2,542 research outputs found

    Social and behavioral determinants of health in the era of artificial intelligence with electronic health records: A scoping review

    Full text link
    Background: There is growing evidence that social and behavioral determinants of health (SBDH) play a substantial effect in a wide range of health outcomes. Electronic health records (EHRs) have been widely employed to conduct observational studies in the age of artificial intelligence (AI). However, there has been little research into how to make the most of SBDH information from EHRs. Methods: A systematic search was conducted in six databases to find relevant peer-reviewed publications that had recently been published. Relevance was determined by screening and evaluating the articles. Based on selected relevant studies, a methodological analysis of AI algorithms leveraging SBDH information in EHR data was provided. Results: Our synthesis was driven by an analysis of SBDH categories, the relationship between SBDH and healthcare-related statuses, and several NLP approaches for extracting SDOH from clinical literature. Discussion: The associations between SBDH and health outcomes are complicated and diverse; several pathways may be involved. Using Natural Language Processing (NLP) technology to support the extraction of SBDH and other clinical ideas simplifies the identification and extraction of essential concepts from clinical data, efficiently unlocks unstructured data, and aids in the resolution of unstructured data-related issues. Conclusion: Despite known associations between SBDH and disease, SBDH factors are rarely investigated as interventions to improve patient outcomes. Gaining knowledge about SBDH and how SBDH data can be collected from EHRs using NLP approaches and predictive models improves the chances of influencing health policy change for patient wellness, and ultimately promoting health and health equity. Keywords: Social and Behavioral Determinants of Health, Artificial Intelligence, Electronic Health Records, Natural Language Processing, Predictive ModelComment: 32 pages, 5 figure

    Delirium screening in an acute care setting with a machine learning classifier based on routinely collected nursing data: A model development study

    Full text link
    Delirium screening in acute care settings is a resource intensive process with frequent deviations from screening protocols. A predictive model relying only on daily collected nursing data for delirium screening could expand the populations covered by such screening programs. Here, we present the results of the development and validation of a series of machine-learning based delirium prediction models. For this purpose, we used data of all patients 18 years or older which were hospitalized for more than a day between January 1, 2014, and December 31, 2018, at a single tertiary teaching hospital in Zurich, Switzerland. A total of 48,840 patients met inclusion criteria. 18,873 (38.6%) were excluded due to missing data. Mean age (SD) of the included 29,967 patients was 71.1 (12.2) years and 12,231 (40.8%) were women. Delirium was assessed with the Delirium Observation Scale (DOS) with a total score of 3 or greater indicating that a patient is at risk for delirium. Additional measures included structured data collected for nursing process planning and demographic characteristics. The performance of the machine learning models was assessed using the area under the receiver operating characteristic curve (AUC). The training set consisted of 21,147 patients (mean age 71.1 (12.1) years; 8,630 (40.8%) women|) including 233,024 observations with 16,167 (6.9%) positive DOS screens. The test set comprised 8,820 patients (median age 71.1 (12.4) years; 3,601 (40.8%) women) with 91,026 observations with 5,445 (6.0%) positive DOS screens. Overall, the gradient boosting machine model performed best with an AUC of 0.933 (95% CI, 0.929 - 0.936). In conclusion, machine learning models based only on structured nursing data can reliably predict patients at risk for delirium in an acute care setting. Prediction models, using existing data collection processes, could reduce the resources required for delirium screening procedures in clinical practice

    Natural Language Processing in Electronic Health Records in Relation to Healthcare Decision-making: A Systematic Review

    Full text link
    Background: Natural Language Processing (NLP) is widely used to extract clinical insights from Electronic Health Records (EHRs). However, the lack of annotated data, automated tools, and other challenges hinder the full utilisation of NLP for EHRs. Various Machine Learning (ML), Deep Learning (DL) and NLP techniques are studied and compared to understand the limitations and opportunities in this space comprehensively. Methodology: After screening 261 articles from 11 databases, we included 127 papers for full-text review covering seven categories of articles: 1) medical note classification, 2) clinical entity recognition, 3) text summarisation, 4) deep learning (DL) and transfer learning architecture, 5) information extraction, 6) Medical language translation and 7) other NLP applications. This study follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Result and Discussion: EHR was the most commonly used data type among the selected articles, and the datasets were primarily unstructured. Various ML and DL methods were used, with prediction or classification being the most common application of ML or DL. The most common use cases were: the International Classification of Diseases, Ninth Revision (ICD-9) classification, clinical note analysis, and named entity recognition (NER) for clinical descriptions and research on psychiatric disorders. Conclusion: We find that the adopted ML models were not adequately assessed. In addition, the data imbalance problem is quite important, yet we must find techniques to address this underlining problem. Future studies should address key limitations in studies, primarily identifying Lupus Nephritis, Suicide Attempts, perinatal self-harmed and ICD-9 classification

    Artificial intelligence in orthopaedics:false hope or not? A narrative review along the line of Gartner's hype cycle

    Get PDF
    Artificial Intelligence (AI) in general, and Machine Learn-ing (ML)-based applications in particular, have the potential to change the scope of healthcare, including orthopaedic surgery.The greatest benefit of ML is in its ability to learn from real world clinical use and experience, and thereby its capability to improve its own performance.Many successful applications are known in orthopaedics, but have yet to be adopted and evaluated for accuracy and efficacy in patients' care and doctors' workflows.The recent hype around AI triggered hope for development of better risk stratification tools to personalize orthopaedics in all subsequent steps of care, from diagnosis to treatment.Computer vision applications for fracture recognition show promising results to support decision-making, overcome bias, process high-volume workloads without fatigue, and hold the promise of even outperforming doctors in certain tasks.In the near future, AI-derived applications are very likely to assist orthopaedic surgeons rather than replace us. 'If the computer takes over the simple stuff, doctors will have more time again to practice the art of medicine'.(76)</p

    Predicting incident delirium diagnoses using data from primary-care electronic health records

    Get PDF
    Importance risk factors for delirium in hospital inpatients are well established, but less is known about whether delirium occurring in the community or during an emergency admission to hospital care might be predicted from routine primary-care records. Objectives identify risk factors in primary-care electronic health records (PC-EHR) predictive of delirium occurring in the community or recorded in the initial episode in emergency hospitalisation. Test predictive performance against the cumulative frailty index. Design Stage 1: case-control; Stages 2 and 3: retrospective cohort. Setting clinical practice research datalink: PC-EHR linked to hospital discharge data from England. Subjects Stage 1: 17,286 patients with delirium aged ≥60 years plus 85,607 controls. Stages 2 and 3: patients ≥ 60 years (n = 429,548 in 2015), split into calibration and validation groups. Methods Stage 1: logistic regression to identify associations of 110 candidate risk measures with delirium. Stage 2: calibrating risk factor weights. Stage 3: validation in independent sample using area under the curve (AUC) receiver operating characteristic. Results fifty-five risk factors were predictive, in domains including: cognitive impairment or mental illness, psychoactive drugs, frailty, infection, hyponatraemia and anticholinergic drugs. The derived model predicted 1-year incident delirium (AUC = 0.867, 0.852:0.881) and mortality (AUC = 0.846, 0.842:0.853), outperforming the frailty index (AUC = 0.761, 0.740:0.782). Individuals with the highest 10% of predicted delirium risk accounted for 55% of incident delirium over 1 year. Conclusions a risk factor model for delirium using data in PC-EHR performed well, identifying individuals at risk of new onsets of delirium. This model has potential for supporting preventive interventions

    Quantifying cognitive and mortality outcomes in older patients following acute illness using epidemiological and machine learning approaches

    Get PDF
    Introduction: Cognitive and functional decompensation during acute illness in older people are poorly understood. It remains unclear how delirium, an acute confusional state reflective of cognitive decompensation, is contextualised by baseline premorbid cognition and relates to long-term adverse outcomes. High-dimensional machine learning offers a novel, feasible and enticing approach for stratifying acute illness in older people, improving treatment consistency while optimising future research design. Methods: Longitudinal associations were analysed from the Delirium and Population Health Informatics Cohort (DELPHIC) study, a prospective cohort ≥70 years resident in Camden, with cognitive and functional ascertainment at baseline and 2-year follow-up, and daily assessments during incident hospitalisation. Second, using routine clinical data from UCLH, I constructed an extreme gradient-boosted trees predicting 600-day mortality for unselected acute admissions of oldest-old patients with mechanistic inferences. Third, hierarchical agglomerative clustering was performed to demonstrate structure within DELPHIC participants, with predictive implications for survival and length of stay. Results: i. Delirium is associated with increased rates of cognitive decline and mortality risk, in a dose-dependent manner, with an interaction between baseline cognition and delirium exposure. Those with highest delirium exposure but also best premorbid cognition have the “most to lose”. ii. High-dimensional multimodal machine learning models can predict mortality in oldest-old populations with 0.874 accuracy. The anterior cingulate and angular gyri, and extracranial soft tissue, are the highest contributory intracranial and extracranial features respectively. iii. Clinically useful acute illness subtypes in older people can be described using longitudinal clinical, functional, and biochemical features. Conclusions: Interactions between baseline cognition and delirium exposure during acute illness in older patients result in divergent long-term adverse outcomes. Supervised machine learning can robustly predict mortality in in oldest-old patients, producing a valuable prognostication tool using routinely collected data, ready for clinical deployment. Preliminary findings suggest possible discernible subtypes within acute illness in older people

    Multimodal Machine Learning for Automated ICD Coding

    Full text link
    This study presents a multimodal machine learning model to predict ICD-10 diagnostic codes. We developed separate machine learning models that can handle data from different modalities, including unstructured text, semi-structured text and structured tabular data. We further employed an ensemble method to integrate all modality-specific models to generate ICD-10 codes. Key evidence was also extracted to make our prediction more convincing and explainable. We used the Medical Information Mart for Intensive Care III (MIMIC -III) dataset to validate our approach. For ICD code prediction, our best-performing model (micro-F1 = 0.7633, micro-AUC = 0.9541) significantly outperforms other baseline models including TF-IDF (micro-F1 = 0.6721, micro-AUC = 0.7879) and Text-CNN model (micro-F1 = 0.6569, micro-AUC = 0.9235). For interpretability, our approach achieves a Jaccard Similarity Coefficient (JSC) of 0.1806 on text data and 0.3105 on tabular data, where well-trained physicians achieve 0.2780 and 0.5002 respectively.Comment: Machine Learning for Healthcare 201
    corecore