59,207 research outputs found

    A non-linear autoregressive model for indoor air-temperature predictions in smart buildings

    Get PDF
    In recent years, the contrast against energy waste and pollution has become mandatory and widely endorsed. Among the many actors at stake, the building sector energy management is one of the most critical. Indeed, buildings are responsible for 40% of total energy consumption only in Europe, affecting more than a third of the total pollution produced. Therefore, energy control policies of buildings (for example, forecast-based policies such as Demand Response and Demand Side Management) play a decisive role in reducing energy waste. On these premises, this paper presents an innovative methodology based on Internet-of-Things (IoT) technology for smart building indoor air-temperature forecasting. In detail, our methodology exploits a specialized Non-linear Autoregressive neural network for short-and medium-term predictions, envisioning two different exploitation: (i) on realistic artificial data and (ii) on real data collected by IoT devices deployed in the building. For this purpose, we designed and optimized four neural models, focusing respectively on three characterizing rooms and on the whole building. Experimental results on both a simulated and a real sensors dataset demonstrate the prediction accuracy and robustness of our proposed models

    An Efficient Deep Learning Framework for Intelligent Energy Management in IoT Networks

    Full text link
    [EN] Green energy management is an economical solution for better energy usage, but the employed literature lacks focusing on the potentials of edge intelligence in controllable Internet of Things (IoT). Therefore, in this article, we focus on the requirements of todays' smart grids, homes, and industries to propose a deep-learning-based framework for intelligent energy management. We predict future energy consumption for short intervals of time as well as provide an efficient way of communication between energy distributors and consumers. The key contributions include edge devices-based real-time energy management via common cloud-based data supervising server, optimal normalization technique selection, and a novel sequence learning-based energy forecasting mechanism with reduced time complexity and lowest error rates. In the proposed framework, edge devices relate to a common cloud server in an IoT network that communicates with the associated smart grids to effectively continue the energy demand and response phenomenon. We apply several preprocessing techniques to deal with the diverse nature of electricity data, followed by an efficient decision-making algorithm for short-term forecasting and implement it over resource-constrained devices. We perform extensive experiments and witness 0.15 and 3.77 units reduced mean-square error (MSE) and root MSE (RMSE) for residential and commercial datasets, respectively.This work was supported in part by the National Research Foundation of Korea Grant Funded by the Korea Government (MSIT) under Grant 2019M3F2A1073179; in part by the "Ministerio de Economia y Competitividad" in the "Programa Estatal de Fomento de la Investigacion Cientifica y Tecnica de Excelencia, Subprograma Estatal de Generacion de Conocimiento" Within the Project under Grant TIN2017-84802-C2-1-P; and in part by the European Union through the ERANETMED (Euromediterranean Cooperation through ERANET Joint Activities and Beyond) Project ERANETMED3-227 SMARTWATIR.Han, T.; Muhammad, K.; Hussain, T.; Lloret, J.; Baik, SW. (2021). An Efficient Deep Learning Framework for Intelligent Energy Management in IoT Networks. IEEE Internet of Things. 8(5):3170-3179. https://doi.org/10.1109/JIOT.2020.3013306S317031798

    A Non-Linear Autoregressive Model for Indoor Air-Temperature Predictions in Smart Buildings

    Get PDF
    In recent years, the contrast against energy waste and pollution has become mandatory and widely endorsed. Among the many actors at stake, the building sector energy management is one of the most critical. Indeed, buildings are responsible for 40% of total energy consumption only in Europe, affecting more than a third of the total pollution produced. Therefore, energy control policies of buildings (for example, forecast-based policies such as Demand Response and Demand Side Management) play a decisive role in reducing energy waste. On these premises, this paper presents an innovative methodology based on Internet-of-Things (IoT) technology for smart building indoor air-temperature forecasting. In detail, our methodology exploits a specialized Non-linear Autoregressive neural network for short- and medium-term predictions, envisioning two different exploitation: (i) on realistic artificial data and (ii) on real data collected by IoT devices deployed in the building. For this purpose, we designed and optimized four neural models, focusing respectively on three characterizing rooms and on the whole building. Experimental results on both a simulated and a real sensors dataset demonstrate the prediction accuracy and robustness of our proposed models

    Hybrid Ventilation System and Soft-Sensors for Maintaining Indoor Air Quality and Thermal Comfort in Buildings

    Get PDF
    Maintaining both indoor air quality (IAQ) and thermal comfort in buildings along with optimized energy consumption is a challenging problem. This investigation presents a novel design for hybrid ventilation system enabled by predictive control and soft-sensors to achieve both IAQ and thermal comfort by combining predictive control with demand controlled ventilation (DCV). First, we show that the problem of maintaining IAQ, thermal comfort and optimal energy is a multi-objective optimization problem with competing objectives, and a predictive control approach is required to smartly control the system. This leads to many implementation challenges which are addressed by designing a hybrid ventilation scheme supported by predictive control and soft-sensors. The main idea of the hybrid ventilation system is to achieve thermal comfort by varying the ON/OFF times of the air conditioners to maintain the temperature within user-defined bands using a predictive control and IAQ is maintained using Healthbox 3.0, a DCV device. Furthermore, this study also designs soft-sensors by combining the Internet of Things (IoT)-based sensors with deep-learning tools. The hardware realization of the control and IoT prototype is also discussed. The proposed novel hybrid ventilation system and the soft-sensors are demonstrated in a real research laboratory, i.e., Center for Research in Automatic Control Engineering (C-RACE) located at Kalasalingam University, India. Our results show the perceived benefits of hybrid ventilation, predictive control, and soft-sensors

    A novel ensemble method for electric vehicle power consumption forecasting: Application to the Spanish system

    Get PDF
    The use of electric vehicle across the world has become one of the most challenging issues for environmental policies. The galloping climate change and the expected running out of fossil fuels turns the use of such non-polluting cars into a priority for most developed countries. However, such a use has led to major concerns to power companies, since they must adapt their generation to a new scenario, in which electric vehicles will dramatically modify the curve of generation. In this paper, a novel approach based on ensemble learning is proposed. In particular, ARIMA, GARCH and PSF algorithms' performances are used to forecast the electric vehicle power consumption in Spain. It is worth noting that the studied time series of consumption is non-stationary and adds difficulties to the forecasting process. Thus, an ensemble is proposed by dynamically weighting all algorithms over time. The proposal presented has been implemented for a real case, in particular, at the Spanish Control Centre for the Electric Vehicle. The performance of the approach is assessed by means of WAPE, showing robust and promising results for this research field.Ministerio de EconomĂ­a y Competitividad Proyectos ENE2016-77650-R, PCIN-2015-04 y TIN2017-88209-C2-R

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Demand Forecasting: Evidence-based Methods

    Get PDF
    We looked at evidence from comparative empirical studies to identify methods that can be useful for predicting demand in various situations and to warn against methods that should not be used. In general, use structured methods and avoid intuition, unstructured meetings, focus groups, and data mining. In situations where there are sufficient data, use quantitative methods including extrapolation, quantitative analogies, rule-based forecasting, and causal methods. Otherwise, use methods that structure judgement including surveys of intentions and expectations, judgmental bootstrapping, structured analogies, and simulated interaction. Managers' domain knowledge should be incorporated into statistical forecasts. Methods for combining forecasts, including Delphi and prediction markets, improve accuracy. We provide guidelines for the effective use of forecasts, including such procedures as scenarios. Few organizations use many of the methods described in this paper. Thus, there are opportunities to improve efficiency by adopting these forecasting practices.Accuracy, expertise, forecasting, judgement, marketing.
    • 

    corecore