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Abstract. The electric mobility dissemination is forcing the adoption of new 

technologies and operation paradigms, not only focusing on smart grids, but also 

on smart homes. In fact, the emerging technologies for smart homes are also al-

tering the conventional grids toward smart grids. By combining the key pillars of 

electric mobility and smart homes, this paper characterizes the paradigms of the 

electric vehicle (EV) in smart homes, presenting a review about the 

state-of-the-art and establishing a relation with future perspectives. Since the 

smart home must be prepared to deal with the necessities of the EV, the analysis 

of both on-board and off-board battery charging systems are considered in the 

paper. Moreover, the inclusion of renewable energy sources, energy storage sys-

tems, and dc electrical appliances in smart homes towards sustainability is also 

considered in this paper, but framed in the perspective of an EV off-board battery 

charging system. As a pertinent contribution, this paper offers future perspectives 

for the EV in smart homes, including the possibility of ac, dc, and hybrid smart 

homes. Covering all of these aspects, exemplificative and key results are pre-

sented based on numerical simulations and experimental results obtained with a 

proof-of-concept prototype. 

Keywords: Electric Vehicle, Smart Home, Smart Grid, Renewable Energy 

Source, Energy Storage Systems, Power Quality. 

1 Introduction 

The electric mobility is increasing its involvement in the transportation sector, where 

diverse technologies are available as a contribution for sustainability [1][2]. Among the 

different technologies, the most emblematic is the plug-in battery electric vehicle, 

simply designated as electric vehicle (EV) in the scope of this paper. Along the last 

decades, the number of commercially available EVs is increasing, all of them including 

on-board EV battery charging systems (EV-BCS) and some of them also including an 

interface for an off-board EV-BCS [3][4][5][6]. Nevertheless, in terms of the EV oper-

ation for battery charging, only the possibility of charging directly from the grid is 

available [7][8]. This operation mode, common for both on-board and off-board 
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EV-BCS, is denominated as grid-to-vehicle (G2V), since the power flows from the 

power grid to the EV. However, from the power grid viewpoint, the EV can be under-

stood not only as an additional load for the system, but also as an energy storage. There-

fore, in the perspective of the power grid, the inclusion of the EV will be even more 

relevant if it can be used as a flexible system capable of three key actions: (a) Absorbing 

controlled power from the power grid in the place where it is plugged-in; (b) Storing 

energy and transport it between different places in the power grid; (c) Injecting con-

trolled power into the power grid in the place where it is plugged-in. Thus, alongside 

the G2V mode, arises the vehicle-to-grid (V2G) mode, where the power flows from the 

EV to the power grid [9][10][11]. The different possibilities of interaction between the 

EV and the power grid through the G2V/V2G modes are the main scope of several 

studies, as demonstrated in [12][13][14]. It is important to note that, in a progressive 

way, the V2G mode is being seen as a new reality; therefore, some manufacturers in 

the automotive sector have technological solutions for this possibility based on 

on-board EV-BCS. 

Fig. 1 illustrates an on-board EV-BCS integrated into a smart home, encompassing 

the G2V/V2G modes. This is the conventional approach, where the on-board EV-BCS 

can be controlled by the smart home power management. As illustrated, the EV can 

consume power from the grid or can deliver power for the smart home or for the smart 

grid (or even for both). 

More recently, new operation paradigms are emerging, not only supported by the 

controllability of the G2V/V2G modes, as in this figure, but also in the perspective of 

power quality, for instance, during power outages, during the integration in islanded 

grids, or during compensation of reactive power [15]. Therefore, the main contributions 

of this paper are: (a) A more comprehensive review about the state-of-the-art operation 

modes and technologies for the EV in smart homes and smart grids; (b) A description 

about future perspectives of operation paradigms; (c) Validation based on numerical 

simulation and on a proof-of-concept prototype. 

 

Fig. 1. On-board EV BCS integrated into a smart home, encompassing G2V and V2G (for the 

smart grid and/or for the smart home) modes. 
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2 EV in Smart Homes and Smart Grids: Overview of 
Operation Modes and Technologies 

In the introduction section, the possibility of the EV interacting with the power grid in 

bidirectional mode was introduced. The G2V/V2G modes are already a reality; how-

ever, only for exchanging active power between the EV and the power grid, targeting 

smart grids in a perspective of an on/off control, without neglecting the grid constraints. 

This contribution is extremely relevant, allowing to use the plugged-in EVs to over-

come problems of efficiency and power quality [16][17][18][19][20][21]. In this per-

spective, with the permission and for the benefit of the EV driver (e.g., different tariffs 

for programs of G2V/V2G), the EV is controlled by an algorithm of power management 

of the smart grid, which defines the schedules for charging (G2V) and, eventually, for 

discharging (V2G) [22]. 

Given the flexibility of the EV to be plugged-in in the power grid (i.e., it can be 

plugged-in in different places), the controllability offered by the smart grid gains new 

complexity. Besides, as presented in [23] and [24], the flexibility offered by the EV 

operation is also important in microgrid scenarios. In [25] and [26], experimental con-

siderations for the EV in G2V/V2G scenarios are presented, and, in a future perspective, 

innovative G2V/V2G interactions are offered in [27]. The flexibility offered by these 

modes is even more applicable as a compensation for the intermittence of the energy 

obtained from renewable energy sources (RES). In this perspective, the EV can be seen 

as an energy buffer for the power grid, consuming, storing, or delivering power as a 

function of the RES intermittence. A perspective of accommodating the EV charging, 

targeting the RES production as a contribution for mitigating greenhouse gases emis-

sions, is accessible in [28]. Another perspective combining also the EV and RES, tar-

geting to reduce costs and emissions, is considered in [29], and the G2V/V2G operation 

based on RES for a demand-side management is offered in [30]. Correlating the mis-

cellaneous operation of the EV with RES arises new perspectives, not only for smart 

grids, but also for smart homes, since, as demonstrated in [31], smart homes have a 

boost effect for the future innovation in smart grids. In this scenario, technologies and 

foresights for assimilating the EV in smart homes are discussed in [32], while an opti-

mized EV interaction is presented in [33] from the customer perspective. The afore-

mentioned discussed technologies only involve an on-board EV-BCS in G2V/V2G 

modes. However, other possibilities of operation are emerging as viable solutions for 

the EV in smart homes, but prospecting smart grids. 

The home-to-vehicle (H2V) is a particular mode of operation for the EV, when it is 

plugged-in at home. In fact, this mode is comparable to the G2V mode, since the power 

flows from the power grid to the EV (plugged-in in the home). The differentiating factor 

resides in the controllability of this mode, more convenient than the on/off G2V mode. 

With the H2V mode, the charging power can vary dynamically between zero and the 

maximum power, i.e., it can assume any value of power between the range of operating 

power. 

Similar to the controlled G2V mode, in the H2V mode, the on-board EV-BCS can 

also be remotely controlled according to the set-points received by the algorithm of 

power management. This mode is particularly relevant for a smart home management 
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in combination with controlled electrical appliances. In this context, the management 

algorithm can establish different levels of priority for the EV and for the electrical ap-

pliances in accordance with the user preferences (e.g., through a mobile app). From the 

EV point of view, three main situations can be highlighted: (a) The EV is defined to 

have maximum priority; therefore, it is charged with maximum power, while the elec-

trical appliances can be turned-off to prevent the circuit breaker trip. This situation cor-

responds to a critical case when it is fundamental to charge the EV as fast as possible, 

and the operation of the other electrical appliances is not relevant. (b) The EV is defined 

to have priority over some specific electrical appliances; therefore, a maximum charg-

ing power is defined (e.g., corresponding to 75% of the full power) and the turn-on and 

turn-off of the electrical appliances is controlled in order to avoid the circuit breaker 

trip. In this case, the EV is charged with a fixed power and the electrical appliances are 

controlled avoiding exceeding the maximum power allowed by the circuit breaker. (c) 

The EV is defined to have minimum priority; therefore, the charging power is defined 

with a value that corresponds to the difference between the maximum (i.e., allowed by 

the circuit breaker) and the instantaneous power consumed by the electrical appliances. 

In this case, the power for the EV charging is directly influenced by the power con-

sumption of the electrical appliances; therefore, the charging process will be extended 

for a longer period. As mentioned, the H2V is similar to the G2V mode; however, dur-

ing the discharging process (V2G), the same strategy of controlling the EV operation 

as a function of the electrical appliances can also be implemented. 

3 Future Perspectives of Operation Paradigms 

In this section, future perspectives for the EV in smart homes are presented. Therefore, 

besides the operation paradigms described in the previous section (G2V/V2G/H2V), 

new challenges in terms of infrastructures are presented, involving the requirements of 

smart homes. 

In Fig. 2 is presented a vision of an on-board EV-BCS in smart homes, contemplat-

ing the abovementioned operation modes and a new one related with power quality. As 

it can be seen, these operation modes are relevant and extremely useful for the smart 

home, also contributing for new energy policies for smart grids. As an example, in bi-

directional mode, three distinct cases can be considered for the on-board EV-BCS: (a) 

Exchange power with the smart home, where the EV can provide power according to 

the requirements of the home management system; (b) Exchange power with the smart 

grid, where the EV can provide power according to the requirements of the smart grid; 

(c) Exchange power, at the same time, with the smart home and with the smart grid. 

This example is directly related with the G2V/V2G modes, however, a similar case is 

for the vehicle-for-grid (V4G) mode, where the on-board EV-BCS can compensate 

power quality problems, both in the smart home and in the smart grid. It is important to 

note that, in this case, the on-board EV-BCS can compensate almost all the current 

harmonics and the power factor of the smart home, but in the smart grid perspective, it 

only contributes to mitigate part of such problems. In this case, a new perspective for 

the smart grid arises, which is related with selective harmonic current compensation 
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(where each EV can be controlled to produce a specific harmonic current) and con-

trolled reactive power (where each EV is responsible to produce a small amount of 

reactive power to compensate a specific value of power factor in the smart grid). De-

spite the clear benefits of these operation modes for the smart home and for the smart 

grid, a key disadvantage is identified: these operation modes are only possible when the 

on-board EV-BCS is available, i.e., when the EV is parked at the smart home. On the 

other hand, if analyzed from the power grid point of view, in terms of exchanging power 

and in terms of controllability, a new key advantage is identified: these operation modes 

are available in the place where the EV is parked, i.e., the EV is a dynamic system in 

the smart grid, capable of operating in different modes according to the necessities. 

Besides the compensation of power quality problems related with harmonic currents 

and reactive power, the on-board EV-BCS can also be used during power outages. In 

this case, illustrated in Fig. 3, the on-board EV-BCS provides power for the smart 

home, but the current waveform is defined by the electrical appliances (i.e., the 

on-board EV-BCS can operate with a non-sinusoidal current and low power factor). In 

this case, the energy source is the EV battery; therefore, it should be used with the 

convenience of the EV driver. For instance, in this mode, the on-board EV-BCS system 

can be used only to provide power for priority electrical appliances in the smart home 

(to be defined and reconfigurable by the user). Moreover, this mode is more convenient 

for short periods of time. Concerning EV off-board battery charging systems, the 

abovementioned operation modes can also be applied. In Fig. 4 is presented a vision of 

an EV off-board battery charging system in smart homes when the EV is parked at 

home. Using an EV off-board battery charging system, the offered possibilities are even 

more relevant, since the equipment is always installed at the smart home. Therefore, 

some operation modes are available independently of the EV being parked. For in-

stance, the EV off-board battery charging system can provide power quality services, 

 

Fig. 2. On-board EV BCS integrated into a smart home, encompassing the G2V and V2G modes, 

as well as the possibility of compensating power quality problems related with harmonic currents 

and low power factor (producing reactive power for the smart home or for the smart grid). 
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exactly as the on-board EV-BCS, for both the smart home and for the smart grid; how-

ever, such services can be provided independently of the EV presence. On the other 

hand, G2V/V2G modes are only available, as for on-board EV-BCS, when the EV is 

present (with the batteries as the energy source). In Fig. 5 is presented a vision of an 

EV off-board battery charging system in smart homes when the EV is not parked at 

home. As illustrated, the same operation modes are available (i.e., G2V/V2G and com-

pensation of harmonic currents and power factor), except the possibility of using the 

 

Fig. 3. On-board EV BCS integrated into a smart home, encompassing the G2V and V2G modes, 

as well as the possibility of compensating power quality problems related to power outages 

(where the EV is used as power supply with the EV batteries as energy source). 

  

Fig. 4. Off-board EV BCS integrated into a smart home, with a parked EV, encompassing the 

G2V and V2G modes, as well as the possibility of compensating power quality problems related 

with harmonic currents and low power factor (producing reactive power for the smart home or 

for the smart grid). 

Switch-
board

Smart
Grid

EV
Battery

On-Board
System

Smart Home
Power 

Management

Electrical
Appliances

Harmonics

Active Power
Reactive Power

Switch-
board

Smart
Grid

EV
Battery

Off-Board
System

Smart Home
Power 

Management

Electrical
Appliances

Harmonics

Active Power
Reactive Power



7 

EV battery as power supply during power outages. Nevertheless, the main future per-

spectives are related with EV off-board battery charging systems and, more precisely, 

with the possibility of interfacing other technologies for smart homes as RES or as 

auxiliary energy storage systems (ESS). Thus, the future perspectives are based on the 

possibility of using the same EV off-board battery charging system to interface, through 

a shared dc-link, a unidirectional dc-dc converter for RES and a bidirectional dc-dc 

converter for an auxiliary ESS [34]. It is important to note that the integration of an EV 

off-board battery charging system with this possibility is a complete solution to encom-

pass in the smart home: electric mobility; RES; ESS. This situation is illustrated in 

Fig. 6, where the single interface with the power grid is a relevant key feature [35][36]. 

Moreover, with the migration from ac grids to dc grids, this is even more relevant, since 

the necessities of power converters are drastically reduced (it is important to take into 

account that the majority of the electrical appliances at home level are composed by a 

front-end ac-dc converter used only to interface the ac grid).  Therefore, a complete 

future perspective of integrating an EV off-board battery charging system in a smart 

home, mainly focusing in an internal dc grid, is illustrated in Fig. 7. Within this sce-

nario, the following modes can be considered: (a) The power extracted from the RES 

can be injected into the power grid; (b) The power extracted from the RES can be used 

to charge the EV batteries; (c) The power extracted from the RES can be used to charge 

the ESS; (d) The power extracted from the RES can be used by the electrical appliances; 

(e) The EV can deliver power for the smart home (electrical appliances); (f) The EV 

can deliver power for the smart grid; (g) The power from the ESS can be delivered to 

the smart home (electrical appliances); (h) The power from the ESS can be delivered to 

the smart grid; (i) The power from the grid can be used to charge the EV; (j) The power 

 

Fig. 5. Off-board EV BCS integrated into a smart home, without a parked EV, but with the pos-

sibility of compensating power quality problems related with harmonic currents and low power 

factor (producing reactive power for the smart home or for the smart grid). 
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from the grid can be used to charge the ESS; (k) The power from the grid can be deliv-

ered to the smart home (electrical appliances). It is important to note that the EV 

off-board battery charging system can include a dc-dc converter with a direct interface 

 

Fig. 6. Off-board EV BCS integrated into a hybrid ac and dc smart home, with a parked EV and 

interfacing a RES (solar photovoltaic panels) and an ESS (batteries) through a shared dc-link. 

The electrical appliances are directly connected to the ac grid. The G2V/V2G modes are contem-

plated, as well as the possibility of compensating power quality problems related with harmonic 

currents and low power factor (producing reactive power for the smart home or for the smart 

grid). 

Fig. 7. Off-board EV BCS integrated into a dc smart home, with the EV parked and interfacing 

a RES (solar photovoltaic panels), an ESS (batteries), and electrical appliances through a shared 

dc-link. The G2V and V2G operation modes are contemplated, as well as the possibility of com-

pensating power quality problems related with harmonic currents and low power factor (produc-

ing reactive power for the smart grid). 
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with the EV battery, or an additional dc-dc converter (within the on-board EV-BCS) 

can be used between the EV off-board battery charging system and the EV battery. 

4 Computational and Experimental Validation 

In this section, a comparison between three main cases was considered: (a) A conven-

tional ac smart home with independent power converters for each technology (on-board 

EV-BCS, RES, ESS, dc electrical appliances, and ac electrical appliances); (b) A hybrid 

ac/dc smart home with an integrated off-board EV-BCS for a RES and for an ESS, 

sharing a common dc-link; (c) A dc smart home with an integrated off-board EV-BCS, 

based on a single interface with the grid and with dc-dc or dc-ac converters for inter-

facing each technology (on-board EV-BCS, RES, ESS, dc electrical appliances, and ac 

electrical appliances). These three cases, illustrated in Fig. 8, were simulated using a 

model developed in PSIM software, where: (a) as RES, a set of photovoltaic (PV) pan-

els was considered; (b) as ESS, a set of lithium batteries was considered; (c) as dc elec-

trical appliances (dcEA), resistive loads were considered; (d) as ac electrical appliances 

(acEA), an induction motor was considered. In terms of the power converters: (a) for 

the ac-dc, full-bridge three-level converters were considered; (b) for the dc-dc, unidi-

rectional and bidirectional half-bridge two-level converters were considered; (c) for the 

dc-ac, full-bridge three-level converters were considered. 

According to the different possibilities of operation modes (cf. section 3 and Fig. 7), 

the estimated efficiency was determined. These operation modes are: (a) The power 

extracted from the RES can be injected into the power grid; (b) The power extracted 

from the RES can be used to charge the EV; (c) The power extracted from the RES can 

be used to charge the ESS; (d) The power extracted from the RES can be used by the 

electrical appliances; (e) The EV can deliver power for the smart home (electrical ap-

pliances); (f) The EV can deliver power for the smart grid; (g) The power from the ESS 

can be delivered to the smart home (electrical appliances); (h) The power from the ESS 

can be delivered to the smart grid; (i) The power from the grid can be used to charge 

the EV; (j) The power from the grid can be used to charge the ESS; (k) The power from 

the grid can be delivered to the smart home (electrical appliances). 

The estimated efficiency for each mode, considering the three cases under study, is 

presented in Fig. 9 (for the case #1 the ac-dc with an efficiency of 94% and for the 

dc-dc with an efficiency of 95%, for the case #2 the ac-dc with an efficiency of 95% 

and for the dc-dc with an efficiency of 96%, for the case #3 the ac-dc with an efficiency 

of 95% and for the dc-dc with an efficiency of 96%). As it can be seen, the most effi-

cient solution is obtained with the dc smart home, where a single ac interface with the 

power grid is considered. This is in accordance with the expectable, since the number 

of power stages is substantially reduced (as well as the required number of power con-

verters). Taking into account that some operation modes are equal for some cases, very 

similar values of efficiency were obtained. On the other hand, the first case is the worst 

in terms of efficiency, since several power stages are required, where the power grid is 

always needed for each operation mode. Concerning the contributions of the future per-

spective of EV off-board battery charging systems for power quality, some results were 
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obtained, mainly focusing in the ac-dc converter used to interface the power grid. 

Fig. 10 shows the power grid voltage (vg), the grid current (ig), and the voltage of the 

ac-dc converter (vac) when the EV batteries are charged from the power grid. Besides, 

a comparative detail of the grid current (ig) with its reference (ig*) is also presented. In 

this case, a power of 3.6 kW was considered. As expected, the grid current (ig) is sinus-

oidal and the converter operates with unitary power factor. On the other hand, Fig. 10 

shows a case when the power grid receives energy from the PV panels. This figure 

Fig. 8. Considered cases: (a) A conventional ac smart home with independent power converters 

for each technology; (b) A hybrid ac and dc smart home with an integrated EV off-board battery 

charging system for interfacing a RES and for an ESS, sharing a common dc-link; (c) A dc smart 

home with an integrated off-board EV BCS, based on a single interface with the grid and with 

dc-dc or dc-ac converters for interfacing each technology. 

Fig. 9. Estimated efficiency for each case under study and considering all the possibilities of 

operation modes. 
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shows the power grid voltage (vg), the grid current (ig), and the current in the PV panels 

(ipv). A detail of the current ipv is also presented. The dc-dc converter used to interface 

the PV panels is controlled in order to extract, at each instant, the maximum power from 

the PV panels. Therefore, the reference current changes in accordance with the maxi-

mum power point tracking (MPPT) algorithm and, due to the current control scheme, 

the current follows its reference. In Fig. 11 is shown a case when the EV batteries are 

charged with energy from the power grid and from the PV panels. This figure shows 

the power grid voltage (vg), the grid current (ig) and its maximum value to show the 

variation (in green), the current in the PV panels (ipv), and the current in the EV batteries 

(iev). In this operation mode, the EV batteries are charged with constant current; there-

fore, the grid current changes in accordance with the current in the PV panels, i.e., in 

accordance with the MPPT algorithm. As it can be seen, the grid current changes with-

out sudden variations, allowing to prevent power quality problems. A prototype was 

 
Fig. 10. Simulation results when the power grid receives energy from the PV panels: Power grid 
voltage (vg); Grid current (ig); Current in the PV panels (ipv); Reference current for the PV panels 
(ipv*). 

 
Fig. 11. Simulation results when the EV batteries are charged with energy from the power grid 
and from the PV panels: Power grid voltage (vg); Grid current (ig); Current in the PV panels (ipv); 
Current in the EV batteries (iev). 
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considered for experimental results. In Fig. 12(a) are presented some experimental re-

sults when the EV batteries are charged with energy from the power grid. As expected, 

the grid current (ig) is sinusoidal (THD = 1.4%), even with a power grid voltage (vg) 
with harmonic distortion (THD = 3.5%). With this strategy, the integrated topology 

does not contribute to the harmonic distortion of the power grid voltage. During the 

injection of power into the grid, Fig. 12(b) shows, in a time interval of 50 ms, the power 

grid voltage (vg) and the grid current (ig) for an operating power of 800 W. As expected, 

the grid current is in phase opposition with the power grid voltage, meaning that the 

power grid receives energy from the PV panels. In Fig. 13 is presented a case when the 

EV batteries are charged with energy from the power grid and from the PV panels. 

During this case are presented, the power in the grid (PG), the power in the EV (PEV) 
and the power in the PV panels (PPV). As it can be seen, the power in the grid (PG) is 

the difference between the power in the EV (PEV) and the power in the PV panels (PPV). 

   
(a)                                                        (b) 

Fig. 12. Experimental results when the EV batteries are charged (a) or discharged (b): Power grid 
voltage (vg: 100 V/div); Grid current (ig: 10 A/div); Voltage produced by the ac-dc converter (vac: 
200 V/div). 

 
Fig. 13. Experimental results when the EV batteries are charged with energy from the power grid 
and from the PV panels: Power in the grid (PG: 1 kW/div); Power in the EV (PEV: 1 kW/div); 
Power in the PV panels (PPV: 1 kW/div). 
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5 Conclusions 

New technologies for smart homes and smart grids are emerging due to the electric 

mobility dissemination. Therefore, knowing the relevance of the electric vehicle (EV) 

as a contribution for smart homes, this paper deals with its characterization in smart 

homes, where an analysis of the state-of-the-art operation modes is used as a support 

for establishing a relation with the future perspectives. Aiming to establish an ample 

study, on-board and off-board battery charging systems are considered, as well as ac 

smart homes, dc smart homes, and hybrid smart homes. Moreover, the integration of ac 

and dc electrical appliances, renewable energy sources based on solar photovoltaic pan-

els, and energy storage systems based on batteries is also considered in the perspective 

of future smart homes. The obtained results are based on three distinct cases of smart 

homes, where a study of energy efficiency was considered. With the obtained results, 

it was verified that the first case is the worst in terms of efficiency, since all the equip-

ment are connected to the power grid, therefore, to exchange power between systems 

the power grid is always used. Some exemplificative experimental results are shown, 

obtained with a proof-of-concept prototype. 
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