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�� Artificial Intelligence (AI) in general, and Machine Learn-
ing (ML)-based applications in particular, have the 
potential to change the scope of healthcare, including 
orthopaedic surgery.

�� The greatest benefit of ML is in its ability to learn from real-
world clinical use and experience, and thereby its capabil-
ity to improve its own performance.

�� Many successful applications are known in orthopaedics, 
but have yet to be adopted and evaluated for accuracy 
and efficacy in patients’ care and doctors’ workflows.

�� The recent hype around AI triggered hope for development 
of better risk stratification tools to personalize orthopaedics 
in all subsequent steps of care, from diagnosis to treatment. 

�� Computer vision applications for fracture recognition 
show promising results to support decision-making, 
overcome bias, process high-volume workloads without 
fatigue, and hold the promise of even outperforming doc-
tors in certain tasks.

�� In the near future, AI-derived applications are very likely 
to assist orthopaedic surgeons rather than replace us. ‘If 
the computer takes over the simple stuff, doctors will have 
more time again to practice the art of medicine’.76
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Introduction 
Artificial intelligence (AI) is believed to have the capacity 
to change the scope of medicine, much as the introduc-
tion of smartphones changed our day-to-day lives. AI and 

machine learning (ML) are terms commonly used to cover 
a range of computer applications such as ML-derived clini-
cal decision support, deep learning (DL)-based computer 
vision and natural language processing (NLP). In essence, 
computers use human-created algorithms for analysing 
patterns in data and improve their performance by learn-
ing from their own mistakes. The increase in (cheap) pow-
erful computers and availability of larger and more robust 
data have fuelled the use of ML in healthcare.1 

For decades, data-driven algorithms have been show-
ing promising results as valuable diagnostic tools to assist 
clinicians in many respective specialties. As early as the 
1980s a data-driven clinical prediction tool to determ
ine which patients with chest pain presenting to the ED 
(emergency department) could be safely discharged 
home versus patients who were at high risk of myocardial 
infarction requiring admission to the intensive care unit 
(ICU)2,3 overcame doctors’ inconsistent and inefficient 
admission strategies. This greatly improved workflow in 
the ED and resulted in fewer admissions while improving 
patients’ outcomes. Now, 30 years later, many hospitals 
build on similar clinical prediction tools and conduct data-
driven algorithms to improve workflow from simple tasks 
in EDs to complex decision-making in ICUs.4 In the era of 
AI, these data-driven algorithms are augmented with ML 
with two theoretical benefits: (1) to add non-linear corre-
lations to the models; and (2) eventually to become self-
learning to improve performance. 

However, according to the Gartner hype cycle,5 we are 
over the top of the curve and coming down the slope to 
realize that AI is not going to solve all patients’ and doc-
tors’ problems (Fig. 1). Nevertheless, many successful 
applications are known: computer vision DL models 
screen over 50,000 mammograms annually for breast 
cancer in the Massachusetts General Hospital in Boston.6 
In orthopaedics, our Massachusetts General Hospital-
based SORG (Skeletal Oncology Research Group) is on the 
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frontier of ML in orthopaedic musculosketal oncology to 
provide advanced models for predicting surgical out-
comes to improve patient-centred care,7 and the Trauma-
platform ML Consortium is broadening the scope of AI to 
orthopaedic trauma.8–10 However, critics may argue: ‘Why 
do so many promising applications have yet to be adopted 
in patients’ clinical care or doctors’ workflow?’

In this narrative review we focus on AI in orthopaedic 
surgery. We use respective examples of factual ML appli-
cations in orthopaedics to illustrate the great potential of 
AI to assist orthopaedic surgeons. In contrast, we will pre-
sent methodologically sound ML applications, which have 
not, to date, made it to clinical practice, to exemplify AI’s 
shortcomings. Finally, we will present a practical stepwise 
approach on how to develop, validate, test and imple-
ment a ML application by using an example of a clinical 
prediction tool for discharge destination of patients with 
hip fractures. All examples serve as a narrative along the 
line of Gartner’s hype cycle to explore the question: ‘Arti-
ficial intelligence in orthopaedics: false hope or not?’

Part I: orthopaedic surgery is all about risk 
stratification – how can AI assist?
Risk of bias: risk stratification to neutralize the influence  
of ‘biased’ surgeons

In orthopaedics – although generalizable risk factors are 
well known – the probability of a favourable outcome or 
an adverse event for each respective individual patient 
that we care for (i.e. risk stratification), is currently still at 

best an educated guess when taking into account the 
great number of all unique specific patient and injury 
characteristics. ML-derived prediction models – that ulti-
mately become self-learning and thereby constantly 
increase in accuracy – have great clinical potential in such 
risk stratification. This is based on the premise that high 
quality data are (prospectively) collected for the specific 
prediction-task at hand.11 For example, predicting which 
elderly hip fracture patient has high probability of devel-
oping delirium on admission means they can be targeted 
for preventive measures.12 Another example of a ‘non-
medical’ risk stratification, but merely a useful logistical 
risk stratification that improves ‘workflow’ in the same 
frail patient group, is predicting discharge destination 
which could reduce expensive hospital admission days by 
streamlining post-operative pathways.13 

In the era of data-driven care and personalized or ‘pre-
cision’ medicine, decision-making in orthopaedic trauma 
surgery is flawed by selection bias of surgeons because we 
still lack good quality prospective outcome data for many 
common injuries. Moreover, surgeons are notoriously 
poor at accurately predicting patient outcomes.14 Hence, 
there is great – undesired – variation in treatment. For 
example, in the Netherlands 20% of patients with a wrist 
fracture undergo surgery, while 80% of patients in Aus-
tralia are treated operatively.15,16 Consensus on the opti-
mal treatment strategies for such common fractures is 
lacking and this leads to sub-optimal workflow, physical 
impairment and unnecessary costs. When aiming for 
global consensus, global collective – open access – use of 
available data is needed.
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Fig. 1  Artificial Intelligence Hype Cycle, Machine learning, Natural Language Processing and Computer Vision on its way down – 
Adapted from Gartner Hype Cycle for Artificial Intelligence, 2019 gartner.com/smarterwithgartner.
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First, combining data from multiple institutions is diffi-
cult because of ethical, legal, political and administrative 
barriers. However, it can be done: intensive care doctors 
showcased an innovative example of the Medical Informa-
tion Mart for Intensive Care (MIMIC) database that was 
developed by the Massachusetts Institute of Technology 
(MIT) and Beth Israel Deaconess Medical Centre (BI), Bos-
ton MA, USA.17 It is free to use and to develop prediction 
tools for non-commercial purposes. This ‘open access’ 
mentality will allow improved patient care in a collabora-
tive effort, rather than multiple fragmented individual 
efforts around the world that have very poor external 
validity. As such, slowly, supporting systems for collective 
use of data have come across into healthcare, but have not 
been evaluated in orthopaedics other than in our implant 
registries. Distributed learning training – an algorithm 
learning from data without data leaving the hospital18 – 
has been proven an effective alternative for sharing patient 
imaging data in other specialties for computer vision.19 
Data are allowed to be kept at the source where they are 
easier to handle and secure. 

Some firms – start-ups and for-profit organizations – 
are bypassing hospital routes to buy data directly from 
patients in order to receive identified data for model devel-
opment. In the upward slope of Gartner’s hype cycle, 
over 90 well-funded AI-driven imaging and diagnostic 
solutions start-ups have been founded to date with com-
bined funding of $1.5 billion.20 There is a great challenge 
in conducting infrastructure and pathways for efficient 
high-quality data-sharing and feasible model develop-
ment in orthopaedics globally. The benefits of sharing 
data have been recognized by governments and intergov-
ernmental organizations around the world to promote 
transparency, accountability and value creation by mak-
ing data available to all.21 When data are stored centrally 
on servers, we can aim for ‘open access’ anonymized safe 
data-sharing and applications and thus aim for personal-
izing orthopaedic care globally and accessibly throughout 
the world.17 

Second, we should be cautious when combining data. 
Combined data can be used when data were collected for 
a specific research question and collected in an appropri-
ate representative way. In particular, differences in health-
care systems should be acknowledged when combining 
and translating data through various countries. For exam-
ple, our discharge prediction tool for elderly patients with 
a hip fracture that was deployed in Boston MA on data 
collected through the United States,12 will likely not be 
externally valid in different healthcare systems in the Neth-
erlands or Australia. More research is needed to explore 
these limitations of AI, in particular for ML-driven predic-
tion tools, or computer vision applications using imaging 
from dissimilar machines from different parts of the world.

In conclusion, treatment is not only influenced by 
biased surgeons, but decision-making can be biased by 
differences in healthcare plans and insurance systems.22 In 
the clinical case of predicting discharge position after hip 
fracture surgery, facilities in the United States are limited 
by insurance approval, whereas in the Netherlands they 
are limited by availability. This makes generalizing pre-
dicted probabilities difficult; an algorithm should be exter-
nally validated thoroughly to overcome these discrepan-
cies, as we will elaborate on below.

Risk of bias due to (lack of) experience: risk stratification  
based on ‘big data’

Junior doctors gain experience by treating hundreds of 
patients during their training. Senior doctors may be con-
sidered experienced after treating thousands of patients. 
Both are prone to bias:23 the first due to lack of experience, 
the latter due to personal subjectivity of one’s experience.24 
Based on ‘objective experience’ with greater than 10,000s 
of patients, DL-driven computer vision and ML-derived pre-
diction tools could alert clinicians about decisions that are 
at risk of bias. For example, in terms of decision-making in 
EDs, the majority of patients are seen by junior doctors. Jun-
ior doctors are known to misdiagnose significant trauma 
abnormalities on radiographs.25 Food and Drug Adminis-
tration (FDA)-approved and commercially available com-
puter vision applications26 can produce a heatmap on a 
radiograph where there is high probability of suspected 
fracture to alert the junior doctors and improve risk man-
agement. In addition, situations with high cognitive load 
for clinicians, such as decision-making at the end of a clinic 
day, could be supported by ML predictions. If non-biased 
ML predictions and real-life clinician decision-making differ 
in these situations, clinicians can be alerted.27 

The common claim for ML-derived prediction tools is 
that a better decision can be made with a model, than 
without.28 Transparency and traceability of the decision-
making process of AI systems must be made available to 
physicians in order to avoid fear of the ‘black box’: ‘How 
did the computer come to this decision?’. Therefore, it is 
important for orthopaedic trauma surgeons to have a 
foundation of knowledge of ML, as well as how it may 
affect and impact models, in order to critically assess pre-
dictions generated by ML and interpret the advice on 
probability of outcome in clinically meaningful ways. Not 
only treating physicians, but also patients are becoming 
important consumers of predictive analytics since patients 
are included in decisions about their treatments. There-
fore, better tools to gain insight into risk stratification and 
communication to patients are needed to achieve true 
shared decision-making.1 

When intended to diagnose, treat or prevent disease, 
ML-derived applications are defined as a medical device 
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under the Food, Drug, and Cosmetic Act in the United 
States.29 In Europe, ML-derived applications are required 
to be approved by the Medical Device Regulations as 
defined by the CE Mark.30 In addition, regulatory US and 
European platforms are not yet equipped to oversee AI’s 
insertion into medical practice.29

Part II: three forms of machine learning to 
aid clinical decision-making
Natural language processing (NLP)

Natural language processing (NLP) is a field of deep 
learning (DL), with the ability for a computer to under-
stand and analyse human language. Google translate is 
the best-known non-medical example. DL is a class of ML 
characterized by the use of neural networks, in which the 
algorithm learns to distinguish patterns directly from 
data and learns on its own to select features to classify 
the input data. The goal of NLP is to translate the natural 
human language of a patient’s medical record, for exam-
ple surgery reports, into structured format data to query 
for the presence or absence of a finding.31 In orthopae-
dics, NLP has been applied to identify surgical site infec-
tions in free-text notes of medical records and achieved 
predictive abilities comparable with the manual abstrac-
tion process and superior to models that used adminis-
trative data only.32 In hip arthroplasty, NLP has been 
used to identify common data elements33 and classifica-
tion of periprosthetic femur fractures.34 Our group 
applied NLP to evaluate unstructured free-text patient-
experience reviews of orthopaedic surgeons throughout 

the United States. Patient experience reflects quality of 
care from the patient’s perspective, hence these are 
important data that can teach us about what creates an 
(un)satisfying experience.35

Another simple, yet very elegant, application of NLP in 
clinical practice has been developed at the Beth Israel Dea-
coness Center (BIDC) by Steven Horng – Emergency Phy-
sician and Clinical Lead for ML – and colleagues.36 In the 
BIDC’s emergency department, the NLP algorithm auto-
matically ‘reads’ the triage nurse’s admission note. Subse-
quently, it provides a drop-down menu of ICD diagnoses 
in order of differential diagnostic likelihood – rather than 
alphabetical – based on written clinical triage data. More-
over, this algorithm is subsequently self-learning based on 
the final entered ICD diagnosis, increasing the accuracy 
of the drop-down differential diagnosis based on plain 
written text. 

When debating, ‘AI, false hope or not?’, one could con-
sider the larger sum of these respective small advances in 
our clinical workflow to result in a major reduction of time 
we spend on our computers (Fig. 2). 

Clinical prediction rule

Predictive tools in orthopaedics consist of diagnostic as 
well prognostic outcome applications. In orthopaedic 
trauma, ML-derived clinical prediction rules may enhance 
workflow in the ED:37,38 patients clinically suspected for 
scaphoid fracture are referred for radiographic evalua-
tion. Of these, up to 20% of patients with a negative 
radiograph have sustained an actual scaphoid fracture.39 
The developed Clinical Prediction Rule can aid clinicians 

Fig. 2  AI is very likely to assist orthopaedic surgeons: ‘If the computer takes over the simple stuff, doctors will have more time again 
to practice the art of medicine’ (Courtesy: Marcello Lavallen).
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in identifying patients requiring advanced imaging (i.e. mag-
netic resonance imaging (MRI) or computed tomography 
(CT)) and thereby may reduce the number of requested 
advanced imaging and potential unnecessary casting pro-
cedures for up to 31% of patients.38 Similarly, using the 
Ottowa Ankle Rules, a combination of predictive clinical 
parameters increasing the likelihood of a fracture with an 
additional benefit of its self-learning and correcting capac-
ity, could support and guide the clinician when taking a 
history and performing a physical examination. Hence, 
there would be improved risk stratification for advanced 
imaging of patients with ongoing improved accuracy 
when results are fed back into the ML algorithm. 

Computer vision for fracture recognition 

Computer vision is a domain of DL and describes the pro-
cess of a machine understanding images or videos, and 
could be useful to aid diagnostic decision-making in frac-
ture care. In computer vision, convolutional neural net-
works (CNNs) have proven to be effective for these pur-
poses.40 Using pre-trained CNNs enables us to transfer 
knowledge to a specific new fracture recognition task, 
without the need for new time-consuming computational 
training. Our systematic review addressed the promise and 
potential utility in fracture care, and found computer vision 
was nearly as good as and even outperformed humans in 
detecting certain common fractures.9 When classifying 
proximal humerus fractures, often misdiagnosed due to 
variable presentation, a CNN outperformed general physi-
cians and general orthopaedic surgeons, but with the same 

performance as specialized upper extremity surgeons. The 
CNN was trained on ~2000 radiographs classified accord-
ing to the Neer classification.41 Moreover, few studies have 
been published showing that AI performs at a human level 
in recognizing fractures on plain radiographs taken in the 
ED of patients with wrist, hand, and ankle injuries with at 
least 83% accuracy.42–45 Arguably, these studies all included 
simple – easy to identify – fractures only.

Of critical note, however, subtle and invisible (occult) 
fractures may be more challenging than fractures that are 
easy to detect. In the case of the aforementioned clinically 
suspected scaphoid fracture, a scaphoid fracture is rela-
tively subtle on radiographs and is often overlooked by 
non-specialists.46 Even specialists cannot detect some 
scaphoid fractures on radiographs – so-called radiograph-
ically occult fractures. When applying computer vision to 
identify true fractures among suspected fractures, many 
of which were radiographically invisible to human observ-
ers, computer vision did not outperform humans. Along 
Gartner’s line: CCN for fracture recognition was embraced 
for its high potential and lured in many investors support-
ing numerous start-ups for billions of dollars. But as we 
are now over the top of the hype cycle, we recognize that, 
for example, occult fractures of the scaphoid, remain 
occult for expert surgeons as well as for a specially trained 
CNN for scaphoid fractures.47

This uncovers one of the problems of supervised learn-
ing of CNN for musculoskeletal computer vision of occult 
fractures: training of the algorithm requires a great number 
of cases, with a reference standard (MRI, CT or follow-up 
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Fig. 3  Workflow for patients clinically suspected for a distal radius fracture.
Note. ED, emergency department.
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radiographs) which is at best debatable in accuracy. At the 
stage we are at now, computer vision will miss (occult) 
scaphoid fractures just as often as orthopaedic surgeons 
and radiologists do. However, in other specialties, com-
puter vision has been proven to outperform specialists in 
cancer screening in picking up early tumours that are often 
missed, even by specialists.48,49 The hope of computer 
vision in orthopaedics is early accurate diagnosis and clas-
sification, to improve treatment outcomes. At this point, 
orthopaedic surgeons are on par with AI, as even the first 
FDA-approved computer vision application in orthopaedics 
(OsteoDetect) does not exceed specialists’ accuracy in 
detecting and diagnosing distal radius fractures.26 

Outcome calculator

Risk stratification in orthopaedics has the potential to neu-
tralize the influence of biased surgeons and thus overcome 
treatment inconsistencies,16,50 thereby improving patients’ 
functional outcomes and reducing associated health-
care costs (Fig. 3). Thus, small significant changes in daily 
decision-making in high-volume patient care will result in 
important overall public health advances.51,52 In orthopae-
dics, ML-derived decision tools to assist clinicians in treat-
ment outcomes have been developed in arthroplasty,53 
trauma,10,12,38 oncology and spinal disorders.54–57 In ortho-
paedic oncology, decision tools show accurate performance 
characteristics in pre-operative estimation of survival in 
patients with spinal or extremity metastatic disease.54,55 
The developed tools may enhance personalized survival 
prediction, from 30 days up to five years, and aid shared 
treatment decision-making, both surgical and non-surgi-
cal. In arthroplasty, estimation of patients who will benefit 
from elective surgery will support optimization in treat-
ment strategy, and prevent patients undergoing an elec-
tive procedure with an unacceptably high (individual) risk 
of adverse events.55 In orthopaedic trauma, an outcome 
calculator was developed to identify pre-operative risk of 
post-operative delirium in hip fracture surgery12 and the 
ML algorithm will likely improve the efficiency of a screen-
ing programme aimed at identifying patients at risk for 
delirium. However, the clinical efficacy of the latter tool has 

yet to be determined and will be the subject of clinical 
testing and implementation studies. 

Although there are many studies on development of 
decision tools, few authors have driven further develop-
ment by successful external validation.58–60 Methods for 
evaluation and monitoring models to ensure continued 
accuracy and performance are in their infancy with regard 
to their imbedding ML in healthcare.61 

In the final part of this narrative review, we will demon-
strate a logical stepwise approach from clinical problem 
to implementation, derived from a successfully imple-
mented ML application, which is suggested to be followed 
to ensure quality in orthopaedic ML research.

Part III: stepwise approach from 
clinical decision-making problem to 
implementation
The methodology follows the framework for prediction 
models proposed by Professor Steyerberg et al,28 and cov-
ers the range of development of applications such as NLP, 
computer vision and clinical decision support as discussed 
above (Fig. 4).

Step 1. Predictive modelling: development of a machine 
learning algorithm

Data derived from various study designs addressing the 
clinical decision-making problem at hand could be used 
for predictive modelling with the use of ML; retrospective, 
prospective, registry data and nested case-control studies 
fit best for prognostic modelling whereas cross-sectional 
and case-control study design fit better for diagnostic 
modelling.62 The benefit of ML may be best realized with 
larger data sets, particularly those that are periodically 
updated, with the rule of thumb of having ≥ 200 events 
and ≥ 200 non-events.63 For example, a ML algorithm for 
delirium prediction following elderly hip fracture surgery, 
and various other SORG ML algorithms, were developed 
with a large clinical database from the American College 
of Surgeons (ACS) National Surgical Quality Improvement 
Programme (NSQIP).12,56,57

Modeling

Data

Clinical
Problem

Validate Deploy Testing Implement

Fig. 4  Flowsheet from clinical problem to implementation.
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A function is generated consisting of an outcome vari-
able (dependent variable) which is predicted from a given 
set of features (independent variables). In the case of 
development of a clinical prediction rule or outcome cal-
culator, variable importance is first carried out to identify 
and select those features that contribute most to the out-
come variable with clinical importance in mind. Variables 
included may contain clinical and radiological findings 
(e.g. patient demographics, trauma mechanism or classifi-
cation of fracture), as well as intra-operative findings and 
surgical techniques (e.g. screw and/or plate fixation or 
arthroplasty). In the case of computer vision and NLP, the 
algorithm distinguishes patterns directly from data and 
learns on its own to select features to classify the input 
data (essentially black boxes – e.g. edges, curves, colour). 
Training and internal validation of the supervised ML algo-
rithm continues (‘run’) until the model achieves the best 
model performance. The delirium hip fracture prediction 
tool targeted post-operative delirium as the dependent 
variable, with easy, readily available independent variables 
derived from variable importance (i.e. age, BMI, ASA class, 
functional status, pre-operative dementia, pre-operative 
delirium, pre-operative need for mobility-aid and pre-
operative creatinine level).

Predictive performance of ML algorithms is assessed 
according to Steyerberg’s structured stepwise ABCD-
approach: calibration-in-the-large, or the model intercept 
(A); calibration slope (B); discrimination, with a concord-
ance statistic (C); and clinical usefulness, with decision-
curve analysis (D).28,64 In addition, overall model perfor-
mance – a composite of discrimination – is assessed using 
the Brier score, compared with the null model Brier score.65

Classification algorithms include linear classifiers (logis-
tic regression, naïve Bayes), support vector machine, clas-
sification trees or neural networks (Fig. 5). Linear classifi-
ers are easy to interpret, and fast to train. Non-linear clas-
sifiers are more flexible and have the ability to capture 
more complex patterns, but are, in small samples, prone 
to overfitting. Logistic regression involves fitting an 
S-shaped probability curve to numerical data by taking 
the log odds to make predictions about binary events. 
Classification trees (e.g. gradient boosted machine, ran-
dom forest) use flowchart-like structures to make deci-
sions, which can be readily understood and visualized. 
Artificial neural networks are inspired by biological neural 
networks which mainly use so-called feed-forward neural 
networks with hidden layers and neurons and which are, 
in general, data-hungry. Support vector machines are 
based on the idea of finding a hyperplane in a 3D (kernel) 
scatterplot that can divide a dataset into two classes, and 
works in general quite well on smaller datasets. A naïve 
Bayes machine is a product of probabilities, best visualized 
as a Venn diagram that shows possible logical relations, 
works well with smaller datasets, and prefers categorial 

features over continuous features (where a normal distri-
bution is assumed).

On one hand, there is no one solution when choosing 
the right ML algorithm. The decision is taken after con-
ducting a research question, preparing data and build-
ing various models. Comparing model performance is 
based on all metrics according to the ABCD approach,28 
combined with the most clinically meaningful variable 
importance. The ML algorithm development for delirium 
prediction in hip fracture surgery led to almost perfect 
model performance combined with clinically meaningful 
feature importance, outperformed the default strategy of 
screening all patients, and included easy and readily 
available variables.

External validation 

External validation is essential to assess performance and 
generalizability of the algorithm before implementation in 
clinical practice. External validation can be carried out 
with temporal, geographical or fully independent valida-
tion.65 External validation is also important because model 
performance might differ across populations, making an 

Neural network Naive Bayes classifier

Gradient boosting machine

Random forest

Support vector machineLogistic regression

Decision tree

Fig. 5  Classification algorithms. (Courtesy: B.Y. Gravesteijn)
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unvalidated algorithm less reliable.60 Of the current few 
externally validated ML algorithms the validation cohort 
was derived from retrospective analysis at a large, tertiary 
care centre.58–60 A developed, internally validated ML 
algorithm is applied to a separate validation dataset to 
assess model performance according to the same metrics 
as above. Even though various institutions may all be 
using the same electronic health record (EHR) vendor, the 
data structure, field meanings and extent of data cleaning 
likely differ across organizations.66 For future research, 
when prospectively collecting data, common data ele-
ments for common data models could support combin-
ing data from various institutes and validation of predic-
tion models globally67 and thereby support fully inde-
pendent validation.68 

As discussed above, our discharge prediction tool for 
elderly patients with a hip fracture was deployed in Bos-
ton MA on United States data.12 Differences in healthcare 
systems, standards of care and treatment strategies can 
prohibit generalizability to other countries. In some situa-
tions, when external validation reveals low generalizability, 
re-calibration strategies are allowed.69 In re-calibration, 
particular components of the developed model are modi-
fied and tailored for each study population (such as the 
intercept of the model or variable effects).70 

Evaluation and implementation

If found to be externally valid, clinicians might use an 
available (web) application to help incorporate the algo-
rithm into practice to aid decision-making and target 
actions to be a priority (e.g. https://sorg-apps.shinyapps.
io/hipfxdelirium/). A real-time clinical prediction rule, 
computer vision model or outcome calculator based on 
the developed ML algorithm and routinely collected clini-
cal data is best established and validated in EHR systems.71 
Derived predictions are integrated and calculated auto-
matically and made available to the clinician.71 Although 
ML is a new methodology that greatly expands the ability 
to analyse data, implementation should follow the same 
rules as the previously developed diagnostic test.72,73 

Efficacy of the developed ML algorithm is ideally asses
sed through large randomized controlled trials (RCTs).74 
ML-derived decision support has great power to assist cli-
nicians and change the scope of medicine; however, many 
powerful algorithms are not utilized yet.66 Consider the 
following scenario: a patient is scheduled for hip fracture 
surgery and randomized to either the intervention or con-
trol arm of an RCT. In the intervention arm, an intervention 
is based on high probability derived from the developed 
ML algorithm. In the control arm, treatment is according 
to common practice. The proposed primary end-point is 
incidence of post-operative delirium to determine benefit 
from the developed ML algorithm and clinical importance 
(i.e. patient outcomes). 

ML requires the use of a computer and EHR integration, 
which has implications for patient privacy and creates 
obstacles for implementation.73 Physicians will need to 
open the application, enter information and then return 
to using it in the EHR.66 The biggest challenge is incorpo-
rating an ML-derived decision support tool into an EHR 
workflow. In addition, the distinctive characteristics of ML-
based software require a regulatory approach, allowing 
necessary steps to improve treatment while ensuring that 
the algorithm is safe.75 

Improvement of the algorithm: continuous self-learning

The increase in data set size substantially improves ML 
model performance, as a response to changes in practice 
or patient population. Ongoing data collection will lead 
to improved ML models, though with gradually diminish-
ing returns.73 The great advantage of ML algorithms over 
decision rules is the ability to improve accuracy of the 
model over time, including earlier disease detection, more 
accurate diagnosis, identification of new observations or 
patterns, and development of personalized diagnostics 
and treatment.

Conclusions
Many argue that AI will change the scope of medicine. 
Indeed, along the upslope of Gartner’s hype cycle, $1.5 
billion has been invested in AI in healthcare,20 and count-
ing. However, coming over the top of the hype curve, we 
recognize the methodological limitations of ML and DL: 
for example, a computer can recognize an obvious frac-
ture,41 which may be beneficial as a support tool for junior 
doctors in an ED under a high demanding workload.25 But 
for an occult scaphoid fracture, CNN algorithms have yet 
to outperform orthopaedic specialists.47 

On the downward slope of Gartner’s line, we come to 
realize that many promising ML prediction tools and DL 
image recognition tools have been developed with good 
intentions for commercial benefit, but very few have been 
externally validated – systematically tested on accuracy  
in clinical workflow – or implemented in daily practice to 
date. To do so in orthopaedics, we face ethical, legal, 
political and administrative barriers. To move forward 
along the slope of enlightenment, we strongly argue for 
collaboration in an ‘open access’ mentality as intensive 
care specialists do:17 share good quality prospective data 
to improve the accuracy and external validity of AI-derived 
algorithms; and – in an ideal world – continue prospective 
data collection with an active feedback loop to improve 
performance.

We envision the plateau of productivity of the hype 
cycle as follows: AI-derived applications will facilitate data-
driven personalized care for our patients, limiting sur-
geons’ bias, and empower shared decision-making on 
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patient specific data. AI is likely to assist orthopaedic sur-
geons rather than replace us: ‘If the computer takes over 
the simple stuff, doctors will have more time again to 
practice the art of medicine’.76
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