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Abstract: An energy management system (EMS) was proposed for a campus microgrid (µG) with
the incorporation of renewable energy resources to reduce the operational expenses and costs. Many
uncertainties have created problems for microgrids that limit the generation of photovoltaics, causing
an upsurge in the energy market prices, where regulating the voltage or frequency is a challenging task
among several microgrid systems, and in the present era, it is an extremely important research area.
This type of difficulty may be mitigated in the distribution system by utilizing the optimal demand
response (DR) planning strategy and a distributed generator (DG). The goal of this article was to present
a strategy proposal for the EMS structure for a campus microgrid to reduce the operational costs while
increasing the self-consumption from green DGs. For this reason, a real-time-based institutional
campus was investigated here, which aimed to get all of its power from the utility grid. In the proposed
scenario, solar panels and wind turbines were considered as non-dispatchable DGs, whereas a diesel
generator was considered as a dispatchable DG, with the inclusion of an energy storage system (ESS)
to deal with solar radiation disruptions and high utility grid running expenses. The resulting linear
mathematical problem was validated and plotted in MATLAB with mixed-integer linear programming
(MILP). The simulation findings demonstrated that the proposed model of the EMS reduced the grid
electricity costs by 38% for the campus microgrid. The environmental effects, economic effects, and
the financial comparison of installed capacity of the PV system were also investigated here, and it was
discovered that installing 1000 kW and 2000 kW rooftop solar reduced the GHG generation by up to
365.34 kg CO2/day and 700.68 kg CO2/day, respectively. The significant economic and environmental
advantages based on the current scenario encourage campus owners to invest in DGs and to implement
the installation of energy storage systems with advanced concepts.

Keywords: smart grid; campus microgrid; batteries; prosumer market; energy management system;
distributed generation; renewable energy resources; energy storage system

1. Introduction

Power systems have been facing a lot of issues and challenges, including greenhouse
gas (GHG) emissions, complicated network overloading, and rising consumption costs.
The conventional power system is not capable enough to handle these challenges and
issues effectively, but the developing microgrid systems with distributed generators (DGs)
integrated with automated distribution systems and energy storage technologies have the
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potential to alleviate such issues by applying demand-responsive solutions. A campus
microgrid (µG) is made up of energy storage, onsite DGs, and a scheduled load [1].

In addition, it can operate in islanded mode and grid connection mode [2]. The
advancement in the microgrids provides an efficient solution for the intelligent monitoring
of the system, with an automatic recovery system, persuasive demand control, and high-
tech controlling capabilities that are controlled with the help of efficient and intelligent
sensors [3]. It also provides a variety of energy-saving and renewable energy integration
opportunities for the microgrid for energy producers and consumers through the integrated
energy management system (EMS). The energy management strategy requires secure
communication between producers and consumers and utilities to operate smart control
equipment [4].

The benefits described above are particularly evident for µGs with large loads. Due to
the variable nature of their loads, university campuses are one of the large-load microgrid
users that come under the category of mixed-load consumers. Because of the availability of
onsite power generation, these buildings can export excess electricity to the power grid as a
prosumer [5]. Similarly, when local DGs and energy storages are inadequate in fulfilling the
overall load demand, they can import electricity from the utility grid [6]. The involvement
of these µGs in power systems lowers their operating energy costs, with the focus on the
benefits of the distribution system [7]. The grid operator additionally provides different
price-based and incentive-based DR schemes to entice such large-scale users to actively
participate in energy markets [8].

Energy management solutions are used in accordance with conventional resources
to assist in the optimal dispatch to fulfill the load demand at a lower cost and to ensure
their active involvement in the microgrid operations [9]. This study concentrated on
the optimization of an energy management system for a campus µG with onsite DGs
and a battery storage facility attached. The presented EMS concept could efficiently and
effectively control the bidirectional power flow between utility networks and the µG, and
appropriately schedule the battery charging or discharging patterns for the ESS to decrease
the energy costs. The actual load of an existing campus commonly known as UET Taxila,
as shown in Figure 1, was taken into account for a comprehensive analysis. The proposed
campus µG currently has a national grid network link from a local energy market entitled
the Islamabad Electric and Supply Company (IESCO) and also has an additional standby
diesel generator and wind energy as an external source. In this study, the economic and
environmental impact of solar PV with battery storage and electricity generation with
different kinds of renewable energy resources were also addressed.
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2. Recent Research Work: A Detailed Review

A microgrid model was developed for the Malta University Campus by [10]. In
this study, the design factor of such a microgrid was developed. It was analyzed under
different functional controlling modes, such as peak controlling mode and continuous
power mode. This design was demonstrated for the 3D Micro-Grid project [11]. The
results were evaluated under different operating modes that analyzed the performance of a
microgrid. It showed that the microgrid delivered a constant 50 kW of power between 8 am
and 1 pm and it reduced the peak power flow between 5:35 pm and 10 pm in which its
consumption was 90 kW. Another microgrid model is presented in [12] for the University
of Coimbra, Portugal, which consisted of a PV plant, Li-ion batteries, uni/bi-directional
charging of EV, and controllers. The main objective of this microgrid system was to achieve
sustainable energy, install the RER resources, and maximize the economic benefit. The
results show that it achieved less energy consumption (50 kWh/m2) and the PV system
covered 22.3% of the yearly electricity demand.

A system was proposed by [13] that comprised PV, energy storage cells, and a gas-
operated small microturbine to effectively control the number of electric vehicles while
making it compatible with the transformers that were also coupled with the microgrid.
In the proposed system, LOL calculations were performed, which calculated the number
of electric vehicle charges during the 24 h while the supporting transformer was also
connected. Using this proposition, the transformer was compatible and supported 17.4 kW
on average and had the charging capacity of 30 electric vehicles during a 24 h timespan.
This system increased the capacity by about 33% compared with the system that was not
connected with µG. The results showed that this system accomplished demand response



Energies 2021, 14, 8501 4 of 24

strategies, energy management scheduling, and maintaining the level of PV through V2G
(vehicle-to-grid) technology. Furthermore, advancement was needed in demand response
management on the utility side where utility cost reduction was concerned.

The authors of [14] also proposed a distributed DR (demand response)-based algo-
rithm to control the load at the peak time for the Connecticut Campus microgrid, USA.
The campus microgrid consisted of a co-generating power plant. The ADMM (alternating
directional multiplier method)-based strategy was implemented to analyze the energy
consumption scenarios for multiple buildings on campus. The results show that it reduced
the energy consumption ratio for multiple buildings (10 buildings here) and it improved the
satisfaction level among customers. Fahad et al. [15] presented a cost-effective microgrid
solution with the consideration of many feasible cases to optimally schedule the energy for
the University AMU (Ali Garh Muslim University), India. They devised the most optimal
solution for the AMU campus using HOMER software in which a wind, PV, and grid
combination system was the final solution. They calculated the NPC (net present cost) as
$17.3 million/year and the CO2 emissions for the system as 35,792 kg/year.

A novel integrated design was proposed for the size of batteries in [16]. In this study,
the exhaustion method was used to obtain the energy management design parameter “d”,
which mainly focuses on profit maximization. The effects of the SOC (state of charge) and
non-operation time “T” were also calculated for the lead-acid battery. The results derived
from a utility power company for the interval of 1 min from a PV plant with actual load
data showed that using lithium-ion batteries maximized the profit by a 6% margin compared
with the lead-acid battery, which had a negative profit margin. Franz et al. [17] initiated a
microgrid project at the Siemens campus, Vienna, Austria. The microgrid campus consisted
of solar PV panels (1600 m2), a Siemens controller, Siemens building management systems,
Siemens EV charging stations, and 500 kWh battery storage. The project’s main objective
was to facilitate researchers in the research activities in their respective areas and to optimize
the microgrid with the updated energy management systems. It resulted in a peak output of
312 kW and reduced GHG emissions by almost 100 metric tons of CO2/year.

Furthermore, Abhishek et al. [18] considered a solar PV system, a bio-gas plant
diesel generator, and a BESS storage system for multiple universities based in different
countries. This study demonstrated the technical aspects, architecture, and load types of
different universities based in Iran, the USA, Saudi Arabia, India, China, etc. The techno-
financial analysis of this proposed hybrid system was undertaken using the HOMER
Pro software. The results showed that the levelized cost for the grid system was in the
range of 0.18–1.39 INR/kWh in contrast to the off-grid range of 11.96–18.47 INR/kWh.
Moreover, in [19], Dongshin University initiated a self-sufficient smart grid system that
contained 1 MW solar PV, a CHP system, an energy storage system, and fuel cells. The
main objective was to monitor the power flow information in real time, to monitor the
energy consumption, and to stabilize the energy for the campus microgrid. The results
showed that this combined energy management system was an optimal solution for the
Dongshin Campus.

The majority of these studies were focused on the EMS of µGs and on optimal PV,
ESS, and system scheduling. Some studies concentrated only on the economic viability
of solar with an ESS as a campus µG, whilst it also estimated the cost savings from PV
integration and a properly scheduled ESS. As demonstrated in Table 1, the economic
analysis determined the LCOE while including the power interchange between utility,
batteries, the ESS, photovoltaic uncertainty, and DRs. This study considered all of this
research work in parallel and it provides a structural explanation of the EMS of a campus
µG with an optimal sizing and the uncertainties of a photovoltaic system that was deployed
in a grid exchange environment to use its real power and load data for different seasons.
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Table 1. Comparison of multiple studies with various approaches.

Ref
Power

Balance DR
Grid-Connected
(Bi-Directional

Supply)

Generation Optimal Strategy
GHG

EmissionsPV Wind DG ESS
Optimal

Scheduling
of ESS

Optimal
Sizing

Energy
Manage-

ment

[20] � � � × � × × × × × ×
[21] � � � × � � � � × × �
[22] × � � � � � � � × � �
[23] × � � � × � � � � � �
[24] � � × � � � � � × × �
[25] × � � � � × × × × × ×
[26] � � � � � � � � × × ×
[27] � × × × � � � � × × �
[28] � � × � � � � � � � ×
[29] × � � � � � � � × � ×
[30] × � × × � × � × � � �
[31] × � � × � × � � � � �
[32] × � × � � × � � × × �
[33] � � � � � × × × × × �
[34] � � × × � � � × × × �
[35] � � � × � � × × × × ×
[36] × × � � � � � � × × ×

Proposed
Model � � � � � � � � � � �

This study’s key contributions may be summarized as follows:

(1) A smart energy management system was suggested to optimize the scheduling process
of onsite DGs, ESSs, and grid energy utilizing MILP with the consideration of the
TOU-based demand response to enhance the consumption from RERs and to lessen
operating electricity costs and the system load during the peak consumption hours.

(2) Degrading costs of the battery are also considered with stochastic PV production that
was employed in a campus prosumer µG.

(3) An economic and financial analysis was also conducted here to observe the techno-
economic effects of different sizes with an environmentally friendly DG and an optimal
ESS was also investigated here, which focused on a net-metering-based TOU environment.

The rest of this paper is laid out as follows. The system model and solution technique
are described in Section 2. In Section 3, the detailed problem formulation is provided.
Section 4 contains several case studies, as well as numerical findings. Finally, Section 5
contains the concluding thoughts, as well as some recommendations for further research.

3. Proposed Formulation of the µG System
3.1. Proposed Conceptual Model

The structural description of the proposed framework is illustrated in Figure 1, which
constituted an EMS, a prosumer µG, and a utility grid. The campus prosumer µG comprised
a variety of academic loads and storages facility, as well as two energy supplies (solar and a
diesel engine). The prosumer, on the other hand, had a net-metering-based agreement with
the electricity provider and was able to trade any excess energy back to the utility grid.

The proposed energy management structure at the prosumer building collected the
load demand consumption data, weather forecast statistics, TOU pricing data, the ESS
primary condition, as well as its feed-in constraints as input conditions and identified the
best way to satisfy the load demand using available resources while staying within the
operational and design limitations. The control scheduler used these optimal solutions
to allocate the available resources. A facility for storing data of some significant param-
eters was indeed accessible for the suggested energy management system that will be
manipulated for countless future profits. Energy trade data, TOU price data, and pro-
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sumer loading information was stored in a real-time database, marketplace database, and
prosumer database. The formulation of the proposed approach is given in the next sections.

3.2. Problem Formulation

This suggested mathematical system model is presented with the linear optimization
method with the aim to reduce the prosumer operational cost while considering the lifespan
of the battery system.

3.3. Objective Function

The goal of the suggested model was to minimize the operating cost (J) of a microgrid
that incurred costs related to the energy exchange, WT, DG, and electricity storage degra-
dation (Equations (2)–(5)). The total costs are represented in Equation (1). As illustrated
in Equations (4)–(6), the battery life is determined by a variety of parameters, including
the number of cycles utilized, capital expenditures, and total system capacity, whereas the
storage is expressed by ηch, ηdch, Pch

t , and P(b), which are separately denoted in Equation (7).

CT = J = min ∑24
t=1(C

E
it + CDG

it + CES
it + CWT

it + CBESS
it ) (1)

where
CE

it = PG
(t)γt (2)

CDG
it = αTGen + βpDG

(t) (3)

CWT
it = Sc·Prated($) (4)

CES
it =

(
Ccost

n× CT × 2

)
×

η(chrg)pchrg
(t) +

pdchrg
(t)

η(dchrg)

 (5)

CBESS
it = SBESS

(
CES

it + CESS
m fom

)
(6)

P(b) = η(chrg)· pchrg
(t) −

pdchrg
(t)

η(dchrg)
(7)

where CE
it , CWT

it , CES
it , and CDG

it [37] are the costs of the energy exchange, WT, diesel genera-
tors, and battery degradation at any particular time t. IESCO’s time-of-use (TOU) pricing
tariff was acquired from the university. The energy trade with the utility and their unit
prices are indicated with PGrid

(t) and γt during any hour t. CDG
it was calculated with the

help of the diesel generator nominal rated capacity (TG = 600 kW), fuel intercept curve
(α = 0.0166 L/h per kW), nominal fuels slope curve given by β = 0.277 L/h per kW, and
the overall power generation from DG given by PDG

(t) . Sc denotes the specific cost and Prated

denotes the rated power [38]. The frequent battery charging efficiency, charging power
of the battery, discharging efficiency, and battery discharging powers are characterized
by η(chrg), pchrg

(t) , η( dchrg ), and pdchrg
(t) , respectively [39], while Ccost denotes the specific cost

of energy storage indicated in Equation (5). In Equation (6), SBESS denotes the size of the
battery, CESS

m denotes the maintenance cost of the ESS, and fom denotes the maintenance
factor. The total battery power is given by P(b), which is indicated in Equation (7).

3.4. Load-Balancing Equality Constraint

The load-balancing constraint basically expresses the supply–demand equilibrium con-
straints. Equation (8) should be met and satisfied in order to achieve this equilibrium. Ppv

t and
Pl

t [40] are the output of the solar power generation (kW) and the prosumer load, respectively.

PG
(t) + PPV

(t) + Pb
(t) + PDG

(t) + PWT
(t) + PBESS

(t) = Ptotal
(t) (8)
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3.5. ESS Constraints

The ESS should not be overlooked in energy management, as it supports the control
of the electrical load, mostly in the occurrence of a grid inability and grid failures [41].
Because the ESS is typically difficult to charge or discharge rapidly, its power limit was
considered in the limitations (Equations (9)–(13)). The battery charge in the ESS relies on its
earlier state BSOC(t−1), which was integrated into Equation (14) at any time t (BSOCt). The
BSOC maximum and minimum limits, denoted with BSOC(minimum) and BSOC(maximum),
were included in Equation (15) to avoid the ESS overloading and complete discharge [42].
The battery’s state-of-charge (BSOCt) at the day’s end is equivalent to the start of the
battery state (BSOC0) at the beginning of the day, as indicated in Equation (16).

BSOCt−1 − BSOCmax

100
Ces ≤ Pb

(t) (9)

Pb
(t) ≤

BSOC(t−1) − BSOC(min)

100
Ces (10)

0 ≤ η(ch)P
chrg
(t) ≤ Ychrg

t Pb
(chrg, max) (11)

0 ≤
Pdchrg
(t)

η(dchrg)
≤ Ydchrg

t Pb
(dchrg,max) (12)

Ych
t + Ydch

t ≤ 1∀t (13)

BSOC(t) = BSOC(t−1) −
100× η(dchrg)P

dchrg
(t)

Ces −
100× Pdchrg

(t)

Cesη(dchrg)
(14)

BSOC(minimum) ≤ BSOC(t) ≤ BSOC(maximum) (15)

BSOC (t) = BSOC (0) (16)

To properly schedule the energy usage in the EMS, the battery output power Pb
t was

included in the equality constraint stated in Equation (8). ESS charging/discharging are
represented by the simulated values of Pb

t . The two integer variables µ
chrg
t and µ

dchrg
t

represent the ESS charging/discharging, respectively, in just about any interval “t”. To
simply avoid the BESS charging/discharging issue for the equivalent durations, the binary
pattern characteristics that are shown in Equations (11)–(13) may not be “1” at the regular
intervals. For most of these variables, a value equal to “1” expresses the activation mode.
The power output gradient of its battery storage is provided below:∣∣∣PBattery

(t) − PBattery
(t+1)

∣∣∣ ≤ ∆PBattery (17)

3.6. Limitations of the Diesel Generator and Grid

As all utility companies integrate their components depending on the load demand,
users continuously sign peak periods agreements with customers. Any request that exceeds
the terms of this contract will result in fines or a termination of the power supply. Diesel
generators, similarly, cannot handle loads that exceed their rated capacity. Expressions are
used to account for power supply constraints for the diesel generator and grid connection
(Equations (18) and (19)) [43].

PG
(min) ≤ PGrid

(t) ≤ PG
(max) (18)

PDG
(min) ≤ PDG

(t) ≤ PDG
(max) (19)
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3.7. Energy Exchange between the Grid and Prosumer

The power system energy (eg
n) transacted with the grid in a day is shown below, where

power import minus export from and to the grid are denoted by pg
(t):

EGrid
n = ∑t24

t1
PG
(t) × h (20)

3.8. Probabilistic PV Model

The energy generation of wind and solar energy is unpredictable and highly depen-
dent on the environment and solar irradiance. The data from the entire year was evaluated
under random situations. This analysis used a previously constructed solar irradiance
model [44]. It also evaluated the variables of the probability density function (PDF). A
total of 365 scenarios may be created in 24 h utilizing the Latin hypercube (LHS) universal
sampling approach [45]. As previously stated, the goal was to reduce the calculation or
computation load [46]. The fast-forwarding method was utilized to lessen the randomly
produced scenarios to about 40 [47].

F0=
1

σ
√

2π
(e−(

1−µ

2σ2 )
2

(21)

Ppv
t = ηPV · (jαPV ·I) (22)

In Equation (21), the normal distribution function, or Gaussian function, was applied
to analyze the uncertainty model for solar irradiation [48], where ηPV , J, I, and αPV are the
solar panel’s efficiency (17%), total operational cost, the solar irradiance pattern (kW/m2),
and the solar panel’s area (m2), respectively, while µ and σ indicate the normal distribution
mean and standard deviation, respectively. Equation (22), which is based on the solar
irradiation of a specific region, indicates the output of solar PV and is given above as Ppv

t .
Figure 2 illustrates the normal distribution with the standard deviation for the photovoltaic
irradiance’s predictable pattern in the region of Taxila in Pakistan. The Taxila region’s
latitude and longitude are 33.746◦ N and 72.839◦ E, respectively, corresponding to a daily
irradiance value of 5.3 kWh/m2 [49].
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3.9. Grid Energy Exchange: Wind Turbine Operation

Equation (23) expresses the wind power output POutput
(t) exchanged with the utility grid:

POutput
(t) =

0, V(t) < Vci

PWT
rated ×

(
vw−vci
vr−vci

)
, vci < v(t) < vr

PWT
rated +

(
Yw−Vr
Vci−Vr

)
×
(

PWT
co − PWT

r
)
, vr < vw < vco

0, vco < vw

(23)

where νci is the minimal cut-in speed necessary for the WT to generate electricity. The
maximal cut-out speed at which optimal electricity may be produced is indicated as vco; if
this speed is surpassed, the turbine is switched off in order to avoid damage.

3.10. Levelized Cost of Energy (LCOE)

The levelized energy cost is assessed in different scenarios when performing a fair
and equitable analysis for the systems. It is defined as the ratio of the entire system cost of
installation (USD) to the total energy generated (kWh). The LCOE of storage or a particular
energy source is stated in USD per kilowatt-hour. It covers all the associated expenses,
which include the cost of installation, operating costs, maintenance, and capital investments.
It can also be defined as the lowest possible price at which electricity is generated and used
during the lifetime of a particular energy source or storage equipment in order to attain the
breakeven point [50]. The LCOE formula may be expressed mathematically as follows:

LCOE
Lifespan Cost(USD)

Lifetime Energy Generation (kWh)
(24)

3.11. Solution Methodology

Because the suggested system’s model’s objective function and its related constraints
are generally linear models with many integer variables, MILP programming was imple-
mented since it is excellent for solving linear programming problems. This same MILP
technique is widely used globally as an optimization method for resolving various kinds
of optimization problems associated with marketing and optimal scheduling [51]. Further-
more, it is compared to various metaheuristic approaches that yield inferior results, while
MILP yields the most optimal results. As a result, the MILP method is widely used in EMS
optimization [52]. The basic structure of a mixed-integer problem is described as follows:

min
x

f tx (25)

t0


B· x ≤ b

Beq·x = beq
xb ≤ x ≤ yb

 (26)

In Equations (25) and (26), xb, yb, x, b, beq, and f are vectors, where Beq and B are
matrixes. The main flow diagram for controlling the proposed campus µG is given in
Figure 3. Initially, one hour before each day’s arrival, all of the input data that is required for
the day is loaded; the forecasted irradiance, load patterns, temperature, ESS starting state,
TOU tariff information, and its related parameters are all part of the data. The simulation
of the provided optimization method was based on a regular period of each hour prior to
usage. The suggested technique was emulated in MATLAB software, version R2017a, with
an Intel (R) core (TM) i7-7700 @ 2.80 GHz processor with 8 GB RAM.
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4. Results and Discussion

The concept shown here is used for the prosumer microgrid in Section 3 of the Punjab
province. There are eight hostel residences for university students, fourteen departments
for different fields, and six faculties. At the moment, the university’s load is fed by a
2 MW grid interconnection. The capability of the university rooftop solar panel installation
is measured as being 4 MW using a concise assessment of the available space for the
university rooftop.

Since NEPRA (National Electric Power Regulatory Agency, Pakistan) enables only
1 MW of energy exchange for an electricity grid, we had a capacity constraint of 4 MW
for the campus due to limited resources. In our situation, as compared to the distributed
generation sizing, we concentrated on the method applied in [53]. An onsite 2 MW solar
photovoltaic setup was taken into consideration for extensive economic and technical
analysis. Additional effects highlighted here include utilization of the existing backup
generator in the case of a power grid breakdown.

Furthermore, the proposed framework was planned to have an effective net-metering
infrastructure that permitted power outflow regulated up to 1 MW to offset the cost of
prosumer energy use while fulfilling charging/discharging constraints. The campus load
varied constantly due to the loads of the hostels, academic buildings, administrative offices,
and housing colonies on campus in summer and winter, which were incorporated into the
constraints, as shown in Figure 3.

According to the report of [54], Pakistan generates 5100 kWh of energy production
per day through a 1 MW solar facility. As a result, in this study, we found a solution by
constructing a photovoltaic system for the campus µG. Further, in our approach, a BESS
system was also proposed. In this approach, Li-ion batteries were presented, with the
benefits of their extended lifetime, exceptional performance, good power output, high
dependability, and minimal self-discharge [55].
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4.1. Case Study

In the given scenario, an optimal scheduling strategy was given for the university
microgrid with different peak timings and off-peak timings year-round. Variance in the
load patterns was commonly observed here in this study, and for the convenience of this
study, these patterns were assumed equivalent for all seasons. In Pakistan, the maximum
energy consumption periods are May–August, but the data were analyzed for the whole
year [56]. Peak load statistics for all months are studied here for the economic analysis,
with worst-case scenarios included. Choosing the worst-case scenario yielded the best
potential result in terms of cost reduction. To maximize the benefit, the energy produced
by solar can be transferred to the grid.

The actual power consumption of the institution was taken into account in regular
periods and data from a nearby grid was used to assess the electricity generation expenses
on a regular basis.

The load fluctuation behavior that was observed for different seasons is illustrated in
Figure 4, while the load allocation patterns between academic blocks, hostels, and campus
office buildings are presented in Figure 5.
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The loads of the administrative and academic blocks were scheduled to be higher is
when the university is on, while the peak electricity demands in the hostels and resident
colonies were monitored until midnight. Table 2 represents the numerous factors that
were interconnected with the system, whereas Table 3 describes the TOU agreement’s
power-pricing information [57]. The comprehensive solar irradiance patterns analyzed
here were acquired from [58], and the data features were modeled and evaluated using the
previously described probability density function (PDF) in Equation (19). The primary goal
of using the PDF was to create regular irradiance patterns, while the previously generated
solar irradiance pattern predicted the PV production power consumption patterns using
Equation (20). Table 4 provides the case study data.

Table 2. System parameters.

Parameters Value Parameters Value

Ppv
rated 2000 kW CES 800 kWh

PG
(t,max) 2000 kW PG

(t,min) −1000 kW

Pb
(t,max) 800 kW Pb

(t,min) −800 kW

BSOCb
(max) 90% BSOCb

(min) 10%

BSOC0 50% PDG
(t) 600 kW

Table 3. Electricity prices in peak and off-peak times.

Cases Only Grid Solar PV ESS Diesel
Generator Wind Power

Load

Case 1 � × × × ×
Multiple

Load
Variations

Case 2 � � × × ×
Case 3 � � � × ×
Case 4 � � � � ×
Case 5 � � � � �

Table 4. Different case study profiles.

Seasons/Parameters Spring Summer Autumn Winter

Months March–April May–August September–October November–February
Peak times 11:00 AM–5:00 PM 8:00 AM–6:00 PM 9:00 AM–5:00 PM 12:00 AM–4:00 PM

Unit prices in peak times (d) 0.11 0.146 0.11 0.10
Off-peak times Rest of the day Rest of the day Rest of the day Rest of the day

Unit prices in off-peak times
(USD) 0.09 0.126 0.08 0.10

4.2. Different Seasons Case Study

In this case scenario, the energy exchange evaluation among the grids and energy
demand were analyzed using the price-based data presented in Table 3. Several strategies
were developed here to better understand the energy consumption for different seasons.
These case scenarios were developed to maximize the dependability of solar PV, where
the daily hours of sunlight were 8–10 h in summer and 6–8 h in winter; different case
scenarios were implemented to get the most economical result by optimally scheduling the
different resources to minimize the dependence on the grid and to minimize the campus
grid electricity cost.

Case (1) (energy received from the grid): In the first case, the campus’s energy demands
were fulfilled completely by the utility. For the campus, no solar PV, ESS, wind, or DG were
considered in this case. The operating costs of the electricity were determined using the
time-of-use (TOU) rate, which was USD 1430.8. In this scenario, the LCOE was determined
as 0.0988 USD/kWh.
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The analysis indicated that the energy operational cost in the first case was exception-
ally expensive, but this was utilized as a study case for comparison with other cases for
evaluation regarding each season.

Case (2) (energy exchange between PV and grid): In the second case, solar PV was
connected with a prosumer microgrid as shown in Figure 6, and this was interconnected to
manage both the import of necessary energy from and export of surplus energy to the grid.
The rooftop PV system produced 8925.7 kWh, indicating the PV’s performance throughout
the peak periods of the year, especially in summer. The LCOE for the rooftop PV was 0.055
USD/kWh here. Therefore, the grid power net cost for 24 h dropped by 43.6% relative to
the baseline to USD 798.5.
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Figure 6. Case (2): Energy exchange with solar PV and the grid.

Case (3) (ESS integration with PV and the grid): In the third case, the ESS was
connected with the solar and the grid. The proposed methodology was used to calculate
the net electricity costs of USD 819.9 and to best plan for the behavior of battery charge–
discharge patterns while taking into account all related associated costs. The LCOE was
determined to be 0.056 USD/kWh using TOU-based pricing and optimal BESS scheduling,
as presented in Table 5. When compared to the baseline scenario (case 1), it decreased the
electricity net cost by 42.8%. Figure 7 represents the energy exchange with the electricity
grid, with upper positive and lower negative values representing the energy import
and export. The optimal scheduling outcome of the ESS demonstrated that the battery
terminated operation at the same amount of SOC, i.e., it continued to operate at 50%
precisely based on what it began the current day with. Furthermore, as shown in Figure 8,
the ESS intelligently saved excess electricity during off-peak and peak hours and released it
proportionately to decrease the operating cost of electricity where Figure 9 state-of-charge
of a battery with unit prices with respect to time.

Table 5. Proposed system calculation using LCOE.

Different
Scenar-

ios

Imported
Utility
Power

(kWh/Day)

Prosumer
Electricity

Genera-
tion

(kWh/Day)

Grid
Electricity
Net Cost

(USD/Day)

Carbon
Credit

(USD/Day)
(A)

Electricity
Net Cost

without CC
(USD/Day)

(B)

Electricity
Net Cost of

CC
(USD/Day)
(C = B − A)

LCOE
(USD/kWh)

Saving
(%)

Case 1 14,472.5 - 1430.8 - 1430.8 1430.8 0.0988 -
Case 2 5546.8 8925.7 610.7 165 963.5 798.5 0.055 43.6
Case 3 5546.7 8925.7 711.5 165 984.9 819.9 0.056 42.8
Case 4 4983.2 8925.7 768.2 155 970.5 843.5 0.058 40.2
Case 5 4763.2 9295.9 546.4 145 995.9 850 0.060 38.3
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Case (4) (DG integration with the PV, ESS, and grid): In the fourth case, the campus
microgrid combined a diesel generator (DGen) with rooftop solar and a BESS structure
to minimize the potential peak demand of energy from the utility grid, even during the
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summer season (8:00 AM–6:00 PM). The grid consumed electricity up to 50 kW, which was
the limit for the smart grid, while the DGen’s output power consumption was restricted to
400 kW only in peak hours, as illustrated in Figure 10.
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After the optimal BESS scheduling, the net cost of power was determined to be USD 843.5
each day. In this case, the measured LCOE was 0.058 USD/kWh, which when compared with
the baseline (case (1)), was 40.2% lower with the 2.2 s execution time during the respective
seasons, especially in summer because it experienced the lengthy peak periods.

Case (5) (proposed scheduling): The wind turbine system (100 kW) was combined
with the PV, ESS, diesel generator, and grid connection in the proposed case, as shown
in Figure 11. The wind turbine’s power and wind speeds are often 3–5 times greater in
August and September. The campus µG used a wind turbine with a power rating of 10 kW
and a height of 36.6 m, a rating speed of 9 m/s, a wind cut-in velocity of 3.6 m/s, and a
wind cut-out velocity of 26 m/s as the best option among the wind turbines examined.
The LCOE computed for wind energy was 0.060 USD/kWh, which was 38.3% less than
the baseline case (and better than the 35% found by [53]), which was calculated for a
hot or windy weather condition. It was estimated that by integrating the wind turbine
system with the ESS, solar PV, DG, and national grid (WAPDA), the UET Taxila university’s
campus energy net cost will be reduced by 3%.

4.3. Effects of the Sizing of Solar PV on Electricity Cost and Reduction in GHG Emissions with
Financial Feasibility

The impact of various solar PV sizes on the obtaining cost of electricity with the utility
and the decrease of carbon emissions each day were investigated. When the PV integration
was doubled, greenhouse gas emissions were reduced by half, as well as the costs, as
illustrated briefly in Table 6.

Figure 12 contains a bar graph that includes the solar PV incorporation in the proposed
scenario and the cost consequences for the electricity obtained from the utility. We evaluated
the differences in the operational costs of electricity based on the figures acquired in the
prior cases. Table 7 depicts the techno-economic assessment data with various components
utilized for the proposed system; this assessment included all of the suggested system’s
maintenance, operating, and capital expenses.
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Case Solar PV Penetration 
Level 

Electricity Imported 
from Utility (kWh/24 

h) 

Solar PV Electricity 
Generation (kWh/24 h) 

Net Cost of Grid 
Electricity 
(USD/day) 

GHG Emissions 
Reduction 
(kg/24 h) 

Summer 
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Generation
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Net Cost of Grid
Electricity
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GHG Emissions
Reduction
(kg/24 h)

Summer
1000 kW 10,037.23 4462.85 1843.20 365.34
2000 kW 5546.8 8925.7 798.5 700.68

Summer

Pattern of Load
Consumption

Electricity Import
from Grid
(kWh/24 h)

Electricity
Generated from

Solar PV
(kWh/24 h)

Grid Electricity
Net Cost

(USD/day)

LCOE
(USD/kWh)

Lowest 3545.2 8925.7 553.7 0.044
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Table 7. Techno-economic price comparison of different types of components connected with the
proposed system.

Sr No. Objective
Components Parameters Values Units

1 Solar PV

PV Rating 1 kW
Capital Expenses for PV 933.33 USD
Replacement Cost for PV 800.00 USD

Maintenance and
Operation Cost 13.33 USD/kW

Derating Factors 88 %
PV Lifetime 20 Years

2 Converter

Power Ratings 1 kW
Converter Capital Cost 133.3 USD
Converter Replacement

Cost 106.7 USD

Maintenance and
Operation Cost 160 USD/kW

Converter Efficiency 90 %
Converter Lifetime 20 Years

3 BESS

Capital Cost of the Battery 133.3 USD
Replacement Costs 56 USD

Battery Size 2.1 kW
Minimum State of Charge 30 %
Maximum State of Charge 100 %

Efficiency 95.5 %
Battery Life 5 Years

4 WT

Wind Turbine 1 kW
WT Capital Expenses 15,000 USD
WT Replacement Cost 800.00 USD

Maintenance Costs 13.33 USD/kW
Derating Factors 88 %

WT Lifetime 20 Years

5 DGs

Net Capital Expenses 9467 USD
Replacement Costs 28.35 USD
Operational Costs 2449.5 USD/kW
Overall Efficiency 80 %

Lifetime 25 Years

6 Grid Supply Cost 10 USD

7 Other
Discount 6 %

Project Lifetime 20 Years

Table 8 shows the cash flow analysis of the respective campus microgrids with the
consideration of a year-wise comparison for up to 10 years. It gives a brief comparison for
investments, feed-in/export tariff, electricity savings, annual cash flow, and accrued cash
flow (cash balance). In Figure 13, a financial analysis was freshly proposed here in this
study to observe the financial performance of the campus microgrid. The cash balance was
generated with a year-wise comparison to illustrate the accrued cash flow up to almost
20 years. In Figure 14, the financial feasibility was calculated for up to almost 20 years; it
shows the annual energy cost for solar PV before and after the installation.
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Table 8. Cash flow (USD) analysis of the campus microgrid.

Years Year 2021 Year 2022 Year 2023 Year 2024 Year 2025

Investments (7020.00) 0 0 0 0
Feed-in/Export Tariff 0.00 218.55 449.84 445.39 440.98

Electricity Savings 766.29 773.88 781.54 789.28 797.09
Annual Cash Flow (6253.71) 992.42 1231.38 1234.67 1238.07
Accrued Cash Flow

(Cash Balance) (6253.71) (5261.29) (4029.91) (2795.24) (1557.17)

Years Year 2026 Year 2027 Year 2028 Year 2029 Year 2030

Investments 0 0 0 0 0
Feed-in/Export Tariff 436.61 432.29 428.01 423.77 419.58

Electricity Savings 804.98 812.95 821.00 829.13 837.34
Annual Cash Flow 1241.60 1245.24 1249.01 1252.90 1256.92
Accrued Cash Flow

(Cash Balance) (315.58) 929.67 2178.68 3431.58 4688.50

The research showed that incorporating distributed generating systems offered sev-
eral advantages, including self-consumption, load demand flexibility, cost savings, and
minimized GHG emissions. Therefore, due to these consequences, the proposed approach
may be used to reduce the operational costs of campus energy consumption. To properly
regulate the distributed generators, a control facility is required. Furthermore, unloading
the grid enhances the grid efficiency by incorporating renewable sources. In other situa-
tions, capital and installation expenses will be distributed, enabling campus investors to
invest further in storage installations and in DG. Grid outages (organized load shedding)
are rather common in developing nations due to a variety of difficulties. When the grid
is unavailable, diesel generators and the energy storage system can be utilized as back-
ups. Scheduled high load shedding is typical throughout peak times. As a result, diesel
generators are employed at peak periods in those specific situations.

Energies 2021, 14, x FOR PEER REVIEW 18 of 24 
 

 

Lifetime 25 Years 
6 Grid Supply Cost 10 USD 

7 Other 
Discount 6 % 

Project Lifetime 20 Years 

Table 8 shows the cash flow analysis of the respective campus microgrids with the 
consideration of a year-wise comparison for up to 10 years. It gives a brief comparison for 
investments, feed-in/export tariff, electricity savings, annual cash flow, and accrued cash 
flow (cash balance). In Figure 13, a financial analysis was freshly proposed here in this 
study to observe the financial performance of the campus microgrid. The cash balance 
was generated with a year-wise comparison to illustrate the accrued cash flow up to al-
most 20 years. In Figure 14, the financial feasibility was calculated for up to almost 20 
years; it shows the annual energy cost for solar PV before and after the installation. 

Table 8. Cash flow (USD) analysis of the campus microgrid. 

Years 𝐘𝐘𝐘𝐘𝐘𝐘𝐘𝐘 𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 𝐘𝐘𝐘𝐘𝐘𝐘𝐘𝐘 𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 𝐘𝐘𝐘𝐘𝐘𝐘𝐘𝐘 𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 𝐘𝐘𝐘𝐘𝐘𝐘𝐘𝐘 𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 𝐘𝐘𝐘𝐘𝐘𝐘𝐘𝐘 𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 
Investments (7020.00) 0 0 0 0 

Feed-in/Export Tariff 0.00 218.55 449.84 445.39 440.98 
Electricity Savings 766.29 773.88 781.54 789.28 797.09 
Annual Cash Flow (6253.71) 992.42 1231.38 1234.67 1238.07 
Accrued Cash Flow 

(Cash Balance) 
(6253.71) (5261.29) (4029.91) (2795.24) (1557.17) 

Years 𝐘𝐘𝐘𝐘𝐘𝐘𝐘𝐘 𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 𝐘𝐘𝐘𝐘𝐘𝐘𝐘𝐘 𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 𝐘𝐘𝐘𝐘𝐘𝐘𝐘𝐘 𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 𝐘𝐘𝐘𝐘𝐘𝐘𝐘𝐘 𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 𝐘𝐘𝐘𝐘𝐘𝐘𝐘𝐘 𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 
Investments 0 0 0 0 0 

Feed-in/Export Tariff 436.61 432.29 428.01 423.77 419.58 
Electricity Savings 804.98 812.95 821.00 829.13 837.34 
Annual Cash Flow 1241.60 1245.24 1249.01 1252.90 1256.92 
Accrued Cash Flow 

(Cash Balance) 
(315.58) 929.67 2178.68 3431.58 4688.50 

 
Figure 13. Cash balance comparison—year-wise comparison. Figure 13. Cash balance comparison—year-wise comparison.



Energies 2021, 14, 8501 19 of 24Energies 2021, 14, x FOR PEER REVIEW 19 of 24 
 

 

 
Figure 14. Financial analysis of solar PV—year-wise comparison. 

The research showed that incorporating distributed generating systems offered sev-
eral advantages, including self-consumption, load demand flexibility, cost savings, and 
minimized GHG emissions. Therefore, due to these consequences, the proposed approach 
may be used to reduce the operational costs of campus energy consumption. To properly 
regulate the distributed generators, a control facility is required. Furthermore, unloading 
the grid enhances the grid efficiency by incorporating renewable sources. In other situa-
tions, capital and installation expenses will be distributed, enabling campus investors to 
invest further in storage installations and in DG. Grid outages (organized load shedding) 
are rather common in developing nations due to a variety of difficulties. When the grid is 
unavailable, diesel generators and the energy storage system can be utilized as backups. 
Scheduled high load shedding is typical throughout peak times. As a result, diesel gener-
ators are employed at peak periods in those specific situations. 

The proposed model shown in Table 9 achieved the optimal results for our campus 
microgrid due to the utilization of demand response strategies, utilization of renewable 
energy resources, and optimal scheduling such that it achieved a 38.3% economic benefit 
to our microgrid, which is the most economical up-to-date. 

Table 9. Proposed methodology comparison with the current works. 

Ref. Years Applications Methods Comments Savings 

[59] 2017 IEEE-14 
bus system BBSA 

Reliability, energy 
losses 18.26% 

[60] 2018 Campus µG MILP 
ESS degradation 

Cost, peak demand 5.32% 

[61] 2018 (IEEE-15) 
bus system 

NA and conic 
technique Financial feasibility 3.3% 

[62] 2018 Residential level MILP Frequency regulation 7% 
[63] 2019 Residential µG LP Grid outage 16% 
[53] 2020 Campus µG MILP DR, ESS degradation 29%, 35% 

Proposed 
model 2021 Campus µG MILP 

Self-consumption, 
ESS degradation, de-
mand response, opti-
mal scheduling, eco-
nomic and financial 

analysis 

38.3% 

Figure 14. Financial analysis of solar PV—year-wise comparison.

The proposed model shown in Table 9 achieved the optimal results for our campus
microgrid due to the utilization of demand response strategies, utilization of renewable
energy resources, and optimal scheduling such that it achieved a 38.3% economic benefit
to our microgrid, which is the most economical up-to-date.

Table 9. Proposed methodology comparison with the current works.

Ref. Years Applications Methods Comments Savings

[59] 2017 IEEE-14 bus system BBSA Reliability, energy losses 18.26%

[60] 2018 Campus µG MILP ESS degradation Cost,
peak demand 5.32%

[61] 2018 (IEEE-15)
bus system

NA and
conic

technique
Financial feasibility 3.3%

[62] 2018 Residential
level MILP Frequency regulation 7%

[63] 2019 Residential
µG LP Grid outage 16%

[53] 2020 Campus µG MILP DR, ESS degradation 29%, 35%

Proposed
model 2021 Campus µG MILP

Self-consumption, ESS
degradation, demand

response, optimal
scheduling, economic
and financial analysis

38.3%

5. Conclusions

In this study, the effective scheduling of a BESS and the effects of PV systems were
analyzed for a campus µG to minimize the energy operating costs for a prosumer microgrid
with the implementation of actual load data. The suggested system utilized solar energy, a
BESS, and diesel generators in several scenarios and their consequences were investigated.
The optimal scheduling was implemented in MATLAB and formed as a MILP problem. The
TOU pricing-based DR was investigated here as part of a financial and economic analysis,
and the ESS was used as a flexible DR framework that could be charged or discharged
wisely at various times to meet the budget target without compromising its durability.
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Without the DG or ESS, the utility grid supplied all the campus µG’s required energy,
leading to higher operational expenses. However, when the solar PV, DGen, WT, and
especially ESS were combined into the prosumer µG, the daily benefits in different seasons
was an approximate 38.3% cost reduction. The environmental effects of various sizes of the
installed capacity of the PV system were also investigated here, where it was discovered
that installing 1000 kW rooftop solar in hot months may save between 365.34 kg CO2/day.
If 2000 kW of rooftop solar was incorporated in the network, the savings were improved
by 700.68 kg CO2/day. The cost of energy was reduced based on a variety of factors, such
as energy consumption, feed-in tariff (FIT), and region. In Pakistan, the FIT has separate
prices for importing and exporting energy to those in several other countries, although
the cost of supplying energy to the utilities was considerably cheaper than the cost of
purchasing energy from the utilities. As a consequence, by investing in on-site solar PV and
ESS systems using an appropriate timetable that depends on FIT, location, and load usage,
investors may expect their electricity prices to rise by 20–30%. As a result, the optimal
charge–discharge method for the ESS plays an important role in the economic performance
of prosumer µG with internal RER installations. In a future study, DG uncertainty will be
investigated using more advanced mathematical models with many power systems and
DR kinds.
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Nomenclature and Acronym
The following acronyms and nomenclature are used in this manuscript:

A Acronyms
BSOC Battery state of charge
BESS Battery energy storage system
BBSA Binary backtracking search algorithm
DG Distributed generator
DERs Distributed energy resources
DR Demand response
ESS Energy storage systems
DSM Demand-side management
MILP Mixed-integer linear programming
GHG Greenhouse gas
FIT Feed-in tariffs
LP Linear programming
TOU Time of use
RERs Renewable energy resources
PV Photovoltaic
WT Wind turbine
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B Constants and Variables
BSOCmin Minimum BSOC level (%)
BSOCmax Maximum BSOC level (%)
BSOCt BSOC value at time t
BSOC0 The starting value of BSOC at time 0 (%)
Ces

t Cost of storage degradation (USD)
CES Rated capacity of energy storage (kWh)
Ce

t Net cost of energy (USD)
Cdg

t Cost of diesel generator (USD)
CWT

t Net cost of wind energy (USD)
I Solar irradiance
J Overall operations cost
µG Microgrid
Eg

net Net energy exchange with the grid
Pbat

t The output power of the battery storage system (kW)
Pch

t Charging power of the battery (kW)
Ppv

t Solar PV output power (kW)
Pdg

t Diesel generator output power
T Time interval (hour)
Pg

t Power taken from grid (kW)
Pg

max Maximum power exchange limit of utility grid (kW)
Pg

min Minimum power exchange limit of utility grid (kW)
Pl

t Load demand of prosumer (kW)
TG Diesel generator rated capacity
Sc Specific cost
µch

t
µdch

t
Storage charging integers/storage discharging integers

λt Electricity rate (USD/kWh)
µ Solar irradiance mean value
σ Solar irradiance standard deviation value
βpv Area of a solar panel
ηpv The efficiency of solar panel
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