376 research outputs found

    Data-Flow Analysis for Multi-Core Computing Systems: A Reminder to Reverse Data-Flow Analysis

    Get PDF
    The increasing demands for highly performant, proven correct, easily maintainable, extensible programs together with the continuous growth of real-world programs strengthen the pressure for powerful and scalable program analyses for program development and code generation. Multi-core computing systems offer new chances for enhancing the scalability of program analyses, if the additional computing power offered by these systems can be used effectively. This, however, poses new challenges on the analysis side. In principle, it requires program analyses which can be easily parallelized and mapped to multi-core architectures. In this paper we remind to reverse data-flow analysis, which has been introduced and investigated in the context of demand-driven data-flow analysis, as one such class of program analyses which is particularly suitable for this

    Generalized Points-to Graphs: A New Abstraction of Memory in the Presence of Pointers

    Full text link
    Flow- and context-sensitive points-to analysis is difficult to scale; for top-down approaches, the problem centers on repeated analysis of the same procedure; for bottom-up approaches, the abstractions used to represent procedure summaries have not scaled while preserving precision. We propose a novel abstraction called the Generalized Points-to Graph (GPG) which views points-to relations as memory updates and generalizes them using the counts of indirection levels leaving the unknown pointees implicit. This allows us to construct GPGs as compact representations of bottom-up procedure summaries in terms of memory updates and control flow between them. Their compactness is ensured by the following optimizations: strength reduction reduces the indirection levels, redundancy elimination removes redundant memory updates and minimizes control flow (without over-approximating data dependence between memory updates), and call inlining enhances the opportunities of these optimizations. We devise novel operations and data flow analyses for these optimizations. Our quest for scalability of points-to analysis leads to the following insight: The real killer of scalability in program analysis is not the amount of data but the amount of control flow that it may be subjected to in search of precision. The effectiveness of GPGs lies in the fact that they discard as much control flow as possible without losing precision (i.e., by preserving data dependence without over-approximation). This is the reason why the GPGs are very small even for main procedures that contain the effect of the entire program. This allows our implementation to scale to 158kLoC for C programs

    Heap Abstractions for Static Analysis

    Full text link
    Heap data is potentially unbounded and seemingly arbitrary. As a consequence, unlike stack and static memory, heap memory cannot be abstracted directly in terms of a fixed set of source variable names appearing in the program being analysed. This makes it an interesting topic of study and there is an abundance of literature employing heap abstractions. Although most studies have addressed similar concerns, their formulations and formalisms often seem dissimilar and some times even unrelated. Thus, the insights gained in one description of heap abstraction may not directly carry over to some other description. This survey is a result of our quest for a unifying theme in the existing descriptions of heap abstractions. In particular, our interest lies in the abstractions and not in the algorithms that construct them. In our search of a unified theme, we view a heap abstraction as consisting of two features: a heap model to represent the heap memory and a summarization technique for bounding the heap representation. We classify the models as storeless, store based, and hybrid. We describe various summarization techniques based on k-limiting, allocation sites, patterns, variables, other generic instrumentation predicates, and higher-order logics. This approach allows us to compare the insights of a large number of seemingly dissimilar heap abstractions and also paves way for creating new abstractions by mix-and-match of models and summarization techniques.Comment: 49 pages, 20 figure

    Man-machine partial program analysis for malware detection

    Get PDF
    With the meteoric rise in popularity of the Android platform, there is an urgent need to combat the accompanying proliferation of malware. Existing work addresses the area of consumer malware detection, but cannot detect novel, sophisticated, domain-specific malware that is targeted specifically at one aspect of an organization (eg. ground operations of the US Military). Adversaries can exploit domain knowledge to camoflauge malice within the legitimate behaviors of an app and behind a domain-specific trigger, rendering traditional approaches such as signature-matching, machine learning, and dynamic monitoring ineffective. Manual code inspections are also inadequate, scaling poorly and introducing human error. Yet, there is a dire need to detect this kind of malware before it causes catastrophic loss of life and property. This dissertation presents the Security Toolbox, our novel solution for this challenging new problem posed by DARPA\u27s Automated Program Analysis for Cybersecurity (APAC) program. We employ a human-in-the-loop approach to amplify the natural intelligence of our analysts. Our automation detects interesting program behaviors and exposes them in an analysis Dashboard, allowing the analyst to brainstorm flaw hypotheses and ask new questions, which in turn can be answered by our automated analysis primitives. The Security Toolbox is built on top of Atlas, a novel program analysis platform made by EnSoft. Atlas uses a graph-based mathematical abstraction of software to produce a unified property multigraph, exposes a powerful API for writing analyzers using graph traversals, and provides both automated and interactive capabilities to facilitate program comprehension. The Security Toolbox is also powered by FlowMiner, a novel solution to mine fine-grained, compact data flow summaries of Java libraries. FlowMiner allows the Security Toolbox to complete a scalable and accurate partial program analysis of an application without including all of the libraries that it uses (eg. Android). This dissertation presents the Security Toolbox, Atlas, and FlowMiner. We provide empirical evidence of the effectiveness of the Security Toolbox for detecting novel, sophisticated, domain-specific Android malware, demonstrating that our approach outperforms other cutting-edge research tools and state-of-the-art commercial programs in both time and accuracy metrics. We also evaluate the effectiveness of Atlas as a program analysis platform and FlowMiner as a library summary tool

    Information Flow Control with System Dependence Graphs - Improving Modularity, Scalability and Precision for Object Oriented Languages

    Get PDF
    Die vorliegende Arbeit befasst sich mit dem Gebiet der statischen Programmanalyse — insbesondere betrachten wir Analysen, deren Ziel es ist, bestimmte Sicherheitseigenschaften, wie etwa Integrität und Vertraulichkeit, für Programme zu garantieren. Hierfür verwenden wir sogenannte Abhängigkeitsgraphen, welche das potentielle Verhalten des Programms sowie den Informationsfluss zwischen einzelnen Programmpunkten abbilden. Mit Hilfe dieser Technik können wir sicherstellen, dass z.B. ein Programm keinerlei Information über ein geheimes Passwort preisgibt. Im Speziellen liegt der Fokus dieser Arbeit auf Techniken, die das Erstellen des Abhängigkeitsgraphen verbessern, da dieser die Grundlage für viele weiterführende Sicherheitsanalysen bildet. Die vorgestellten Algorithmen und Verbesserungen wurden in unser Analysetool Joana integriert und als Open-Source öffentlich verfügbar gemacht. Zahlreiche Kooperationen und Veröffentlichungen belegen, dass die Verbesserungen an Joana auch in der Forschungspraxis relevant sind. Diese Arbeit besteht im Wesentlichen aus drei Teilen. Teil 1 befasst sich mit Verbesserungen bei der Berechnung des Abhängigkeitsgraphen, Teil 2 stellt einen neuen Ansatz zur Analyse von unvollständigen Programmen vor und Teil 3 zeigt aktuelle Verwendungsmöglichkeiten von Joana an konkreten Beispielen. Im ersten Teil gehen wir detailliert auf die Algorithmen zum Erstellen eines Abhängigkeitsgraphen ein, dabei legen wir besonderes Augenmerk auf die Probleme und Herausforderung bei der Analyse von Objektorientierten Sprachen wie Java. So stellen wir z.B. eine Analyse vor, die den durch Exceptions ausgelösten Kontrollfluss präzise behandeln kann. Hauptsächlich befassen wir uns mit der Modellierung von Seiteneffekten, die bei der Kommunikation über Methodengrenzen hinweg entstehen können. Bei Abhängigkeitsgraphen werden Seiteneffekte, also Speicherstellen, die von einer Methode gelesen oder verändert werden, in Form von zusätzlichen Knoten dargestellt. Dabei zeigen wir, dass die Art und Weise der Darstellung, das sogenannte Parametermodel, enormen Einfluss sowohl auf die Präzision als auch auf die Laufzeit der gesamten Analyse hat. Wir erklären die Schwächen des alten Parametermodels, das auf Objektbäumen basiert, und präsentieren unsere Verbesserungen in Form eines neuen Modells mit Objektgraphen. Durch das gezielte Zusammenfassen von redundanten Informationen können wir die Anzahl der berechneten Parameterknoten deutlich reduzieren und zudem beschleunigen, ohne dabei die Präzision des resultierenden Abhängigkeitsgraphen zu verschlechtern. Bereits bei kleineren Programmen im Bereich von wenigen tausend Codezeilen erreichen wir eine im Schnitt 8-fach bessere Laufzeit — während die Präzision des Ergebnisses in der Regel verbessert wird. Bei größeren Programmen ist der Unterschied sogar noch deutlicher, was dazu führt, dass einige unserer Testfälle und alle von uns getesteten Programme ab einer Größe von 20000 Codezeilen nur noch mit Objektgraphen berechenbar sind. Dank dieser Verbesserungen kann Joana mit erhöhter Präzision und bei wesentlich größeren Programmen eingesetzt werden. Im zweiten Teil befassen wir uns mit dem Problem, dass bisherige, auf Abhängigkeitsgraphen basierende Sicherheitsanalysen nur vollständige Programme analysieren konnten. So war es z.B. unmöglich, Bibliothekscode ohne Kenntnis aller Verwendungsstellen zu betrachten oder vorzuverarbeiten. Wir entdeckten bei der bestehenden Analyse eine Monotonie-Eigenschaft, welche es uns erlaubt, Analyseergebnisse von Programmteilen auf beliebige Verwendungsstellen zu übertragen. So lassen sich zum einen Programmteile vorverarbeiten und zum anderen auch generelle Aussagen über die Sicherheitseigenschaften von Programmteilen treffen, ohne deren konkrete Verwendungsstellen zu kennen. Wir definieren die Monotonie-Eigenschaft im Detail und skizzieren einen Beweis für deren Korrektheit. Darauf aufbauend entwickeln wir eine Methode zur Vorverarbeitung von Programmteilen, die es uns ermöglicht, modulare Abhängigkeitsgraphen zu erstellen. Diese Graphen können zu einem späteren Zeitpunkt der jeweiligen Verwendungsstelle angepasst werden. Da die präzise Erstellung eines modularen Abhängigkeitsgraphen sehr aufwendig werden kann, entwickeln wir einen Algorithmus basierend auf sogenannten Zugriffspfaden, der die Skalierbarkeit verbessert. Zuletzt skizzieren wir einen Beweis, der zeigt, dass dieser Algorithmus tatsächlich immer eine konservative Approximation des modularen Graphen berechnet und deshalb die Ergebnisse darauf aufbauender Sicherheitsanalysen weiterhin gültig sind. Im dritten Teil präsentieren wir einige erfolgreiche Anwendungen von Joana, die im Rahmen einer Kooperation mit Ralf Küsters von der Universität Trier entstanden sind. Hier erklären wir zum einen, wie man unser Sicherheitswerkzeug Joana generell verwenden kann. Zum anderen zeigen wir, wie in Kombination mit weiteren Werkzeugen und Techniken kryptographische Sicherheit für ein Programm garantiert werden kann - eine Aufgabe, die bisher für auf Informationsfluss basierende Analysen nicht möglich war. In diesen Anwendungen wird insbesondere deutlich, wie die im Rahmen dieser Arbeit vereinfachte Bedienung die Verwendung von Joana erleichtert und unsere Verbesserungen der Präzision des Ergebnisses die erfolgreiche Analyse erst ermöglichen
    corecore