90 research outputs found

    Access and metro network convergence for flexible end-to-end network design

    Get PDF
    This paper reports on the architectural, protocol, physical layer, and integrated testbed demonstrations carried out by the DISCUS FP7 consortium in the area of access - metro network convergence. Our architecture modeling results show the vast potential for cost and power savings that node consolidation can bring. The architecture, however, also recognizes the limits of long-reach transmission for low-latency 5G services and proposes ways to address such shortcomings in future projects. The testbed results, which have been conducted end-to-end, across access - metro and core, and have targeted all the layers of the network from the application down to the physical layer, show the practical feasibility of the concepts proposed in the project

    High-capacity 5G fronthaul networks based on optical space division multiplexing

    Get PDF
    \u3cp\u3eThe introduction of 5G mobile networks, bringing multi-Gbit/s user data rates and reduced latency, opens new opportunities for media generation, transport and distribution, as well as for new immersive media applications. The expected use of millimeter-wave carriers and the strong network densification resulting from a much reduced cell size--which enable the expected performance of 5G--pose major challenges to the fronthaul network. Space division multiplexing (SDM) in the optical domain has been suggested for ultra-high capacity fronthaul networks that naturally support different classes of fronthaul traffic and further enable the use of analog radio-over-fiber and advanced technologies, such as optical beamforming. This paper discusses the introduction of SDM with multi-core fibers in the fronthaul network as suggested by the blueSPACE project, regarding both digitized and analog radio-over-fiber fronthaul transport as well as the introduction of optical beamforming for high-capacity millimeter-wave radio access. Analog and digitized radio-over-fiber are discussed in a scenario featuring parallel fronthaul for different radio access technologies, showcasing their differences and potential when combined with SDM.\u3c/p\u3

    NFV Orchestration over Disaggregated Metro Optical Networks with End-to-End Multi-Layer Slicing enabling Crowdsourced Live Video Streaming

    Get PDF
    Network infrastructure must support emerging applications, fulfill 5G requirements, and respond to the sudden increase of societal need for remote communications. Remarkably, crowdsourced live video streaming (CLVS) challenges operators' infrastructure with tides of users attending major sport or public events that demand high bandwidth and low latency jointly with computing capabilities at the networks' edge. The Metro-Haul project entered the scene proposing a cost-effective, agile, and disaggregated infrastructure for the metro segment encompassing optical and packet resources jointly with computing capabilities. Recently, a major Metro-Haul outcome took the form of a field trial of network function virtualization (NFV) orchestration over the multi-layer packet and disaggregated optical network testbed that demonstrated a CLVS use case. We showcased the average service creation time below 5 min, which met the key performance indicator as defined by the 5G infrastructure public private partnership. In this paper, we expand our field trial demonstration with a detailed view of the Metro-Haul testbed for the CLVS use case, the employed components, and their performance. The throughput of the service is increased from approximately 9.6 Gbps up to 35 Gbps per virtual local area network with high-performance VNFs based on single-root input/output virtualization technology

    Beyond 5G Domainless Network Operation enabled by Multiband: Toward Optical Continuum Architectures

    Full text link
    Both public and private innovation projects are targeting the design, prototyping and demonstration of a novel end-to-end integrated packet-optical transport architecture based on Multi-Band (MB) optical transmission and switching networks. Essentially, MB is expected to be the next technological evolution to deal with the traffic demand and service requirements of 5G mobile networks, and beyond, in the most cost-effective manner. Thanks to MB transmission, classical telco architectures segmented into hierarchical levels and domains can move forward toward an optical network continuum, where edge access nodes are all-optically interconnected with top-hierarchical nodes, interfacing Content Delivery Networks (CDN) and Internet Exchange Points (IXP). This article overviews the technological challenges and innovation requirements to enable such an architectural shift of telco networks both from a data and control and management planes

    Software Defined Applications in Cellular and Optical Networks

    Get PDF
    abstract: Small wireless cells have the potential to overcome bottlenecks in wireless access through the sharing of spectrum resources. A novel access backhaul network architecture based on a Smart Gateway (Sm-GW) between the small cell base stations, e.g., LTE eNBs, and the conventional backhaul gateways, e.g., LTE Servicing/Packet Gateways (S/P-GWs) has been introduced to address the bottleneck. The Sm-GW flexibly schedules uplink transmissions for the eNBs. Based on software defined networking (SDN) a management mechanism that allows multiple operator to flexibly inter-operate via multiple Sm-GWs with a multitude of small cells has been proposed. This dissertation also comprehensively survey the studies that examine the SDN paradigm in optical networks. Along with the PHY functional split improvements, the performance of Distributed Converged Cable Access Platform (DCCAP) in the cable architectures especially for the Remote-PHY and Remote-MACPHY nodes has been evaluated. In the PHY functional split, in addition to the re-use of infrastructure with a common FFT module for multiple technologies, a novel cross functional split interaction to cache the repetitive QAM symbols across time at the remote node to reduce the transmission rate requirement of the fronthaul link has been proposed.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201
    • …
    corecore