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ABSTRACT As the last link of an integrated future energy system, the smart home energy management
system (HEMS) is critical for a prosumer to intelligently and conveniently manage the use of their domestic
appliances, renewable energies (RES) generation, energy storage system (ESS), and electric vehicle (EV).
In this paper, we propose a holistic model to center the preference of users when scheduling the involved
physical equipment of different natures. Further, a dedicatedly designed charging and discharging strategy
for both the ESS and EV considering their capital cost is proposed to integrate them into the HEMS for
providing a better flexibility and economic advantages as well as to prolong the life of the batteries. Based
on the mixed integer linear programming (MILP) and the proposed model, the energy schedule of the smart
home can be derived to guarantee both the lowest cost and the comfort for the users. An illustrative case
study is employed to demonstrate the effectiveness of the proposed method.

INDEX TERMS Smart home, energy management, MILP, smart grid.

NOMENCLATURE
CA Constrained appliances
EA Entertainment appliances
ESS Energy storage system
ESS2H ESS-to-Home
EV Electric vehicle
HEMS Home energy management system
MILP Mixed integer linear programming
PEV Plug-in electric vehicle
PV Photovoltaic
RES Renewable energies
RTP Real-time pricing
SA Schedulable appliances
V2H Vehicle-to-Home

INDICES
d ∈ {1, 2, · · · ,D} Index of SA loads
t ∈ {1, 2, · · · ,T } Index of time slots

The associate editor coordinating the review of this manuscript and

approving it for publication was Lin Zhang .

PARAMETERS
α Thermal characteristic of air conditioning
β Work mode of air conditioning. β > 0 corre-

sponds to the heating mode; β < 0 corresponds
to the cooling mode

ηchESS ESS charging efficiency
ηdisESS ESS discharging efficiency
ηchPEV PEV charging efficiency
ηdisPEV PEV discharging efficiency
C int
ESS ESS initial capacity (kWh)

Cmax
ESS ESS maximum capacity (kWh)

C int
PEV PEV initial capacity (kWh)

Cmax
PEV PEV maximum capacity (kWh)

Nd Length of time for the d th SA to complete all tasks
PmaxAC Air conditioning rated power (kW)
PDG RES generation (kW)
PDR Power limit drawn from the utility (kW)
Pd Power consumption of the d th SA (kW)
PchmaxESS Maximum charging power of ESS (kW)
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PdismaxESS Maximum discharging power of ESS (kW),
PdismaxESS < 0

PmaxEWH Electric water heater rated power (kW)
PE EA power consumption (kW)
PchmaxPEV Maximum charging power of PEV (kW)
PdismaxPEV Maximum discharging power of PEV (kW),

PdismaxPEV < 0
RTP Electricity price ($/kWh)
RTPAVG Average electricity price ($)
RTPESSdis ESS discharging price threshold ($)
RTPPEVch Average electricity price during PEV access to

the home ($)
RTPPEVdis PEV discharging price threshold ($)
T Set of time slots
T cw Incoming cold water temperature (◦F)
T en Ambient temperature (◦F)
T out Outdoor temperature (◦F)
TmaxAC Upper limit of user acceptable indoor temper-

ature (◦F)
TminAC Lower limit of user acceptable indoor temper-

ature (◦F)
ta PEV arrival time
td PEV departure time
tbegind Start time of the allowable operation range of

the d th SA
tendd End time of the allowable operation range of

the d th SA
TmaxEWH Upper limit of user acceptable hot water tem-

perature (◦F)
TminEWH Lower limit of user acceptable hot water tem-

perature (◦F)
T inthw Initial water temperature in the tank (◦F)
T intin Initial indoor temperature (◦F)

VARIABLES
CESS ESS capacity (kWh)
CPEV PEV capacity (kWh)
PAC Air conditioning power consumption (kW)
PchableESS Maximum allowable charging power of ESS

under its capacity constraint (kW)
PchESS ESS charging power (kW)
PdisableESS Maximum allowable discharging power of ESS

under its capacity constraint (kW)
PdisESS ESS discharging power (kW), PdisESS < 0
PEWH Electric water heater power consumption (kW)
PG Interaction power between the utility and HEMS

(kW). PG > 0 indicates the power drawn form
the utility; PG < 0 indicates the power injected
to the utility

PchablePEV Maximum allowable charging power of PEV
under its capacity constraint (kW)

PchPEV PEV charging power (kW)
PdisablePEV Maximum allowable discharging power of PEV

under its capacity constraint (kW)
PdisPEV PEV discharging power (kW), PdisPEV < 0

T hw Hot water temperature (◦F)
T in Indoor temperature (◦F)
ud Binary variable, the startup/shutdown state of d th

SA, 1 if d th SA operating, else 0
uESS Binary variable, the charging/discharging state of

ESS, 1 if ESS charging, else 0
uPEV Binary variable, the charging/discharging state of

PEV, 1 if PEV charging, else 0

I. INTRODUCTION
Smart home energy management is an indispensable part of
the smart grid environment, which allows load management
to be implemented among residents for reducing electricity
bills [1], flexibly accommodating high penetrated renewable
energies (RES), both at remote and local [2]. An efficient
and economical home energy management system (HEMS)
must consider not only the traditional domestic appliances
but also emerging ones, such as energy storage system (ESS),
electrical vehicle (EV), etc. The emerging appliances provide
an opportunity for the HEMS to further lessen costs, mitigate
peak pressures and overcome the uncertainty of RES gener-
ation [3], [4]. Yet, they are also accompanied by challenges.
For instance, the random charging and discharging of unman-
aged EVs can exacerbate peak demand, cause potential over-
load and damage local distribution lines [5], [6]. Therefore,
a reasonable charging and discharging control strategy of ESS
and EV, which is intelligently regulated by HEMS, will play
an important role in the smart home operation.

As the main trend of intelligent scheduling domestic
appliances, HEMS has attracted a lot of studies [7]–[10].
In [11], a low complexity HEMS model equipping with
real time appliances and schedulable appliances is pro-
posed to minimize operational cost. In [12], a convex pro-
gramming home energy optimization framework including
schedule-based appliances, battery-assisted appliances and
model-based appliances is introduced to minimize the user’s
electricity bill and dissatisfaction. Similarly, on the basis of
reducing cost and discomfort, RES and storage models are
further developed to lower the power purchased from the
utility [13], avoid peak demand [14] and fossil fuel consump-
tion. Both environmental pollution and the cost of gasoline
promote the use of EVs. However, neither [13] nor [14]
discusses the opportunities and challenges that EV brings
to the HEMS. The HEMS model with RES, energy storage
and plug-in electric vehicle (PEV) is established in [15] to
achieve the cost saving for the residential consumer and the
full utilization of RES. However, the EV discharging mode
for further reducing cost and peak load is not included in this
model. In [16]–[18], ESS and EV with bidirectional energy
flow are used to help schedule the operation of domestic
appliances, aiming to provide more economic benefits for the
smart home.

The smart home energy management is an optimization
problem with multidimensional variables and multiple con-
straints, where the variables include discrete and continu-
ous ones. In general, heuristic algorithms are often used to
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solve the above problem, such as genetic algorithms [15],
[19], [20], particle swarm optimization algorithms [21]–[23],
the cuckoo search algorithm and strawberry algorithm [24],
and the ant colony algorithm [25].When facedwithmultivari-
ate problems, due to the poor efficiency, high complexity and
inaccuracy of heuristic algorithms, the mixed integer linear
programming (MILP) as an alternativemethod, can obtain the
unique optimal solution quickly and accurately. The modular
structure ofMILPmodel alsomakes it easy tomodify to adapt
the various preferences of users [17]. In [26], a MILP model
is designed for smart homes to optimize the environment and
cost. In order to minimize the operating costs, a residential
microgrid model based on the MILP is proposed in [27].

However, the above works fail to deeply study the com-
bined charging and discharging strategy of ESS and EV
in a comprehensive HEMS model, which can save more
costs, reduce battery degradation and meet the travel needs
of residents. Therefore, in this paper, a MILP-based model
including HEMS, RES, ESS, PEV and various domestic
appliances is formulated. Then, an exact solution method
based on the bidirectional energy control strategy of ESS and
PEV is adopted to achieve the lowest cost control target for
a smart home. The main contributions of this study are listed
as follows:

1) We classified common domestic appliances into 3 cat-
alogues and modelled by various dimensions, i.e. the
operating nature (e.g. consumption limits, time limits,
relativity to temperature, etc.), controllability. Based
on that, user’ satisfaction as to how to engage them
is employed together to form relevant analytic mod-
els. By considering with the RES generation, real-time
pricing (RTP), batteries energy storage, the minimal
total cost of a smart home can be achieved with a
guaranteed user satisfaction.

2) A combined charging and discharging strategy for the
ESS and PEV considering their technical constraints
and the RTP is proposed to rationally manage the
energy transaction between the residence and utility.
Due to the restrictions of both the discharging price
thresholds on the ESS and PEV and the duration of
PEV V2H mode, this strategy not only brings a better
economic revenue to the user, but also prolongs the life
of batteries and meets the PEV capacity requirement
when traveling.

The rest of this paper is organized as follows: in Section II,
we introduce the energy flow structure and the schedul-
ing objective for the smart home. Then, Section III pro-
poses a method to solve the smart home energy optimization
problem. Simulations are carried out in Section IV and
conclusions are given in Section V.

II. PROBLEM FORMATION
In this paper, the designed energy flow structure for a
smart home is shown in Fig. 1. The structure integrates
the smart meter including bidirectional metering and bidi-
rectional communication, HEMS, utility, RES (the rooftop

FIGURE 1. The energy flow structure of a smart home.

photovoltaic generation), ESS, PEV and domestic appliances.
Among them, ESS and PEVhave ESS-to-Home (ESS2H) and
Vehicle-to-Home (V2H) modes, respectively. Furthermore,
in order to more efficiently schedule various domestic appli-
ances, appliances are classified into three categories. The first
is entertainment appliances (EA), such as smartphone, televi-
sion and computer. EA loads can obtain sufficient energy in
each time slot because of user’s entertainment needs. The sec-
ond is constrained appliances (CA), which can be scheduled
under the premise of satisfying comfort requirements of user,
such as air conditioning and electric water heater. The third
is schedulable appliances (SA), such as washing machine
and dishwasher. Based on the electricity price and necessary
constraints, HEMS will find the optimal operating plan for
SA loads.

In the presented structure, RTP, photovoltaic (PV) gen-
eration, outdoor temperature, hot water demand, domestic
appliance parameters and user personal information are trans-
mitted to HEMS before scheduling. As part of the needed
data are based on forecast, which can be either from public
available sources, such as the weather stations for tempera-
ture, or the in-house forecast, such as the hot water demand.
Therefore, dedicated modules for communicating with public
information platform and in-house forecast are required in the
HEMS.Due to the focus of this paper, suchmodulewill not be
discussed and we assume the needed forecast data are avail-
able. In addition, we assume that the smart meter receives
RTP from the utility over power line carrier [11]. The HEMS
communicates with each device in the structure through a
wireless ZigBee network to achieve automatic control of the
smart home [15].

A. SYSTEM MODEL
In what follows, devices in the energy flow structure of the
smart home are formulated respectively.

1) CA LOADS
CA loads are closely related to the temperature comfort
requirements of the resident. The temperatures considered
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in this paper are the indoor temperature and the hot water
temperature. Thus, in order to ensure resident’s comfort,
we use the temperature deadband constraints according to (3)
and (7).

The indoor temperature is calculated by (1) [28].

T in (t) = T in (t − 1)+ α
(
T out (t)− T in (t − 1)

)
+βPAC (t)1t (1)

T in (t − 1) = T intin , t = 1 (2)

TminAC 6 T in (t) 6 TmaxAC (3)

PAC (t) 6 PmaxAC (4)

The hot water temperature is calculated by (5).

T hw (t) = T hw (t − 1) · e
−

(
1

R′ ·C

)
1t

+
{
G·R′ ·T en+B · R′ · T cw+Q (t) · R′

}
·

[
1− e

−

(
1

R′ ·C

)
1t
]

(5)

T hw (t − 1) = T inthw , t = 1 (6)

TminEWH 6 T hw (t) 6 TmaxEWH (7)

PEWH (t) 6 PmaxEWH (8)

where Q (t) = 3.4121× 103 × PEWH (t), Q (t) is the energy
input rate. More detailed explanations for the hot water tem-
perature calculation can be found in [29].

2) SA LOADS
For all SA loads, the constraint (9) needs to be added to
guarantee their running length. The constraint (10) is set
for a portion of SA loads, such as washing machine and
dishwasher, to maintain their running continuity.

tendd∑
t=tbegind

ud (t) = Nd (9)


∑T

t=2 |ud (t)− ud (t − 1)| = c1, ud (1) = 1 &
ud (T ) = 1

c1 <
∑T

t=2 |ud (t)− ud (t − 1)| 6 c2, Otherwise
(10)

where c1 = (numd − 1) × 2, c2 = numd × 2, numd is the
number of times that d th SA needs to fulfill established tasks
in the calculated horizon. If numd = 1, then c1 = 0, c2 = 2,
indicating that the total number of times for d th SA from 0 to
1 (startup) and from 1 to 0 (shutdown) is greater than or equal
to 0 and less than or equal to 2.

3) ESS
Since the charging and discharging power of ESS can be
dynamically adjusted according to energy surplus or insuf-
ficient, the flexibility of HEMS can be enhanced by using
the ESS. The operating constraints of ESS are the upper and

lower limits of capacity andmaximum charging and discharg-
ing power defined by (14), (15), and (16), respectively.

PESS (t) = PchESS (t) uESS (t)+ P
dis
ESS (t)

(1− uESS (t)) (11)

CESS (t) = CESS (t − 1)+ PchESS (t) uESS (t)1tη
ch
ESS

+PdisESS (t) (1− uESS (t))1t/η
dis
ESS (12)

CESS (t − 1) = C int
ESS , t = 1 (13)

0.2Cmax
ESS 6 CESS (t) 6 0.8Cmax

ESS (14)

0 6 PchESS (t) η
ch
ESS 6 PchmaxESS (15)

PdismaxESS 6 PdisESS (t) /η
dis
ESS 6 0 (16)

4) PEV
Compared with energy storage that requires high installation,
operation and maintenance costs, PEV can be used as a
relatively inexpensive way to store and transfer energy [30].
Similar to ESS, the capacity constraint and the maximum
charging and discharging power constraints of PEV are rep-
resented in (20), (21) and (22).

PPEV (t) = PchPEV (t) uPEV (t)+ P
dis
PEV (t)

(1− uPEV (t)) , t ∈ [ta, td ) (17)

CPEV (t) = CPEV (t − 1)+ PchPEV (t) uPEV (t)1tη
ch
PEV

+PdisPEV (t) (1− uPEV (t))1t/η
dis
PEV ,

t ∈ [ta, td ) (18)

CPEV (t − 1) = C int
PEV , t 6 ta (19)
0.3Cmax

PEV 6 CPEV (t) 6 0.8Cmax
PEV ,

t ∈ [ta, td − 1)
CPEV (t) > 0.8Cmax

PEV ,

t = td − 1

(20)

0 6 PchPEV (t) η
ch
PEV 6 PchmaxPEV , t ∈ [ta, td ) (21)

PdismaxPEV 6 PdisPEV (t) /η
dis
PEV 6 0, t ∈ [ta, n] (22)

The time period for PEV to participate in scheduling as
energy storage is [ta, n]. In [n+ 1, td ), PEV is used only as
a household load. The calculation of n will be discussed in
detail in the next section.

5) UTILITY
The HEMS should also manage the energy exchange with
outside, either with utility companies [17] or local energy
community [31]. HEMS has the ability to shift domestic
loads from peak period to valley period to avoid exacerbating
peak demand which usually resulting in potential overload
and damage to local distribution lines. Therefore, even if the
user’s electricity cost reduction brings some economic losses
to utility in terms of the electricity selling business, theHEMS
can ultimately benefit the utility by reducing the investment
and operation and maintenance costs due to the flattening
of the peak loads. In addition, as the HEMS uses the RTP,
the utility can also find new business models based on the
RTP, e.g. using RTP to encourage the customers to participate
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the demand response or lower the total cost for purchasing
electricity in the day-ahead wholesale market etc.

The interaction power between utility and HEMS is calcu-
lated by (23). The peak power constraint is expressed by (24)
to avoid the formation of new peaks during low price periods.

PG (t) = PE (t)+ PAC (t)+ PEWH (t)+
D∑
d=1

Pd (t) ud (t)

+PESS (t)+ PPEV (t)− PDG (t) (23)

PG (t) 6 PDR (24)

B. OBJECTIVE FUNCTION
The control objective of this paper is to minimize the cost of
the user, which can be calculated in (25).

minCost (PG) =
T∑
t=1

PG (t)× RTP (t)×1t (25)

III. SMART HOME ENERGY MANAGEMENT METHOD
Based on the combined charging and discharging strategy of
ESS and PEV, an energy management method is proposed
in this section, which can provide the optimal scheduling
scheme for the smart home.

A. COMBINED CHARGING AND DISCHARGING
STRATEGY OF ESS AND PEV
In order to maximize the economic benefits and reduce the
charging and discharging cycles, the combined charging and
discharging strategy is proposed to optimize the charging and
discharging time and power for ESS and PEV. In this strategy,
when PEV is connected to the home, the operating time of the
V2Hmode of PEV is limited to [ta, n]. Algorithm 1 is used to
calculate the value of n, and its execution steps are as follows:

Step.1 Calculate RTPPEVch . RTPPEVch is the average elec-
tricity price during PEV access to the home;

Step.2 Filter the time slots that can be used to charge PEV.
Only when the current price is lower than RTPPEVch ,
the current time slot is considered to be available for
charging;

Step.3 Set the capacity of PEV in the last charging time slot
to the maximum capacity;

Step.4 Calculate PPEV in each charging time slot by choos-
ing a smaller value between Ptemp and the maximum
charging power of PEV;

Step.5 Calculate CPEV from the last charging time slot until
CPEV is less than or equal to the minimum capacity,
then stop the calculation and obtain n.

There are some additional explanations for Algorithm 1.
1) The reason for the calculation from back to front is to
extend the discharging time of PEV; 2) since PEV charging is
usually concentrated in the early morning and there is almost
no SA loads operation at that time, the calculation of PPEV is
implemented by utilizing PDR, PE , PAC , PEWH and PchmaxPEV ;
3) in order to reserve sufficient energy for PEV to meet the

user’s travel, Algorithm 1 stops the calculation when the PEV
capacity drops to a minimum.

Algorithm 1 The Calculation of n.

Input: Cmax
PEV , P

chmax
PEV , ηchPEV , ta, td , T , RTP, PDR, PE , PAC ,

PEWH
Output: n
1: Compute RTPPEVch
2: for t ← 1 to T do
3: PPEV (t)← 0
4: CPEV (t)← 0
5: Ptemp (t)← PDR − PE (t)− PAC (t)− PEWH (t)
6: end for
7: Index ← Find time slots with RTP (ta : td − 1) less than
RTPPEVch

8: for i← length(Index): -1: 2 do
9: if i← length(Index) then
10: CPEV (Index (i))← 0.8× Cmax

PEV
11: end if
12: PPEV (Index (i)) ←

min
(
Ptemp (Index (i)) ,PchmaxPEV /ηchPEV

)
13: CPEV (Index (i− 1)) ← CPEV (Index (i)) −

PPEV (Index (i))× ηchPEV ×1t
14: if CPEV (Index (i− 1)) 6 0.3× Cmax

PEV then
15: n← i− 1
16: Exit
17: end if
18: end for
19: Return n

Based on the value of n, the proposed charging and dis-
charging strategy for ESS and PEV is shown in Fig. 2. This
strategy will first calculate the maximum allowable charging
and discharging power of ESS and PEV under battery capac-
ity constraints according to (26)-(29).

PchableESS (t) =
(
0.8Cmax

ESS − CESS (t − 1)
)
/
(
ηchESS1t

)
(26)

PdisableESS (t) =
(
CESS (t − 1)− 0.2Cmax

ESS
)
ηdisESS/1t (27)

PchablePEV (t) =
(
0.8Cmax

PEV − CPEV (t − 1)
)
/
(
ηchPEV1t

)
(28)

PdisablePEV (t) =
(
CPEV (t − 1)− 0.3Cmax

PEV
)
ηdisPEV /1t (29)

Then, the specific execution process of this strategy is
elaborated through the following two situations.

Situation 1: in [ta, n], PEV will be used as an energy
storage device to further improve the flexibility and economy
of HEMS scheduling. The steps in situation 1 are as follows:
Step.1 Calculate P1. P1 is the insufficient or surplus energy

of the smart home system without considering the
charging and discharging power of ESS and PEV;

Step.2 If P1 (t) > 0 (system energy is insufficient) and
RTP (t) > RTPESSdis , ESS will discharge. The dis-
charging power and capacity of ESS will be calcu-
lated by (30) and (31). Then, whether PEV is used
to meet the still insufficient energy is determined by
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FIGURE 2. The flow chart of combined charging and discharging strategy of ESS and PEV.

the current price. If RTP (t) > RTPPEVdis , PEV will
discharge, and the discharging power and capacity of
PEV will be calculated by (32) and (33); otherwise,
PEV will take no action;

PESS (t) = −min
(
P1 (t) ,PdisableESS (t) ,∣∣∣PdismaxESS

∣∣∣ ηdisESS) (30)

CESS (t) = CESS (t − 1)+ PESS (t)1t/ηdisESS (31)

PPEV (t) = −min
(
P2 (t) ,PdisablePEV (t) ,∣∣∣PdismaxPEV

∣∣∣ ηdisPEV) (32)

CPEV (t) = CPEV (t − 1)+ PPEV (t)1t/ηdisPEV (33)

Step.3 If P1 (t) > 0 and RTP (t) 6 RTPESSdis , neither ESS
nor PEV will discharge;

Step.4 If P1 (t) < 0 (system energy is surplus), ESS and
PEV will be charged, and the charging power and
capacity of ESS and PEV will be calculated by (34),
(35), (36) and (37);

PESS (t) = min
(
−P1 (t) ,PchableESS (t) ,

PchmaxESS /ηchESS

)
(34)

CESS (t) = CESS (t − 1)+ PESS (t) ηchESS1t (35)

PPEV (t) = min
(
−P2 (t) ,PchablePEV (t) ,

PchmaxPEV /ηchPEV

)
(36)

CPEV (t) = CPEV (t − 1)+ PPEV (t) ηchPEV1t (37)
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Step.5 Calculate the interaction power between utility and
HEMS.

Situation 2: in [1, ta) and (n,T ], the PEV is not connected
to the home or only acts as a load. The calculation steps of
situation 2 can be explained as follows:
Step.1 If n < t < td (PEV acts as a load) and RTP (t) <

RTPPEVch , PEV will be charged, and the charg-
ing power and capacity of PEV will be calculated
according to (38) and (37); otherwise, PEV will take
no action;

PPEV (t) = min
(
Ptemp (t) ,PchablePEV (t) ,

PchmaxPEV /ηchPEV

)
(38)

Step.2 Calculate P1. P1 is the insufficient or surplus energy
without considering the charging and discharging
power of ESS;

Step.3 If P1 (t) > 0 and RTP (t) > RTPESSdis , ESS will
discharge; otherwise, ESS will take no action;

Step.4 If P1 (t) < 0, ESS will be charged;
Step.5 Calculate the interaction power between utility and

HEMS.
As the capital cost of the battery is currently not negligible;

therefore, the PEV will only discharge when the electricity
price is above a certain threshold and the ESS cannot meet
the household energy consumption.

B. OPTIMIZATION METHODOLOGY
Combining the control objective with the control strategy of
ESS and PEV, a smart home energy management optimiza-
tion method is proposed, as shown in Fig. 3. First, the HEMS

FIGURE 3. The flow chart of smart home energy management
optimization method.

receives initial data, such as calculated horizon, time granu-
larity, RTP and domestic appliance parameters, etc., and then
optimizes the consumption of CA loads based on the accept-
able temperature range set by user. Finally, according to the
control target of cost minimization, practical constraints and
the combined charging and discharging strategy of ESS and
PEV, the optimal solution is obtained.

IV. SIMULATION AND RESULTS DISCUSSION
The simulation will be carried out to verify the effectiveness
and economy of the proposed method.

A. SIMULATION PARAMETERS
In this paper, we set the calculated horizon to 24 hours
and the time granularity to 15 minutes. Fig. 4 shows PV
generation data from the European Network of Transmission
System Operators (ENTSOE) [32]. Because the simulation
objective of this paper is a single residence, the output of
PV is generally small, but the data obtained from ENTSOE
is MW-class, so we convert the original generation data to
kW-class. Fig. 5, Table 1 and Table 2 depict the RTP [33],
domestic appliance parameters and other related parameters.
The price sold to the utility is considered to be 50% of the
RTP, and the power purchased from the utility is limited to
5 kW. Suppose the PEV arrives home at 18:30 and leaves
home at 7:30. Besides, the outdoor temperature information
in the summer of 2018 is taken from [34], and the hot water
demand information is taken from [35].

The simulation is conducted on a personal computer with
Intelr CoreTM i5-4200U CPU @ 1.60GHz and 4 GB of
RAM, running on Windows 10 64bit home system. Matlab
R2015a with CPLEX and YALMIP is used as the program-
ming and solving platform.

FIGURE 4. PV generation in summer.

FIGURE 5. Real-time pricing.
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TABLE 1. Domestic appliance parameters.

TABLE 2. Other related parameters.

FIGURE 6. The indoor temperature result under optimal scheduling.

B. SCHEDULING RESULTS
The solution results of the proposed method are shown
in Fig. 6 to Fig. 11. In this study, the indoor temperature is
allowed to vary between 73◦F and 80◦F, and the hot water
temperature is allowed to vary between 120◦F and 130◦F.
Fig. 6 and Fig. 7 show that both the indoor temperature
result and the hot water temperature result do not violate
the acceptable temperature limits. Therefore, the smart home

FIGURE 7. The hot water temperature result under optimal scheduling.

FIGURE 8. The scheduling plan for domestic appliances.

FIGURE 9. Charging and discharging power and capacity of ESS under
optimal scheduling.

energy management method can improve the enthusiasm of
users to join the intelligent scheduling.

Fig. 8 depicts the optimized scheduling plan of domestic
appliances. It can be found that these domestic appliances
complete their tasks in the corresponding operation time slots,
and non-interruptible appliances also guarantee the operation
continuity. Most appliances operate when the PV output is
high (see Fig.4) or the price is low (see Fig.5). In addition,
PV generation is first used to meet the consumption of appli-
ances, and then to provide charging energy for ESS (see
Fig. 9). If the PV generation is still excessive, all remaining
energy will be sold to the utility (see Fig. 11). Since PV
generation is almost zero after the PEV arrives at home,
the energy used for PEV charging mainly comes from the
utility. So this method not only provides a reasonable and
economical work plan for domestic appliances, but also max-
imizes RES utilization.
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FIGURE 10. Charging and discharging power and capacity of PEV under
optimal scheduling.

FIGURE 11. Interaction power between utility and HEMS.

Fig.9 shows that the ESS releases energy at high price
time slots (e.g. 8:30, 9:45, 17:00, 18:30, 20:00) to meet all
or part of the insufficient energy. Although there are also
high price periods around 12:30 and 15:30, the PV output
can fully meet the consumption during these periods, so no
additional energy is required. Limited by ESS capacity and
PV generation, the ESS discharges to the minimum capacity
around 20:00, and there is no excess energy to charge the ESS
before 7:30 the next morning. When PEV arrives at home,
PEV can assist ESS to discharge (e.g. 20:00) or independent
discharge (e.g. 23:00) to reduce the power drawn from the
utility during peak periods, as shown in Fig. 10. It can also
be noted from Fig.10 that the low price slots are selected
to charge the PEV to reduce the charging cost. The PEV
can be charged to the maximum capacity before departure to
satisfy the driving needs of the user. Moreover, the charging
and discharging power and capacity of both ESS and PEV
are within the limits. The discharging price threshold set in
this paper also reduces the charging and discharging cycles
of ESS and PEV, which helps to prolong the life of batteries.

The power transmitted between the HEMS and the
utility is shown in Fig. 11. In the high price periods,
the surplus electricity will be sold to the utility for profit
(e.g. 12:00-13:00). In the low price periods, the HEMS will
first purchase the insufficient energies from the utility (e.g.
21:00-22:00). Besides, the power purchased from the utility
in each time slot is below the maximum power limit, avoiding
new peak phenomena.

In order to improve the convenience for smart home users,
artificial intelligence can also be considered in the future,
which can systematically establish users’ habits of using
domestic appliances by learning from their behaviors, and

TABLE 3. Case comparison results.

TABLE 4. Algorithm comparison results.

then readjust the scope of constraints to minimize the par-
ticipation degree of users. Depends on the communication
protocols (such as Wifi, Bluetooth, ZigBee, etc.) of the smart
appliances, the scheduling results can also be automatically
and silently sent to relevant equipment; yet, if the user does
not want to accept the schedule, users’ interference has
always the highest priority.

1) COMPARATIVE CASES
We design four different cases to verify the economy of
the proposed method, and the comparison results are shown
in Table 3. It can be seen that when there is no ESS and
the PEV has no V2H mode, the cost is the highest (Case 1).
Case 2 reduces the cost by 15.25% on the basis of Case 1,
Case 3 reduces the cost by 7.17% on the basis of Case 2, and
Case 4 reduces the cost by 9.05% on the basis of Case 3.
Therefore, the inclusion of both ESS and the V2H mode
of PEV can decrease the cost for the smart home, but the
combined charging and discharging strategy of ESS and PEV
presented in this paper can maximize users’ benefits.

2) COMPUTATIONAL EFFICIENCY
As the smart home energy management problem involves
both continuous and discrete binary variables, the mixed
integer linear program can be solved by heuristic algorithms,
such as genetic algorithm (GA), particle swarm optimiza-
tion algorithm (PSO) combined with binary particle swarm
optimization algorithm (BPSO) and differential evolution
algorithm (DE) combined with binary learning differen-
tial evolution algorithm (BLDE) [36]. However, the above
mentioned algorithms are often know as computationally
demanding and non-stable from the convergence of the final
results point of view; therefore, we adopt the solver of the
CPLEX as another alternative. To compare the efficiency of
different solving techniques, we implement all the mentioned
methods and the results are reported in Table 4. The cost and
calculation time of heuristic algorithms are the average values
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FIGURE 12. The impact of ESS discharging price threshold on the total
cost.

FIGURE 13. The impact of PEV discharging price threshold on the total
cost.

obtained after 20 optimizations. As can be seen from Table 4,
the CPLEX optimization solver adopted in this paper obtains
the best result with the shortest time.

It should be noted that as a single home, the user will not
have a very large number of domestic appliances that could
possibly cause computational problems, even considering
newly included equipment in the future.

3) SENSITIVITY ANALYSIS
In order to further discuss the influence of different factors
on the electricity cost, this paper makes sensitivity analysis on
the ESS discharging price and the PEV discharging price. The
analysis results are shown in Fig. 12 and Fig. 13. We set the
discharging price of ESS to increase from 0.15 times RTPAVG
to 3 times RTPAVG, and the step length defaults to 0.05 times
RTPAVG. Fig. 12 shows that when ESS discharging price is
less than 1.1 times RTPAVG, the cost is gradually decreasing.
This is because with the increase of discharging price, ESS
can avoid releasing all stored energy in the low price peri-
ods. However, as the discharging price continues to increase,
the discharging time and energy of ESS will decrease, and if
the discharging price is higher than the highest RTP, ESS will
not be able to discharge at any time slot. Therefore, when ESS
discharging price is higher than 1.1 times RTPAVG, the cost is
gradually increasing. Due to the performance of PEV battery
is worse than ESS, PEV discharging price is defaulted to be
higher than ESS. So the discharging price of PEV is increased
from 1.1 times RTPAVG to 2 times RTPAVG to analyze its
impact on the total cost. Similar to ESS, Fig. 13 shows that
when PEV discharging price is equal to 1.18 times RTPAVG,
the benefit to the user is greatest.

V. CONCLUSION
The emergence of the HEMS in smart homes will benefit
both the user and utility by automatically optimize the use of
electricity. In this paper, we universally classified domestic
appliances and modelled each type of them considering their
physical features as well as satisfactory constraints from
the users. A comprehensive MILP-based framework is then
proposed to intelligently schedule the operation of domestic
appliances, RES, ESS, PEV for a minimum cost of electricity
with guaranteed user satisfaction. To further make a better
use of the ESS and PEV and prolong their battery lives,
a specifically designed strategy for charging and discharging
power and time period according to the RTP and energy sur-
plus has been integrated into the scheduling problem, which
enables an optimal trading plan between home and utility.
The simulation results show that the proposedmethod obtains
better performances in terms of economy and computational
efficiency as well as efficiently guarantees user’s comfort and
the completion of the tasks of domestic appliances, maxi-
mizes the RES utilization and flattens the peak load. The
comparative study shows that with the EES and PEV control
strategy, the total cost can further be reduced by 28%.

REFERENCES
[1] F. Y. Melhem, O. Grunder, Z. Hammoudan, and N. Moubayed, ‘‘Energy

management in electrical smart grid environment using robust optimiza-
tion algorithm,’’ IEEE Trans. Ind. Appl., vol. 54, no. 3, pp. 2714–2726,
May/Jun. 2018.

[2] T.Wang, J.Wang, J. Ming, Z. Sun, C.Wei, C. Lu, andM. J. Pérez-Jiménez,
‘‘Application of neural-like P systems with state values for power
coordination of photovoltaic/battery microgrids,’’ IEEE Access, vol. 6,
pp. 46630–46642, 2018.

[3] M. Baza,M. Nabil, M. Ismail, M.Mahmoud, E. Serpedin, andM. Rahman,
‘‘Blockchain-based charging coordination mechanism for smart grid
energy storage units,’’ Apr. 2019, arXiv:1811.02001. [Online]. Available:
https://arxiv.org/abs/1811.02001

[4] D. Pozo, J. Contreras, and E. E. Sauma, ‘‘Unit commitment with ideal and
generic energy storage units,’’ IEEE Trans. Power Syst., vol. 29, no. 6,
pp. 2974–2984, Nov. 2014.

[5] X. Wu, X. Hu, X. Yin, and S. Moura, ‘‘Stochastic optimal energy manage-
ment of smart home with PEV energy storage,’’ IEEE Trans. Smart Grid,
vol. 9, no. 3, pp. 2065–2075, May 2018.

[6] E. Sortomme,M.M. Hindi, S. D. J.MacPherson, and S. S. Venkata, ‘‘Coor-
dinated charging of plug-in hybrid electric vehicles to minimize distribu-
tion system losses,’’ IEEE Trans. Smart Grid, vol. 2, no. 1, pp. 198–205,
Mar. 2011.

[7] H. Shareef, M. S. Ahmed, A. Mohamed, and E. A. Hassan, ‘‘Review
on home energy management system considering demand responses,
smart technologies, and intelligent controllers,’’ IEEE Access, vol. 6,
pp. 24498–24509, 2018.

[8] Y. Huang, L. Wang, W. Guo, Q. Kang, and Q. Wu, ‘‘Chance constrained
optimization in a home energy management system,’’ IEEE Trans. Smart
Grid., vol. 9, no. 1, pp. 252–260, Jan. 2018.

[9] N. Javaid, I. Ullah, M. Akbar, Z. Iqbal, F. A. Khan, N. Alra-
jeh, and M. S. Alabed, ‘‘An intelligent load management system with
renewable energy integration for smart homes,’’ IEEE Access, vol. 5,
pp. 13587–13600, 2017.

[10] R. Khalid, N. Javaid, M. H. Rahim, S. Aslam, and A. Sher, ‘‘Fuzzy energy
management controller and scheduler for smart homes,’’ Sustain. Comput.,
Inform. Syst., vol. 21, pp. 103–118, Mar. 2019.

[11] A. Basit, G. A. S. Sidhu, A. Mahmood, and F. Gao, ‘‘Efficient and
autonomous energy management techniques for the future smart homes,’’
IEEE Trans. Smart Grid, vol. 8, no. 2, pp. 917–926, Mar. 2017.

[12] K. M. Tsui and S. C. Chan, ‘‘Demand response optimization for smart
home scheduling under real-time pricing,’’ IEEE Trans. Smart Grid, vol. 3,
no. 4, pp. 1812–1821, Dec. 2012.

VOLUME 7, 2019 144019



X. Hou et al.: Smart Home Energy Management Optimization Method Considering Energy Storage and EV

[13] M. Shakeri, M. Shayestegan, H. Abunima, S. M. S. Reza,
M. Akhtaruzzaman, A. R. M. Alamoud, K. Sopian, and N. Amin,
‘‘An intelligent system architecture in home energy management systems
(HEMS) for efficient demand response in smart grid,’’ Energy Buildings,
vol. 138, pp. 154–164, Mar. 2017.

[14] H. A. Özkan, ‘‘A new real time home power management system,’’ Energy
Buildings, vol. 97, pp. 56–64, Jun. 2015.

[15] J. Yang, J. Liu, Z. Fang, and W. Liu, ‘‘Electricity scheduling strategy for
home energy management system with renewable energy and battery stor-
age: A case study,’’ IET Renew. Power Gener., vol. 12, no. 6, pp. 639–648,
Apr. 2018.

[16] X. Yang, Y. Zhang, B. Zhao, F. Huang, Y. Chen, and S. Ren, ‘‘Opti-
mal energy flow control strategy for a residential energy local network
combined with demand-side management and real-time pricing,’’ Energy
Buildings, vol. 150, pp. 177–188, Sep. 2017.

[17] N. G. Paterakis, O. Erdinç, A. G. Bakirtzis, and J. P. S. Catalão, ‘‘Opti-
mal household appliances scheduling under day-ahead pricing and load-
shaping demand response strategies,’’ IEEE Trans. Ind. Informat., vol. 11,
no. 6, pp. 1509–1519, Dec. 2015.

[18] S. Aslam, N. Javaid, M. Asif, U. Iqbal, Z. Iqbal, and M. A. Sarwar,
‘‘A mixed integer linear programming based optimal home energy man-
agement scheme considering grid-connected microgrids,’’ in Proc. 14th
Int. Wireless Commun. Mobile Comput. Conf. (IWCMC), Jun. 2018,
pp. 993–998.

[19] Z. Zhao, W. C. Lee, Y. Shin, and K.-B. Song, ‘‘An optimal power schedul-
ing method for demand response in home energy management system,’’
IEEE Trans. Smart Grid, vol. 4, no. 3, pp. 1391–1400, Sep. 2013.

[20] M. A. Khan, N. Javaid, A. Mahmood, Z. A. Khan, and N. Alrajeh,
‘‘A generic demand-side management model for smart grid,’’ Int. J. Energy
Res, vol. 39, no. 7, pp. 954–964, Jun. 2015.

[21] N. Gudi, L. Wang, and V. Devabhaktuni, ‘‘A demand side management
based simulation platform incorporating heuristic optimization for man-
agement of household appliances,’’ Int. J. Elect. Power Energy Syst.,
vol. 43, no. 1, pp. 185–193, Dec. 2012.

[22] M.A. A. Pedrasa, T. D. Spooner, and I. F.MaxGill, ‘‘Scheduling of demand
side resources using binary particle swarm optimization,’’ IEEE Trans.
Power Syst, vol. 24, no. 3, pp. 1173–1181, Aug. 2009.

[23] D. Mahmood, N. Javaid, N. Alrajeh, Z. A. Khan, U. Qasim, I. Ahmed, and
M. Ilahi, ‘‘Realistic scheduling mechanism for smart homes,’’ Energies,
vol. 9, no. 3, p. 202, Mar. 2016.

[24] S. Aslam, N. Javaid, F. Khan, A. Alamri, A. Almogren, and W. Abdul,
‘‘Towards efficient energy management and power trading in a residential
area via integrating a grid-connected microgrid,’’ Sustainability, vol. 10,
no. 4, p. 1245, 2018.

[25] S. Rahim, Z. Iqbal, N. Shaheen, Z. A. Khan, U. Qasim, S. A. Khan, and
N. Javaid, ‘‘Ant colony optimization based energy management controller
for smart grid,’’ in Proc. IEEE 30th Int. Conf. Adv. Inf. Netw. Appl. (AINA),
Crans-Montana, Switzerland, Mar. 2016, pp. 1154–1159.

[26] D. Zhang, S. Evangelisti, P. Lettieri, and L. G. Papageorgiou, ‘‘Eco-
nomic and environmental scheduling of smart homes with microgrid:
DER operation and electrical tasks,’’ Energy Convers. Manage., vol. 110,
pp. 113–124, Feb. 2016.

[27] P. O. Kriett and M. Salani, ‘‘Optimal control of a residential microgrid,’’
Energy, vol. 42, no. 1, pp. 321–330, 2012.

[28] N. Li, L. Chen, and S. H. Low, ‘‘Optimal demand response based on utility
maximization in power networks,’’ in Proc. IEEE Power Energy Soc. Gen.
Meeting, Jul. 2011, pp. 1–8.

[29] M. H. Nehrir, R. Jia, D. A. Pierre, and D. J. Hammerstrom, ‘‘Power
management of aggregate electric water heater loads by voltage control,’’
in Proc. IEEE Power Eng. Soc. Gen. Meeting, Tampa, FL, USA, Jun. 2007,
pp. 492–497.

[30] M. H. K. Tushar, A. W. Zeineddine, and C. Assi, ‘‘Demand-side manage-
ment by regulating charging and discharging of the EV, ESS, and utilizing
renewable energy,’’ IEEE Trans. Ind. Informat., vol. 14, no. 1, pp. 117–126,
Jan. 2018.

[31] Y. Cai, T. Huang, E. Bompard, Y. Cao, and Y. Li, ‘‘Self-sustainable
community of electricity prosumers in the emerging distribution system,’’
IEEE Trans. Smart Grid, vol. 8, no. 5, pp. 2207–2216, Sep. 2017.

[32] European Network of Transmission System Operators. Accessed:
Jul. 2018. [Online]. Available: https://transparency.entsoe.eu/generation/

[33] The Australian Energy Market Operator (AEMO). Accessed: Jul. 2018.
[Online]. Available: http://www.aemo.com.au/

[34] National Climatic Data Center FTP. Accessed: Jul. 2018. [Online]. Avail-
able: //ftp.ncdc.noaa.gov/pub/data/asos-onemin/

[35] P. Du and N. Lu, ‘‘Appliance commitment for household load scheduling,’’
IEEE Trans. Smart Grid, vol. 2, no. 2, pp. 411–419, Jun. 2011.

[36] Y. Chen, W. Xie, and X. Zou, ‘‘A binary differential evolution algo-
rithm learning from explored solutions,’’ Neurocomputing, vol. 149,
pp. 1038–1047, Feb. 2015.

XUAN HOU is currently pursuing the M.S.
degree in electrical engineering with Xihua Uni-
versity, Chengdu, China. Her research interests
include the smart home and electric vehicle energy
management.

JUN WANG received the Ph.D. degree in elec-
trical engineering from Southwest Jiaotong Uni-
versity, China, in 2006. She was a Lecturer with
the Sichuan College of Science and Technol-
ogy, China, from 1991 to 2003, and an Asso-
ciate Professor with Xihua University, China, from
1998 to 2003. She has been a Professor with the
School of Electrical and Information Engineering,
Xihua University, China, since 2004. Her research
interests include electrical automation, intelligent
control, and membrane computing.

TAO HUANG (M’18) received the Ph.D. degree
from the Politecnico di Torino, Italy, in 2011. He is
currently a Researcher and a Professor with the
Department of Energy, Politecnico di Torino and
the School of Electrical Engineering and Elec-
tronic Information, Xihua University, China. His
research interests include critical infrastructure
protection, power system modeling and analysis,
electricity markets, and smart grids.

TAO WANG (M’18) received the Ph.D. degree
in electrical engineering from Southwest Jiaotong
University, Chengdu, China, in 2016. She was a
Visiting Student in computer science and artifi-
cial intelligence with the University of Seville,
Seville, Spain, from November 2013 to Novem-
ber 2014. She has been a Lecturer with the School
of Electrical Engineering and Electronic Informa-
tion, Xihua University, since 2016. Her research
interests include microgrid energy management,

fault diagnosis, membrane computing, and bioinspired model theory and its
application in electrical power systems.

PENG WANG (M’00–SM’11–F’18) received the
B.Sc. degree from Xi’an Jiaotong University,
Xian, China, in 1978, the M.Sc. degree from
the Taiyuan University of Technology, Taiyuan,
China, in 1978, and the M.Sc. and Ph.D. degrees
in power engineering from the University of
Saskatchewan, Saskatoon, SK, Canada, in 1995
and 1998, respectively. He is currently a Profes-
sor with the School of Electrical and Electronic
Engineering, Nanyang Technological University,
Singapore.

144020 VOLUME 7, 2019


