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Abstract. The increasing demands for highly performant, proven cor-
rect, easily maintainable, extensible programs together with the contin-
uous growth of real-world programs strengthen the pressure for powerful
and scalable program analyses for program development and code gen-
eration. Multi-core computing systems offer new chances for enhancing
the scalability of program analyses, if the additional computing power
offered by these systems can be used effectively. This, however, poses new
challenges on the analysis side. In principle, it requires program analyses
which can be easily parallelized and mapped to multi-core architectures.
In this paper we remind to reverse data-flow analysis, which has been
introduced and investigated in the context of demand-driven data-flow
analysis, as one such class of program analyses which is particularly suit-
able for this.

Keywords. Multi-core computing systems, scalable program analysis,
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1 Motivation

Functional and non-functional program properties such as performance, main-
tainability, extensibility, reusability, the demand for proven correctness (of at
least certain aspects) of a program and the continuously fast growth of the size
of real-world programs push the need for ever more powerful and scalable pro-
gram analyses.

Against this background, the advent and the growing dissemination of multi-
core computing systems offers appealing new chances for improving the scala-
bility of program analyses. This, however, poses new challenges on the structure
of program analyses in order to exploit the additional computing power offered
by multi-core computing systems effectively. In principle, this requires program
analyses which can be easily parallelized and mapped to multi-core architectures.
In this paper we remind to reverse data-flow analysis, which has been introduced
and investigated in the context of demand-driven data-flow analysis, as one such
class of program analyses which we consider particularly suitable for this.
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While conventional data-flow analysis (DFA) can be considered a whole pro-
gram analysis as it computes a property of interest for every program point,
demand-driven data-flow analysis (DD-DFA) does so for a specifically selected
program point of interest only. This is called a data-flow query, which can usually
be answered very efficiently as often only a small portion of the program needs
to be investigated.

For illustration consider the example of Figure 1, which we recall from [1].
In this example the green and pink highlighted program regions suggest that
detecting the redundancy of the computation of a + b in the left loop, which
allows the replacement of this computation by a reference to variable x, and the
non-redundancy of the computation of c+b in the right loop, which prevents such
a replacement, does not require to analyze the whole and possibly huge program
but that the analysis of the program can be restricted to the highlighted program
parts, i.e., the program parts which actually determine the information at the
program points of interest. In this example, these are the source nodes of the
edges e and f with the use sites of a + b and c + b in the left and in the right
loop, respectively. Note also that the example suggests that the two data-flow
queries can be processed in parallel, e.g. by two different cores of a multi-core
computing system.

A Possibly Huge
Program Region

A Possibly Huge
Program Region

x := a+bx := a+b c := c+bu := c+b

v := c+bfe y := a+b
x

Program point satisfies availability,

s

e

does not!while

Fig. 1. Motivating Example

Demand-driven DFA aims at answering such queries efficiently (cf.
[2,3,4,5,6,7,8,9,10,11,12]). Particularly successful in practice turned out be an
approach for DD-DFA based on reverse data-flow analysis (RDFA), which has
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been pioneered by Duesterwald et al. (cf. [5,7,8]). In contrast to other approaches
to DD-DFA, which are designed and tailored for a specific DFA problem, e.g.,
the construction of the call-graph of an object-oriented program as in [2], the
approach of Duesterwald et al. offers a framework supporting the construction
of demand-driven analyses for various problems.

In this paper we reconsider reverse data-flow analysis focusing on two main
issues. First, on the duality of reverse data-flow analysis and classical data-flow
analysis and their precise relationships, which is commonly left informally and
implicitly in part in previous work. Second, on the suitabability of RDFA-based
DD-DFA for parallelization, which suggests its appropriateness for multi-core
computing systems. In spirit, the current paper is thus in line with the works
of [1] and [13] for an intraprocedural sequential setting and an intraprocedural
parallel setting allowing parallel programs with a fork/join-parallelism. In this
paper we consider an interprocedural setting.

We will present the interprocedural version of the Reverse Safety and Co-

incidence Theorem, which characterizes the correctness and precision of inter-
procedural reverse DFA and complements its well-known counterpart of classi-
cal interprocedural DFA, the Interprocedural Safety and Coincidence Theorem
of Sharir and Pnueli [14]. The Reverse Interprocedural Safety and Coincidence

Theorem highlights the duality of classical and reverse DFA for the interproce-
dural setting of [14]. Moreover, we will present the interprocedural version of the
Link Theorem (cf. [13,1]). This theorem complements its counterparts for the
intraprocedural and parallel settings of [1] and [13]. The Interprocedural Link

Theorem captures the relationship between classical and reverse interprocedu-
ral DFA. Together the Reverse Interprocedural Safety and Coincidence Theo-

rem and the Interprocedural Link Theorem constitute the formal foundation for
constructing interprocedural demand-driven data-flow analyses based on reverse
interprocedural DFA. Particularly important in practice is the large class of
bit-vector data-flow analyses. For this class of analyses, the results of classical
interprocedural DFA can be computed by means of their demand-driven reverse
counterparts. Moreover, these analyses are tailored for parallelization and thus
for usage on multi-core computing systems.

Together this provides the key to scalable implementations of a variety of
powerful and widely used optimizations such as redundancy elimination, dead-
code elimination, constant propagation, and array bounds check elimination
[4,5,7,6,8,13,1,15] on multi-core computing systems.

2 Preliminaries

We consider the interprocedural setting, which has been introduced by Sharir
and Pnueli in their pioneering work on interprocedural data-flow analysis [14]. In
this setting, programs consist of a finite number of procedures without parame-
ters and global variables only. The procedures of a program can be (mutually)
recursive and statically nested, and each program is assumed to have a unique



4 Jens Knoop

main procedure. This is a distinct procedure, which is executed on calling the
program and cannot be called by other procedures.

As in [14], we represent procedures by flow graphs, and programs with pro-
cedures by flow-graph systems and interprocedural flow graphs.

Flow Graphs. A flow graph is a directed graph G = (N,E, s, e) with node set N ,
edge set E, and a unique start node s and end node e, which are assumed to be
free of incoming and outgoing edges, respectively (cf. Figure 1). We assume that
the nodes of a flow graph represent the program points, and the edges the (ele-
mentary) statements (assignments, etc.) and the control flow of the underlying
program. Edges without a label are assumed to represent the empty statement
“skip.” As usual the control flow is nondeterministically interpreted in order to
avoid undecidabilities.

For a node n and an edge e of a flow graph, pred(n) and succ(n) denote the
set of all immediate predecessors and successors of n, and src(e) and dst(e) the
source node and the destination node of e. A finite path in G is a sequence of
edges 〈e1, . . . , eq〉, where dst(ej)= src(ej+1) for j ∈ {1, . . . , q − 1}. It is a path
from m to n, if src(e1)= m and dst(eq)= n. The set of all finite paths from m

to n is denoted by P[m,n]. Without losing generality we assume that each node
of a flow graph G lies on a path from its entry s to its exit e.

Flow-Graph Systems. A flow-graph system S=df 〈G0, . . . , Gk〉 represents each
procedure of a program by a flow graph in the sense of the previous paragraph
(cf. Figure 2). We assume that the sets of nodes Ni and edges Ei, 0 ≤ i ≤ k,
are pairwise disjoint and that G0 represents the main procedure of the under-
lying program. For brevity, we usually write s and e instead of s0 and e0. By
N=df

⋃

{Ni | i ∈ {0, . . . , k}} and E=df

⋃

{Ei | i ∈ {0, . . . , k}} we denote the sets
of all nodes and edges of a flow-graph system. Additionally, we denote the set
of call edges of S, i.e., the subset of edges representing a procedure call, by
Ecall ⊆E.

Interprocedural Flow Graphs. The interprocedural flow graph is derived from
a flow-graph system S by melting the flow graphs of S into a single graph
G∗ =(N∗, E∗, s∗, e∗). This graph results from S by replacing each call edge e of
S by a call edge ec and a return edge er. The call edge ec connects the source
node of e with the start node of the flow graph called; the return edge er connects
the end node of this flow graph with the destination node of e (cf. Figure 2). In
the following we denote the set of all call and return edges of G∗ by E∗

c and E∗
r ,

respectively. Moreover, E∗

call=df E∗
c ∪ E∗

r denotes the union of call and return
edges.

Interprocedural Paths. The notion of a path of a flow graph can be extended to
interprocedural flow graphs. While, however, every path connecting two nodes
of an intraprocedural flow graph is valid in the sense of representing a possible
run-time execution (up to non-determinism), this does not hold for interproce-
dural flow graphs. In order to be valid, interprocedural paths need to respect the
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x := a+bz := a+b

c := a+b

a := a+b

y := a+b

z := a+bz := a+b

c := a+b

procedureπmain

call π

call π

c

x := a+b
c c

y := a+b
c

w := a+b

c c

c

c
v := a+b

c := a+b

b := x+y

Fig. 2. Flow-Graph System

call/return behaviour of procedure calls (cf. [14]). Identifying matching call and
return edges in G∗ with opening and closing parentheses “(” and “),” respec-
tively, the set of interprocedurally valid paths corresponds to the prefix-closed
language of balanced parentheses (cf. [16]). Hence, considering the sequence of
edges of a path a word of a formal language, the set of intraprocedurally valid
paths forms a regular language, while the set of interprocedurally valid paths
forms a context-free language.1 In the following we denote the set of interproce-
durally (valid) paths connecting two nodes m and n by IP[m,n].

Complete Interprocedural Paths. Complete interprocedural paths are important
for capturing the global abstract semantics of procedure calls. An interprocedural
path leading from the start node si of a procedure Gi, i ∈ {0, . . . , k}, to a node
n located inside Gi is called complete, if each procedure call occurring on p is
completed by a subsequent return. Intuitively, this ensures that the occurrences
of si and n belong to the same incarnation of the procedure underlying Gi. It is
worth noting that the subpaths of a complete interprocedural path corresponding
to a procedure call are either disjoint or properly nested. We denote the set of
all complete paths leading from si to n by CIP[si, n].

1 In [14] an algorithmic definition of interprocedurally valid paths is provided, in [17]
a definition in terms of a context-free language.
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x := a+bz := a+b

x := a+b

a := a+b

y := a+b

b := a+b

x := a+b z := a+b

y := a+b

x := a+b

z := a+b

z := a+b

a := a+f

b := f*f

Fig. 3. Interprocedural Flow Graph

Further Notations. For a flow-graph S, the polymorphic function flowGraph :
N∪E →S maps the nodes and edges of S to the flow graph containing them; the
function callee : Ecall →S maps every call edge to the flow graph representing
the called procedure; the function caller : S →P(Ecall) maps every flow graph
to the set of edges calling it, and the functions start : S →{s0, . . . , sk} and
end : S →{e0, . . . , ek} map the flow graphs of S to their start nodes and end
nodes, respectively. These functions will be helpful for the formal development
in this paper.

3 (Classical) Interprocedural Data-Flow Analysis

Intuitively, DFA aims at computing information about the run-time behaviour
of a program at compile time. This information is typically modelled by the ele-
ments of an appropriate complete lattice C. Together with a data-flow functional

[[ ]]
′
: E∗ →C→C, which assigns abstract meaning to the elementary statements

of a program, the lattice of data-flow facts C forms an abstract semantics of the
program, which is tailored for the problem under consideration (cf. [18]). For
the parameterless setting considered here, the call and return edges of G∗ are
associated with the identity IdC on C.

In the following, we assume that the top element of a data-flow lattice rep-
resents “unsatisfiable (inconsistent)” information, and that it is invariant under
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each data-flow function. Apparently, such an element can always be added, if
necessary. This assumption ensures that the reverse data-flow functions of a
DFA problem are always well-defined (cf. Section 4).

Given a data-flow functional [[ ]]
′
, and a data-flow fact cs, the task of DFA

can conceptually be considered to compute an annotation function ann : N →C
annotating each node n of the flow-graph system S with a data-flow fact c

reflecting and respecting the constraints given by [[ ]]
′
and cs. In particular, the

annotation function shall satisfy ann(s)= cs.
In the following we recall the essence of the interprocedural data-flow frame-

work of Sharir and Pnueli to accomplish this [14]. The key of this approach is to
extend the intraprocedural versions of the meet-over-all-paths (MOP ) approach
and the maximal-fixed-point (MaxFP ) approach (cf. [19]) to the interprocedural
setting. We recall these two approaches next.

The IMOP -Approach. The definition of the interprocedural meet-over-all-paths

(IMOP ) approach and the annotation function it induces results from the induc-
tive extension of an abstract semantics to (finite) interprocedural paths p, which
is straightforward. For a start information cs ∈ C and a node n ∈ N∗, the
IMOP -solution is defined by:

IMOP -Solution: IMOPcs(n)=df ⊓ { [[ p ]]
′
(cs) | p ∈ IP[s, n] }

The IMaxFP -Approach. In contrast to the IMOP -approach, which has an
operational flavour, the interprocedural maximal-fixed-point (IMaxFP ) approach
is characterized by two dependent equation systems. Intuitively, the greatest
solution of the first equation system captures the abstract semantics of the pro-
cedures of a program; based on this solution, the greatest solution of the second
equation system defines the annotation function of the overall approach.

Equation System 1 (Semantics of Procedures (2nd-Order))

[[[ n ]]] =

{

IdC if n ∈ { s0, . . . , sk }
⊓{[[ (m,n) ]] ◦ [[[ m ]]] |m ∈ predflowGraph(n)(n)} otherwise

and

[[ e ]] =

{

[[ e ]]
′

if e ∈ E\Ecall

[[[ end(caller(e)) ]]] otherwise

Note that the functions [[ e ]], e ∈ Ecall, of the greatest solution of Equation
System 1 describe the semantics of procedure call edges (cf. Main Lemma 1).
Denoting the greatest solution of Equation System 1 by [[[ ]]] and [[ ]], too, the
annotation function, which is induced by the overall approach, is then given by
the greatest solution of Equation System 2, denoted by inf ∗

cs
, where inf reminds

to data-flow fact.

Equation System 2 (The IMaxFP -Equation System)

inf (n)=







cs if n = s0

⊓ { inf (src(e)) | e ∈ caller(flowGraph(n)) } if n ∈ {s1, . . . , sk}
⊓ { [[ (m,n) ]](inf (m)) |m ∈ predflowGraph(n)(n) } otherwise
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IMaxFP -Solution: IMaxFP cs(n)=df inf ∗

cs
(n)

Interprocedural Safety and Coincidence. As for the intraprocedural set-
ting, the relevance of the IMOP -approach stems from the fact that the annota-
tions it induces can intuitively be understood as the “strongest” data-flow facts
possible with respect to the abstract semantics under consideration. The IMOP -
solution provides thus the surveyor’s rod of precision of an interprocedural DFA
algorithm. Conversely, the relevance of the IMaxFP -approach stems from the
fact that in practice the annotation function it induces can effectively (and often
even efficiently) be computed. Safety and coincidence are the commonly used
terms to relate the IMaxFP -solution to the IMOP -solution and to characterize
its precision with respect to the IMOP -solution.

Intuitively, safety means that the IMaxFP -solution is a conservative, i.e. a
lower approximation of the IMOP -solution. Coincidence means equality of the
two solutions, and hence precision of the IMaxFP -solution with respect to the
IMOP -solution. Monotonicity and distributivity of the data-flow functions are
sufficient to ensure safety and coincidence. This is summarized in the Interpro-
cedural Safety and Coincidence Theorem 1 recalled below (cf. [14]).

Theorem 1 (Interprocedural Safety and Coincidence).
The IMaxFP -solution

1. ...is a lower approximation of the IMOP -solution, i.e., ∀ cs ∈ C ∀n ∈ N.

IMaxFP cs(n) ⊑ IMOP cs(n), if the data-flow functional [[ ]]
′

is monotonic

(Safety).
2. ...coincides with the IMOP -solution, i.e., ∀ cs ∈ C ∀n ∈ N.

IMaxFP cs(n)= IMOP cs(n), if the data-flow functional [[ ]]
′

is distributive.

(Coincidence).

Fundamental for proving this theorem is the Main Lemma 1. Intuitively, it
states that the semantics of a procedure coincides with the greatest solution of
Equation System 1 of the end node of this procedure, if all data-flow functions
are distributive. If they are monotonic, then it is still a safe, i.e., conservative
approximation.

Lemma 1 (Main Lemma (2nd Order)).
For all e ∈ Ecall, we have:

1. [[ e ]] ⊑ ⊓{[[ p ]]
′ | p ∈ CIP[src(e), dst(e)]}, if the data-flow functional [[ ]]

′
is

monotonic,

2. [[ e ]] =⊓{[[ p ]]
′ | p ∈ CIP[src(e), dst(e)]}, if the data-flow functional [[ ]]

′
is

distributive.

4 Reverse Interprocedural Data-Flow Analysis

The data-flow functional [[ ]]
′
of an abstract semantics induces a reverse counter-

part [[ ]]
′

R : E → (C→C) (cf. [20,21]). This is the key to reverse data-flow analysis.
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For every edge e ∈ E and data-flow fact c ∈ C, the reverse data-flow function is
defined by

[[ e ]]
′

R(c)=df ⊓{ c′ | [[ e ]]
′
(c′) ⊒ c }

Intuitively, a reverse data-flow function [[ e ]]
′

R maps a data-flow fact c assumed
be to valid at the destination of e to the “weakest” data-flow fact ĉ, which must
be valid at the origin of e in order to ensure the validity of c after executing e.

In terms of program verification, classical DFA aims intuitively at computing
“strongest post-conditions,” while reverse DFA aims at computing “weakest pre-
conditions.” As we will see later in this paper, this holds formally whenever the
underlying data-flow functional [[ ]] is distributive.

Lemma 2 and Lemma 3 demonstrate the close relationship between an ab-
stract semantics and its reverse counterpart (cf. [20,21]).

Lemma 2. 1. [[ e ]]
′

R is well-defined and monotonic.

2. If [[ e ]]
′

is distributive, then [[ e ]]
′

R is additive.

Lemma 3. 1. [[ e ]]
′

R ◦ [[ e ]]
′ ⊑ IdC, if [[ e ]]

′

is monotonic.

2. [[ e ]]
′ ◦ [[ e ]]

′

R ⊒ IdC, if [[ e ]]
′
is distributive.

In terms of abstract interpretation (cf. [18]), Lemma 3 means that a distribu-
tive data-flow function and its reverse counterpart constitute a Galois connection

(cf. [22]), or equivalently, that a distributive data-flow function and its reverse
counterpart are a pair of adjunct functions.

It is worth noting that the development so far in this section is exactly the
same as for the intraprocedural base case of reverse data-flow analysis (cf. [1]),
which is because of the absence of parameters and local variables in the setting
of [14].

We are now ready to proceed with highlighting the duality of reverse and clas-
sical DFA by presenting the reverse interprocedural join-over-all-paths (R-IJOP )
approach and the reverse interprocedural minimal-fixed-point (R-IMinFP ) ap-
proach for the setting of [14]. Conceptually, they are the reverse counterparts of
the IMOP - and the IMaxFP -approach.

The R-IJOP -Approach. Like a data-flow functional [[ ]]
′
, its reverse counter-

part [[ ]]
′

R can inductively be extended to (finite) interprocedural paths. To sim-
plify the definition of the fixed-point counterpart of the R-IJOP -approach, we
assume that the program point of interest q is different from the start node s,
and that q is a fresh node, which has the same predecessors as q but no succes-
sors.2 Note that in the definition of the R-IJOP -solution, the “meet” is replaced
by the “join,” and that paths are considered in the opposite direction of control
flow. This reflects that reverse DFA aims at computing “weakest pre-conditions”
rather than “strongest post-conditions.”

R-IJOP -Solution: R-IJOPcq
(n)=df ⊔ { [[ p ]]

′

R(cq) | p ∈ IP[n,q] }

2 This does not cause any subtleties. For s the reverse DFA problem is trivial. For other
nodes q and their copies q, the IMOP -solutions coincide because of IP[s, q] = IP[s,q].
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The R-IMinFP -Approach. The reverse interprocedural minimal-fixed-point

(R-IMinFP ) approach is the fixed-point counterpart of the R-IJOP -approach.
Like the IMaxFP -approach it is a two-step approach separating the second order
treatment of procedures from the first order characterization of the R-IMinFP -
solution. Compared to the IMaxFP -approach it is worth noting that the roles of
start nodes and end nodes of a flow graph of S are interchanged.

Equation System 3 (Reverse Semantics of Procedures (2nd Order))

[[[ n ]]]R =

{

IdC if n ∈ { e0, . . . , ek }
⊔{[[ (n,m) ]]R ◦ [[[ m ]]]R |m ∈ succflowGraph(n)(n)} otherwise

and

[[ e ]]R =

{

[[ e ]]
′

R if e ∈ E\Ecall

[[[ start(caller(e)) ]]]R otherwise

Denoting the least solution of Equation System 3 by [[[ ]]]R and [[ ]]R, the
least solution of Equation System 4 denoted by reqInf∗cq

is the solution of the
R-IMinFP -approach, where reqInf reminds to required data-flow fact.

Equation System 4 (The R-IMinFP -Equation System)

reqInf (n)=







cq if n = q
⊔ { [[ (n,m) ]]R(reqInf (m)) |m ∈ succflowGraph(n)(n) } ⊔
⊔ { reqInf (start(callee((n,m)))) | (n,m) ∈ Ecall } otherwise

R-IMinFP -Solution: R-IMinFPcq
(n)=df reqInf∗cq

(n)

It is worth noting that end nodes m, m ∈ {e0, . . . , ek}, m 6= q, do not
occur as special case in the equation system above. For these nodes m we have
R-IMinFP cq

(m)=⊥. This coincides in fact with the R-IJOP -solution at these
nodes. Note that all paths starting at a node in {e1, . . . , ek} are invalid (and
that there is no path starting at e0 at all). They start with a closing parenthesis.
Hence, R-IJOP cq

(ei)=⊔∅=⊥. The duality of Equation System 4 to the one
of the IMaxFP -approach becomes apparent when rewriting Equation System 2
equivalently as follows:

Equation System 5 (The IMaxFP -Equation System / Version 2)

inf (n)=















cs if n = s
⊓ { [[ (m,n) ]](inf (m)) |m ∈ predflowGraph(n)(n) } ⊓
⊓ { inf (src(e)) |n ∈ {s1, . . . , sk} ∧ e ∈ caller(flowGraph(n)) }

otherwise
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Reverse Interprocedural Safety and Coincidence. We are now ready to
present the reverse version of the interprocedural safety and coincidence theo-
rem. It opposes the R-IMinFP -solution to the R-IJOP -solution. The R-IMinFP -
solution is an upper approximation of the R-IJOP -solution, if the reverse data-
flow functions are monotonic.3 Both solutions coincide, if these functions are
additive. Together with Lemma 2 and the inductive extension of Lemma 3 to
paths, this allows us to prove.

Theorem 2 (Reverse Interprocedural Safety and Coincidence).
The R-IMinFP -solution

1. ...is an upper approximation of the R-IJOP -solution, i.e., ∀ cq ∈ C ∀n ∈
N. R-IMinFP cq

(n) ⊒ R-IJOP cq
(n)

2. ...coincides with the R-IJOP -solution, i.e., ∀ cq ∈ C ∀n ∈ N. R-IMinFP cq
(n)=

R-IJOP cq
(n), if the data-flow functional [[ ]]

′
is distributive.

Fundamental for proving this theorem is the reverse counterpart of the Main
Lemma 1 dealing with the reverse global semantics of procedures.

Lemma 4 (Reverse Main Lemma (2nd Order)).
For all e ∈ Ecall, we have:

1. [[ e ]]R ⊒⊔{[[ p ]]
′

R | p ∈ CIP[src(e), dst(e)]},

2. [[ e ]]R =⊔{[[ p ]]
′

R | p ∈ CIP[src(e), dst(e)]}, if the data-flow functional [[ ]]
′
is

distributive.

5 Classical and Reverse Interprocedural DFA: The Link

The Reverse Interprocedural Safety and Coincidence Theorem 2 focuses on the
relationship of the R-IMinFP -solution and the R-IJOP -solution, and thus on
reverse interprocedural DFA itself. In contrast, the Interprocedural Link Theo-
rem 3 addresses the relationship between classical and reverse DFA (cf. [13,1]).
In the version below, it focuses on distributive data-flow functionals, which are
especially important for mimicing classical DFAs by their reverse counterparts.

Theorem 3 (Interprocedural Link Theorem).
For distributive data-flow functionals [[ ]]

′
we have:

∀ cs, cq ∈ C ∀ q ∈ N. R-IJOP cq
(q) ⊑ cs ⇐⇒ IMOP cs(q) ⊒ cq

In fact, the Interprocedural Reverse Safety and Coincidence Theorem 2 to-
gether with the Interprocedural Link Theorem 3 provides the foundation for
constructing correct and precise demand-driven interprocedural DFAs based on
reverse DFA. Particularly important are analyses, whose results for the pro-
gram points investigated by the demand-driven DFA coincide with those of its

3 Note that monotonicity of the reverse data-flow functional is always given. Hence,
the reverse interprocedural safety theorem does not need an explicit premise.
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underlying classical counterpart. In particular, this applies to the large class of
bitvector data-flow analyses, which support a variety of very powerful and widely
used optimizations such as redundancy elimination, dead-code elimination and
array bounds check elimination (cf. [23]).

6 Application

We conclude our presentation with presenting the abstract semantics and its
reverse counterpart for the availability analysis which is required to perform the
analysis and optimization displayed in Figures 1 and 2. In Table 1, BX denotes
the set of Boolean truth values true and false, which is enriched by a third ele-
ment failure, which serves as the (articificial) top element of the data-flow lattice.
It can easily be checked that the data-flow functions of the availability problem
are distributive and their reverse counterparts are additive. Hence, they satisfy
the preconditions of the Reverse Interprocedural Coincidence Theorem 2 and the
Interprocedural Link Theorem 3. Note that the specification of the availability
analysis is the same as for the intraprocedural case except that here the speci-
fication is given for an interprocedural flow graph instead of an intraprocedural
one (cf. [1]). As mentioned earlier, this is because of the absence of parameters
and local variables in the setting of [14].

Abstract semantics for availability :
1. Data-flow lattice: (C,⊓,⊔,⊑,⊥,⊤)=df (BX , ∧ , ∨ ,≤, false, failure)

2. Data-flow functional : [[ ]]
′

av
: E∗ → (BX →BX ) defined by

∀ e ∈ E
∗
. [[ e ]]

′

av
=df

8

<

:

CstX
true if Comp e ∧Transp e

IdBX
if ¬Comp e ∧ Transp e

CstX
false otherwise

Reverse abstract semantics for availability :
1. Data-flow lattice: (C,⊓,⊔,⊑,⊥,⊤)=df (BX , ∧ , ∨ ,≤, false, failure)

2. Reverse data-flow functional : [[ ]]
′

avR
: E∗ → (BX →BX ) defined by

∀ e ∈ E
∗
. [[ e ]]

′

avR
=df

8

>

<

>

:

R-CstX
true if [[ e ]]

′

av
=CstX

true

R-IdBX
if [[ e ]]

′

av
= IdBX

R-CstX
false if [[ e ]]

′

av
=CstX

false

The functions IdBX
, CstX

true and CstX
false denote the identity on BX , and the extensions

of the constant functions Cst true and Cst false from B to BX leaving the argument failure

invariant. The predicates Comp e and Transp e hold for edge e, if the computation under

consideration is computed and not modified along edge e, respectively.

Table 1. Abstract and Reverse Abstract Semantics for Availability.
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It is worth noting that data-flow queries can naturally be processed in par-
allel. In the extreme case for each node of a program a data-flow query can be
started. The combined results of these analyses provide then the same infor-
mation as the underlying conventional data-flow analysis they are derived from
but, dependently on the number of computing units available, more efficiently.
Note that a smart implementation can also share and reuse results of already
completed data-flow queries leading to a further speed-up in practice. For illus-
tration consider again the example of Figure 1, which indeed suggests that the
data-flow queries regarding the availability of the computations of a+b and c+b

at the entrances of the edges e and f can be processed in parallel.

7 Conclusions

Exploiting the computing power of multi-core computing systems effectively to
improve the scalability of program analyses requires program analyses which can
easily be parallelized and mapped to such computing systems. In this paper we
argue that reverse data-flow analyses are particularly suitable for this. This is
important because a variety of practically relevant analysis problems and op-
timizations based thereon including the large class of bitvector problems can
equivalently be solved by the reverse counterparts of a conventional data-flow
analysis. Fundamental for this are two theorems on the correctness and preci-
sion of a reverse data-flow analysis and the relationship of its results to those
of its underlying conventional counterpart. In this paper we presented these two
theorems, the Reverse Interprocedural Safety and Coincidence Theorem and the
Interprocedural Link Theorem for the interprocedural setting of [14], which com-
plements the contributions of [1] and [13] for the intraprocedural sequential and
an intraprocedural parallel setting, and closes a gap in previous related work.
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