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Abstract—This paper introduces memoized symbolic execu-
tion (Memoise), a novel approach for more efficient application
of forward symbolic execution, which is a well-studied tech-
nique for systematic exploration of program behaviors based
on bounded execution paths. Our key insight is that application
of symbolic execution often requires several successive runs
of the technique on largely similar underlying problems, e.g.,
running it once to check a program to find a bug, fixing the
bug, and running it again to check the modified program.
Memoise introduces a trie-based data structure that stores
the key elements of a run of symbolic execution. Maintenance
of the trie during successive runs allows re-use of previously
computed results of symbolic execution without the need for
re-computing them as is traditionally done. Experiments using
our prototype embodiment of Memoise show the benefits it
holds in various standard scenarios of using symbolic execution,
e.g., with iterative deepening of exploration depth, to perform
regression analysis, or to enhance coverage.
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I. INTRODUCTION

Forward symbolic execution [13], [7], [9], [21], [18],
[6] is a powerful technique that is gaining popularity for
systematic exploration of program behaviors. The technique
is conceptually simple: represent program paths (of interest)
as formulas that symbolically represent the state updates
and branches along the paths, and use the formulas as
a basis of analyzing the program by utilizing constraint
solving technology that allows reasoning about the formulas.
However, in practice, the technique can be costly to apply
due to its inherent high time complexity. There are two key
factors that determine its cost: (1) the number of paths that
need to be explored and (2) the cost of constraint solving.

Recent years have seen substantial advances in raw
computation power and constraint solving technology [1],
as well as in basic algorithmic approaches for symbolic
execution [4], [24]. These advances have made symbolic
execution applicable to a diverse class of programs and
enable a range of analyses, including bug finding using
automated test generation – a traditional application of this
technique – as well as other novel applications, such as
program equivalence checking [22], regression analysis [16],
and continuous testing [26]. All these applications utilize the
same path-based analysis that lies at the heart of symbolic
execution. As such, their effectiveness is determined by
the two factors that determine the cost of the symbolic
execution, and at present, reducing the cost of symbolic

execution remains a fundamental challenge.
This paper introduces memoized symbolic execution

(Memoise), a novel approach that addresses both the factors
to enable more efficient applications of symbolic execution.
Our key insight is that applying symbolic execution often
requires several successive runs of the technique on largely
similar underlying problems, e.g., running it once to check
a program to find a bug, fixing the bug, and running it
again to check the modified program. Memoise leverages the
similarities to reduce the total cost of applying the technique
by maintaining and updating the global state of a symbolic
execution run. Specifically, Memoise introduces an efficient
trie [8], [27] data structure for a compact representation of
the symbolic paths generated during a symbolic execution
run. Maintenance of the trie during successive runs allows
re-use of previously computed results of symbolic execution
without the need for re-computing them as is traditionally
done. Moreover, computations based on the trie from the
last symbolic execution run can guide future runs, e.g., to
discard branch sequences deemed no longer to be of interest.

We developed a prototype tool for memoized symbolic
execution of Java programs. The implementation uses the
Symbolic PathFinder tool [18], part of the Java PathFinder
open-source framework. Experiments with Memoise show
its benefits in standard scenarios of using symbolic execu-
tion, such as, with iterative deepening of exploration depth,
to perform regression analysis, or to enhance coverage. We
believe the approach introduced by Memoise also holds
much promise in optimizing a variety of other novel analyses
based on symbolic execution (as discussed in Section IV).

The main contributions of this paper are:
• Memoized symbolic execution. We introduce the con-

cept of storing the state of a run of symbolic execution
and utilizing and updating it during the next run.

• Trie data structure for symbolic execution. Memoise
presents a novel application domain for a well-known
data structure.

• Applications. We discuss how a suite of applications
of symbolic execution likely benefit from the approach
introduced by Memoise.

• Demonstration. Experiments using our Memoise pro-
totype demonstrate its potential in enabling more effi-
cient symbolic execution in the context of three typical
applications: iterative deepening, regression analysis,
and heuristics-guided symbolic execution.
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1public int compute(int curr, int thresh, int step){
2 int delta = 0;
3 if (curr < thresh){
4 delta = thresh - curr;
5 if ((curr + step) < thresh)
6 return -delta;
7 else
8 return 0;
9 } else {

10 int counter = 0;
11 while (curr >= thresh) {
12 curr = curr - step;
13 counter++;
14 }
15 return counter;
16 }
17}

Figure 1. Example program

II. BACKGROUND

Symbolic execution [13], [7] is a program analysis tech-
nique that uses symbolic values, instead of actual data, as
inputs to execute a program fragment, e.g. a program or
a method within a program. The technique represents the
values of program variables as symbolic expressions and it
computes the outputs as a function of the symbolic inputs.
The state of a symbolically executed program includes
the (symbolic) values of program variables and a path
constraint (PC). The path constraint is a (quantifier free)
Boolean formula over the symbolic inputs; it accumulates
the constraints on the inputs in order for an execution to
follow the particular associated path. A symbolic execution
tree characterizes the paths followed during the symbolic
execution of a program. The nodes represent program states
and the arcs represent transitions between states.

We illustrate symbolic execution on the program in Fig-
ure 1, that we will use as a running example throughout the
paper. Method compute has three integer inputs: curr
(current), thresh (threshold) and step; it calculates the
relationship between the current and the threshold, in incre-
ments given by the step value.

Figure 2 shows the corresponding symbolic execution
tree. Initially, PC is true and curr, thresh and step
have symbolic values Sym1, Sym2 and Sym3, respectively.
Program variables are assigned expressions in terms of these
symbolic inputs; e.g., after executing statement 4, d becomes
Sym2−Sym1. At each branch point, there is a choice in the
execution and PC is updated with assumptions about the
inputs, to choose between alternative paths. For example,
after the execution of statement 3, both then and else
alternatives of the if statement are possible, and PC is
updated accordingly. Whenever PC is updated, it is checked
for satisfiability using off-the-shelf decision procedures. If
PC becomes false (there are no inputs that satisfy it) it
means the state is un-reachable, and symbolic execution
does not continue for that path. This happens when the
while statement at line 11 is executed the first time: the
PC corresponding to the condition for exiting the loop
is unsatisfiable.Test inputs are generated by solving the

curr:	  Sym1,	  thresh:	  Sym2,	  step:	  Sym3	  
Path	  condi2on	  PC:	  true	  

…	  delta:	  0	  

…	  PC:	  Sym1	  <	  Sym2	   …	  PC:	  Sym1	  ≥	  Sym2	  

…	  delta:	  Sym2-‐Sym1	  

…	  PC:	  Sym1	  <	  Sym2	  /\	  	  
	  	  	  	  	  	  	  	  	  	  	  Sym1+Sym3<Sym2	  

…	  PC:	  Sym1	  <	  Sym2	  /\	  	  
	  	  	  	  	  	  	  	  	  	  	  Sym1+Sym3	  ≥	  Sym2	  

…	  Return:	  -‐(Sym2-‐Sym1)	   …	  Return:	  0	  

…	  counter:	  0	  

…	  PC:	  Sym1	  ≥	  Sym2	  /\	  	  	  	  
	  	  	  	  	  	  	  	  	  	  	  Sym1	  <	  Sym2	  	  	  

…	  PC:	  Sym1	  ≥	  Sym2	  /\	  
	  	  	  	  	  	  	  	  	  	  	  Sym1	  ≥Sym2	  	  	  

…	  curr:	  Sym1–Sym3	  

…	  counter:	  1	  

…	  PC:	  Sym1	  ≥	  Sym2	  /\	  	  	  	  	  	  
	  	  	  	  	  	  	  	  	  	  	  Sym1-‐Sym3<Sym2	  	  	  

…	  Return:	  1	  

…	  PC:	  Sym1	  ≥	  Sym2	  /\	  	  	  	  	  	  
	  	  	  	  	  	  	  	  	  	  	  Sym1-‐Sym3	  ≥	  Sym2	  	  	  

…	  curr:	  Sym1–Sym3-‐Sym3	  

…	  

[2]	  

[3]	   [3]	  

[4]	  

[5]	   [5]	  

[6]	   [8]	  
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[11]	   [11]	  
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[15]	   [12]	  

[13]	  

Unsat!	  

…	  counter:	  2	  
[11]	  [11]	  
…	  

Figure 2. Symbolic execution tree

collected PCs.
Symbolic execution of looping programs may result in

an infinite symbolic execution tree (see Figure 2 where the
expansion of the right-most leaf in the tree may continue
forever). For this reason, one needs to put a limit on the
depth of the search for symbolic paths, and iteratively
increase that depth until either an error is found or the
desired testing coverage has been achieved.

III. MEMOIZED SYMBOLIC EXECUTION

A. Overview

Given program p and execution depth bound b, memo-
ized symbolic execution (Memoise) addresses the problem
of running symbolic execution on problem instance 〈p, b〉
given that symbolic execution was already performed on
problem instance 〈pold, bold〉. Memoise leverages the results
of running symbolic execution on 〈pold, bold〉 by caching
them and re-using them when running symbolic execution
on 〈p, b〉 based on the following two observations.
Observation 1. If a path constraint exists in the previous run
of symbolic execution and was solved previously, it does not
need to be solved again, and the solving result for it from
the previous run can be reused.
Observation 2. If path constraints for all paths that continue
from some point in the exploration space remain the same as
those in the space previously explored, the subspace rooted
at that point can be pruned, and the solving results for these
path constraints from previous run of symbolic execution
can be reused.

B. Symbolic Execution Trie

Memoise uses an efficient trie [8], [27] based data struc-
ture for representing the symbolic execution tree, i.e. the
global state of a symbolic execution run. A trie (prefix
tree) is an ordered tree that enables efficient retrieval of
the information stored in it.



3,	  0,	  compute,	  
Sym1	  <	  Sym2	  

3,	  1,	  compute,	  
Sym1	  ≥	  Sym2	  

5,	  0,	  compute,	  
Sym1	  <	  Sym2	  /\	  	  
Sym1+Sym3<Sym

2	  

5,	  1,	  compute,	  
	  Sym1	  <	  Sym2	  /\	  	  

	  Sym1+Sym3	  ≥	  Sym2	  

11,	  0,	  compute	  
Sym1	  ≥	  Sym2	  /\	  	  	  	  
Sym1	  <	  Sym2	  	  	  

11,	  1,	  compute,	  
Sym1	  ≥	  Sym2	  /\	  
Sym1	  ≥Sym2	  	  	  

11,	  0,	  	  compute	  
Sym1	  ≥	  Sym2	  /\	  	  	  	  	  	  
Sym1-‐Sym3<Sym2	  	  	  

11,	  1,	  compute,	  
Sym1	  ≥	  Sym2	  /\	  	  	  	  	  	  

Sym1-‐Sym3	  ≥	  Sym2	  	  	  

Root	   n1	  

n3	  

n2	  

n8	  

n5	  

n4	   n7	  n6	  

n9	  

Figure 3. Example trie

The symbolic execution trie compactly represents the sym-
bolic execution tree generated during symbolic execution
and can be maintained and re-used on-the-fly, either when
the program is checked with a greater bound or the program
undergoes changes. The benefits of using symbolic execution
trie are two-fold: first, users can easily retrieve the symbolic
execution results of the same system repeatedly; second, if
the system undergoes development or it is checked with a
greater bound, only part of the data structure needs to be
maintained, which should be cheaper than re-running the
symbolic execution from scratch.

1) Build: The symbolic execution trie is built on-the-fly
during symbolic execution. Whenever a conditional instruc-
tion is symbolically executed, a trie node is created, record-
ing the location of the symbolic conditional, i.e., method and
the bytecode offset, the choice taken by the execution, and
the corresponding path constraint. Therefore, the symbolic
execution trie compactly represents the symbolic execution
tree, and captures important information generated during
symbolic execution. Figure 3 shows the trie for our running
example (for depth bound 3). There are three types of trie
nodes:

• Unsatisfiable: nodes that have an unsatisfiable path
condition (e.g., n6 in Figure 3).

• Boundary: nodes that are trie leaves, due to depth
bounded symbolic execution (e.g., n9 in Figure 3).

• Regular: all the other nodes.

2) Maintenance: The trie needs to be updated according
to the changes in the corresponding symbolic execution tree.
We consider two scenarios in which the symbolic execution
tree changes: (1) the program is changed, and the symbolic
execution of the program generates a different symbolic
execution tree; (2) the program is not changed but it is
analyzed using different execution depth bound, and the
symbolic execution tree is trimmed or extended due to the
change of the bound. We describe how the trie is maintained

in both of the two scenarios.
First, when the program is changed, an impact analysis is

applied to find the parts of the trie that need to be updated.
Since only the execution of the program change would lead
to a change in the trie, we check impacted nodes, which are
the trie nodes whose corresponding program execution may
directly lead to the execution of the change, and only the
sub-parts rooted at the impacted nodes need to be updated.
The trie path prefixes from the root to those impacted nodes
should remain the same. One extreme is that the change
is unreachable and not executed during symbolic execution,
and thus there are no impacted nodes in the trie, in which
case there is no need to update the trie at all.

Second, when the program is not changed, but the pro-
gram is symbolically executed using different bounds. It
is common for users to increase the bound to check for
more program behaviors. In such case, the trie needs to
be extended to reflect the new behaviors. However, the
behaviors within the bound remain the same as before and
thus the old trie forms a sub-structure of the new trie and
the boundary nodes are extended with parts which encode
the new program behavior.

3) Size: As mentioned, a trie node is created when a
conditional instruction is symbolically executed. Thus, the
size of the trie is proportional to the number of executions
of symbolic conditionals. Since the trie need to be stored to
and loaded from disk so that it can be used across different
runs of symbolic execution, the trie for big exploration space
may be too big, and the storing and loading of the trie may
take much time. However, the trie could be compressed
depending on the applications of the trie. Furthermore,
we expect the cost of building and maintaining the trie
to be amortized during multiple successive applications of
symbolic execution.

C. Memoise

In “classical” symbolic execution, the symbolic execution
results for a system cannot be reused in a subsequent
analysis of that system. Users have to re-run symbolic
execution from the very beginning to generate results, even
when system does not have any change.

Memoized symbolic execution enables efficient re-
execution based on the results cached in the trie structure.
For re-execution, Memoise first analyzes the trie to mark
the paths which need to be re-executed - all nodes on the
paths from the root to the “candidate” nodes are marked
as “enabled”. When performing iterative deepening, the
boundary nodes are candidate nodes; and when performing
regression analysis, the impacted nodes are candidate nodes.
Memoise monitors the symbolic execution of the program
and whenever a conditional instruction is executed sym-
bolically, it makes the corresponding traversal in the trie.
Furthermore, Memoise turns off constraint solving for the
portion of the path whose information has already been



stored in the trie. When a disabled node is encountered,
the traversal backtracks and at the same time requests the
symbolic execution to backtrack as well. When a candidate
node is encountered, constraint solving is turned on. The
part of the trie rooted at the candidate node is then built
when new states are explored, using traditional symbolic
execution. Constraint solving is turned off again when the
traversal backtracks from a candidate node.

D. Correctness

The correctness of our proposed approach is based on
two assumptions: first, constraint solving is deterministic,
i.e., given a constraint, the underlying constraint solver or
decision procedure would always give a unique answer
on satisfiability; second, the order among the branches of
a symbolic conditional is uniquely determined. The first
assumption assures that the unsatisfiable nodes in a trie
would be always unsatisfiable nodes if their path condi-
tions do not change. The second assumption maintains the
correspondence of nodes across tries for different runs of
symbolic execution, i.e., the executions of a path that is not
impacted by a change or specified execution bound would
result in nodes with the same position in the tries.

IV. ENABLED APPLICATIONS

We envision many applications that can be optimized
using memoized symbolic execution. We describe in detail
here how Memoise enables three “standard” applications of
symbolic execution: symbolic execution with iterative deep-
ening, regression analysis and symbolic execution guided by
heuristics to enhance program coverage. We further discuss
other, less standard, applications that could benefit from
Memoise.

A. Three Representative Applications

1) Iterative Deepening: Memoized symbolic execution
enables an efficient iterative deepening approach by re-using
the results from smaller depths when exploring paths at
larger depths. The approach works as follows. In the first
iteration, we explore paths exhaustively up to a certain depth
and store the symbolic execution tree in the trie structure
defined in the previous section. Then, we select the paths that
end in a boundary node and, guided by the trie, we execute
them up to the next depth bound. During re-execution we
turn off constraint solving for the portion of the path that has
been already explored in the previous iteration, as recorded
in the trie. The process repeats until all paths are explored,
or the new bound is reached. For example, if we get the
trie of Figure 3 in the first iteration and want to explore
paths at a larger depth in the next iteration, we only select
the path n1→ n5→ n7→ n9 to re-execute since only n9
is a boundary node. We turn off constraint solving for the
portion from n1 to n9, and turn on constraint solving after
n9 is encountered in trie traversal.

2) Heuristics-guided Symbolic Execution: The iterative-
deepening approach described above has been further ex-
tended to perform a heuristic search of program paths, as
guided by the testing coverage achieved so far. At each
iteration, the approach discovers those paths that may lead to
increased code coverage, and selects only those paths for re-
execution up to larger depths in subsequent iterations. The
analysis computes the coverage achieved by the explored
paths on the control flow graph of the program and maintains
a mapping between the program control flow graph and the
symbolic execution trie. We next give some basic definitions
and then describe our heuristics.

Definition 1. Control flow graph (CFG): A CFG of a
method in the program is a directed-graph represented
formally by a tuple 〈N,E〉. N is the set of nodes, where each
node is labeled with a unique program location identifier.
The edges, E ⊆ N×N , represent possible flow of execution
between the nodes in the CFG. Each CFG has a single begin,
nbegin , and end, nend , node. All the nodes in the CFG are
reachable from the nbegin and the nend node is reachable
from all nodes in the CFG.

Definition 2. Reachability: A node n1 in CFG for method
m1 is reachable from a node n2 in CFG for method m2 if
at least one of the following conditions is satisfied:
(1) m1 and m2 are the same method, and n1 is reachable
from n2 in the CFG.
(2) In CFG for m2 , there is a node n3 reachable from n2 ,
and the invocation of m1 is located at n3 .
(3) In CFG for m2 , there is a node n3 reachable from n2 ,
the invocation of m3 is located at n3 , and m1 is reachable
in the call graph from m3 .

We define the following two heuristics:
• Reachability: A reachability analysis is performed to

determine which paths may potentially reach the un-
covered nodes. Only those paths are then selected for
re-execution at the next iteration. A simplified version
of this heuristic could be just favoring paths that end in
certain methods, assuming that the target is reachable
from those methods.

• Counter: Sometimes, the execution of the uncovered
part of the program depends on certain number of
execution of specific statements, and intuitively the
more those specific statements are executed, the more
likely the uncovered part would be covered. Therefore,
we can count how many times those specific statements
are executed for each path, and select paths with
the maximum counter to re-execute. For example, we
use the mapping of CFG and trie to find the nearest
executed symbolic conditional branch that leads to the
uncovered part, and count how many times the branch
is executed on each path using the trie.



3) Regression Symbolic Execution (RSE): In regression
symbolic execution (RSE), program differences are utilized
to make symbolic execution more efficient on the subsequent
program version. The results generated by RSE should
be complete, i.e., they should be the same as the results
generated by regular symbolic execution.

Memoise enables RSE by only allowing the paths im-
pacted by the change to be re-executed. Moreover, for the
portion of the path up to the impacted node, constraint
solving is turned off, and only the part rooted at the impacted
node needs to be rebuilt while it is explored with constraint
solving turned on.

The control flow graph (CFG) of the program together
with the trie are used to calculate the impacted trie nodes,
and hence to guide symbolic execution to only execute
paths with impacted trie nodes. Given a changed node in
the CFG, we used backward reachability to find the first
symbolic conditional branch on that path, and the trie nodes
corresponding to the branch that are impacted. For example,
assume a change is made to line 6 of the program shown
in Figure 1, where delta instead of -delta is returned.
Tracing the change towards the entry of the program in the
CFG, we can find that the true branch of the symbolic con-
ditional instruction at line 5 is the nearest symbolic branch
leading to the change. We map this to the trie, and find the
corresponding node n3 in Figure 3. n3 is the impacted node,
and only the execution of n3 would lead to execution of the
change. Therefore, we select the trie path n1 → n2 → n3
to guide the exploration; the execution corresponding to the
other trie paths can be pruned; constraint solving is turned
off for the execution corresponding to the selected path; it
is turned on when n3 is encountered.

B. Other Applications

1) Continuous Testing: Memoise can enable exciting
new applications such as “continuous testing” [20]. Similar
to “continuous compilation” in modern IDEs, continuous
testing uses excess CPU cycles on a software developer’s
workstation to continuously test the code, while the devel-
oper works on writing it. In the original continuous testing
approach [20], the test cases were provided explicitly by
the user. One can use memoized symbolic execution to con-
tinuously and incrementally generate the tests automatically,
while the code is being written. Similar to RSE, a differential
analysis could monitor for program changes and determine
the impacted branches in the trie structure. That information
can be used to drive the symbolic execution of the impacted
parts of program and re-generate parts of the trie and the
corresponding tests, while unchanged parts of the trie and the
corresponding tests are still there for reuse. In this way, the
trie structure and tests generated from symbolic execution
can be efficiently maintained when the program evolves.

2) Load Balancing for Parallel Symbolic Execution: Par-
allel techniques have shown promise in addressing the scal-

ability issues of symbolic execution [24]. The trie structure
obtained from a “shallow” memoized symbolic execution
can be used to obtain information for building balanced
partitions of the symbolic execution tree. The obtained
static partitions can then be distributed for further “deeper”
parallel symbolic execution on different machines. This
would be more efficient than a previous parallel execution
approach [24] that uses a set of disjoint pre-conditions for
static partitioning; these additional pre-conditions contribute
extra constraints that may slow down the analysis signif-
icantly. The trie can be further used to perform dynamic
load balancing, by re-distributing the computation during the
parallel exploration, based on the previously cached results.

3) Partial Symbolic Execution: When “classical” sym-
bolic execution runs out of resources (time or memory),
the significant computation performed by symbolic execu-
tion is typically lost. In contrast, even when running out
of resources, Memoise returns compact information about
the partially explored symbolic state space. The symbolic
execution trie stores the constraints that provide a logical
characterization of the “context” in which the method has
been analyzed. Such ”pre-conditions” can be used for a
modular verification. If a “caller” method m1 satisfies the
pre-conditions of partially analyzed method m2, we know
that there will be no errors exhibited (assuming m2 did
not exhibit any errors during the partial run). The trie
structure can be further mined for additional information
that may be useful to the user such as path feasibility and
unreachable code. As expected, Memoise also enables a
form of incremental partial symbolic execution, i.e. next time
one can restart symbolic execution guided by the trie paths
that end in boundary nodes.

4) Component Certification: Component-based software
engineering enables rapid development of systems through
the assembly of pre-existing components. Before using an
acquired component one must certify that the component
is safe and performs as advertised. This is particularly
important for third-part components that come from un-
trusted sources. Memoise enables program certification, by
reducing it to checking the provided trie. Thus, the trie acts
as the “program certificate”, and program certification is
then the efficient memoized symbolic re-execution. Since
in re-execution, constraints solving is turned off, program
certification could be done on different platforms; this is
a significant benefit, since it is often the case that many
constraint solvers are platform specific.

The approach is similar to “search-carrying code” [25],
which uses explicit-state model checking for certification.
Symbolic execution may be better suited for certification,
since it can analyze components that are “open” (i.e. have
un-specified inputs), which is typical, while explicit-state
model checking analyzes closed systems.



V. IMPLEMENTATION AND EXPERIMENTS

A. Implementation

We use Symbolic PathFinder (SPF) [17], [15], an open
source symbolic execution tool for Java bytecode. SPF is
part of the Java PathFinder verification tool-set [2] which
includes JPF-core, an explicit-state software model checker,
and several extension projects, one of them being SPF. JPF-
core implements an extensible custom Java Virtual Machine
(VM), state storage and backtracking capabilities, different
search strategies, as well as listeners for monitoring and
influencing the search. By default, JPF-core executes the
program concretely based on the standard semantics of the
Java.SPF replaces the concrete execution semantics with a
non-standard symbolic interpretation of bytecodes.

Symbolic execution of conditional instructions is per-
formed by generating a non-deterministic choice using a PC
choice generator. Each choice is associated with a path con-
straint encoding the condition or its negation respectively.
The path constraints are checked for satisfiability using off-
the-shelf decision procedures or constraint solvers. If the
path constraint is satisfiable, the search continues; otherwise,
the search backtracks.

We have implemented the procedures for: building the
trie, iterative deepening, regression symbolic execution, and
different guided heuristics for increasing the coverage during
symbolic execution. All the procedures are implemented as
JPF listeners. When building the trie, JPF’s search events
such as “state advanced” and “state backtracked” are mon-
itored, so that whenever a conditional instruction bytecode
is symbolically executed a trie node is created as a child of
the current trie node, and the current trie node is updated
while the search is advanced or backtracked correspondingly.
Information including the conditional instruction bytecode
offset, the choice taken by execution, the fully qualified
method name, and the path constraint is collected in runtime.
When the search depth bound is hit, the current trie node at
that point is marked as boundary.

We have both implemented the reachability and counter
heuristics for guiding the symbolic execution towards in-
creasing the code coverage. To facilitate regression analysis
and heuristic search, we implemented a custom control flow
analysis, and the mapping between control flow graphs and
the trie is maintained, so that the analyses can be conducted.
The analysis traces back from the change to the root in the
Control Flow Graph path, to find the nearest branch of a
symbolic conditional. The branch has an offset and a choice,
which are used to map to the trie to find the impacted trie
nodes. The parts of trie rooted at those impacted trie nodes
should be rebuilt.

B. Example Programs

1) Loops: Looping programs pose particular challenges
to symbolic execution and handling them efficiently is an

1public void testLoop1(int x) {
2 int c=0 , p=0 ;
3 while(true) {
4 if(x<=0) break;
5 if(c==50) {
6 System.out.println("abort1");
7 assert false; // error 1
8 }
9 c=c+1;

10 p=p+c;
11 x=x-1;
12 }
13 if(c==30) {
14 System.out.println("abort2");
15 assert false; // error 2
16 }
17}

Figure 4. Example program with one loop

1public static void testLoop2(int x, int y) {
2 int c=0 , p=0 ;
3 while(true) {
4 if(x<=0){
5 break;
6 }
7 if(c==100) {
8 System.out.println("abort1");
9 assert false; // error 1

10 }
11 c=c+1;
12 x=x-1;
13 }
14

15 while(true) {
16 if(y<=0){
17 break;
18 }
19 if(p==50 && c==2) {
20 System.out.println("abort2");
21 assert false; // error 2
22 }
23 p=p+1;
24 y=y-1;
25 }
26}

Figure 5. Example program with two loops

active area of research. We investigate here how the proposed
techniques based on Memoise can help with dealing loops.
The example in Figure 4 has been used in previous work on
loop analysis [10] where test inputs are generated to exercise
the two statements at line 6 and line 13.

The example in Figure 5 is similar, except that the part
after the first loop is another loop, instead of a simple
conditional statement. Note that in both cases, symbolic
execution results in an unbounded execution tree.

2) BankAccount: The bank account example shown in
Figure 6 has been used in previous work [11] to illustrate
method sequence generation using symbolic execution and
evolutionary testing. The example implements a bank ac-
count service. In the BankAccount class, the deposit
method is used to deposit money in the account. The
withdraw method is used to withdraw money from the
account. In withdraw, if the amount to be withdrawn
is greater than the account balance,an error message is
printed and the method exits. If the number of withdrawals
(numberOfWithdrawals) completed so far is greater



1public class BankAccount {
2 private int balance;
3 private int numberOfWithdrawals;
4 public void deposit(int amount) {
5 if (amount > 0)
6 balance = balance + amount;
7 }
8 public void withdraw(int amount) {
9 if (amount > balance) {

10 printError();
11 return;
12 }
13 if (numberOfWithdrawals >= 5) {
14 assert false;
15 printError();
16 return;
17 }
18 balance = balance - amount;
19 numberOfWithdrawals++;
20}

Figure 6. A bank account example

than or equal to a fixed quantity (5) an error message
is again printed and the method exits; otherwise, the
withdrawal amount is dispensed, and both balance and
numberOfWithdrawals are updated.

3) WBS: Wheel Brake System (WBS) is a synchronous
reactive component from the automotive domain. This
method determines how much braking pressure to apply
based on the environment. The Java model is based on a
Simulink model derived from the WBS case example found
in ARP 4761 [19], [12]. The Simulink model was translated
to C using tools developed at Rockwell Collins and manually
translated to Java. It consists of one class and 231 LOC.

4) TCAS: Traffic Anti-Collision Avoidance System
(TCAS) is a system to avoid air collisions. Its code in C
together with 41 mutants are available at SIR repository [3].
We manually converted the code to Java. The Java version
has 143 LOC. We have used this example before in the
context of regression analysis [16].

5) MerArbiter: MerArbiter models a component of the
flight software for NASA/JPL’s Mars Exploration Rovers
(MER). The analyzed software consists of a Resource Ar-
biter and several user components. Each user serves one spe-
cific application, such as imaging, controlling the robot arm,
communicating with earth, and driving. The arbiter module
moderates access to several shared resources. It prevents
potential conflicts between resource requests coming from
different users and it enforces priorities. For example, it does
not make sense to start a communication session with Earth
while the rover is driving.

MerArbiter has been modeled in Simulink/Stateflow and
it was automatically translated into Java using the Polyglot
framework [5]. The configuration for our analysis involved
two users and five resources. The example has 268 classes,
553 methods, 4697 lines of code (including the Java Polyglot
execution framework).

6) Apollo: The Apollo Lunar Autopilot is a Simulink
model that was automatically translated to Java. The trans-
lated Java code has 2.6 KLOC in 54 classes. The Simulink

model was created by an engineer working on the Apollo
Lunar Module digital autopilot design team. The goal was to
study how the model could have been designed in Simulink,
if it had been available in 1961. The model is available from
MathWorks6. It contains both Simulink blocks and State-
flow diagrams and makes use of complex Math functions
(e.g. Math.sqrt). The code has been analyzed before using
Symbolic Pathfinder with the Coral solver [23].

C. Experimental Results

1) Iterative Deepening: We conducted several groups of
experiments. In each group, we increase the depth from A
to B. At depth A we built the trie while at depth B, we
re-used and updated the trie. We also conducted regular
symbolic execution as implemented in SPF with both depth
A and depth B. We collected time and states explored results
which are reported by SPF for regular symbolic execution
and iterative deepening at both of the two iterations. We also
collected the number of calls to the underlying constraint
solver.

In Table I-(a), we can see that the symbolic execution
with trie building took 10 to 20 seconds more than the
regular symbolic execution; the iterative deepening approach
explored fewer states, and had much fewer solver calls, but
took almost the same time compared with regular symbolic
execution. Note that the space is very big, and much time
was spent on storing and loading the trie. When this part of
time is excluded, the iterative deepening approach at depth
25 and 30 took only 26 seconds and 17 seconds respectively,
which is significantly less than regular symbolic execution.

In Table I-(b), we find that symbolic execution with trie
building and regular symbolic execution took almost the
same time, and the time for building the trie is almost neg-
ligible. However, the iterative deepening approach achieved
great reductions in terms of the state space explored, the
number of solver calls, and time. Especially for the last
group where the depth is increased from 34 to 35, the
reduction is more than an order of magnitude.

In Table I-(c), similar to (b), the time cost for building the
trie is little. Interestingly, the iterative deepening made half
calls to the solver, and took half time as regular symbolic
execution, but almost explored the same number of states.
Moreover, the time difference between iterative deepening
approach and regular symbolic execution is almost the time
used by regular symbolic execution at the smaller depth. The
reason for this is that constraint solving for this example is
quite expensive, and the constraint solving during executing
the paths up to the smaller depth is turned off in symbolic
execution with iterative deepening at the larger depth.

We find that symbolic execution with trie building and
regular symbolic execution took almost the same time, and
the time for building the trie is almost negligible. However,
the iterative deepening approach achieved great reductions
in terms of the state space explored, the number of solver



Depth Time for A (mm:ss) States for B Time for B (mm:ss) #Solver calls for B
A B Regular Build Regular Iterative Regular Iterative Regular Iterative

24 25 00:34 00:43 349272 252952 00:38 00:46 335358 77312
29 30 01:01 01:20 644184 171784 01:02 00:54 629758 32256

(a) WBS Example

Depth Time for A (mm:ss) States for B Time for B (mm:ss) #Solver calls for B
A B Regular Build Regular Iterative Regular Iterative Regular Iterative

24 25 01:17 01:28 17103 16756 02:40 01:35 12252 2942
29 30 02:54 02:48 33273 15250 02:50 01:24 25684 1540
34 35 03:01 02:48 35359 1476 03:38 00:20 27636 18

(b) MerArbiter Example

Depth Time for A (mm:ss) States for B Time for B (mm:ss) #Solver calls for B
A B Regular Build Regular Iterative Regular Iterative Regular Iterative
9 10 03:12 03:15 674 647 04:15 02:01 591 243

11 12 13:48 14:02 2243 2113 26:13 12:12 2160 966
(b) Apollo Example

Table I
ITERATIVE DEEPENING RESULTS

calls, and time. Especially for the last group where the depth
is increased from 34 to 35, the reduction is more than an
order of magnitude.

Since building the trie only monitors the search and builds
the data structure, instead of changing the behavior of the
search engine or underlying constraint solver, it should not
influence the number of states and number of solver calls.
We didn’t report the states and the number of solver calls for
A in the table, but we examined the results on each group
and the results were the same as expected.

2) Regression Symbolic Execution (RSE): We performed
experiments on TCAS and MerArbiter to evaluate the effec-
tiveness of regression symbolic execution based on mem-
oized symbolic execution. The trie is built when symbolic
execution is performed of the original program version, and
then reused for the run of symbolic execution of a new
program version.

We collected the number of states explored, time cost,
and the number of solver calls for both regular symbolic
execution and regression symbolic execution on the changed
program version only, because the cost for building the trie
is similar to what we have for iterative deepening approach.

For TCAS, we randomly selected three mutant versions v6,
v25, and v30 from the SIR repository [3]. Version v6 has
an operator change from “<” to “<=”, v25 has an operator
change, and v30 has an return value change. Since there were
no previous versions for MerArbiter, we randomly picked
two methods, and manually introduced the changes. Version
v1 has a change to the return value in the method guard
of class Transition300, and version v2 has an operator
change from “==” to “! =” in the method guard of class
Transition186.

In Table II, we can see that for TCAS, the reduction of
states explored is not much. Compared with regular symbolic
execution, RSE took about 1.5 minutes less than regular

Version States Time (mm:ss) #Solver calls
Regular RSE Regular RSE Regular RSE

v6 2688 2186 04:48 03:15 2566 1696
v25 2688 2658 04:40 03:46 2566 2016
v30 752 722 01:08 01:06 686 632

(a) TCAS Example

Version States Time (mm:ss) #Solver calls
Regular RSE Regular RSE Regular RSE

v1 17718 6567 01:45 00:39 12596 2072
v2 17103 43 01:47 00:05 12252 2

(b) MerArbiter Example

Table II
REGRESSION SYMBOLIC EXECUTION RESULTS

symbolic execution on version v6, about one minute less on
version v25, but about the same time on version v30. The
reduction in the number of solver calls varies. There is about
one third reduction on v6, but almost no reduction on v30.

For MerArbiter, the reduction is significant. On version
v1, RSE explored about one third of the number of states,
took less than one third of the time compared with regular
symbolic execution, and made about one sixth number
of calls to constraint solver. On version 2, the reduction
achieved by RSE is even more significant. The differences
in both time, states explored, and number of solver calls are
several orders of magnitude.

3) Heuristics-guided Symbolic Execution: For the
BankAccount example shown in Figure 6, a symbolic driver
which symbolically selects the method deposit or withdraw
and symbolically picks the amount to be withdrawn and to
be deposited, is used to generate sequences of methods to
cover the program. We note that the statements at lines 14,
15 and 16 are hard to cover. 37 is the smallest depth bound
at which symbolic execution can cover the three statements.

Without using heuristics, the regular symbolic execution



with depth bound 37 explored 16381 states, took one minute
and 46 seconds, and made 8190 solver calls. The two
heuristics were applied based on the trie collected at a
smaller depth, which is termed as base depth. We picked
20, 25, 30, and 35 as the base depth. In Table III-(a), we
can see that, for tries built at both depth 20 and 25, the
reachability heuristic selected half of the paths ended with
boundary nodes as candidates to execute, explored half of
the state space, took about 50 seconds less than regular
symbolic execution, and made about four thousand solver
calls. However, for the two tries built at depth 30 and
35, no path was taken as a candidate, and the heuristic is
just not applicable. In Table III-(b), with counter heuristic
applied, the number of candidate path is 1 or 2 for the tries
built at the four different depths. Moreover, the number of
states explored and the number of solver calls are much
less than regular symbolic execution, but the time reduction
is similar to what was achieved by reachability heuristic.
It is conjectured that most time is spent on solving some
specific hard-to-solve constraints, and the conjecture seems
supported by the last row in the table. Note that for all
cases where either reachability heuristic or counter heuristic
is applicable, the hard-to-cover part was covered.

We have also analyzed the two loop examples using the
reachability heuristics. Error 1 in Figure 4 is very difficult
to uncover; we considered both error 1 and error 2 as
our coverage targets. The reachability heuristic can not help
with this example, since no matter what the depth bound
is, the symbolic execution tree has only one boundary node,
resulting in no pruning. On the other hand, the loop example
shown in Figure 5 contains a more realistic scenario, with
two loops, where each loop has an error to cover, and the
first error is harder to cover. We ran symbolic execution
with the depth iteratively deepened, from 40 to 120, each
time the depth is increased by 20. The results are shown
in Table III-(c). At depth 40, the heuristic had no effect
since there was no trie available; while at depth 60, the
heuristic applied on the trie built at depth 40 only reduced
calls to the constraint solver since both targets error 1
and error 2 were reachable from all boundary nodes of
the trie. However, since symbolic execution at depth 60
covered error 2, leaving error 1 as the only target, we
used reachability heuristic to guide the symbolic execution
to cover error 1. The error 1 was not covered until
the depth was 120. We find that the heuristic explored much
less number of states and made less solver calls as well. The
time difference is not significant since the constraint solving
and space exploration took just few seconds.

For the MerArbiter example, we used the reachability
heuristic with the class modeling the arbiter as target. We
used the trie collected while running symbolic execution
with depth bound 25 for the run with depth bound 30.
In Table III-(d), we find that the savings achieved by the
reachability heuristic are significant. We checked the byte-

Base Depth Candidates States Time (mm:ss) #Solver calls
20 32/64 8253 00:56 4032
25 128/256 8445 00:55 3840
30 0/512 - - -
35 0/2048 - - -

(a) Reachability Heuristic for BankAccount

Base Depth Candidates States Time (mm:ss) #Solver calls
20 1/64 277 00:50 127
25 1/256 93 00:50 31
30 2/512 93 00:39 29
35 2/2048 53 00:47 5

(b) Counter Heuristic for BankAccount

Depth States Time (mm:ss) #Solver calls
Regular HR Regular HR Regular HR

40 1484 1484 00:04 00:04 1482 1482
60 3416 3416 00:03 00:03 3414 1932
80 6114 538 00:04 00:03 6114 420
100 9616 578 00:06 00:03 9614 420
120 13610 312 00:09 00:03 13608 114

(c) Reachability Heuristic for example with two loops

Depth States Time (mm:ss) #Solver calls
Regular HR Regular HR Regular HR

25→30 33273 2071 03:15 00:20 25684 932
(d) Reachability Heuristic for MerArbiter

Table III
HEURISTICS GUIDED SYMBOLIC EXECUTION RESULTS

code coverage for both regular symbolic execution and the
reachability heuristic guided symbolic execution: 0.91 for
heuristic guided vs. 0.93 for regular symbolic execution at
depth 30. Although the regular symbolic execution covered
a little more which is reasonable considering that a lot
more effort was spent in regular symbolic execution, the
reachability heuristic does help improve the coverage of the
target class.

D. Threats to Validity

The primary threats to external validity for our experi-
ments include (1) the use of SPF where our approach and the
enabled analyses were implemented, (2) the use as specific
underlying constraint solver, (3) the selection of examples
used in the experiments, (4) the specific depths picked for
symbolic execution, and (5) mutants selected or created.
Implementing our approach and enabled analyses in another
framework or using another constraint solver/decision proce-
dure could produce different results. Some of the examples
selected for our experiments are small, but they are used
by recent research work to show some limitation of current
symbolic execution and they can serve as good example for
illustrating the effectiveness of our approach. The different
depth specified may produce different results. We controlled
this by using several groups with different depths.

The primary threat to internal validity of our experiments
is the possible faults in the implementation of our approach
and analyses and also in SPF. We controlled for this threat



by testing the implementation on examples that we can
manually verify.

With respect to threats to construct validity, the metrics
we selected to evaluate the cost reduction achieved by
memoized symbolic execution and its enabled analyses are
commonly used to measure the cost of symbolic execution.

E. Discussion

For program WBS, the results of iterative deepening show
that loading and storing trie could be costly, especially when
the trie is growing big. However, since the paths ended with
regular nodes and unsatisfiable nodes are not useful for the
next iteration of symbolic execution, they can be pruned
when re-using the trie, and even more there is no need for
storing them. Thus, an incomplete trie with only paths ended
with boundary nodes can be used specifically for iterative
deepening approach. The main benefit is space reduction and
reduction of the time for storing and loading the trie, but the
reduction in states and solver calls should remain the same.

The savings of using regression symbolic execution de-
pends on the location of the change, and may vary quite a
lot between different kinds of changes. It is supported by
our results of regression symbolic execution.

In previous work, we have developed directed incremental
symbolic execution (DiSE) [16] for regression analysis.
DiSE uses static analysis to determine the differences be-
tween two program versions and uses this information to
guide the execution of symbolic paths towards exercising
that difference. RSE using trie may not always be as good
as DiSE, the reason being that DiSE analyzes affected
conditionals, and explores the branches in the symbolic exe-
cution tree only for them. For unaffected conditionals, it just
explores “one” feasible representative branch. In this sense,
DiSE covers all affected branches, but not affected paths.
However, our RSE implementation considers all affected
paths, and thus often times the savings are not as much
as what DiSE achieves.

However, there are several advantages of using RSE. First,
DiSE only generates affected path conditions, while RSE
generates trie which represents all paths. If a user wants a
complete test suite using DiSE, he/she needs to check what
path conditions get obsolete, which is not clear how to do.
Second, DiSE is based on static analysis, using control and
data flow analysis in CFG; while RSE is dynamic, based
on the trie, thus RSE is more precise. For example, when
the change is in an un-covered code, RSE does not need
to explore the state space at all, while DiSE still needs
to explore the part affected by the change. Third, for an
affected path DiSE performs a regular symbolic execution;
RSE explores the unchanged path prefix more efficiently by
turning off the constraint solving.

We implemented several simple heuristics enabled by
Memoise for experiments; there could be however more
effective heuristics based on Memoise. We leave it for future

work. Note that we only turn off the constraint solving
when re-executing a path. More significant savings could
be achieved, e.g. by saving JPF state and restarting from
there. This is left again for future work.

For most experiments, we find that the savings in terms
of number of solver calls is significant. However, it is not
reflected in savings of time. The reason is that constraint
solving for those programs is very cheap. We believe that
for programs with complex constraints, such as Apollo, one
would gain more benefits from using Memoise.

VI. RELATED WORK

There are many recent works that use symbolic execution
to perform some of the applications that we discussed in this
paper, such as regression analysis [16], parallel symbolic ex-
ecution [24], etc. We have already discussed the relationship
between some of these works and ours throughout the paper.

The main contribution of our work is the concept of
memoized symbolic execution, which turns out to enable a
multitude of applications. In this respect, Memoise is most
related to recent works on incremental and regression model
checking, e.g. [14], [28]. Those approaches save the state
space graph from one exploration and examine this graph to
determine whether a certain execution is needed during the
next exploration (after a program change). The work is done
in the context of explicit state model checking and therefore
is not concerned with the specific details of symbolic execu-
tion, such as storing path constraints, turning-off constraint
solving etc. Furthermore, the approaches [14], [28] target
a particular application, namely regression analysis, while
Memoise can enable multiple applications.

VII. CONCLUSIONS

We presented memoized symbolic execution (Memoise),
a new approach for more efficient application of forward
symbolic execution, that leverages the results cached from
previous analysis runs to improve the analysis in the current
run. Memoise uses a trie-based data structure that stores the
key elements of a run of symbolic execution. Maintenance of
the trie during successive runs allows re-use of previously
computed results of symbolic execution without the need
for re-computing them as is traditionally done. The results
cached by Memoise can be further used to guide the analysis
in successive runs.

Experiments using our prototype embodiment of Memoise
demonstrate its potential in enabling more efficient symbolic
execution in the context of three typical applications: iter-
ative deepening, regression analysis, and heuristics-guided
symbolic execution. In the future, we plan to investigate
in more detail and to implement the other applications that
we outlined here for Memoise. We further plan to perform
more experiments to fully assess the merits of the presented
techniques in practice.
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