensors to health monitoring of civil structures from the per- spectives of measurement techniques, third-party apps developed in Android and iOS, and various application domains. Findings of this article provide thorough understanding of the main ideas and recent SHM studies on smartphone sensing technology

    Artificial Intelligence in Civil Infrastructure Health Monitoring—historical Perspectives, Current Trends, and Future Visions

    Get PDF
    Over the past 2 decades, the use of artificial intelligence (AI) has exponentially increased toward complete automation of structural inspection and assessment tasks. This trend will continue to rise in image processing as unmanned aerial systems (UAS) and the internet of things (IoT) markets are expected to expand at a compound annual growth rate of 57.5% and 26%, respectively, from 2021 to 2028. This paper aims to catalog the milestone development work, summarize the current research trends, and envision a few future research directions in the innovative application of AI in civil infrastructure health monitoring. A blow-by-blow account of the major technology progression in this research field is provided in a chronological order. Detailed applications, key contributions, and performance measures of each milestone publication are presented. Representative technologies are detailed to demonstrate current research trends. A road map for future research is outlined to address contemporary issues such as explainable and physics-informed AI. This paper will provide readers with a lucid memoir of the historical progress, a good sense of the current trends, and a clear vision for future research

    Data reduction strategies.

    Get PDF
    Based on the variety of methods available for gathering data for the aircraft health status, the challenge is to reduce the overall amount of data in a trackable and safe manner to ensure that the remaining data are characteristic of the current aircraft status. This chapter will cover available data reduction strategies for this task and discuss the data intensity of the SHM methods of Chaps. 5 to 8 and established approaches to deal with the acquired data. This includes aspects of algorithms and legal issues arising in this context

    Bridge management through digital twin-based anomaly detection systems: A systematic review

    Get PDF
    Bridge infrastructure has great economic, social, and cultural value. Nevertheless, many of the infrastructural assets are in poor conservation condition as has been recently evidenced by the collapse of several bridges worldwide. The objective of this systematic review is to collect and synthesize state-of-the-art knowledge and information about how bridge information modeling, finite element modeling, and bridge health monitoring are combined and used in the creation of digital twins (DT) of bridges, and how these models could generate damage scenarios to be used by anomaly detection algorithms for damage detection on bridges, especially in bridges with cultural heritage value. A total of 76 relevant studies from 2017 up to 2022 have been taken into account in this review. The synthesis results show a consensus toward the future adoption of DT for bridge design, management, and operation among the scientific community and bridge practitioners. The main gaps identified are related to the lack of software interoperability, the required improvement of the performance of anomaly-detection algorithms, and the approach definition to be adopted for the integration of DT at the macro scale. Other potential developments are related to the implementation of Industry 5.0 concepts and ideas within DT frameworks

    IoT in smart communities, technologies and applications.

    Get PDF
    Internet of Things is a system that integrates different devices and technologies, removing the necessity of human intervention. This enables the capacity of having smart (or smarter) cities around the world. By hosting different technologies and allowing interactions between them, the internet of things has spearheaded the development of smart city systems for sustainable living, increased comfort and productivity for citizens. The Internet of Things (IoT) for Smart Cities has many different domains and draws upon various underlying systems for its operation, in this work, we provide a holistic coverage of the Internet of Things in Smart Cities by discussing the fundamental components that make up the IoT Smart City landscape, the technologies that enable these domains to exist, the most prevalent practices and techniques which are used in these domains as well as the challenges that deployment of IoT systems for smart cities encounter and which need to be addressed for ubiquitous use of smart city applications. It also presents a coverage of optimization methods and applications from a smart city perspective enabled by the Internet of Things. Towards this end, a mapping is provided for the most encountered applications of computational optimization within IoT smart cities for five popular optimization methods, ant colony optimization, genetic algorithm, particle swarm optimization, artificial bee colony optimization and differential evolution. For each application identified, the algorithms used, objectives considered, the nature of the formulation and constraints taken in to account have been specified and discussed. Lastly, the data setup used by each covered work is also mentioned and directions for future work have been identified. Within the smart health domain of IoT smart cities, human activity recognition has been a key study topic in the development of cyber physical systems and assisted living applications. In particular, inertial sensor based systems have become increasingly popular because they do not restrict users’ movement and are also relatively simple to implement compared to other approaches. Fall detection is one of the most important tasks in human activity recognition. With an increasingly aging world population and an inclination by the elderly to live alone, the need to incorporate dependable fall detection schemes in smart devices such as phones, watches has gained momentum. Therefore, differentiating between falls and activities of daily living (ADLs) has been the focus of researchers in recent years with very good results. However, one aspect within fall detection that has not been investigated much is direction and severity aware fall detection. Since a fall detection system aims to detect falls in people and notify medical personnel, it could be of added value to health professionals tending to a patient suffering from a fall to know the nature of the accident. In this regard, as a case study for smart health, four different experiments have been conducted for the task of fall detection with direction and severity consideration on two publicly available datasets. These four experiments not only tackle the problem on an increasingly complicated level (the first one considers a fall only scenario and the other two a combined activity of daily living and fall scenario) but also present methodologies which outperform the state of the art techniques as discussed. Lastly, future recommendations have also been provided for researchers
    • …
    corecore