13,343 research outputs found

    SMCTC : sequential Monte Carlo in C++

    Get PDF
    Sequential Monte Carlo methods are a very general class of Monte Carlo methods for sampling from sequences of distributions. Simple examples of these algorithms are used very widely in the tracking and signal processing literature. Recent developments illustrate that these techniques have much more general applicability, and can be applied very effectively to statistical inference problems. Unfortunately, these methods are often perceived as being computationally expensive and difficult to implement. This article seeks to address both of these problems. A C++ template class library for the efficient and convenient implementation of very general Sequential Monte Carlo algorithms is presented. Two example applications are provided: a simple particle filter for illustrative purposes and a state-of-the-art algorithm for rare event estimation

    NASA high performance computing and communications program

    Get PDF
    The National Aeronautics and Space Administration's HPCC program is part of a new Presidential initiative aimed at producing a 1000-fold increase in supercomputing speed and a 100-fold improvement in available communications capability by 1997. As more advanced technologies are developed under the HPCC program, they will be used to solve NASA's 'Grand Challenge' problems, which include improving the design and simulation of advanced aerospace vehicles, allowing people at remote locations to communicate more effectively and share information, increasing scientist's abilities to model the Earth's climate and forecast global environmental trends, and improving the development of advanced spacecraft. NASA's HPCC program is organized into three projects which are unique to the agency's mission: the Computational Aerosciences (CAS) project, the Earth and Space Sciences (ESS) project, and the Remote Exploration and Experimentation (REE) project. An additional project, the Basic Research and Human Resources (BRHR) project exists to promote long term research in computer science and engineering and to increase the pool of trained personnel in a variety of scientific disciplines. This document presents an overview of the objectives and organization of these projects as well as summaries of individual research and development programs within each project

    Fourth Conference on Artificial Intelligence for Space Applications

    Get PDF
    Proceedings of a conference held in Huntsville, Alabama, on November 15-16, 1988. The Fourth Conference on Artificial Intelligence for Space Applications brings together diverse technical and scientific work in order to help those who employ AI methods in space applications to identify common goals and to address issues of general interest in the AI community. Topics include the following: space applications of expert systems in fault diagnostics, in telemetry monitoring and data collection, in design and systems integration; and in planning and scheduling; knowledge representation, capture, verification, and management; robotics and vision; adaptive learning; and automatic programming

    Memoized Symbolic Execution

    Get PDF
    This paper introduces memoized symbolic execution (Memoise), a novel approach for more efficient application of forward symbolic execution, which is a well-studied technique for systematic exploration of program behaviors based on bounded execution paths. Our key insight is that application of symbolic execution often requires several successive runs of the technique on largely similar underlying problems, e.g., running it once to check a program to find a bug, fixing the bug, and running it again to check the modified program. Memoise introduces a trie-based data structure that stores the key elements of a run of symbolic execution. Maintenance of the trie during successive runs allows re-use of previously computed results of symbolic execution without the need for re-computing them as is traditionally done. Experiments using our prototype embodiment of Memoise show the benefits it holds in various standard scenarios of using symbolic execution, e.g., with iterative deepening of exploration depth, to perform regression analysis, or to enhance coverage

    Program Model Checking: A Practitioner's Guide

    Get PDF
    Program model checking is a verification technology that uses state-space exploration to evaluate large numbers of potential program executions. Program model checking provides improved coverage over testing by systematically evaluating all possible test inputs and all possible interleavings of threads in a multithreaded system. Model-checking algorithms use several classes of optimizations to reduce the time and memory requirements for analysis, as well as heuristics for meaningful analysis of partial areas of the state space Our goal in this guidebook is to assemble, distill, and demonstrate emerging best practices for applying program model checking. We offer it as a starting point and introduction for those who want to apply model checking to software verification and validation. The guidebook will not discuss any specific tool in great detail, but we provide references for specific tools

    Using test case reduction and prioritization to improve symbolic execution

    Full text link
    Scaling symbolic execution to large programs or programs with complex inputs remains difficult due to path explosion and complex constraints, as well as external method calls. Additionally, creating an effective test structure with sym-bolic inputs can be difficult. A popular symbolic execution strategy in practice is to perform symbolic execution not “from scratch ” but based on existing test cases. This paper proposes that the effectiveness of this approach to symbolic execution can be enhanced by (1) reducing the size of seed test cases and (2) prioritizing seed test cases to maximize ex-ploration efficiency. The proposed test case reduction strat-egy is based on a recently introduced generalization of delta-debugging, and our prioritization techniques include novel methods that, for this purpose, can outperform some tradi-tional regression testing algorithms. We show that applying these methods can significantly improve the effectiveness of symbolic execution based on existing test cases

    FairFuzz: Targeting Rare Branches to Rapidly Increase Greybox Fuzz Testing Coverage

    Full text link
    In recent years, fuzz testing has proven itself to be one of the most effective techniques for finding correctness bugs and security vulnerabilities in practice. One particular fuzz testing tool, American Fuzzy Lop or AFL, has become popular thanks to its ease-of-use and bug-finding power. However, AFL remains limited in the depth of program coverage it achieves, in particular because it does not consider which parts of program inputs should not be mutated in order to maintain deep program coverage. We propose an approach, FairFuzz, that helps alleviate this limitation in two key steps. First, FairFuzz automatically prioritizes inputs exercising rare parts of the program under test. Second, it automatically adjusts the mutation of inputs so that the mutated inputs are more likely to exercise these same rare parts of the program. We conduct evaluation on real-world programs against state-of-the-art versions of AFL, thoroughly repeating experiments to get good measures of variability. We find that on certain benchmarks FairFuzz shows significant coverage increases after 24 hours compared to state-of-the-art versions of AFL, while on others it achieves high program coverage at a significantly faster rate

    On Fast Large-Scale Program Analysis in Datalog

    Get PDF
    Designing and crafting a static program analysis is challenging due to the complexity of the task at hand. Among the challenges are modelling the semantics of the input language, finding suitable abstractions for the analysis, and handwriting efficient code for the analysis in a traditional imperative language such as C++. Hence, the development of static program analysis tools is costly in terms of development time and resources for real world languages. To overcome, or at least alleviate the costs of developing a static program analysis, Datalog has been proposed as a domain specific language (DSL).With Datalog, a designer expresses a static program analysis in the form of a logical specification. While a domain specific language approach aids in the ease of development of program analyses, it is commonly accepted that such an approach has worse runtime performance than handcrafted static analysis tools. In this work, we introduce a new program synthesis methodology for Datalog specifications to produce highly efficient monolithic C++ analyzers. The synthesis technique requires the re-interpretation of the semi-naïve evaluation as a scaffolding for translation using partial evaluation. To achieve high-performance, we employ staged compilation techniques and specialize the underlying relational data structures for a given Datalog specification. Experimentation on benchmarks for large-scale program analysis validates the superior performance of our approach over available Datalog tools and demonstrates our competitiveness with state-of-the-art handcrafted tools
    corecore