473 research outputs found

    Interfacing power electronics systems for smart grids: innovative perspectives of unified systems and operation modes

    Get PDF
    The power distribution grid is centrally managed concerning the requirements of the end-users, however, with the appearance of smart grids, new technologies arc arising. Therefore, distributed energy resources, mainly, renewables, energy storage systems, electric mobility, and power quality are viewed as encouraging contributions for improving power management. In these circumstances, this paper presents a power electronics perspective for the power distribution grid, considering innovative features, and including a power quality perception. Throughout the paper are presented relevant concepts for a concrete realization of a smart grid, supported by the integration of power electronics devices as the interface of the mentioned technologies. Aiming to support the innovative power electronics systems for interfacing the mentioned technologies in smart grids, a set of developed power electronics equipment was developed and, along with the paper, are shown and described, supporting the most important contributions of this paper.This work has been supported by FCT -Fundação para a Ciencia e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020. This work has been supported by the FCT Project newERA4GRIDs PTDC/EEI-EEE/30283/2017

    Smart Home Energy Management Optimization Method Considering Energy Storage and Electric Vehicle

    Get PDF
    As the last link of an integrated future energy system, the smart home energy management system (HEMS) is critical for a prosumer to intelligently and conveniently manage the use of their domestic appliances, renewable energies (RES) generation, energy storage system (ESS), and electric vehicle (EV). In this paper, we propose a holistic model to center the preference of users when scheduling the involved physical equipment of different natures. Further, a dedicatedly designed charging and discharging strategy for both the ESS and EV considering their capital cost is proposed to integrate them into the HEMS for providing a better flexibility and economic advantages as well as to prolong the life of the batteries. Based on the mixed integer linear programming (MILP) and the proposed model, the energy schedule of the smart home can be derived to guarantee both the lowest cost and the comfort for the users. An illustrative case study is employed to demonstrate the effectiveness of the proposed method

    Profitability analysis on demand-side flexibility: A review

    Get PDF
    Flexibility has emerged as an optimal solution to the increasing uncertainty in power systems produced by the continuous development and penetration of distributed generation based on renewable energy. Many studies have shown the benefits for system operators and stakeholders of diverse ancillary services derived from demand-side flexibility. Cost-benefit analysis on these flexibility services should be carried out to determine the profitable applications, as well as the required adjustments on energy market, price schemes and normative framework to maximize the positive impacts of the available flexibility. This paper endeavors to review the main topics, variables and indexes related to the profitability analysis on demand-side flexibility, as well as the influence of energy markets, pricing and standards on revenue maximization. The conclusions drawn from this review demonstrate that the profitability of flexibility services considerably de-pends on energy market structure, involved assets, electricity prices and current ancillary services remuneration.Peer ReviewedPostprint (published version

    A novel converter topology for applications in smart grids: technical and economical evaluation

    Get PDF
    Technological advances in smart grids significantly contribute to an energy sustainability paradigm, assisting to diminish harms associated with global warming. Some of the key challenges in smart grids are linked with power electronics applications for renewable energy sources (RES), electric mobility (EM), energy storage systems (ESS) and power quality (PQ). These applications for smart grids have a common feature: the requirement to use the full-controlled grid-side power converters. Thereby, this paper aims to contribute with a technical and economical evaluation about a novel topology of the grid-side power converter for applications in smart grids. In terms of technical features, the proposed converter is classified as: (a) Bidirectional, allowing a bidirectional power flow with the electrical grid; (b) Symmetrical, allowing the operation with two distinct applications in the dc-side (e.g., RES, ESS, or EM); (c) Multilevel with nine levels, allowing high levels of PQ for the grid-side. With the objective to establish an accurate case-study, throughout the paper, the technical and economical evaluation is also performed based on the comparison between the proposed topology and the conventional ones. Considering an economical evaluation, the paper presents a cost estimation study concerning the implementation costs of the proposed topology, assuming realistic conditions of operation for applications in smart grids. Based on the entire evaluation for a real operating power range, the obtained results show the operational convenience of the topology in accordance with different applications in smart grids.This work has been supported by FCT – Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2019. This work is financed by the ERDF – European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation ‐ COMPETE 2020 Programme, and by National Funds through the Portuguese funding agency, FCT‐Fundação para a Ciência e a Tecnologia, within project SAICTPAC/0004/2015‐ POCI‐01‐0145‐FEDER‐016434.Mr. Tiago Sousa is supported by the doctoral scholarship SFRH/BD/134353/2017 granted by the Portuguese FCT agency. This work is part of the FCT project POCI-01-0145-FEDER-030283

    Enhancing Grid Operation with Electric Vehicle Integration in Automatic Generation Control

    Get PDF
    Wind energy has been recognized as a clean energy source with significant potential for reducing carbon emissions. However, its inherent variability poses substantial challenges for power system operators due to its unpredictable nature. As a result, there is an increased dependence on conventional generation sources to uphold the power system balance, resulting in elevated operational costs and an upsurge in carbon emissions. Hence, an urgent need exists for alternative solutions that can reduce the burden on traditional generating units and optimize the utilization of reserves from non-fossil fuel technologies. Meanwhile, vehicle-to-grid (V2G) technology integration has emerged as a remedial approach to rectify power capacity shortages during grid operations, enhancing stability and reliability. This research focuses on harnessing electric vehicle (EV) storage capacity to compensate for power deficiencies caused by forecasting errors in large-scale wind energy-based power systems. A real-time dynamic power dispatch strategy is developed for the automatic generation control (AGC) system to integrate EVs and utilize their reserves optimally to reduce reliance on conventional power plants and increase system security. The results obtained from this study emphasize the significant prospects associated with the fusion of EVs and traditional power plants, offering a highly effective solution for mitigating real-time power imbalances in large-scale wind energy-based power systems

    The electric vehicle in smart homes: a review and future perspectives

    Get PDF
    The electric mobility dissemination is forcing the adoption of new technologies and operation paradigms, not only focusing on smart grids, but also on smart homes. In fact, the emerging technologies for smart homes are also altering the conventional grids toward smart grids. By combining the key pillars of electric mobility and smart homes, this paper characterizes the paradigms of the electric vehicle (EV) in smart homes, presenting a review about the state of the art and establishing a relation with future perspectives. Since the smart home must be prepared to deal with the necessities of the EV, the analysis of both on board and off board battery charging systems are considered in the paper. Moreover, the in-clusion of renewable energy sources, energy storage systems, and dc electrical appliances in smart homes towards sustainability is also considered in this paper, but framed in the perspective of an EV off board battery charging system. As a pertinent contribution, this paper offers future perspectives for the EV in smart homes, including the possibility of ac, dc, and hybrid smart homes. Covering all of these aspects, exemplificative and key results are presented based on numerical simulations and experimental results obtained with a proof of concept prototype.FCT – Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2019. This work has been supported by the FCT Project newERA4GRIDs PTDC/EEI-EEE/30283/2017, and by the FCT Project DAIPESEV PTDC/EEI-EEE/30382/2017. Tiago Sousa is supported by the doctoral scholarship SFRH/BD/134353/2017 granted by FC

    Optimal energy management of a campus microgrid considering financial and economic analysis with demand response strategies

    Get PDF
    An energy management system (EMS) was proposed for a campus microgrid (µG) with the incorporation of renewable energy resources to reduce the operational expenses and costs. Many uncertainties have created problems for microgrids that limit the generation of photovoltaics, causing an upsurge in the energy market prices, where regulating the voltage or frequency is a challenging task among several microgrid systems, and in the present era, it is an extremely important research area. This type of difficulty may be mitigated in the distribution system by utilizing the optimal demand response (DR) planning strategy and a distributed generator (DG). The goal of this article was to present a strategy proposal for the EMS structure for a campus microgrid to reduce the operational costs while increasing the self-consumption from green DGs. For this reason, a real-time-based institutional campus was investigated here, which aimed to get all of its power from the utility grid. In the proposed scenario, solar panels and wind turbines were considered as non-dispatchable DGs, whereas a diesel generator was considered as a dispatchable DG, with the inclusion of an energy storage system (ESS) to deal with solar radiation disruptions and high utility grid running expenses. The resulting linear mathematical problem was validated and plotted in MATLAB with mixed-integer linear programming (MILP). The simulation findings demonstrated that the proposed model of the EMS reduced the grid electricity costs by 38% for the campus microgrid. The environmental effects, economic effects, and the financial comparison of installed capacity of the PV system were also investigated here, and it was discovered that installing 1000 kW and 2000 kW rooftop solar reduced the GHG generation by up to 365.34 kg CO2/day and 700.68 kg CO2/day, respectively. The significant economic and environmental advantages based on the current scenario encourage campus owners to invest in DGs and to implement the installation of energy storage systems with advanced concepts

    Wind Farms and Flexible Loads Contribution in Automatic Generation Control: An Extensive Review and Simulation

    Get PDF
    With the increasing integration of wind energy sources into conventional power systems, the demand for reserve power has risen due to associated forecasting errors. Consequently, developing innovative operating strategies for automatic generation control (AGC) has become crucial. These strategies ensure a real-time balance between load and generation while minimizing the reliance on operating reserves from conventional power plant units. Wind farms exhibit a strong interest in participating in AGC operations, especially when AGC is organized into different regulation areas encompassing various generation units. Further, the integration of flexible loads, such as electric vehicles and thermostatically controlled loads, is considered indispensable in modern power systems, which can have the capability to offer ancillary services to the grid through the AGC systems. This study initially presents the fundamental concepts of wind power plants and flexible load units, highlighting their significant contribution to load frequency control (LFC) as an important aspect of AGC. Subsequently, a real-time dynamic dispatch strategy for the AGC model is proposed, integrating reserve power from wind farms and flexible load units. For simulations, a future Pakistan power system model is developed using Dig SILENT Power Factory software (2020 SP3), and the obtained results are presented. The results demonstrate that wind farms and flexible loads can effectively contribute to power-balancing operations. However, given its cost-effectiveness, wind power should be operated at maximum capacity and only be utilized when there is a need to reduce power generation. Additionally, integrating reserves from these sources ensures power system security, reduces dependence on conventional sources, and enhances economic efficiency
    corecore