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Abstract 

Introduction 

Cognitive and functional decompensation during acute illness in older people are 

poorly understood. It remains unclear how delirium, an acute confusional state 

reflective of cognitive decompensation, is contextualised by baseline premorbid 

cognition and relates to long-term adverse outcomes. High-dimensional machine 

learning offers a novel, feasible and enticing approach for stratifying acute illness in 

older people, improving treatment consistency while optimising future research 

design. 

Methods 

Longitudinal associations were analysed from the Delirium and Population Health 

Informatics Cohort (DELPHIC) study, a prospective cohort ≥70 years resident in 

Camden, with cognitive and functional ascertainment at baseline and 2-year follow-

up, and daily assessments during incident hospitalisation. Second, using routine 

clinical data from UCLH, I constructed an extreme gradient-boosted trees predicting 

600-day mortality for unselected acute admissions of oldest-old patients with 

mechanistic inferences. Third, hierarchical agglomerative clustering was performed 

to demonstrate structure within DELPHIC participants, with predictive implications for 

survival and length of stay.  

Results: 

i. Delirium is associated with increased rates of cognitive decline and mortality risk, 

in a dose-dependent manner, with an interaction between baseline cognition and 

delirium exposure. Those with highest delirium exposure but also best premorbid 

cognition have the “most to lose”. 

ii. High-dimensional multimodal machine learning models can predict mortality in 

oldest-old populations with 0.874 accuracy. The anterior cingulate and angular 

gyri, and extracranial soft tissue, are the highest contributory intracranial and 

extracranial features respectively. 
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iii. Clinically useful acute illness subtypes in older people can be described using 

longitudinal clinical, functional, and biochemical features.  

Conclusions 

Interactions between baseline cognition and delirium exposure during acute illness in 

older patients result in divergent long-term adverse outcomes. Supervised machine 

learning can robustly predict mortality in in oldest-old patients, producing a valuable 

prognostication tool using routinely collected data, ready for clinical deployment. 

Preliminary findings suggest possible discernible subtypes within acute illness in 

older people. 
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Impact Statement 
 

Acute illness in older people commonly results in decompensation of premorbid 

function, cognition and increased mortality risk. Delirium, an acute confusional state 

resulting from cognitive decompensation, is distressing to patients and carers, 

associated with long-term adverse consequences. Individualised outcome prediction 

using low-dimensional models in this population group had been inaccurate and 

unreliable, with poor reproducibility between geographical and healthcare settings. 

Stratification by clinical presentations with divergent consequential recovery 

trajectories had not been robustly articulated, with acute illness of older people 

commonly recognised as a single entity in clinical practice. 

 

Academically, these findings first advance the definition of delirium to reflect a 

longitudinal construct, which can only be fully understood by accounting for non-

linear interactions with premorbid cognition. In addition, delirium exposure should be 

quantified as a cumulative dose instead consideration as incidence alone. Second, 

these findings suggest delirium may be the most appropriate currently available 

marker of acute illness severity in older people: it is unclear why delirium causes the 

most deleterious cognitive sequalae in those with the best baseline cognition, but it is 

most plausible that quantification using physiological measures alone is suboptimal 

in this patient group. Third, the high prevalence of delirium on discharge emphasises 

the importance to capture delirium outside hospital settings in future research 

studies, into the community, if the true burden of delirium is to be accurately 

quantified.   

 

The high fidelity of the long-term mortality model, as well as identification of structure 

in describing acute illness within PISCA, are convincing demonstrations of concept 

for applying machine learning prediction and inferential models in older patients. By 

highlighting extracranial soft tissue, angular gyri and anterior cingulate as highly 

contributory anatomical areas, future potential interventions may be targeted towards 

optimisation of sarcopenia, motor function and hypothalamic-pituitary-adrenal axis 

respectively.  
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This thesis showed that discernible patterns of decompensation, demonstrable at a 

population and individualised levels, exist in older people during acute illness, with 

clinically relevant consequences. Deeper phenotyping of acute illness in older 

patients offer wide-reaching clinical potentials: treatments can be guided towards a 

curative or palliative intent, discharge planning can be aided by accurate prediction 

of likely new cognitive baseline following acute illness, while it will be possible to 

identify patients who will benefit most from cognitive follow-up and rehabilitation 

post-delirium. For future clinical trials of candidate prevention or interventions 

strategies, the most appropriate patient cohorts can be selected to maximise 

demonstration of efficacy. 

   

Clinical deployment of stratification strategies can vary in the level of phenotypic 

granularity employed: at the broadest level, findings from the population 

epidemiology elements of this thesis utilise baseline cognition and cross-sectional 

delirium markers. With the most high-dimensional, multi-modal approach, inclusion 

of investigations such as neuroimaging can produce highly accurate individualised 

prognostication. Middle-ground strategies with lower-dimensional models or pre-

determined clusters, using readily available bloods and clinical features, may offer a 

pragmatic compromise for immediate deployment across the health service. I 

demonstrate the potential of investing in investigation modalities and computing 

performance: accurate stratification can lead a paradigm shift in better targeting of 

community, pre-admission triage and inpatient treatments.  
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1 Clinical Case 

Mrs P is a 73-year-old female who presents to the Ambulatory Care service with 

four days of productive cough and reduced oral intake. In addition, her son has 

noted increased confusion during this period. She has a past medical history of 

hypertension, hyperlipidaemia and chronic kidney disease. Before this illness, she 

was independent with activities of daily living, mobilising outdoors without aids and 

living alone in a two-storey house without carers. She has recently been  “slower 

than before” but enjoyed walking approximately half a mile daily around her local 

park. On examination, Mrs P is sleepy and finds it difficult to engage with the 

medical history, drifting in and out of the conversation. On examination, her heart 

rate is 98 bpm and regular, respiratory rate of 17, blood pressure 135/89 mmHg, 

O2 saturations 95% on room air with a temperature 38.2°C. She is dehydrated with 

dry mucous membranes, jugular venous pulse seen at 1cm above the 

sternoclavicular junction. Auscultation of her chest reveals left basal inspiratory 

crackles with no wheeze. There is no clinical evidence of deep vein thrombosis or 

lower limb swelling. A chest radiograph demonstrates consolidative changes in the 

left lung base. Her blood results confirm an acute on chronic kidney injury, with a 

creatinine of 263 from a baseline of 120 and raised inflammatory markers (C-

reactive protein 211, white cell count 16.4, neutrophils 14.2).  

On the post-take ward round, the on-call medical consultant makes the following 

diagnoses: 1. Delirium, likely secondary to 2. Left basal community acquired 

pneumonia 3. Acute on chronic kidney injury. She recommends an admission to 

the Medicine for the Elderly team and promptly initiates treatment with intravenous 

antibiotics, fluids and venous thromboprophylaxis. Blood and sputum cultures are 

taken to optimise antibiotic therapy, including a screen for atypical pneumonia. Mrs 

P’s son is by her bedside and is evidently concerned by his mother’s current state. 

He “has never seen her this confused and ill-looking”. He asks how bad this 

confusion will get? How long will it last for? How serious is this illness in the long-

term and will there will be lasting effects: how will this affect her memory? Will this 

affect her life expectancy? The medical team acknowledges that while delirium 
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This difficult conversation is common across medical wards for older people 

worldwide: our understanding of adverse outcomes in older patients following acute 

illness is limited. While cognitive decline (and certainly mortality) can be robustly 

ascertained as outcomes, deterioration of motor function, increased care needs and 

longer length of stay are difficult to predict as specific quantities due to varying 

contributions of non-organic social, psychological, financial and healthcare 

organisational factors. Although many population-based associations have been 

demonstrated between risk factors and poor outcomes, such as cognitive decline 

and mortality risk, translation to individualised prognostication remains challenging 

due to heterogeneity of patients’ baselines and difficulty in quantifying the acute 

precipitating illness.  

This thesis will use two complementary techniques: population epidemiology and 

machine learning. These approaches can describe and quantify the relationships 

between baseline and outcome following an acute illness. I will focus on delirium and 

mortality risk, the common outcomes of patients with reduced cognitive and 

functional baselines. I aim to improve understanding of interacting relationships 

between multi-morbidities and acute illness, highlighting the most likely culprit 

mechanisms that could be targeted for future diagnosis and treatments. More 

immediately, this work contributes to a prognostication tool that could be deployed to 

add a novel dimension to informed patient care. 

 

  

during acute illness is known to increase the risk of mortality and worsening 

cognition in the medium to long-term, we are currently unable to estimate how 

severe or long her delirium will last, and there is considerable variability in these 

outcomes. The doctors inform him that his mother’s specific prognosis is unclear. 
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3 Introduction 

 

Delirium is an acute confusional state, representing the consequence of cerebral 

decompensation following a physiological stressor. The clinical construct of delirium 

as defined by the DSM-5 criteria is characterised by: (i) disturbances in attention; (ii) 

a change from baseline attention and awareness over a short period of time, usually 

hours to days, fluctuating in severity during the course of a day; (iii) an additional 

disturbance in another cognition domains (e.g. memory deficit, disorientation, 

language, visuospatial ability, or perception); (iv) not explained by a pre-existing, 

established or evolving neurocognitive disorder, or in the context of a reduced 

arousal state such as coma; and (v) resulting from a direct physiological input from a 

medical condition. Common across all healthcare settings, delirium is particularly 

prevalent among older people and has been associated with significant adverse 

outcomes, including long-term cognitive decline and increased mortality risk. Its 

aetiologies are broad and current management approaches predominantly involve 

treatment of the underlying cause. 

This introductory chapter will offer an overview of delirium as a clinical syndrome. 

First, I will explain the concept of delirium as a disequilibrium between physiological 

insult and cognitive reserve. Second, I will illustrate how common delirium is by 

describing the epidemiology of delirium in older patients. Third, I will review the 

current delirium diagnostic tools and ongoing challenges in detecting delirium in 

clinical practice. Fourth, I will illustrate the broad range of aetiologies that may lead 

Chapter Outline 
- Clinical importance of delirium: epidemiology and adverse outcomes 

- Delirium diagnosis and definition: current standards and ongoing challenges 

- Delirium superimposed on dementia 

- Management of delirium 

- Potential pathophysiological mechanisms 

- Aims, objectives and hypotheses of this thesis 
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to delirium and current management strategies. Lastly, I will outline adverse effects 

associated with delirium in population studies. 

Delirium research is an emerging and rapidly growing field. In recent years, we have 

gained insights from multiple disciplines, including geriatric medicine, old age 

psychiatry, critical care, neurologists, epidemiologists and many others. This thesis 

will focus on inpatient medical delirium observed in older people. There are many 

delirium subtypes that although related, present with specific phenomenologies, 

aetiologies and prognoses, and hence is regarded as outside the scope of this 

thesis. For example, delirium tremens, a specific syndrome of neuropsychiatric and 

physical symptoms as a result of alcohol withdrawal - it is reasonable to anticipate 

different recovery trajectories for this specific cohort. While I will provide a brief 

summary, delirium prevention, specific management and delirium mechanisms are 

separate fields in their own right and are not considered in detail.  

3.1 Clinical Importance of Delirium 

This section aims to illustrate the importance of recognising and treating delirium in 

clinical practice. Delirium is common, affecting a quarter of older inpatients at any 

one time and has profound adverse sequelae (Gibb, Seeley et al. 2020). 

Consequently, delirium should represent a priority area across the board, from 

clinical practice, research, education and policy.  

3.1.1 Epidemiology of delirium  

Delirium is common across all healthcare settings and particularly among older 

people. The prevalence of delirium has been estimated to be up to 17% of all older 

people presenting to the emergency department, 31% of inpatients in general 

medical and geriatric wards and up to 60% in frailer elderly inpatients (Maldonado 

2017) . Even higher prevalence is evident in escalated care settings such as 

intensive care units. One study found up to 87% of patients in US critical care units 

developed delirium (Ely, Margolin et al. 2001). In the community, approximately 1% 

of older people are thought to have prevalent delirium – though this may be an 
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underestimate, given sub-optimal detection methods in population settings (Davis, 

Kreisel et al. 2013). 

3.1.2 Adverse Outcomes Associated with Delirium 

3.1.2.1 Mortality 

Delirium is associated with significant adverse outcomes, including increased risk of 

in-hospital (Naksuk, Thongprayoon et al. 2017) and post-discharge mortality (Witlox, 

Eurelings et al. 2010). In a systematic review including over 50 studies with a mean 

follow-up of 22.7 months, mortality risk was 38% during their admission for patients 

who developed delirium, compared with 28% for those who did not (Witlox, Eurelings 

et al. 2010). All included studies were adjusted for age, baseline dementia status and 

comorbid illnesses or illness severity (where these were measured). However, 

whether mortality associations are monotonic across the range of people affected by 

delirium is unclear. Perhaps surprisingly, delirium has been reported to have 

stronger associations with mortality in less frail individuals (Dani, Owen et al. 2018). 

3.1.2.2 Cognitive Impairment 

Dementia is a major risk factor for delirium and conversely, delirium is associated 

with increased incident dementia. Long-term cognitive sequalae have been 

demonstrated post-delirium compared with patients without delirium across 

healthcare settings, at 18 months follow-up after intensive care unit admission 

(Pandharipande, Girard et al. 2013) and five years follow-up after cardiac surgery 

(Newman, Grocott et al. 2001). Patients from a longitudinal birth cohort study 

demonstrated 1.7 points poorer scores on Addenbrookes Cognitive Examination 

(95% CI 0.1 to 3.2)  if they have self-reported features suggestive of delirium in the 

ten years before cognitive testing, independently of baseline cognition and risk 

factors associated with Alzheimer’s disease (Tsui, Kuh et al. 2018). In a key 

population study, an odds ratio of 8.7 (95% CI 2.1 - 35) was evident in the oldest-old, 

resulting in up to one additional MMSE point deterioration per year (95% CI 0.11 – 

1.89) (Davis, Muniz Terrera et al. 2012). Taken together, studies with longitudinal 

cognitive measures have shown increased rates of decline after delirium episodes 
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compared with those without delirium, across an age range from as young as early 

50s to oldest-old populations (Gross, Jones et al. 2012, Davis, Barnes et al. 2014). 

Additional evidence suggests that delirium may accelerate underlying cognitive 

decline independently of classical dementia pathologies such as amyloid plaques, 

neurofibrillary tangles, vascular lesions and Lewy bodies. In a multi-centre cross-

cohort neuropathology study involving 987 individuals from population samples, the 

decline attributable to delirium was beyond that anticipated for delirium or dementia 

neuropathology alone, suggesting that delirium may also act multiplicatively with 

classical dementia pathologies to accelerate cognitive decline (Davis, Muniz-Terrera 

et al. 2017). In imaging studies in critical care patients, longer delirium duration has 

been associated with lower total brain, superior frontal lobes and hippocampal 

volumes (Gunther, Morandi et al. 2012) while patients with delirium had persistently 

reduced fractional anisotropy on diffusion tensor imaging in the internal capsule and 

corpus callosum (Morandi, Rogers et al. 2012). 

3.1.3 Long-term economic costs 

Delirium has significant economic and societal impacts. The financial cost of delirium 

has been estimated to be between £2.6 and 5.9 billion annually for approximately 

130,000 Australian occurrences of delirium alone, with £2.2 billion attributable to 

dementia likely as a sequalae of delirium due to increased need for personal care 

and institutionalisation (Pezzullo, Streatfeild et al. 2019). Each hospitalised incident 

delirium episode costs £13,200 in the UK (Akunne, Murthy et al. 2012). 

3.2 Delirium diagnosis 

Despite this wide range of adverse effects, delirium remains under-detected. It is 

estimated that even in secondary care, only 20% (Collins, Blanchard et al. 2010) to 

50% (Clegg, Westby et al. 2011) of delirium cases are formally diagnosed. 

Proportions detected in the community are likely to be even lower, despite the high 

incidence of delirium in residential and nursing homes where underlying cognitive 

impairment and dementia are more common. Many practical, historical and 

operational issues have contributed to the current low rate of delirium diagnoses, 
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despite the availability of validated delirium screening tools. This illustrates the need 

for novel approaches, such as the potential addition of automated methods to 

existing techniques, in order to improve under-detection in current clinical practice. 

3.2.1 Practical issues with delirium screening tools 

The ideal delirium screening tool should have high specificity and sensitivity, while 

being fast to implement by a variety of healthcare professionals and suitable for a 

broad range of healthcare settings. At present, few tools are able to satisfy all of 

these requirements.  

The 4 ‘A’s test (4AT) is the recommended delirium detection tool in the SIGN 

guidelines (SIGN 2019). Along with ‘months of the year backwards’ (MOTYB), and 

the Single Question in Delirium (SQiD), each assessment is easily applied due to 

their brevity, simplicity and high sensitivity. However, they lack specificity for delirium 

diagnosis (Hendry, Quinn et al. 2016). The Delirium Observation Screening (DOS) 

scale appears to be more specific and sensitive, and requires assessments over 

three separate shifts on three separate days. The Confusion Assessment Method 

(CAM) is an algorithm used to detect delirium based on separate cognitive testing 

(e.g. MoCA, MMSE). As such, it is limited by how long it takes to complete the formal 

cognitive testing, which is rarely feasible in clinical practice (Wong, Lee et al. 2018). 

While the CAM is widely used in both the research and clinical literature, the 

sensitivities and specificities of delirium detection vary significantly between studies, 

with sensitivities as low as 28% and 46% in intensive care and medical ward 

settings, respectively. A recent study showed that even with nearly 100% completion 

rates, the Confusion Assessment Method performed twice daily was positive in only 

2% of patients, far lower than the 17% rate found when delirium was measured by 

psychiatric assessment in the same clinical unit (Rohatgi, Weng et al. 2019). The 

wide performance range is likely a result of several limitations specific to the CAM: (i) 

it does not specify a particular assessment of attention, augmenting inter-rater 

variability; (ii) it is difficult to apply to non-verbal patients. Although trialled in 

separate language and cultural populations, no single CAM version can be used 

across heterogeneous patient groups; (iii) CAM requires prior training, a similar 
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problem for other tools such as the Delirium Rating Scale (DRS-98) , which is 

specifically only validated in studies when applied by psychiatrists (Detroyer, 

Clement et al. 2014, van Velthuijsen, Zwakhalen et al. 2016). Lastly, although 

underlying dementia is a significant risk factor for delirium, only 4AT, CAM, DRS 98 

and mRASS have been validated for delirium superimposed on dementia.  

Other general limitations for delirium instruments include detection of subsyndromal 

delirium, delirium subtyping and longitudinal use to track delirium recovery. At 

present, the process of delirium detection remains relatively crude and clinical 

processes rarely extend beyond the aim of determining the presence or absence of 

delirium in a binary fashion. Of the major instruments used for screening acute 

cognitive status, only DOS (13-item) (Detroyer, Clement et al. 2014, van Velthuijsen, 

Zwakhalen et al. 2016), DRS- R-98 (Whittamore, Goldberg et al. 2014, Sepulveda, 

Franco et al. 2015), ICDSC (Gusmao-Flores, Salluh et al. 2012), MMSE (Mitchell, 

Shukla et al. 2014), mRASS (Morandi, McCurley et al. 2012) offer a scale of severity. 

However, the MMSE, not specific for delirium, is a global tool of multiple cognitive 

domains, the mRASS is purely a measure of arousal, while the DOS is 

predominantly designed to assess hyperactive delirium. Neither the 4AT nor any 

variant of the CAM except the CAM-S, describes delirium beyond the binary 

presence or absence of the syndrome. The clinical phenotype of delirium is almost 

always classified as hypoactive, hyperactive or mixed; only the delirium motor 

subtype scale (DMSS) further defines motor subtyping. Most instruments are 

suitable for single cross-sectional delirium detection only; ongoing monitoring over 

serial time-points has only been validated with the CAM-ICU (Mitasova, Kostalova et 

al. 2012), DOS (Schuurmans, Shortridge-Baggett et al. 2003), ICDSC (Wassenaar, 

Schoonhoven et al. 2019), RADAR (Voyer, Champoux et al. 2015), mRASS 

(Chester, Beth Harrington et al. 2012) and SQiD (McCleary and Cumming 2015). 

3.2.2 Changing reference standard and validity 

Differences in diagnostic accuracy among delirium screening tools may stem in part 

from the evolving reference standard criteria for delirium from DSM III (1980), DSM 

III-R (1987), DSM-IV (2000) to DSM-5 (2013). An early study exploring the validity of 
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DSM-III-R criteria found it to be more restrictive than DSM-III but less so than ICD-10 

(Liptzin, Levkoff et al. 1991). Later studies showed the simpler criteria in DSM-IV 

enhanced its inclusiveness over ICD-10 (Laurila, Pitkala et al. 2004). Comparing 

DSM-III, DSM-III-R, DSM-IV and ICD-10 in a sample of older patients from acute 

wards and nursing homes, 31% met any criteria, but only 6% met all four (Laurila, 

Pitkala et al. 2003). As the definition became less detailed and specific, delirium 

prevalence increased (DSM-IV 25%; DSM-III-R 20%; DSM-III 19%; ICD-10 10%) 

(Sepulveda, Franco et al. 2015).  

This difficulty with shifting reference standards for delirium suggests a fundamental 

need to develop an empirical definition adding objective features linked with 

prognostic outcomes. At the same time, whether a cross-sectional description of 

pure phenomenology as the DSM-IV definition of delirium, or a novel longitudinal 

term potentially encompassing other modalities such as biochemistry and 

neuroimaging, is more clinically useful, awaits further study. 

3.2.3 Operationalising delirium definitions  

In each reference criteria for delirium, changes in attention, arousal and disordered 

thinking have consistently been components of the delirium syndrome. However, the 

operationalisation and quantification of these neuropsychiatric features have proved 

challenging for delirium detection tools. For example, attentional impairment is 

recognised as the central deficit in delirium. However, different constructs for 

attention exist. Phasic attention refers to detection of a target stimulus, while tonic or 

vigilance attention involves the maintenance of attentional neural correlates on a 

particular continuous task (Petersen and Posner 2012). In addition, tasks involving 

these attentional constructs rarely exist in isolation, commonly also involving other 

cognitive domains such as language, working memory and executive function. 

Current delirium detection tools are inconsistent in which type of attention they are 

assessing and whether they are highlighting attentional deficits alone – tests such as 

backward span and MOTYB require multiple cognitive domains beyond pure 

attentional networks (Meagher, Leonard et al. 2015). As a result, while attentional 

assessments in delirium are sensitive, they are commonly not specific. Operationally, 
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there remains no consensus on which single or combination of attentional deficits, 

and to which severities as defined by scoring cut-offs in different diagnostic tools, 

should lead to a definition of inattention.  

Conversely, standalone tests of arousal have a low sensitivity but a high specificity 

for detecting delirium. Although assessed distinctly from attention in the 4AT, MDAS 

and CAM, or as a standalone test using the Richmond Agitation Sedation Scale 

(RASS), arousal is generally considered as a hierarchical extension of attention, in 

which the patient is required to display a baseline level of attention before arousal 

can be meaningfully assessed (European Delirium Association & American Delirium 

Society 2014) (Fig 7.1). Whether arousal is particularly importantly in patients with 

advanced chronic cognitive impairments and dementia, and hence should be 

weighted accordingly during delirium detection in this cohort, is unclear. While 

arousal is generally preserved into the later stages of neurodegenerative conditions, 

it may nonetheless fluctuate in advanced dementia. This may limit its usefulness as 

a neurocognitive sign in this context.  

 

Fig 3.1: Overlap between reduced arousal states and hypoactive delirium, 

referenced from (European Delirium Association & American Delirium Society 2014) 
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Disorganised thinking remains a key criterion in the CAM but not included from DSM 

IV onwards. The validity of disorganised thinking as a construct remains difficult to 

define – it is unclear whether disorganised thinking is explained by deficits in 

attention, arousal and working memory or whether it should be instead considered 

as a distinct entity. 

3.2.4 Delirium superimposed on dementia  

With dementia being a significant risk factor for delirium, the concurrent presentation 

of delirium superimposed on dementia (DSD) is common. In general, delirium 

symptoms tend to overshadow dementia symptoms. However, the broad range of 

cognitive and neuropsychological presentations within dementia subtypes often 

overlap with features observed in patients with delirium.  

At present, there is no consensus on whether current delirium definitions or 

screening tools should be modified to take into account pre-existing cognitive domain 

or attentional deficits in patients with dementia or mild cognitive impairment 

subtypes. From a temporal perspective, there is equally no clear guidance within 

DSM-5 or ICD-10 to accommodate differences in fluctuations or changes from an 

abnormal baseline in patients with preexisting dementia. A recent consensus review 

from the European Delirium Association has outlined a number of advances required 

to improve diagnostic accuracy of delirium superimposed on delirium (Morandi, 

Davis et al. 2017) (Box 3.1).  

The consensus panel also recommended the potential role of laboratory testing and 

neuroimaging in DSD. The inclusion of objective measures would be novel for 

delirium constructs. Practically, requirements of biochemistry and imaging may also 

paradoxically limit delirium diagnoses in healthcare contexts where laboratory or 

imaging resources may not be available. However, early-stage innovations such as 

continuous EEG continue to rely on single-modality inputs using bespoke 

infrastructure unavailable in common hospital settings to diagnose delirium. There 

remains an urgent need to harness readily available, routine multi-modal data to 

improve delirium diagnostic accuracy. 
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Exploratory studies are ongoing to automate and make objective the diagnosis of 

delirium. For example, MacLullich and colleagues have developed a smartphone app 

to detect and monitor attentional deficits in patients with delirium (Rutter, Nouzova et 

al. 2018). Similarly, the feasibility of using spectral analyses of 

electroencephalogram (EEG) frequencies to detect delirium is being investigated 

using single lead EEG recordings (Numan, van den Boogaard et al. 2019).  

 

Box 3.1: European Delirium Association recommendations for advances required to 

improve diagnosis of delirium superimposed on dementia 

  

1. Define the most appropriate type of attention in DSD in specific dementia 
subtypes and severity, using the most appropriate assessment 

 
2. Quantify the specificity and sensitivity of current tests of arousal in patients 

with DSD, with a potential additional role of motor fluctuation evaluations 
 
3. Define the role of clinical information from medical records, functional 

assessments and collateral information in DSD diagnoses. 
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3.3 Management of Delirium 

The mainstay of delirium prevention and treatment are currently non-

pharmacological. There is no evidence for the use of drugs in preventing or treating 

delirium, except in extreme cases for sedative purposes when the patient is a danger 

to themselves or others.  

3.3.1 Delirium prevention 

Trials with prophylactic antipsychotics such as haloperidol (Girard, Exline et al. 2018) 

and other second-generation antipsychotics (Nikooie, Neufeld et al. 2019) to prevent 

delirium have not produced significantly positive findings. While dexmedetomidine 

may be a promising role in reducing agitation and delirium, adverse effects such as 

bradycardia and hypotension have been significant, with the drug yet to be used 

outside critical care settings (Ng, Shubash et al. 2019). Current emphasis remains 

on treating the acute stressor precipitating delirium and correcting this physiological 

insult. 

3.3.2 Delirium aetiologies 

Any number of pathophysiological processes can underlie the delirium syndrome. 

Delirium arises through the complex interplay between a patient’s vulnerability to 

cerebral decompensation and noxious physiological stimulus, stressing the brain 

beyond a functional threshold. The amplitude of noxious stimuli differs for each 

patient. Delirium may be precipitated in those with more vulnerable brains, such as 

patients with older people with underlying cognitive impairment or dementia, 

following a small stimulus such as a change of medications or a focal infection. 

However, younger healthy patients would only experience delirium following large 

insults, such as intensive care admission, general surgery or sepsis. Delirium is a 

non-specific but sensitive effect of acute decompensation on a vulnerable brain, as 

demonstrated by a wide range of risk factors for delirium. The precipitating factors 

with the greatest risk factor for delirium include neurosurgery (OR 4.5), use of 

sedatives and hypnotics (OR 4.5), trauma (OR 3.4) and infection (OR 3.1) 

(confidence intervals not reported) (Inouye, Westendorp et al. 2014). 
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3.3.3 Potential mechanisms underlying delirium 

Several potential mechanisms have been implicated in explaining how noxious 

stimuli occurring outside the central nervous system result in brain dysfunction. 

These have included neurotransmission and neuronal cellular disturbances resulting 

from hypoxic injury, impaired glucose metabolism, peripheral and CNS electrolyte 

disturbances, hypothalamic-pituitary-adrenal axis disturbance and direct effects of 

drugs on cholinergic and dopaminergic networks (Maldonado 2018). 

Systemic and central inflammation may be relevant to delirium pathophysiology via 

direct CNS sterile inflammation following trauma and surgery, as well as systemic 

inflammation mediated by circulating cytokines, endothelial activation, blood-brain 

barrier dysfunction, microglial activation and vagal stimulation. Increasing evidence 

suggests a role for systemic inflammation in both the reversible cognitive deficits in 

delirium and the long-term deleterious effects of delirium, causing neuronal 

dysfunction and death via dissociable short and long-term IL-1 processes (Skelly, 

Griffin et al. 2019). In mouse models, while systemic IL-1beta produced acute 

working memory deficits which were protectable by application of IL-1beta 

antagonists, direct application of IL-1 beta resulted in hippocampal dysfunction and 

neuronal death over the longer term (Skelly, Griffin et al. 2019).  

Although there are numerous possible delirium precipitants, and unique 

pathophysiological mechanisms likely correspond to each noxious stimulus, it is still 

possible that these processes converge upon a “common pathway” to produce a 

sufficiently homogeneous clinical syndrome. Recent work has focused on brain 

network disintegration. A functional network is a concept described through the 

statistical analyses of activity across brain regions during functional MRI, PET, EEG 

and MEG recordings, demonstrating that discrete and consistent brain regions 

synchronously are activated and assumed to function in coalition at rest and during 

tasks. A systematic review highlighted the consistent finding of functional network 

disruption in patients with delirium, as observed in reduced fMRI network integration 

and EEG connectivity, predisposed by reduced structural connectivity and poorer 
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structural network organisation on diffusion tensor imaging (van Montfort, van Dellen 

et al. 2019).  

The broad heterogeneity of delirium aetiologies has been difficult to account for in 

clinical studies. In addition, with the high prevalence of delirium among older 

patients, who inherently have more complex interacting comorbidities and who 

commonly present with non-specific instead of organ-focused symptoms, traditional 

parametric models with linear assumptions are particularly poor. Inaccurate clinical 

ascertainment of delirium diagnoses, small-scale studies frequently involving only 

single modality data, and combined with a historical lack of delirium awareness, has 

resulted in limited understanding of the mechanisms underlying delirium and a lack 

of targeted pharmacological interventions for prevention and treatment. These 

shortcomings could be corrected by employing large-scale, multimodal, high-

dimensional models using better-defined delirium diagnoses. Advances in machine 

learning techniques, inferential statistics and causal inferences might allow us to 

extend robust ground-truth prediction models into simulations. This could quantify 

causative effect sizes per input variable, inferring the relative contributions of data 

sources towards delirium diagnoses and outcomes. Such pathophysiological insights 

and therapeutic inferences would better target future mechanistic experimental 

studies and clinical trials, respectively. 

3.4 Summary 

Although the adverse sequalae associated with delirium are well described, the 

relative contributions of the patient’s baseline cognitive and functional vulnerabilities, 

the severity of the acute physiological insult, or the inherent toxicity of the delirium 

episode per se are poorly understood. The linearity of association between baseline 

cognition and delirium severity is unclear. It is unknown how baseline cognition 

interacts with delirium exposure to result in adverse outcomes such as cognitive 

impairment and mortality risk. There is a need to broaden delirium ascertainment 

beyond a cross-sectional episode but instead employ a longitudinal approach to 

encompass premorbid performance while utilising validated, continuous delirium 

severity measures consistent with DSM-IV criteria.  
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Second, delirium is a model example of decompensated function in the context of 

vulnerable pre-existing baseline in older people. Accurately predicting outcomes in 

this cohort of patients with complex, interacting multi-morbidities is challenging with 

traditional statistical approaches. More advanced, high-dimensional techniques, such 

as machine learning methods, may produce better-performing predictions. This 

would consequently allow causal, mechanistic and therapeutic inferences, offering 

individualised treatments to each patient. While delirium diagnosis and 

prognostication using machine learning models would be a longer-term goal, the 

current heterogeneity of delirium definitions among available large datasets make it a 

suboptimal choice of outcome for proof-of-concept. For example, a large portion of 

current literature utilises CAM for delirium definition, which offers a binary diagnosis 

of a syndrome not specifically congruent with DSM-IV. In addition, delirium 

superimposed on dementia, affecting a larger proportion of patients with delirium, still 

awaits a consensus definition. As a result, I will use mortality as the target outcome 

to demonstrate the potential of machine learning prediction models in older patients.  

Lastly, clinical experience informs us that older patients have great variance in the 

phenotypes of acute illness. Unsupervised machine learning techniques offer an 

opportunity to describe acute illness beyond common subtypes, with possible greater 

correlation to clinical outcomes and more appropriate stratification to treatment 

options, particularly in planning future clinical trials. 

In this thesis, first using a population epidemiology approach, I will qualify and 

quantify the relationships between baseline cognition, delirium severity and burden, 

and subsequent long-term cognitive decline and mortality risk. Next, I will construct 

machine learning prediction models for mortality to demonstrate proof of concept in 

predicting adverse events in older patients with multi-morbidities. Third, I will seek to 

demonstrate inherent patterns within acute illness in older patients. 
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3.5 Aims and objectives 

1. To describe the relationships between baseline cognition, delirium and adverse 

outcomes 

- Analyse linear and non-linear relationships between baseline cognition with 

delirium incidence and severity 

- Demonstrate associations between cumulative delirium exposure with long-

term outcomes, accounting for interactions with baseline cognition. 

2. To demonstrate proof-of-concept of machine learning prediction models in older 

patients  

- Construct supervised machine learning prediction for long-term mortality 

following acute hospital admission using hierarchically increasing numbers of 

modalities and predictive features  

- Make voxel-by-voxel comparisons of CT images between patients predicted 

alive and dead by the machine learning model, and compare with CT scans of 

ground truth to infer neuroanatomical differences between groups  

3. To demonstrate patterns of acute illness in older patients 

- Construct unsupervised clustering algorithm to identify possible underlying 

structure within longitudinal data of baseline and acute illness in older patients 

- Demonstrate predictive utility towards adverse outcomes for identified clusters 

of acute illness and interrogate their component clusters features  
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3.6 Hypotheses 

1. Poorer baseline cognition is independently associated with increased delirium 

incidence, delirium severity and burden 

2. Greater delirium burden is independently associated with greater long-term 

cognitive decline and mortality risk 

3. Automated supervised machine learning models can predict long-term mortality 

risk with a high degree of accuracy, with increasing predictive power as 

dimensionality and number of modalities increase  

4. Inherent structure exists within acute illness presentation of older patients, when 

described cross-sectionally and longitudinally, with clinical utility towards adverse 

outcomes prediction 
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4 Methods  

In this chapter, I will outline the statistical methods employed in this thesis and 

describe the datasets used. First, I will articulate the basic principles of linear and 

non-linear regression, survival analyses, supervised machine learning with extreme 

gradient-boosted trees and the basics of linear spatial parametric mapping for CT 

neuroimaging. Next, I will describe in further detail the two key datasets I use in this 

thesis: the Delirium and Health Population Informatics (DELPHIC) study and the 

UCLH Cognitive Status dataset, describing in detail the data collected, the pre-

processing of data, as well as the strengths and limitations of both datasets. 

  

Chapter Outline 
- Statistical methods 

o Kaplan Meier and Cox proportional hazards 

o Machine learning 

! Supervised machine learning methods 

! Hyperparameter tuning 

! Feature importance  

o Statistical parametric mapping (SPM) 

- Thesis cohorts 

o UCLH cognitive status cohort 

o Delirium and population health informatics (DELPHIC) 
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4.1 Statistical methods 

4.1.1 Linear regression and regression splines 

Linear regression is a basic statistical modelling technique that assumes a linear 

relationship between dependent and independent variables, expressed as: 

𝑌 = 		𝛼 + 	𝛽1	x1 + 	𝛽2	x2 + ⋯ . 𝛽𝑘	x𝑘 + 	𝜖 

where 𝛼 = intercept, 𝛽 = coefficient, 𝑥 = independent variable, 𝑘 = number of 

independent variables, 𝜖 = error 

However, linear regression can sometimes be too simplistic to describe associations 

between dependent and independent variables. In the case of suspected non-linear 

associations, the use of additional predictors raised to increasing powers, known as 

polynomial regression, can be used to fit data instead, expressed as:  

𝑌 = 		𝛼 + 	𝛽1X + 	𝛽2𝑋! 	+ 𝛽3𝑋"… . 𝛽𝑘𝑋# + 	𝜖 

where 𝛼 = intercept, 𝛽 = coefficient, 𝑥 = independent variable, 𝑘 = number of 

independent variables, 𝜖 = error 

However, with increasing powers of predictors included, polynomial curves become 

prone to overfitting, poorly generalising to unseen data. In addition, polynomial 

regression can be highly affected by anomalous values, with outliers resulting in 

significant effects on the overall fit of the regression curve.  

One solution is the division of the dataset into bins, delineated at points known as 

knots, then fitting separate regression lines within each bin, known as regression 

splines. While the positions of knots can be specified, it is common practice to place 

them uniformly across the dataset. However, the number of knots for splines must be 

selected. The functions fit within each bin do not need to be the same. Instead, 

functions can be fit piecewise using a number of linear or low-degree polynomial 

splines, avoiding the severe oscillatory nature of high-order polynomials. However, 

without further constraints on these piecewise functions, individual regressions may 

be discontinuous from those in adjacent bins, potentially with two curves 
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interpolating different values at the boundaries between two bins at the same knot. 

Mitigating this, constraints can be applied to smooth piecewise curves. Commonly, 

these specify the first and second derivatives of adjacent curves be equal.  

Lastly, a characteristic of polynomial functions is the wide variability at the 

boundaries of the dataset, such as beyond the first and last knots. A further 

constraint can specify that the function must be linear beyond the first and last knots 

at these boundary regions. The result is known as either a natural or a restricted 

spline.   

4.1.2 Kaplan Meier and Cox proportional hazards 

Kaplan Meier estimator is a non-parametric survival function calculating the fraction 

of a population alive after a time t. Survival at any one time is calculated by:  

𝑆 =
(𝑁!"#$% − 𝑁&%!&)

𝑁!"#$%
 

𝑤ℎ𝑒𝑟𝑒	𝑁	𝑖𝑠	𝑡ℎ𝑒	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑝𝑒𝑜𝑝𝑙𝑒	𝑖𝑛	𝑡ℎ𝑒	𝑎𝑛𝑎𝑙𝑦𝑠𝑒𝑠 

The probability of survival at a certain time is the multiplication of survival 

probabilities of all prior time points. Kaplan-Meier estimators right censor when a 

patient has been lost to follow up, withdraws from the study or continues to be alive 

without an event occurring. Kaplan-Meier estimators can be visualised as a plot with 

horizontal steps, declining with each death and with large sample size, 

demonstrating the true population survival probabilities. Kaplan-Meier estimators 

also allow survival stratification between different groups, visualised by different 

trajectories of decline.  

Cox proportional hazard models allow simultaneous evaluation of several factors on 

survival. It is defined as the multiplication of two parts: first, a baseline hazard 

function defining the probability of survival at baseline covariate levels; and second, 

the effect parameters, calculated as the exponential sum of the products of covariate 

parameters and their weights.  
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ℎ(𝑡) = ℎ!(𝑡)𝑒(#$%$&	#(%(&⋯.&		#+%+) 

where ℎ(𝑡) = hazard at time t, ℎ$(t) = baseline hazard, 𝛽 i = coefficient for covariate i, 

xi = feature i 

An exponentiated coefficient produces a hazard ratio (HR), with a HR above one 

signifying increased risk of an event occurring and below one a lower risk. By fitting a 

Cox proportional hazard model, the coefficients generated estimate a hazard ratio of 

the proportional increased risk of mortality over the baseline reference level of a 

covariate.  

4.1.3 Machine learning 

Machine learning is an umbrella term for statistical methods and algorithms that 

imitate human learning by training automatically and iteratively until the performance 

of a task has been maximised. Task objectives can range from predicting a specified 

outcome to identifying inherent patterns in data without a prior label. All data utilised 

are known collectively as the dataset. In prediction tasks, the target is termed the 

outcome and any non-outcome data points are termed features.  

Machine learning methods generally fall into four broad categories: supervised, 

unsupervised, semi-supervised and reinforcement learning. In supervised learning, 

the machine is trained with labelled outcome data. As the machine trains to produce 

a model as close to the ground-truth label as possible, weights assigned to original 

and derived features are adjusted, until performance can no longer be optimised. 

Supervised learning is used for tasks such as prediction or label classification. 

Examples include logistic and linear regression, decision trees, random forests, 

support vector machines and neural networks. In unsupervised learning, the 

machine trains on an unlabelled dataset and aims to find inherent patterns without 

human guidance. Typical uses include analyses for similarities and differences, such 

as clustering, or to reduce the number of dimensions within a dataset while retaining 

maximal information, such as principal component analysis. Semi-supervised 

learning utilises a combination of the supervised and unsupervised approaches, 

generally first training on labelled datasets before progressing onto training with 
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unlabelled data. Reinforcement learning is considered a variation of supervised 

learning, in which the model performs automated trial-and-error experiments. The 

machine is given feedback of success and failure: it is the drive towards successful 

outcome feedback that tailors the training of the machine, instead of an aim towards 

a specific target label per se.   

Machine learning, regardless of the type of method, share a common system of 

learning. First, a dataset is formed, either by collecting real-world data or by 

generating simulated data. Next, the dataset must be prepared for the chosen 

model, being aware of the requirements of specific algorithms: random forests 

cannot use categorical data, which must instead be transformed into binned 

individual binary “dummy” variables. Some are unable to handle missing data and 

require prior imputation.  

The machine is then trained, in which estimates for each feature are produced by the 

model in a “decision process”. In a classification task, the model produces a 

coefficient and weight for each feature and a predicted class for the outcome. A 

range of measures may be selected to measure the residual errors between 

predicted and ground truth outcomes, such as area under the curve receiver 

operator characteristic (AUCROC) or root mean squared error (RMSE). Lastly, 

weights apportioned to specific features are adjusted, and the model retrained. This 

process continues iteratively and aims to reduce residual errors, the specific metric 

of which can be designated. The loop continues automatically until no further error 

reduction can be achieved, signifying that performance cannot be further optimised, 

or a performance threshold has been reached.  

If model has not been able to extract maximal performance from the training data, 

analogous to a sub-optimally fitted regression in classical epidemiology, this is 

termed an underfit. However, if a model has been produced that recognises only 

patterns or predictions specific to the training dataset but would perform poorly on 

previously unseen data, this is termed an overfit. The model is, therefore, poorly 

generalisable.  
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There are various approaches to assessing model generalisability: first, as in 

classical epidemiology, the model can be applied to an external, independent 

dataset. However, in machine learning, if no independent dataset is available, the 

concept of “hold out”, in which the dataset is partitioned from the start into a training 

and testing subsets, commonly in a 70%-30% split for training and testing 

respectively. The model would only learn from the training subset and its 

generalisability assessed in the testing subset. Cross-validation (CV) is used within 

the training subset alone. Classically, this involves dividing the training set into k 

subsets, k times. For each k subset, the portions of the dataset assigned for training 

and testing vary. At each fold, the machine learns and tests the model from different 

portions of the dataset, resulting in k test performance metrics, the average of which 

is taken as final (fig 4.1). An extreme example of K fold validation is “leave one out”, 

in which only one sample of the entire dataset of n samples is designated the test 

subset at each fold and the model is trained using n-1 features, resulting in n model 

evaluations, which can of course be time consuming.  

K fold CV can be problematic when the dataset has an imbalance in outcome 

targets. For example, if a mortality prediction model uses a dataset in which 90% of 

participants remain alive and only 10% die, traditional K fold CV may result in 

unbalanced training folds, in which some folds may have no instances of death. 

Stratified K fold CV ensures there are the same number of outcome events across 

each fold, resulting in better representation of the whole population across every 

training subset. 
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Fig 4.1: Example of K fold cross validation (k=5) 

 

In this example of five-fold cross-validation, the dataset has been split into five 

subsets: within each of five iterations, a different subset will be held back as the test 

set while the other four will be used for training (reproduced from Towards Data 

Science: Cross Validation Explained: Evaluating estimator performance) 

4.1.4 Supervised learning methods 

Machine learning is an automated iterative method that in some classification cases, 

are extensions of classical statistical methods. For example, logistic regressions, 

linear and non-linear regressions and margin classifiers can applied within a 

machine learning framework. In this section, I will describe the most commonly used 

supervised machine learning methods, focusing mainly on support vector machines, 

decision trees, random forests and boosted gradient trees. I will finish by focusing on 

the details and modifiable hyperparameters of XGboost, on how these measures can 

most optimally tuned to maximise performance.  
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4.1.4.1 Support vector machine 

Support vector machines are an extension of maximal margin classifiers, a statistical 

method that aims to separate data points of different classes with a hyperplane. The 

dimension of a hyperplane is one less than the number of dimensions in a dataset: 

for example, a 2-dimensional scatterplot can be separated by a line while a 3-

dimensional space can be separated by a flat plane. Datapoints closest to a 

proposed hyperplane are known as support vectors and the Euclidean distance from 

them to the hyperplane the margin (fig 4.2).  

While maximal margin classifiers are excellent methods for perfect linear separation 

of classes, they are limited when either the hyperplane is non-linear and/or the 

classification is imperfect. Support vector machines overcome this limitation by 

projection of a dataset into a higher dimensional space, allowing the drawing of a 

more non-linear and flexible boundary between support vectors. To reflect 

similarities between data points as a matrix dot product, the supported utilisation of 

kernels avoids the requirement to fully compute the new higher dimensional state, 

significantly optimizing computational power. 
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Fig 4.2: Support vector machine 

 

Support vector machine on a two-dimensional dataset, drawing a line that separates 

two classes (blue and red); arrows = support vector (reproduced from Towards Data 

Science: the complete guide to support vector machines) 
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4.1.4.2 Decision trees and Random Forests 

Decision trees are intuitive methods used for classification or regression tasks. They 

are a series of thresholded sequential questions that divide the dataset, potentially 

even separating into individual data points if allowed. They have significant 

advantages: they are easy to interpret, fast to compute and perform well in large 

volumes of data. However, individual trees alone are prone to overfitting with poor 

generalizability to unseen data. At each individual split, the algorithm is motivated 

only by what performs best at the local node without consideration of the whole 

dataset, resulting in progression iteratively towards distinctions applicable only to the 

training dataset.  

However, poorly performing individual models can be combined into an ensemble 

model for improved performance, for example, by reducing variance. Ensemble 

models can be constructed from the same or different constituent models, known as 

homogenous and heterogenous ensembles, respectively.  

An ensemble of minimally correlated decision trees is known as a random forest. 

The ensemble method used to combine individual models in random forests are 

known as bagging (bootstrap aggregation): random subsets of data are selected 

from an original dataset with replacement, creating n samples that are used to 

estimate the desired parameter (fig 4.3). At the same time, only random subsets of 

features are made available in the selected samples. The output of a random forest 

regressor is the average output of bootstrapped samples. In random forest classifier, 

a similar concept can be applied by averaging the class probabilities generated from 

each bootstrapped output. However, in an alternative approach known as hard 

voting, the random forest classifier output can also be the vote selected by the 

majority of bootstrapped samples. As the model continues to iteratively train, the 

weights attached to each feature and their contribution to the final model will be 

adjusted, protecting against individual errors and producing a more generalisable 

model less prone to overfitting. 
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Fig 4.3: Schematic representation of bagging (bootstrap aggregating) 

 

Original data is sampled with replacement n times, creatining n samples that 

produce n classifier outcomes, the ensemble classifier is the calculated by majority 

vote or average of class probabilities. (Reproduced from 

https://commons.wikimedia.org/w/index.php?curid=85888768) 
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4.1.4.3 Boosting 

Boosting further improves performance of ensemble models by sequentially focusing 

on weak learners. For example, decision trees that on their own would perform 

minimally better than random chance are modified to become better learners, 

benefitting the model as a whole. This process is sequential and iterative. The 

earliest form of boosting was Adaboost: initially, all dataset observations are 

assigned an equivalent weight towards the final model. Each weight is progressively 

adjusted as newer weak learners are added to the model, without changing existing 

previous learners, with increased emphasis on previously incorrectly misclassified 

observations (fig 4.4).  

Refinement of Adaboost is achieved by using a numerical measure of error, known 

as a loss function. The next sequential learner to be added to the model can be 

programmed with the aims that it reduces this error, in the direction in which the rate 

of loss would be fastest, mathematically described as the greatest negative 

derivative with respect to the last learner’s loss function - negative gradient descent. 

In this most optimal direction, the size of each descent is governed by a learning 

rate. After the similar iterative and sequential learning process, the local minimum 

will be reached, when new learners can no longer “step” negatively in relation to the 

previous loss function, stopping the gradient-boosted tree learning.  

Extreme gradient-boost (XGboost) is another boosted ensemble model and, at 

present, one of the most efficient implementations of gradient-boosted trees. 

Compared to the characteristics of the first gradient-boosted trees, as described 

above, XGboost has several advantages. First, it has significantly faster 

computational speed due to its ability to utilise parallelisation. While weak learners 

are linearly sequentially added, all features still require searching for the best 

outcome split at each node. XGboost searches all features in the dataset. Each 

instance is balanced regardless of the tree being built, generates a distribution of 

instances, and applies them in parallel as most appropriate across all trees within the 

ensemble. Instead of repeating the search for each feature at every node, XGboost 

searches by feature and applies them to each node. 
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Fig 4.4: Schematic representation of boosting using Adaboost 

 

Machine increases emphasis with each iteration from box 1 to 3 towards 

observations previously misclassified, to produce box 4 = an accumulation of 

previous weak learners (reproduced from Analytics Vidhya: quick introduction to 

boosting algorithms in machine learning) 

Second, there are options to avoid overfitting the prediction model using L1 (Lasso) 

and L2 (Ridge) regularisation, known as alpha and lambda in XGboost respectively. 

Lasso penalises overfitting by adding a regularisation term to each loss function, 

calculated as the sum of the absolute value of coefficients, potentially altogether 

removing extreme outliers. L2 penalises the sum of the squares of weights. In 

addition, XGboost allows a Langrangian multiplier called gamma, which is in 

essence, a pseudo-regularisation parameter that penalises model complexity: the 

higher the gamma, the greater the regularisation. 
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XGboost can handle missing values. As a result, prior imputation, as required for 

other machine learning methods, is not required. Fourth, in addition to the 

regularisation terms above, XGboost is extremely flexible, with a number of 

modifiable hyperparameters that can be modified, mostly to avoid overfitting. The 

most commonly used hyperparameters include: 

- max_depth: The maximum depth of each tree within the ensemble, with 

deeper trees potentially performing better in training but with greater risk of 

overfitting. Trees either stop at the prescribed maximum depth or whenever a 

split results in a negative loss. 

- learning_rate: The size of each additional iterative step as the model is 

training and being optimised. The lower the rate, the slower the computation. 

Conversely, the faster the computation but potentially at the risk of not being 

able to reach an optimum. 

- n_estimators: The number of trees allowed in the final ensemble. 

- colsample_bytree: The number of features or columns allowed to be used by 

each tree, represented as a fraction of the total dataset.  

- subsample: The number of observations allowed to be used by each tree, 

represented as a fracture of the total dataset.  

Lastly, XGB can also be applied for a survival model, known as accelerated time 

failure (XGB aft). Transformed from a linear regression survival model to a decision 

tree ensemble, accelerated time failure is expressed in the formula: 

ln 𝑌 = 𝒯(𝐱) + 𝜎𝑍 

where 𝒯(𝐱) is the output of a decision tree, 𝑍 is a random variable and 𝜎	the scaling 

factor for 𝑍.  

The prediction metric for survival is Harrell’s C-index. In summary, this measures 

concordance between the risk of mortality, calculated by the model, and time to 

participant death, if observed. For example, for patients i and j with risk N and time to 

death T: if both patients are not censored, if Ni>Nj, concordance is defined as 

achieved if Ti < Tj and if Ni > Nj. The converse scenario, in which either operator 
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isreversed, would be discordant. However, if one patient was censored, for example, 

if Tj > Ti and Tj is censored, and Ni >Nj, concordance is also achieved.  

Over the dataset, Harrell’s C index is a calculation of: 

Number	of	concordant	pairs
(Total	number	of	concordant	and	nonconcordant	pairs) 

4.1.5 Hyperparameter tuning 

Optimisation of hyperparameters is essential towards achieving the best model 

performances, particularly in flexible models such as XGboost with numerous 

combinations of modifiable parameters. Hyperparameter optimisation has been 

traditionally achieved using techniques known as grid and random searches: in a 

grid search, a prespecified set of candidate hyperparameters are defined and every 

combination of them used to train the model. The hyperparameter set with the best 

performance is used. Random search is an abbreviated version in which only 

random selections of hyperparameters from a pre-specific list are used, decreasing 

computational time but increasing the risk that the most optimal combination may not 

be found.  

Generating each model from scratch using individual hyperparameter combinations 

is computationally and time intensive. An alternative approach is Bayesian 

optimisation, which instead uses probability statistics. In summary, for every function 

requiring optimising (in the case of XGboost hyperparameters tuning, the function to 

optimise is model performance and input data point the hyperparameters values), a 

surrogate function is fit using limited data points, obtained from sampling. Next, an 

acquisition function for each data feature on the surrogate function, assigning the 

probability of each being a good candidate for optimising the model performance. 

Changes to the model are concentrated in regions most probable for optimising 

performance, applied, and then used as updated prior surrogate function 

probabilities.  Bayesian optimisation do not rebuild entire ensemble trees for every 

hyperparameter combination and hence avoids consequent expensive computation. 
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4.1.6 Feature importance 

Feature importance provides a score of contribution from each feature to the final 

accuracy of the predictive model. This is calculated by the performance improvement 

resulting by a split point of a clinical feature (“gain”), weighted by the number of 

observations the node at which the split occurs (“cover”). Feature importance is 

calculated for the final model by averaging the gain-cover metric across all trees 

within the ensemble. 

4.2 Clustering 

Unsupervised machine learning techniques can also be applied to demonstrate 

patterns, linear and non-linear, within high-dimensional datasets, agnostic to prior 

assumptions. Clinically, clustering may group similar patients into phenotyping 

subtypes, with potentially relevant similar trajectories, prognoses and management 

approaches. From a research perspective, patients may be more optimally stratified 

for clinical trials.  

Clustering techniques broadly utilise measures of similarity between data point. In 

this chapter, I will first describe how best to deal with mixed datasets consisting of 

continuous, ordinal, categorical and binary data, frequently found in clinical records. 

Next, I will articulate the principles of t-stochastic neighbour embedding (TSNE), 

which allows condensation of non-linear, high-dimensional data into a lower-

dimensional representation to allow easier visual delineation of possible clusters. 

Last, I will describe candidate clustering methods employed to define clusters.  

4.2.1 Gower matrix 

A matrix of Gower’s distances offers a method of dealing with datasets composed of 

mixed types of continuous and categorical variables, particularly when a hierarchical 

order cannot be assumed in a clinical feature (for example, male and female sex). As 

a result, Gower’s distance is a useful measure of dissimilarity suitable for 

quantitative, ordinal, nominal and continuous variables. Gower’s distance is a 

weighted average of dissimilarities among pairs of data points. A Gower’s distance of 

0 represents equality while 1 is maximal dissimilarity.  
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When variables are numeric and continuous, the partial similarity between points are 

calculated as: 

 

 

 

Where Sj = similarity measure, which R represents the range of the feature j.  

When variables are non-numeric with multiple non-hierarchical levels (for example, 

occupation), the partial similarity index is calculated using the Dice distance. All 

numeric inputs are converted into a presence/ absence matrix. Dice distance works 

on the basis of whether the number of present dimensions in two values are equal or 

not: 

Number	of	non	equal	dimensions
(Number	of	dimensional	in	which	presence	of	both	values	are	true	

+	number	of	non	zero	dimensions)

 

 

An averaged sum of similarity indices, calculated using numeric methods or dice 

distances, is used to generate a matrix of dissimilarity Gower’s distances, known as 

a Gower’s matrix. 
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where Sj (X1, X2) is the similarity index between two features of two observations 

4.2.2 T-stochastic neighbour embedding (TSNE) 

In these analyses, TSNE allows easy visualisation of high-dimensional data, such as 

downsampling a large complex dataset into a two-dimensional manifold. TSNE is an 

unsupervised technique for data exploration and visualisation of underlying data 

structure developed in 2008 by Van der Maatens and Hinton (van der Maaten and 

Hinton 2008). Unlike principal component analysis, TSNE often improves efficiency of 

downsampling and cluster visualisation in complex datasets that have non-linear 

manifold structures, due to its ability to preserve only small local distances. 

In summary, the aim of TSNE is to minimise differences in distributions of similarity 

indices. First, TSNE fits a Gaussian distribution for a single point in high-dimensional 

space, calculates a set of centred and normalised distances to all other points within 

a sphere of influence and finally a set of probabilities. This is iteratively repeated with 

the Gaussian distribution fitted for all points, distances calculated for remaining points 

within spheres of influence and multiple sets of probabilities. The probabilities 

between sets of points are compared to generate a matrix of similarities. The 

perplexity of TSNE analysis determines the size of the sphere of influence for 

contributing to the calculation of variance, and effectively, the number of nearest 

neighbours deemed significant (the degree of local influence vs global influence). 

There is no statistical test for the most optimal perplexity value: the authors of the 

technique recommended “typical values for the perplexity range between 5 and 50”, 

with “larger or dense datasets requiring a larger perplexity”. There is an intuitive 

acceptance that perplexity should be aimed at approximately n0.5, where n signify the 

number of data point (Oskolkov 2019). 

The same process is repeated using a student’s T distribution with 1 degree of 

freedom, also known as a Cauchy distribution, which has thicker tails than a normal 

distribution and is better for modelling datasets with points far apart in Euclidean 

distances. A second set of probabilities is created in low-dimensional space. Lastly, a 

gradient descent approach is iteratively used to minimise the degree of divergence 

between the initial Gaussian and subsequent Cauchy distributions by optimising the 
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Kullback-Leibler divergence, resulting in a final lower-dimensional manifold 

representation than the original dataset.  

4.2.3 Clustering methods 

Clustering is an unsupervised statistical process that identifies inherent pattern 

structures within a dataset, resulting in grouping data points with similar 

characteristics. The most common clustering techniques are agglomerative and 

centroid based, such as hierarchical clustering and K means clustering. In addition, 

clustering can also include divisive, distributional (in which similar clusters are 

assumed to belong to similar distributions) or density-based (in which similar data 

points are considered to be located within areas of similar local densities). 

4.2.3.1 Hierarchical Clustering 

In hierarchical clustering, the number of clusters is not a priori defined. Initially, each 

individual data point is assigned as one cluster. Next, the two nearest points are 

merged into a single cluster. This process continues iteratively until the whole data 

set is grouped into a single cluster. A dendrogram is drawn, visualising the distance 

in data space in the y axis. Although there is no specific rule guiding the optimal 

number of clusters, it is generally accepted that the number of clusters traversed by 

a horizontal line at the level of a dendrogram with the greatest y axis height (and 

hence data space distance) without intersecting another cluster is also the most 

optimal. 

The definition of “distance” can be determined differently, affecting the clusters 

produced by hierarchical clustering. Common definitions of distance between two 

points “a” and “b” include: 

• Euclidean distance: ||a-b||2 = √(Σ(ai-bi)) 

• Squared Euclidean distance: ||a-b||22 = Σ((ai-bi)2) 

• Manhattan distance: ||a-b||1 = Σ|ai-bi| 

• Maximum distance: ||a-b||infinity = maxi |ai-bi|  
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• Mahalanobis distance: √((a-b)T S-1 (-b))  where s is a covariance matrix 

A little used but simple opposite of hierarchical clustering is divisive clustering, in 

which instead of every point being initially clustered into individual clusters, the entire 

dataset is designated as one cluster and subsequently “divided”.  

4.2.3.2 K means clustering  

K means is a centroid method of clustering that requires a priori determination of the 

number of clusters to be formed, suggesting some degree of domain knowledge is 

required. The classical form of K means randomly selects points within the data 

space and each data point is assigned the cluster “class” of the nearest point. Next, 

for all the points within each cluster “class”, a new centroid is calculated, after which 

each data point is reassigned to the class of the nearest new centroid. This iterative 

process continues until the stopping criteria has been satisfied, usually when 

centroids of newly formed clusters do not change or the maximum number of 

iterations.  

An advance on K means is to optimise the initiation process, in which instead of 

random allocation of the first points in space, K++ selects a random point as the first 

K. The squared distance of all other data points to this first selected point is 

calculated and the second selected K is the data point furthest away from the first K. 

Next, the squared distances of all non-centroid points are calculated to the nearest 

centroid and the points furthest away from any of the previous two K points is 

selected. This process iteratively continues until the pre-determined K number of 

centroids have been defined for initiation, after which K means continue as per the 

classical model. 

There is no specific number of optimal K, but the most commonly used method to 

determine the appropriateness of K is to calculate the sum of all distances within a 

cluster to the centroid, known as inertia. Alternatively, the intercluster distance can 

be added as a further measure of data compactness, known as the Dunn index, 

calculated as: 
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𝐌𝐢𝐧	(𝐢𝐧𝐭𝐞𝐫𝐜𝐥𝐮𝐬𝐭𝐞𝐫	𝐝𝐢𝐬𝐭𝐚𝐧𝐜𝐞)
𝐌𝐚𝐱	(𝐢𝐧𝐭𝐫𝐚𝐜𝐥𝐮𝐬𝐭𝐞𝐫	𝐝𝐢𝐬𝐭𝐚𝐧𝐜𝐞) 

A plot of inertia or Dunn index, which are measures of intracluster distances to be 

minimised or cluster compactness to be maximised respectively, against the number 

of pre-determined clusters (K), demonstrates an “elbow” inflection point, the number 

of clusters at which is then selected as the most appropriate K.  

4.2.3.3 K means vs Hierarchical Clustering 

K means differentiates from hierarchical clustering in several ways: first, using 

random initiation instead of K++, K means may produce similar but not exactly the 

same outcomes. Second, the setting of K, in the clustering model requires an a priori 

domain knowledge to use K means appropriately. Lastly, K means is inherently more 

suited to lower dimensional or spherical manifolds than hierarchical clustering, which 

is more tolerant to higher dimensional shapes. 

4.3 Statistical Parametric Mapping (SPM) 

4.3.1 What is SPM? 

Statistical parametric mapping is a process and program (Friston & Ashburner) that 

is a voxel-based approach to compare morphometric or functional brain differences 

between groups of subjects or within subjects over time, using classical statistical 

inference. The program also offers a pipeline to pre-process neuroimaging before 

analyses. In this thesis, SPM will only be used for structural volume-based analyses 

and my summary of its functions will not extend to time series functional 

neuroimaging.  

4.3.2 Pre-processing 

Pre-processing of images is required to allow analyses between comparable images. 

First, realignment of images is required: movement discrepancies between scans are 

inevitable, even by a few millimetres, even in cooperative patients. This is performed 

by rigid body transformation, in which the six parameters are produced to reflect 

movements in each of the three rigid motions (reflection, rotation, translation). Next, 
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images are spatially normalised against a standardised brain template. For each 

series of images, the mean is taken to calculate the warping function mapping them 

onto a brain template. In SPM, this “normal brain” was following a series of healthy 

controls at the Montreal Neurological Institute (305 participants, mean age 23.4 

years +/- 4.1 years, 66 females 239 males), hence known as the MNI space. Third, 

the image is smoothed to reduce noise. It is assumed that while noise occurs 

randomly from voxel to voxel, true signals likely extend across several adjacent 

voxel. As a result, a Gaussian kernel is applied, in which each voxel is replaced by a 

value of itself with contributions from values of its nearest spatial neighbours.  

4.3.3 Statistical Parametric Mapping 

Voxels are assumed to have values and variances of T and F distributions, 

respectively. Analyses are performed using the generalized linear model on a voxel-

by-voxel basis with parametric assumptions. 

The large number of simultaneous analyses, across individual voxels and across 

imaging contrasts, requires correction for potential “family wide” type 1 errors, in 

which the null hypothesis is incorrectly rejected. However, assumption of no spatial 

correlation by using Bonferroni correction would be too conservative, as this would 

assume every voxel would be independent from every other voxel, even if adjacent 

in three-dimensional space, incorrectly leading to type 2 errors. A solution is required 

that takes into spatial correlation, only rejecting the null hypothesis if the more local 

or whole observed volume of voxels is unlikely to have arisen from a null distribution.  

SPM utilises random field theory, a recent body of mathematics that defines the 

theoretical smoothness of a statistical map. In short, a random field is list of random 

numbers mapped onto a space of n dimensions, with an underlying assumption that 

spatial correlation exists even within this “random field”, in which numbers in 

adjacent Euclidean indices differ less those far apart. The “full width can estimate the 

smoothness of an image at half maximum” (FWHM) of the applied smoothing kernel. 

The number of voxel blocks in the image equal to the width of the smoothing kernel 

can be estimated, a correlate of the resolution of spatial correlation known as the 

resolution element (Resel). The smoothness of the image and the random field can 
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be compared. Any elements above a Euler characteristic, an estimate of the 

probability of an image achieving an assigned standardised score not by chance, 

can thus be defined as significant and likely arising from a localised spatial difference 

(fig 4.5).  
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Fig 4.5: A demonstration of thresholding by Euler characteristic to determine 

significance with random field theory. 

 

 

 

 

 

 

 

 

 

An illustration of the three dimensional space (top) with Euler characteristic 

thresholded at z = 0 (middle panel), resulting in greater areas of deemed significance 

in three (left: x, y, z) and two (right: x, y) dimensional spaces respectively; more 

aggresive thresholding at z = 1 (bottom panel) results in fewer spatial structures 

deemed significant in three (left: x, y, z) and two (right: x, y) dimensional spaces 

respectively (reproduced from SPM Random Field Theory lecture notes) 

Threshold: z = 0 

Threshold: z =1 
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4.4 Datasets 

4.4.1 Delirium and Population Health Informatics Cohort (DELPHIC) study 

4.4.1.1 Cohort 

The Delirium and Population Health Informatics Cohort (DELPHIC) is a prospective 

longitudinal study of older adults aged ≥70 years in the London Borough of Camden, 

across primary, secondary, intermediate, community mental health and social care, 

to obtain complete longitudinal data on health and functional status from baseline 

and inpatient acute illness (Davis, Richardson et al. 2018). The National Health 

Service provides over 95% of healthcare in the borough for a population of 

approximately 260,000 residents, comprising a single primary care system and two 

acute hospitals, University College London Hospital (UCLH) and Royal Free Hospital 

(RFH). 

Eligible participants were aged ≥70 years and registered with a Camden-based 

general practitioner. Those with severe hearing impairment, aphasia, unable to 

speak English sufficiently to undertake any basic cognitive assessment, or in the 

terminal phase of illness were excluded from the study. Letters were sent from 

general practice list to invite individuals to join the study, augmented by direct 

recruitment of patients from memory clinics and those recently discharged from 

secondary care specialists such as old age psychiatrists, community and hospital 

geriatricians. The ratio of recruited participants from GP lists, memory clinics and 

directly from inpatients within secondary care was approximately 8:1:1. All 

individuals, or their nominated proxies, gave consent to participate. 

4.4.1.2 Baseline Assessments 

DELPHIC was specifically designed to capture information not routinely collected in 

cohort studies but are particularly important for the understanding of health 

outcomes in older patients, such as data on quality of life, visual and hearing 

impairment, nutritional state, falls, continence, activities of daily living and cognition, 

with more than 700 raw baseline variables per participant. 
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Assessments were performed at baseline. While the majority took place by 

telephone, home visits were arranged for participants with significant hearing 

impairments. These assessments comprised of the following: 

- Consent for involvement in DELPHIC, specifically including hospital assessments 

in the event of acute illness (particularly if capacity was impaired through 

delirium or dementia at subsequent contacts); record linkage of electronic health 

data in primary and secondary care. If capacity to consent was impaired, a 

consultee declaration was sought, in line with NHS Health Research Authority 

guidance. 

- Administration of the Modified Telephone Interview for Cognitive Status (TICS-

m), two tests of verbal fluency adapted from the Addenbrooke’s Cognitive 

Examination, in which participants were asked to generate words beginning with 

the same letter and number of animals (Cook, Marsiske et al. 2009, Hsieh, 

Schubert et al. 2013)  

- Medical history, including comorbidities and medication history, general health 

- Social history, including educational attainment, current living arrangements, 

contact with relatives, index of multiple deprivation, health behaviours, hearing, 

vision, quality of life, dental health, continence, falls, depression, personal and 

instrumental activities of daily living, care needs, 

- Functional status including falls history, continence, hearing, vision, quality of life, 

dental health, continence, depression, personal and instrumental activities of 

daily living 

- Frailty was quantified as a cumulative index of health deficits (0 to 1), derived 

using 28 items drawn from the baseline assessment and calculated in line with 

standard procedures (Searle, Mitnitski et al. 2008), but excluding cognitive items 

to avoid collinearity with the primary cognitive measure.  

Participants were also asked to nominate an informant as an additional source of 

diagnostic information.  
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4.4.1.3 Acute admission delirium outcomes and prospective cognitive outcomes  

All participants admitted to either UCLH or RFH were automatically flagged to the 

study team through daily electronic alerts. In addition, the research team screened 

admissions lists between Monday and Friday identifying participants who had been 

admitted either electively or as an emergency. Any recruited DELPHIC patients 

admitted into UCLH or RFH were assessed daily during weekdays by a research 

team member for the entirety of their inpatient stay. Data recorded included 

information collected through usual clinical care: 

- Demographic: age, sex, education, place of residence, co-resident support 

- Clinical: physiological parameters of illness severity (National Early Warning 
Score, NEWS), illness severity scores (Acute Physiology and Chronic Health 

Evaluation (APACHE) II (minus arterial blood gas), medications, laboratory 

findings, presenting complaint 

- Cognitive function: Memorial Delirium Assessment Scale (MDAS), Observational 
Scale of Level of Arousal (OSLA) 

- Physical function: Hierarchical Assessment of Balance and Mobility (HABAM) 

(MacKnight and Rockwood 1995). 

For maximal accurate ascertainment during out-of-hours, clinical and delirium-

specific data were obtained from medical notes and validated informant delirium 

measures from ward staff and family trusted advisors (consultees) interviews. 

Baseline assessments were repeated two years after initial recruitment. Participants' 

deaths during the study period were confirmed on local hospital electronic records 

systems and cross-referenced with the NHS Spine, a statutory register for all deaths 

in England.  
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4.4.1.4 Strengths and Limitations 

In older people with known baseline function, DELPHIC is the largest dataset of 

acute illness in terms of number of study participants, inpatient assessment days and 

admission episodes. It is unique in its cross-setting design, tracking participants 

across baseline states in the community, primary care and acute illnesses in 

secondary care. The prospective nature of data collection allows accurate 

ascertainment of baseline factors without the need for historical recollection, which is 

frequently suboptimal. Last, the breadth of collected data modalities results in the 

inclusion of cognitive, functional and social outcomes often not included in 

epidemiological studies but are critical to consider when studying health trajectories 

in older people. The majority of measures were collected using validated ordinal 

scales.  

There remain limitations to DELPHIC: first, despite a large number of participants, 

only a small proportion is hospitalised during the study period. In addition, the study 

does not have the facility to assess illnesses outside of an inpatient setting, such as 

acute episodes, which general practitioners in the community alone treat. The same 

measures of illness severity as in younger populations and intensive care settings 

have been applied to this study. However, it is unclear whether they are the most 

optimal scales of illness severity in the older population who may not demonstrate 

anticipated physiological fluctuations as other age groups. Last, despite 

contemporaneous linkage of bloods, neuroimaging linkage is currently not available.  

4.4.2 UCLH Cognitive Status Dataset 

4.4.2.1 Sample 

The University College London Hospital (UCLH) dataset comprises of 2951 patients 

consecutively admitted to the acute Medicine for the Elderly service (seven 

days/week) at University College London Hospital (UCLH) between March 2015 and 

March 2017. Recruitment was unselected other than through the indication for the 

clinical service: an acute general medical problem in a population living with frailty. 

Eligible patients were those over 65 who had been admitted to UCLH directly by a 

geriatrician. The admission start date was defined as the date of initial presentation 
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to the emergency department. The discharge date was defined as the date of the 

patient leaving UCLH. In the case of patients with multiple admission episodes 

during the study inclusion period, a unique patient episode was defined as a new 

admission date recorded more than four weeks after the last blood test investigation. 

Any re-admission within 4 weeks of their final blood tests was defined in this study as 

a continuation of the same admission episode, as four weeks was deemed clinically 

feasible to be within a period of acute illness recovery for older patients. A subset of 

1036 unique patient episodes was identified where complete demographics, blood 

and CT brain data were available. Patients with unknown survival status were 

excluded. The data were collected as part of a service evaluation project and 

individual consent was not necessary for these secondary analyses, as determined 

by the NHS Health Research Authority.  

4.4.2.2 Outcomes 

Mortality: Inpatient deaths were recorded with the date of death. Data for all patients 

were censored at December 2018, with an “alive or dead” status recorded for all 

patients.  

4.4.2.3 Exposures 

Each patient was reviewed by a consultant geriatrician within 24 hours of hospital 

admission and clinically classified as having: i) delirium only; ii) dementia only; iii) 

delirium superimposed on dementia; or iv) no cognitive impairment, from the medical 

notes and clinical assessment. Dementia was generally diagnosed by medical 

records or collateral history. Delirium was made as a consultant diagnosis, often but 

not always using a validated diagnostic tool such as the 4AT. I linked 

contemporaneous admission information to this clinical dataset, laboratory and 

imaging investigations, corresponding as closely as possible to the index admission 

(laboratory results within 48 hours of admission; non-contrast CT head imaging 

performed within four weeks of admission date). The primary diagnosis of each 

patient was coded as a chapter header of International Classification of Diseases 

ICD-10. Each patient’s mortality status and if applicable, date of death, were 

recorded on 24th December 2018 through the hospital vital statistics database 
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(Carecast, GE Healthcare). Lengths of stay and vital status (dead/alive) was 

determined for all patients through clinical care records (Carecast linkage) for a 

censoring date at 1st December 2018.  

4.4.2.4 Study strengths and limitations 

The key strength of this dataset is the large-scale linkage of blood and CT images 

with the oldest-old patients, with a mean age of 85.5 years. Participants were 

observed for at least 20 months before determining the primary endpoint (mortality) 

to study medium-term mortality risk. This resulted in roughly equal group sizes of 

alive or dead individuals at the point of censoring. A limitation is the suboptimal 

definition of acute cognitive status: using a delirium diagnostic instrument was not 

compulsory and may have contributed to inconsistency among diagnoses between 

different consultants. Similarly, for dementia diagnosis, while medical records and 

collateral histories may be sufficient for many patients, this was not necessarily 

confirmed with a validation process such as IQCODE or formal corroboration with 

primary care records. Inherently, both required prior interaction with healthcare 

services – no dementia diagnosis due to lack of contact with healthcare practitioners 

did not fully exclude the possibility of clinical dementia. Lastly, the study offers only a 

partial, cross-sectional snapshot view of relationships between biochemistry and 

plain CT structural neuroimaging with medium-term mortality risk. Longitudinal 

changes in biochemistry, neuroimaging and cognitive statuses with later life mortality 

risk cannot be studied with this dataset. 

4.4.2.5 Data Preprocessing 

4.4.2.5.1 Blood  

Routinely performed tests: full blood count differentials, red cell distribution width, 

urea, creatinine, glomerular filtration rate, alanine transaminase, alkaline 

phosphatase, bilirubin, albumin, potassium, C-reactive protein, from the first 48 

hours of admission were linked for each admission. Samples from this period 

encompass the first anticipated venepunctures in emergency care or the acute 

medical unit. The timeframe can also be reasonably included for a “front door” 

predictor. Where there were multiple values, I chronologically indexed the first value 
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and the mean and standard deviation for the admission. Where only one test was 

performed, first and mean were identical and standard deviation was zero. This 

procedure yielded a set of 78 variables capturing both static and dynamic changes in 

each test. Distributions were visually examined, transformed where appropriate, and 

clipped to enclose values within 99% of the density of the distribution.  

Clinical investigations are generally guided by prior, clinically-informed belief. To 

capture the effect of such “intention to investigate”, five levels of investigative 

intention (II) combined with obtained values were defined for each test: 1) 

Investigation performed or not performed (1 binary variable); 2) counts of 

investigation performed over the first 48 hours (1 real-numbered variable); 3) II level 

1 and the first test value (2 variables); 4) II level 2 and the mean test value (2 

variables); and 5) the first test value, mean and standard deviation (3 variables). 

Data were modelled at different II levels to quantify the relative predictive content of 

the intention to investigate vs the actual test values thereby obtained. It can be 

interpreted that improving performance using increasing levels of II indicate 

predictive contributions of the blood values, over and above whether the test has 

been performed. 

4.4.2.5.2 CT Neuroimaging  

Non-contrast CT imaging of the head performed within 4 weeks of admission for any 

indication was linked to each patient episode. Any images of size over 100MB in size 

or involving a body part other than head were manually excluded. Collaborating 

groups processed each image within an SPM-based 

(https://www.fil.ion.ucl.ac.uk/spm/) pipeline that included, in order: rigid-body 

realignment to Montreal Neurological Institute (MNI) space, resampling to 1mm3 

isotropic resolution, and non-linear unified spatial segmentation and normalisation to 

MNI space based on a CT- optimised extension of SPM’s unified segmentation and 

normalisation routine (Ashburner and Friston 2005), employing a custom, CT-

specific atlas of both intensity and spatial distributions (Blaiotta, Freund et al. 2018) 

(https://github.com/WCHN/CTseg). This generative model is an extension of the 

approach implemented in the SPM12 software (Ashburner and Friston 2005), which 
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allowed for learning an atlas and intensity distributions from populations of brain 

images (Blaiotta, Freund et al. 2018). The model used in this paper had been trained 

on a large number of both MR and CT images and is available from 

https://github.com/WTCN-computational-anatomy-group/diffeo-segment. 

Segmentations were thresholded at 0.5 for each tissue type.  

Scans were resampled at 1.5mm, 3mm, 4.5mm and 6mm isotropic resolutions, 

extracting all voxels meeting the following criteria: tissue probability >0.5 and voxel-

wise probability variance across the cohort >0.01, flattened into a one-dimensional 

array and horizontally stacked. Voxel intensities were variance clipped at 99%. Any 

column with only zeros, representing an empty voxel contributing no information 

input to the final model, were removed. The pipeline output for each patient was two 

sets of probabilistic tissue segmentation maps of grey matter, white matter, 

cerebrospinal fluid, skull, and meninges/soft tissue: one native and one non-linearly 

registered to MNI. 
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5 Delirium and Population Health Informatics Cohort 
(DELPHIC) study 

 

In this chapter, I will be using methods described in chapter 4.1.1 and 4.1.2 to 

address evidence gaps in delirium population epidemiology articulated in chapter 3. I 

will first describe period prevalence of delirium when admitted to a medical ward 

from a community recruited cohort. Next, I will demonstrate the longitudinal 

relationships between baseline cognition, acute illness and long-term adverse 

outcomes in older people using population epidemiology. While dementia and prior 

cognitive impairment are known risk factors for incident delirium, I will show how 

baseline cognition is related to delirium severity during acute illness, across the 

spectrum of premorbid cognitive performance. Next, I will how delirium per se is 

inherently toxic for long-term cognition and mortality, how delirium contributes to both 

cognitive decline and mortality in a dose-dependent manner, and how this toxic 

effect is modulated by baseline cognition.  

Chapter Outline 
- Introduction  

- Methods 

o Delirium ascertainment 

o Statistical analyses 

- Results 

o Study demographics and delirium prevalence 

o Baseline cognition with delirium and arousal measures during illness 

o Baseline cognition and delirium measures with long term cognitive decline 

and mortality 

- Discussion 

o Clinical significance of findings 

o Strengths and limitations 

o Future directions 
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The findings of the association between baseline cognition and delirium 

phenomenology were published in a manuscript entitled “Extremes of baseline 

cognitive function determine the severity of delirium: a population study” (Tsui, Yeo 

et al. 2023). The associations between baseline cognition, delirium and long-term 

cognitive and mortality outcomes were published in a manuscript entitled “The 

impact of baseline cognition and delirium on long-term cognitive impairment and 

mortality: the Delirium and Population Health Informatics Cohort” (Tsui, Searle et al. 

2022). 

5.1 Introduction 

The clinical importance in prompt recognition and appropriate initiation of treatments 

for delirium is well established. Affecting at least 1 in 4 older admitted patients, 

presenting as acute changes in arousal, inattention, and global cognitive impairment, 

delirium has been demonstrated to be associated with adverse outcomes such as 

mortality, long term cognitive impairment, inpatient falls, delayed discharges, and 

significant patient/carer distress across a number of clinical settings (Partridge, 

Martin et al. 2013, Goldberg, Chen et al. 2020, Tieges, Quinn et al. 2021)  

Despite this, there remain significant gaps in our current knowledge of the 

determinants of delirium prevalence risk. Although older age and increased 

premorbid frailty (Lindroth, Bratzke et al. 2018) have previously been identified, how 

they interact with concurrent risk factors to result in different cross-sectional delirium 

severities and cumulative delirium exposures remain unknown. Our limited 

understanding of the wide variability in the natural history of delirium (Jackson, 

Wilson et al. 2016) restricts our ability to prognosticate for delirium prevalence, 

severity and burden, and hence varying degrees of consequent brain injuries.  

The influence of baseline cognition on subsequent delirium phenomenology has not 

been considered comprehensively. Yet, an empirical understanding of this 

relationship could affect delirium detection and management because the clinical 

significance of delirium symptoms might have different implications if framed in the 

context of a known baseline cognitive state. 
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In addition, the relation of delirium features on adverse outcomes remains poorly 

understood. An recent expert review of international delirium research emphasised 

“particular vulnerabilities predicting the negative long-term outcomes of delirium will 

be key to identifying at-risk patient groups and to developing targeted therapies”. 

(Khachaturian, Hayden et al. 2020). Is delirium an epiphenomenon reflective of 

underlying, likely undiagnosed cognitive impairment or dementia, unmasked during 

acute illness? Or is delirium inherently toxic per se, resulting in a direct contribution 

to the adverse effects, independent of baseline cognition, acute illness and 

hospitalisation? For example, the extent to which cognitive decline observed after 

hospitalisation is specific to delirium, and not reflective of baseline cognition, is 

unclear (Mathews, Arnold et al. 2014).  

If delirium is an independent contributor to long-term cognitive decline and mortality, 

it is not known if this manifests in a linear dose-dependent or thresholded manner, 

and whether other factors such as baseline cognition and frailty may interact to 

mitigate or worsen these outcomes and trajectories. A better understanding of these 

relationships has significant clinical implications because it would highlight those at 

greatest risk of delirium and its adverse effects. It would identify those who would 

benefit most from the intensive delirium prevention and post-delirium follow-up. 

Prior studies linking baseline cognitive function to delirium have used the 

methodological advantage of prospective follow-up in elective surgical populations 

(Saczynski, Marcantonio et al. 2012, Wu, Shi et al. 2015, Lindroth, Bratzke et al. 

2019). However, most delirium in secondary care presents in unselected 

unscheduled admissions in whom there is a much greater range of pre-existing 

cognitive impairment and frailty (Ahmed, Leurent et al. 2014). To encompass the 

whole spectrum of all delirium acute hospital presentations, we needed to 

characterise cognitive function in a stable community sample. Then, at each acute 

hospitalisation objectively: (1) assess the point-prevalence, severity and duration of 

delirium; (2) quantify these in relation to baseline cognitive function; (3) estimate 

these associations with to long-term cognitive and mortality outcomes. We 

hypothesised first that baseline cognition would contribute to differing delirium risk, 

severity and duration; and second, that baseline cognition would interact with the 
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cumulative delirium exposure, resulting in different long-term cognitive and mortality 

outcomes.  

5.2 Methods 

5.2.1 Ascertainment of delirium 

Case ascertainment of delirium was diagnosed using the Diagnostic and Statistical 

Manual of Mental Disorders (DSM) IV criteria. The wide use of DSM IV criteria within 

research literature allows easy comparison with other studies. Delirium was 

determined to be present if individuals met criteria A (disturbance of consciousness), 

B (change in cognition and/or perception) and C (acute and fluctuates). By virtue of 

their inpatient admission, all participants were deemed to fulfil Criterion D 

(physiological consequence of a general medical condition). Operationalisation of 

DSM-IV criteria and their corresponding interview questions are demonstrated in 

table 5.3. 

5.2.2 Statistical analyses 

5.2.2.1 Definition of outcome measures 

5.2.2.1.1 Delirium 

Delirium ascertainment was performed daily for each admitted participant. Delirium 

prevalence was defined as: 

(i) daily prevalence (delirium on each specific day of admission);  

(ii) admission prevalence (delirium at any point during admission)  

(iii) study period prevalence (delirium at any point during the participant’s 

inclusion in the DELPHIC study). 

(iv) Point prevalence: proportion of total study participant inpatient days positive 

for all DSM-IV components  

In addition to prevalence, delirium was further operationalised as: 
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a)  Severity: Daily scores of Memorial Delirium Assessment Scale (MDAS) 

assessing 10 domains of delirium symptoms (each scored out of 3) to give a 

30-point measure of daily delirium severity 

b) Duration: total number of delirium days experienced over the study period 

(across multiple admissions where relevant).  

c) Burden: Total delirium burden was quantified by combining a measure of 

duration and severity through summing daily MDAS scores (expressed as 

point*days).  

To allow for more robust analyses and easier interpretation, a categorical outcome of 

delirium burden was further constructed. This anticipates a long right tail in the 

distribution of delirium burden, contributed to by patients with long admission 

durations. Admitted individuals with scores above the median were classed as ‘high 

delirium burden’; those with scores below median classed as ‘low delirium burden’. 

All other participants were classified as ‘no delirium burden’.  

5.2.2.1.2 Cognitive function and death 

a) Cognitive function:  

A composite score was constructed using the sum of TICS-m (total 53 points) and 

verbal fluency tasks (two tasks scoring up to 7, total 14 points). This was 

standardised and distribution noted to be Gaussian with mean of 0; +2.0 SD and -2.0 

SD including more than 95% of values. The same composite score was used for 

both baseline cognition (as an exposure) and follow-up cognition (as an outcome).  

b) Mortality 

Any deaths occurring before cognitive assessment follow up, either as an inpatient in 

hospital or in the community.  

5.2.2.1.3 Missing data 

In-hospital assessments missing due to falling on a weekend or public holiday 

(missing at random) were forward-filled (Friday carried to Saturday) and backward-
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filled (Sunday carried from Monday) in 24-hour intervals for up to 4 days. For 

backward filling, this approach has the advantage of automatically carrying over 

information from the next working day’s chart review. Otherwise, data were assumed 

to be missing at random. 

5.2.2.2 Models:  

5.2.2.2.1 Baseline cognition and subsequent delirium and arousal:  

Mixed effects regression models estimated associations between baseline cognition 

and subsequent delirium measures, using logistic regression for delirium prevalence 

and linear regression for delirium severity. Models were clustered by participant 

study ID. Negative binomial regression was used to model delirium duration. Days in 

delirium was operationalised as count data over the number of days spent in hospital 

over the study period. All analyses were adjusted by standardised age, sex, baseline 

cognition, educational attainment, frailty index and mean daily NEWS. 

Standardisation for continuous, normally distributed data was calculated as (score-

mean)/standard deviation. 

To investigate non-linear relationships between cognition and delirium severity and 

abnormal arousal, we fitted restricted cubic splines with three knots. Default knot 

positioning from the Stata “mkspline” function was used, which operationalises 

Harrell’s recommended percentiles with the additional restriction that the smallest 

knot may not be less than the fifth-smallest value of baseline cognition and the 

largest knot not be greater than the fifth-largest value of baseline cognition. 

Sensitivity analysis:  

It was noted that specific outcome items, such as MDAS items 2 (disorientation) and 

3 (short-term memory impairment), may score more highly due to premorbid 

cognitive impairment, regardless of delirium exposure. In order to further highlight 

delirium specific contributions to adverse outcomes, over and above possible pre-

existing cognitive impairment or dementia, sensitivity analyses using principal 

models were also thus performed using cognitive composite scores with these two 

items removed (modified outcome score /24 points). 
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5.2.2.2.2 Delirium and long-term cognitive impairment or death:  

Linear regression estimated change in cognition at follow up. Mortality risk was 

estimated using Cox regression to model proportional hazards of death. For both 

models, incident delirium (yes/no) and then a categorised delirium burden variable 

(none/low/high) were used as the independent variable, with age, sex, baseline 

cognition, educational attainment, frailty index as standardised cofounders. Models 

performed at an admission episode level utilised mean NEWS as the summary 

measure of illness severity. Lastly, in order to delineate whether delirium measures 

per se, incidence or burden, resulted in any outcome changes or whether they were 

related to hospitalisation more broadly instead, sensitivity analyses were performed 

using length of hospital admission as an independent variable.  
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5.3 Results 

5.3.1 Demographics  

Of 1510 participants recruited between March 2017 and October 2018, median age 

was 77 (interquartile range 73 to 82), and 57% were women (Table 5.1)  

Home assessments were undertaken for 32 participants who were not able to use a 

telephone. Compared with the demographics of Camden over the age of 70, the 

sample was well matched by age. The absolute differences were small except for 

ethnic representation, in which DELPHIC contained a greater proportion of people of 

White ethnicity (table 5.1, fig 5.1) and Index of Multiple Deprivation, where 

participants in the DELPHIC scored lower than the median for the Borough of 

Camden residents (table 5.2).  

Over the study period, 209 participants (14%) were hospitalised across 371 

episodes, representing 1999 person-days of assessment.



 72 

Figure 5.1: Cohort structure showing sample and schedule of assessments 

 

1510 participants were recruited from 16,667 eligible patients registered with a GP in Camden. Cognition was assessed with a combined TICS-M and fluency 

measure at baseline and follow up. Measures of delirium severity (MDAS – Memorial Delirium Assessment Scale), arousal (OSLA – Observation Scale of 
Level of Arousal) and function (HABAM – Hierarchical Assessment of Balance and Mobility) were assessed daily during inpatient admission stays 
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Table 5.1: Characteristics of the cohort in relation to hospitalisation and delirium status 

 
Whole Cohort Delirium Attrition Died Followed up  

n = 1510 n = 115 p n=199 p n=93 p n=1218 p 

Age 78 (6·2) 82 (6·6) <0.0001 
 80 (6·8) <0·0001 83 (5·8) <0·0001 77 (5·6) 0·57 

Women 57% 55% 0.581 60% 0·36 46% 0·03 58% <0·0001 

Education     <0·0001  <0·0001  <0·0001 
 Degree level 65% 40%  54%  40%  68% 

 

 Up to secondary (12y schooling) 21% 30%       
 

 Up to primary (6y schooling) 14% 30% <0.0001 21%  33%  12% 
 

White ethnicity 94% 89% 0.005 91% 0·12 95% 0·89 95% 0·26 

Frailty Index (SD) 0·15 (0·13) 0·30 (0·17) <0.0001 
 0·2 (0·17) <0·0001 0·30 (0·1) <0·0001 0·13 (0·1) <0·0001 

TICS-m (total, SD) 38·8 (5·9) 33·8 (8·7) <0.0001 
 36 (7·5) <0·0001 34 (4·9) <0·0001 40 (4·9) <0·0001 

Fluency (words, SD) 15·6 (6·2) 11·6 (6·8) <0.0001 
 14 (6·1) <0·0001 11 (6·8) <0·0001 16 (6·0) <0·0001 

Fluency (animals, SD) 19·0 (7·0) 13·3 (7·4) <0.0001 
 17 (7·5) <0·0001 13 (6·5) <0·0001 20 (6·5) <0·0001 

Self-rated health (poor/very poor) 18% 49% <0.0001 
 24% <0·0001 46% <0·0001 14% <0·0001 

Past medical history         <0·0001 
 Myocardial infarction 21% 37% <0.0001 

 22% 0·59 36% <0·0001 <0·0001 <0·01 

 Diabetes mellitus 12% 19% 0.019 
 15% 0·17 25% <0·0001 <0·0001 <0·01 

 Hypertension 50% 61% 0.01 
 48% 0·61 67% <0·0001 31% 0·11 

 Stroke 9% 16% 0.007 
 11% 0·34 20% <0·0001 8% <0·0001 

 Cancer 24% 25% 0.644 
 19% 0·08 29% 0·19 24% 0·49 

 COPD 14% 28% <0.0001 
 17% 0·13 <0·0001 <0·01 12% <0·0001 

Any impaired PADL 9% 31% <0.0001 
 18% <0·0001 36% <0·0001 6% <0·0001 

Any impaired IADL 73% 90% <0.0001 
 77% <0·0001 86% <0·0001 73% <0·0001 

P values refer to the following comparisons: Delirium cf whole cohort; Attrition cf followed-up; Died cf followed up; Followed up cf whole cohort. 
TICS-m Modified Telephone Interview for Cognitive Status. PADL Personal activities of daily living: grooming; toileting; dressing; bathing; transfer; stairs; IADL Instrumental activities of daily 

living: shopping; washing up; making hot drink; feeding; walking outside 
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For participants presenting to hospital, the commonest presenting symptoms were 

general malaise and fever (15%), respiratory (dyspnoea, cough, 9%) and 

neurological (confusion, 9%) complaints. Hospitalised individuals had lower baseline 

TICS-m cognitive scores (mean 35.5 versus 38.8 points, p<0.01), and more frailty 

(frailty index 0.25 versus 0.15, p<0.01) than those not hospitalised. Individuals 

admitted once accounted for 114 (55%) hospital episodes, and the rest were 

admitted multiple times (median number recurrent admissions 2, IQR 2 to 4).  

Table 5.2: Demographic characteristics of the DELPHIC sample in relation to the 

London Borough of Camden 

 

Although follow up was initially planned for two years after initial recruitment, the 

Covid-19 pandemic resulted in a delay to cognitive follow ups, particularly in those 

requiring a home visit. As a result, the final median follow-up period was 3.5 years, 

totally 5059 person.years to July 2021. By the end of the study, 1218 participants 

(81%) had repeat cognitive assessments, 113 (8%) had died, and 180 were lost (or 

withdrew) to follow up (12%). There were significant differences between participants 

who completed follow up compared to those who were lost: those with lower 

baseline cognition were more likely to be lost to follow up (OR -0.82 per SD baseline 

cognitive score; 95%CI -1.28 to -0.38; p<0.01), as were male participants, those 

were lower educational attainment, frailer participants at baseline, have poorer 

general health and more dependent on activities of daily living.

 Camden DELPHIC 

Age (median, IQR) 77 (73 to 83) 77 (73 to 82) 

Female 58% 57% 

Index of multiple deprivation 

(median, IQR) 
18.9 (11.3 to 28.4) 14.6 (9.1 to 22) 

Ethnicity (% white) 84% 94% 
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5.3.2 Delirium prevalence 

On any given day (point prevalence), 29% of hospitalised participants fulfilled DSM-

IV criteria for delirium. At any assessment, participants met DSM-IV criteria A, B and 

C 69%, 68%, and 41% of the time (table 8.3). Measures contributing to Criterion A 

included abnormal OSLA scores (31%) and inability to perform months of the year 

backward (13%). Components of Criterion B included short-term memory impairment 

in 31% of cases and perceptual disturbance in 13%. There was evidence of 

fluctuation (Criterion C) in OSLA or MDAS scores (differing from the previous 

assessment by ≥1 SD) 5% of the time. New severe sleep-wake cycle disturbance 

was present in 20%.  

Median MDAS score was 7/30 points (IQR 3-12). Delirium burden (cumulative MDAS 

scores) had a median 26 point*days (IQR 20-197), equivalent to around three days 

of moderate delirium. Over the course of an admission, delirium was ascertained at 

any point within the episode in 45% of admitted participants (prevalent delirium at 

admission in 35%, incident delirium developing after admission in 10%). The 

average number of days with delirium (consecutively positive assessments) was 3.9 

days. In 61.6% of admission, the participant presented with delirium on the day of 

admission. In 44.5% of admissions, the participant remained delirious according to 

DSM-IV criteria on the final day of assessment, assumed to be the day of discharge.  



 76 

Table 5.3: Point prevalence of delirium features in hospitalised sample contributing 

to DSM-IV case ascertainment. 

Criterion A 

69% 

Criterion B 

68% 

Criterion C 

41% 

Item 1 ≥2: reduced 

level of 

consciousness 

33% Item 2 ≥2: 

disorientation  

(time/place questions 

5/10 errors) 

32% Item 10 ≥3: sleep-

wake cycle 

disturbance 

17% 

Item 4 ≥2: impaired 

digit span  

(5 forward or 3 

backward errors) 

10% Item 3 ≥2: short-term 

memory impairment  

(≥2 errors on 3-item 

delayed recall) 

31% Observed fluctuations 

in arousal 

6% 

Item 5 ≥2: 

inattention 

30% Item 6 ≥2: 

disorganized thinking 

15% Observed motor 

fluctuations 

5% 

Inattention during 

interview 

4% Item 7 ≥2: perceptual 

disturbance 

13% Informant report of 

fluctuations 

22% 

Dozes off during 

interview 

1% Item 8 ≥2: delusions 25% Item or OSLA score 

different from 

previous assessment 

by ≥1 SD 

5% 

Distracted by 

environmental 

stimuli 

3% Informant report more 

confused 

7%   

OSLA total ≥2 31% Odd thoughts 

described on direct 

questioning 

2%   

MOTYB >5 

mistakes 

13% Hallucinations 

described on direct 

questioning 

3%   

Serial 7 score lower 

than baseline 

16% Strange things 

described on direct 

questioning 

1%   

  3 sentences to 

complete (3 choice 

answer) (any error) 

8%   

  2 sentences to 

complete (free choice 

answer) (either error) 

7%   

  2-stage sequencing 

command (either 

error) 

7%   

Each MDAS item is rated 0, 1, 2 or 3. Criterion present if one or more symptom/sign positive 

Note MDAS item 9 (decreased or increased psychomotor activity) is not used in the case definition. 

OSLA Observational Scale for Level of Arousal; MOTYB months of the year backward; Informants: health care staff 

and/or family/carers. 
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5.3.3 Baseline association with delirium measures 

5.3.3.1 Delirium incidence 

In univariate models, poorer baseline cognition and increased frailty were both 

associated with increased risk of incident inpatient delirium if admitted during the 

study period. For each standard deviation of increased baseline cognition, the 

participant was 44% less likely to develop incident delirium (OR 0.56 95% CI 0.42 to 

0.74, p value <0.01). Correspondingly, for each standard deviation of increased 

baseline cognition, the participant was 65% more likely to develop incident delirium 

(OR 1.65, 95% CI 1.22 to 2.24, p value <0.01).  

After adjustment for age, sex, educational attainment, NEWS and frailty, the 

association between baseline cognition and odds of incident delirium slightly 

attenuated (OR 0.63 per SD, 95%CI 0.45-0.89, p=0.01) (fig 8.2, table 8.4). However, 

the association between frailty and incident delirium attenuated on full adjustment 

(OR 1.27 per SD, 95%CI 0.89-1.81, p=0.18).  
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Table 5.4: Associations between baseline cognition and delirium incidence (DSM IV status) 

  Univariate Analyses Multivariate Analyses 

n = 1999, 209 clusters OR 95% CI P value OR 95% CI P value 

Baseline Cognition* 0.56 0.42 0.74 <0.0001 0.63 0.45 0.89 0.01 

Education 
        

 Degree level 
        

 

Up to 
secondary 
(12y 
schooling) 

1.32 0.59 2.92 

 

1.49 0.67 3.28 

 

 
Up to primary 
(6y 
schooling) 

0.69 0.34 1.43 0.23 1.09 0.52 2.26 0.59 

Age 1.04 0.99 1.08 0.14 0.98 0.7 1.38 0.9 

Female 0.94 0.52 1.71 0.84 0.9 0.5 1.61 0.72 

FI (minus cog) 1.65 1.22 2.24 <0.0001 1.27 0.89 1.8 0.18 

NEWS 1.03 0.95 1.12 0.5 0.89 0.66 1.22 0.48 

Mixed-effects logistic regression accounts for repeated measures per individual. Baseline cognition derived from modified 

Telephone Interview of Cognitive Status plus two verbal fluency measures; FI frailty index, minus cognitive items to avoid 

collinearity; NEWS national early warning score. Univariable analyses are individual models per row; multivariable analyses show 

coefficients mutually adjusted for all other factors. 
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5.3.3.2 Delirium severity 

In univariate analyses, poorer baseline cognition, older age and greater frailty were 

all associated with more severe delirium. Each standard deviation decrease in 

baseline cognition was associated with a 1.8 point increase in MDAS score 

(coefficient -1.8, 95% CI -2.57 to -1.03, p <0.0001). However, educational attainment 

was not associated with delirium severity. On full adjustment, worse baseline 

cognition was associated with more severe delirium (-1.6 MDAS point per SD 

baseline cognitive score, 95%CI -2.55 to -0.66, p<0.0001) (fig 5.2, table 5.5).  



 80 

Table 5.5: Associations between baseline cognition and delirium severity (Memorial Delirium Assessment Scale score) 

 
Univariate Analyses Multivariate Analyses 

n = 1999, 209 clusters Coefficient 95% CI P value Coefficient 95% CI P value 

Baseline Cognition* -1.80 -2.57 -1.03 <0.0001 -1.60 -2.55 -0.66 <0.0001 

Education 
        

Degree level 
        

Up to secondary (12y 

schooling) 0.91 -1.33 3.15 
 

1.19 -0.95 3.33 
 

Up to primary (6y 

schooling) -0.58 -2.54 1.38 0.35 0.82 -1.16 2.80 0.53 

Age 0.13 0.00 0.26 0.05 0.03 -0.10 0.17 0.66 

Female -1.20 -2.84 0.43 0.15 -1.35 -2.91 0.22 0.09 

FI (minus cog) 1.35 0.52 2.18 <0.0001 0.41 -0.57 1.38 0.41 

NEWS 0.08 -0.10 0.26 0.37 0.08 -0.10 0.25 0.39 

 Mixed-effects linear regression accounts for repeated measures per individual. Baseline cognition derived from modified Telephone 

Interview of Cognitive Status plus two verbal fluency measures; FI frailty index, minus cognitive items to avoid collinearity; NEWS national 

early warning score. Univariable analyses are individual models per row; multivariable analyses show coefficients mutually adjusted for all 

other factors. 
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Figure 5.2. Relationship between baseline factors and delirium risk, severity and duration 

Mixed effects multivariable-adjusted estimates showing better baseline cognition is associated with lower probability of delirium and 

less severe delirium; negative binomial regression multivariate-adjusted estimates showing better baseline cognition is associated 

shorter duration of delirium.  

Left panel: delirium risk (odds ratio); Middle panel: delirium severity (MDAS severity score, out of 30); Right panel: Delirium duration 

(incidence rate ratio). Data presented in Supplementary Tables 3-5. Baseline cognition defined by the modified Telephone Interview 

for Cognitive Status, augmented by two verbal fluency tasks. NEWS: National Early Warning Score. Baseline cognition, frailty index 

and NEWS standardised to show comparable effect sizes 



 82 

There was a non-linear relationship between baseline cognition and delirium 

severity. MDAS scores were higher when baseline cognition was both low and high. 

The negative relationship between baseline cognition and delirium severity for the 

first spline and positive relationship with the second spline was reflected in MDAS 

score of 15 (95% CI 12 to 17) points at z-score = -2 and MDAS of score 11, 95% CI 

7 to 15 at z-score = +2) ((table 5.6, fig 5.3). The lowest MDAS severity scores were 

seen in those at the midpoint of baseline cognition (z-score = 0). 

Sensitivity analyses using only non-cognitive items from the MDAS showed similar a 

similar bimodal distribution of scores (table 5.7 and 5.4). 

5.3.3.3 Baseline cognition and abnormal arousal 

The relationship between baseline cognition and abnormal arousal followed a 

comparable pattern. At the extremes of baseline cognition, OSLA scores were higher 

(OSLA 4, 95% CI 3 to 6 points at z-score = -2; OSLA 4, 95% CI 2 to 7 at z-score = 

+2) (Figure 5.3). Again, the lowest OSLA scores were recorded in those with 

baseline cognition z-scores of 0.  
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Table 5.6: Non-linear relationship between delirium severity (MDAS score) or arousal abnormality (OSLA score) and baseline 

cognition, as demonstrated by multivariate non-linear polynomial regression using restricted cubic spline with 3 knots 

 

 
MDAS  OSLA 

 
β 95% CI P 

 
β 95% CI P 

Cognition: first spline -3.46 -4.59 -2.33 <0.01 
 

-1.07 -1.77 -0.36 <0.01 

Cognition: second spline 3.14 1.18 5.09 <0.01 
 

0.97 -0.04 1.98 0.06 

Age (per SD) 0.35 -0.87 1.58 0.57 
 

0.20 -0.42 0.83 0.52 

Sex (women vs men) -1.10 -3.05 0.86 0.27 
 

-0.37 -1.42 0.68 0.49 

Educational attainment*    0.68*     0.82* 
 Up to primary (6 years) Ref     Ref    

 Up to secondary (12 years) 0.38 -2.15 2.91   0.19 -0.95 1.33  

 Degree or higher 0.99 -1.28 3.26   0.38 -0.84 1.59  

Frailty index (per SD) 0.57 -0.55 1.68 0.32 
 

0.10 -0.47 0.67 0.73 

NEWS (per SD) -0.22 -0.77 0.32 0.42 
 

0.12 -0.18 0.42 0.43 
Time to first assessment (months) 0.18 0.03 0.32 0.02  0.09 0.02 0.16 0.01 

          
NEWS National Early Warning Score 
* Education p values for trend 

** estimates also adjusted by age, sex, educational attainment, frailty, NEWS and time to first assessment 
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Figure 5.3: Bimodal relationship between delirium severity and abnormal arousal with baseline cognition 

 

 

 

 

Trajectories of change in delirium severity scores showing more severe delirium throughout admission for those with lower baseline 

cognition. Plots are of splines fitted to median value in each tertile of baseline cognition, defined by the modified Telephone 

Interview for Cognitive Status and augmented by two verbal fluency tasks. MDAS = Memorial Delirium Assessment Scale. 
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Table 5.7: Non-linear relationship between sub-cortical delirium severity (MDAS score without items 2 and 3) and baseline cognition, 

as demonstrated by multivariate non-linear polynomial regression using restricted cubic spline with 3 knots 

  MDAS (without cortical items) 
 β 95% CI P 

Cognition: first spline -2.47 -3.39 -1.55 <0.01 
Cognition: second spline 2.49 1.10 3.89 <0.01 
Age (per SD) 0.32 -0.54 1.19 0.46 
Sex (women vs men) -0.78 -2.12 0.56 0.25 
Educational attainment*    0.68* 

 Up to primary (6 years) Ref    

 Up to secondary (12 years) 0.38 -1.42 2.18  

 Degree or higher 0.59 -1.00 2.19 0.76 

Frailty index (per SD) 0.24 -0.57 1.06 0.56 
NEWS (per SD) -0.13 -0.53 0.27 0.53 
Time to first assessment (months) 0.00 0.00 0.01 0.10 
      

NEWS National Early Warning Score 
* Education p values for trend 

** estimates also adjusted by age, sex, educational attainment, frailty, NEWS and time to first assessment 



 86 

Figure 5.4: Bimodal relationship between delirium severity as demonstrated without cortical 

items with baseline cognition 

 

 

Trajectories of change in delirium severity scores without MDAS items 2 and 3, showing more 
severe delirium throughout admission for those with lower baseline cognition, similar to figure Y 
with full inclusion of MDAS items. Plots are of splines fitted to median value in each tertile of 
baseline cognition, defined by the modified Telephone Interview for Cognitive Status and 
augmented by two verbal fluency tasks. MDAS = Memorial Delirium Assessment Scale. 
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5.3.3.4 Delirium duration 

In univariate analyses, poorer baseline cognition and increased frailty were 

associated with longer duration of delirium. Each standard deviation decrease in 

baseline cognition was associated with 15% increased rate of delirium incidence. 

Similarly, each standard deviation increase in frailty index was associated with 17% 

increased rate of delirium incidence. Educational attainment was not associated with 

delirium duration. On full adjustment, the associated between baseline cognition and 

delirium duration was maintained (IRR 0.88, 85% CI 0.77 to 1.00 p = 0.05), while the 

association for frailty is attenuated (table 5.8). Clinically, this translates to a patient 

with one standard deviation better baseline cognition experiencing one fewer day of 

delirium per week of illness than patients of comparable frailty and illness severity. 
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Table 5.8: Univariate and multivariate associations between baseline cognition and delirium duration 

Mixed-effects linear regression accounts for repeated measures per individual. IRR: incidence rate ratio. Baseline cognition derived 

from modified Telephone Interview of Cognitive Status plus two verbal fluency measures; FI frailty index, minus cognitive items to 

avoid collinearity; NEWS national early warning score. Univariable analyses are individual models per row; multivariable analyses 

show coefficients mutually adjusted for all other factors. 

 

 
Univariate Analyses Multivariate Analyses  

n = 209 IRR 95% CI P value IRR 95% CI P value 

Baseline Cognition* 0.85 0.77 0.94 <0.0001 0.88 0.77 1.00 0.05 

Education 
        

Degree level 
        

Up to secondary 

(12y schooling) 1.14 0.73 1.76 
 

1.14 0.74 1.78 
 

Up to primary (6y 

schooling) 0.89 0.60 1.32 0.50 1.09 0.72 1.63 0.83 

Age* 1.02 0.99 1.04 0.17 1.00 0.98 1.03 0.79 

Female 1.00 0.72 1.39 0.99 0.96 0.69 1.33 0.81 

FI (minus cog)* 1.17 1.04 1.32 0.01 1.06 0.92 1.23 0.40 

NEWS 0.95 0.86 1.04 0.25 0.95 0.86 1.04 0.27 
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5.3.3.5 Delirium burden  

Delirium burden was subsequently calculated as the cumulative sum of daily MDAS 

scores while the participant was an inpatient within the duration of the study.  

In univariate analyses, better baseline cognition, younger age, reduced frailty and 

reduce illness severity were associated with lower delirium burden (table 5.9). 

Specifically in relation to baseline cognition, for every standard deviation increase in 

baseline cognition, this was associated with a 23% (OR 0.77, 95% CI 0.62 to 0.94) 

and 60% (OR 0.4, 95% CI 0.34 to 0.48) reduction in low and high delirium burden 

respectively (p value for trend <0.0001). On full adjustment, baseline cognition was 

not associated with the risk of low delirium burden but one standard deviation was 

associated with 38% reduced risk of high delirium burden (OR 0.62, 95% CI 0.47 to 

0.81, p value <0.0001 for trend). Associations for frailty and illness severity as 

operationalised by mean NEWS score were maintained on multivariate analyses. 

However, while significant associations between increasing age and educational 

attainment with greater delirium burden were demonstrated in univariate analyses, 

this was not maintained in multivariate analyses.
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Table 5.9: Univariate and multivariate associations between baseline cognition and delirium burden category  

    Univariate Analyses Multivariate Analyses 

n = 209 Delirium Burden Coefficient 95% CI P value Coefficient 95% CI P value 

Baseline Cognition* None Ref    Ref    

 Low 0.77 0.62 0.94  1.00 0.72 1.38  

 High 0.40 0.34 0.48 <0.0001 0.62 0.47 0.82 <0.0001 

Education**          

 None Ref    Ref    

Degree level Low Ref        

Up to secondary 

(12y schooling) 
 0.89 0.48 1.65  0.92 0.37 2.26  

Up to primary (6y 

schooling) 
 0.58 0.33 1.00  0.95 0.43 2.12  

Degree level High Ref        

Up to secondary 

(12y schooling) 
 0.48 0.27 0.83  0.63 0.25 1.60  

Up to primary (6y 

schooling) 
 0.24 0.15 0.38 <0.0001 0.93 0.42 2.05 0.86 

Age None Ref    Ref    

 Low 1.28 1.05 1.56  1.01 0.96 1.06  

 High 2.09 1.74 2.51 <0.0001 1.05 1.00 1.10 0.16 

Female None Ref    Ref    

 Low 1.07 0.71 1.62  1.13 0.64 1.99  

 High 0.73 0.49 1.10 <0.0001 0.73 0.39 1.37 0.38 

FI (minus cog)* None Ref    Ref    

 Low 1.50 1.25 1.81  1.13 0.83 1.53  

 High 2.52 2.14 2.97 <0.0001 1.55 1.18 2.04 0.01 

NEWS (mean)* None Ref    Ref    

 Low 95.65 40.39 226.52  72.24 31.33 166.53  

 High 100.82 42.53 238.96 <0.0001 78.71 33.98 182.34 <0.0001 
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Mixed-effects linear regression accounts for repeated measures per individual. Baseline cognition derived from modified Telephone Interview of 

Cognitive Status plus two verbal fluency measures; Delirium burden defined as none, low (below median = 26) and high (above median >26); FI 

frailty index, minus cognitive items to avoid collinearity; NEWS national early warning score. Univariable analyses are individual models per row; 

multivariable analyses show coefficients mutually adjusted for all other factors. 

*Baseline cognition, FI and mean NEWS standardised per SD, age represented per year  

** Education p value for trend 
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5.3.4 Delirium measures and long-term adverse outcomes 

5.3.4.1 Long-term cognitive decline 

Delirium diagnosed at any point was associated with worse long-term cognitive 

decline. Associations between delirium prevalence and long-term cognition were 

maintained from univariate analyses (coefficient -0.83, 95% CI -1.1 to -0.56, p<0.01) 

to multivariate analyses (coefficient -0.34, 95% CI -0.62 to -0.06, p = 0.02). 

Associations with worse long-term cognition were also demonstrated in multivariate 

analyses with poorer baseline cognition (coefficient 0.59 per SD baseline cognition, 

95% CI 0.52 to 0.66, p<0.0001), older age (coefficient -0.02, 95% CI -0.03 to -0.01, 

p<0.0001), and educational attainment (degree level education coefficient 0.31 95% 

CI 0.16 to 0.47 p<0.0001) (Table 5.10). No associations were demonstrated between 

long term cognitive decline with sex, frailty, illness severity during study as 

operationalised by mean NEWS on full adjustment. 

Beyond the general association between delirium incidence and follow-up cognition, 

there were different effect sizes according to baseline cognition (interaction term 

p=0.05, table 8.10). While participants with low baseline cognition had similar scores 

at follow up (z score -1.25, -1.26 for delirium absent and present respectively), the 

degree of decline at follow up was marked for those at medium baseline cognition (-

0.08 and -0.42 for delirium absent and present respectively) and high baseline 

cognition (1.10 and 0.43 for delirium absent and present respectively).
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 Table 5.10: Associations between delirium prevalence and follow up cognition 

 
Univariate Analyses Multivariate Analyses 

n = 1218 Coefficient 95% CI P value Coefficient 95% CI P value 

Delirium Y/N -0.83 -1.10 -0.56 <0.0001 -0.34 -0.62 -0.06 0.02 

Baseline Cognition* 0.71 0.65 0.76 <0.0001 0.59 0.52 0.66 <0.0001 

Delirium Y/N - Baseline Cog interaction     -0.16 -0.33 0.00 0.05 

Education         

Up to primary (6y schooling)         

Up to secondary (12y schooling) 0.66 0.47 0.86  0.14 -0.03 0.31  
Degree level 1.06 0.89 1.22 <0.0001 0.31 0.16 0.47 <0.0001 

Age -0.06 -0.07 -0.05 <0.0001 -0.02 -0.03 -0.01 <0.0001 

Female 0.10 -0.02 0.21 0.09 0.06 -0.03 0.15 0.19 

FI (minus cog)* -0.46 -0.52 -0.39 <0.0001 -0.06 -0.12 0.01 0.09 

NEWS (mean)* -0.09 -0.16 -0.03 0.01 0.02 -0.04 0.08 0.55 

Univariate and multivariate linear regression analyses. Baseline and follow up cognition derived from modified Telephone Interview of Cognitive Status plus two verbal 

fluency measures; FI frailty index, minus cognitive items to avoid collinearity; NEWS national early warning score, calculated as mean over study admission days. 
Multivariable analyses show coefficients mutually adjusted for all other factors.  

*Baseline cognition, FI and mean NEWS standardised per SD, age represented per year  

** Education p value for trend 



 94 

Table 5.11: Associations between delirium burden and follow up cognition  

 

 
n = 1218 

  Univariate Analyses Multivariate Analyses  

  Coefficient 95%CI P value Coefficient 95%CI P value 

Delirium Burden 

None Ref    Ref    

Low -0.13 -0.36 0.10  0.05 -0.18 0.28  

High -1.10 -1.42 -0.78 <0.0001 -0.60 -0.94 -0.26 <0.0001 

Baseline Cognition  0.71 0.65 0.76 <0.0001 0.63 0.56 0.70 <0.0001 

Delirium Burden - 
Baseline Cog interaction 

None     Ref    

Low     0.07 -0.12 0.26  

High     -0.39 -0.60 -0.18 <0.0001 

Age  -0.06 -0.07 -0.05 <0.0001 -0.02 -0.03 -0.01 <0.0001 

Sex  0.10 -0.02 0.21 0.09 0.03 -0.06 0.13 0.45 

FI  -0.46 -0.52 -0.39 <0.0001 -0.08 -0.14 -0.01 0.02 

NEWS  -0.09 -0.16 -0.03 0.01 0.00 -0.07 0.07 0.99 

Linear regression analyses. Baseline and follow up cognition derived from modified Telephone Interview of Cognitive Status plus two verbal fluency measures; FI 
frailty index, minus cognitive items to avoid collinearity; NEWS national early warning score, calculated as mean over study admission days. Delirium burden derived 
by thresholding cumulative MDAS scores of participants who experienced delirium at median. Multivariable analyses show coefficients mutually adjusted for all other 

factors. Baseline cognition, FI and mean NEWS standardised per SD, age represented per year; p value for trend 
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In the whole cohort, high, but not low, delirium burden was associated with worse 

follow-up cognition in univariate and multivariate analyses: those experiencing 26 or 

more cumulative MDAS points had 0.6 SD deficit in follow-up cognitive scores 

(95%CI -0.94 to -0.26, p<0.01), compared with participants of similar baseline 

cognition, frailty and illness severity who did not experience any delirium (table 5.11, 

fig 5.5).  

An interaction between baseline cognition and delirium burden was also 

demonstrated in the association with long term cognition. Those with the lowest 

baseline cognition had similar scores at follow-up regardless of delirium exposure (z-

score -1.35, -1.43, -1.16 in none, low and high burden respectively). Individuals with 

high baseline cognition – those starting at +2.0 SD in z-score – had demonstrable 

decline even without delirium (z-score +1.17; absolute decline of 0.83). However, 

those experiencing high delirium burden had an even larger absolute decline (z-

score -0.22; absolute decline of 2.22). Margins for each combination of delirium 

burden (none, low, high) with baseline cognition are shown in table 5.12. 

A sensitivity analysis demonstrated no association between hospitalisation alone and 

cognitive decline (table 5.13). 
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Table 5.12: Margins between delirium burden in study and baseline cognition with follow-up cognition  

 

Marginal coefficients for effects of delirium burden and baseline cognition on follow up cognition, derived from modified Telephone Interview of 

Cognitive Status plus two verbal fluency measures. Baseline cognition divided into tertiles, delirium burden defined as none, low (under median 

cumulative MDAS burden <=26) and high (above median cumulative MDAS burden >26) 

  

Delirium burden Baseline cognition Margin 95% CI P value 

None Low -1.35 -1.50 -1.19 <0.01 

None Medium -0.09 -0.14 -0.04 <0.01 

None High 1.17 1.04 1.31 <0.01 

Low Low -1.43 -1.86 -1.01 <0.01 

Low Medium -0.04 -0.26 0.18 0.72 

Low High 1.35 0.94 1.77 <0.01 

High Low -1.16 -1.55 -0.77 <0.01 

High Medium -0.69 -1.02 -0.36 <0.01 

High High -0.22 -0.85 0.42 0.51 
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Table 5.13: Sensitivity analyses demonstrating no association between hospitalisation and follow up cognition  

 

n = 1218 
Multivariate Analyses 

Beta 95%CI P value 

Hospitalisation -0.02 -0.23 0.19 0.83 

Baseline Cognition 0.63 0.56 0.69 <0.01 

Hospitalisation Y/N - Baseline Cog 

interaction 
-0.06 -0.20 0.07 0.36 

Age -0.02 -0.03 -0.01 <0.01 

Female 0.05 -0.05 0.14 0.33 

Frailty index -0.08 -0.15 -0.02 0.02 

NEWS -0.02 -0.09 0.05 0.57 

Linear regression analyses for sensitivity. Baseline and follow up cognition derived from modified Telephone Interview of Cognitive Status plus 

two verbal fluency measures; Hospitalisation defined as admission during study duration, FI frailty index, minus cognitive items to avoid 

collinearity; NEWS national early warning score. Multivariable analyses show coefficients mutually adjusted for all other factors. Baseline 

cognition, FI and mean NEWS standardised per SD, age represented per year 
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Figure 5.5: Interactions in relationship between baseline cognition and delirium burden on long term cognition and mortality risk 

 

Linear multivariable-adjusted estimates showing deleterious effects of high but not low delirium burden on long term cognition, with the biggest adverse impact on those with 

the best baseline cognition; Cox proportional hazards estimates, multivariable adjusted showing significant contribution of high delirium burden to mortality risk in medium and 

high baseline cognition groups but not low baseline cognition group 

Left panel: z-score of follow up cognition (Data presented in Tables 8.12) Right panel: (Data presented in Tables 8.17). Baseline cognition defined by the modified Telephone 
Interview for Cognitive Status, augmented by two verbal fluency tasks. NEWS: National Early Warning Score. Baseline cognition, frailty index and NEWS standardised to 
show comparable effect sizes. 
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5.3.4.2 Mortality 

In the 93 participants who died, these occurred within a median 444 days (IQR 282 

to 747 days) of recruitment to the study. 63 of these deaths were in participants 

hospitalised at any stage during the study; 30 participants who died were not 

admitted during the study. Of the participants who died after experiencing 

hospitalisation, 18 had experienced low delirium burden and 45 high delirium burden.  

Overall, delirium incidence was associated with increased mortality (HR 6.34, 95%CI 

3.20 to 12.56, p<0.0001) (table 8.14) on full adjustment in multivariate analyses. 

Poorer baseline cognition, increasing age, male sex, increased frailty and increased 

illness severity were all also associated with increased mortality risk. While 

educational attainment was associated with increased mortality risk in univariate 

analysis, this association attenuated on full adjustment including baseline cognition. 

Delirium incidence during the study was associated with five times the increased 

mortality risk posed by each increasing year of age. 

An interaction between baseline cognition and delirium incidence with mortality risk 

was demonstrated (HR 1.35 95%CI 1.00 to 1.82 p =0.05). Regardless of whether 

delirium was experienced or not during the study, mortality risk decreased with 

increasing baseline cognition. However, the hazard ratio for any patient who 

experienced delirium, regardless of baseline cognition, was greater than for those 

without delirium with the lowest baseline cognition (table 5.15) 



 100 

Table 5.14: Associations between delirium incidence during study and mortality risk 

 

 

 
 Univariate Analyses Multivariate Analyses 

n = 1510   HR 95% CI P value HR 95% CI P value 

Delirium (Y/N)  15.14 10.06 22.78 <0.0001 6.34 3.20 12.56 <0.0001 

Baseline Cognition*  0.58 0.51 0.64 <0.0001 0.71 0.56 0.91 0.01 

Delirium (Y/N) - Baseline Cog interaction     1.33 0.98 1.80 0.07 

Education** 
 

        

Degree level 
 

Ref    Ref    

Up to secondary (12y 

schooling) 
 

0.54 0.32 0.91  0.88 0.50 1.55  

Up to primary (6y schooling) 
 

0.25 0.15 0.40 <0.0001 0.71 0.42 1.21 0.45 

Age  1.11 1.08 1.14 <0.0001 1.05 1.01 1.08 0.01 

Female  0.63 0.42 0.95 0.03 0.63 0.41 0.95 0.03 

FI (minus cog)* 
 

1.83 1.62 2.07 <0.0001 1.20 1.00 1.45 0.05 

NEWS (mean)*  1.55 1.44 1.66 <0.0001 1.21 1.06 1.38 <0.0001 

Linear regression analysis demonstrating association of delirium incidence during study with increased mortality risk. An interaction term is demonstrated between delirium 
incidence and baseline cognition.  

Baseline and follow up cognition derived from modified Telephone Interview of Cognitive Status plus two verbal fluency measures; FI frailty index, minus cognitive items to 
avoid collinearity; NEWS national early warning score, calculated as mean over study admission days. Multivariable analyses show coefficients mutually adjusted for all other 
factors.  

*Baseline cognition, FI and mean NEWS standardised per SD, age represented per year **p value for trend 
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Table 5.15: Margins for delirium prevalence, baseline cognition and mortality risk 

Delirium incidence Baseline cognition Margin 95% CI P value 

No Low 54.38 -98.79 207.55 0.49 

No Medium 27.68 -50.50 105.86 0.49 

No High 14.09 -26.97 55.15 0.50 

Yes Low 195.66 -345.76 737.08 0.48 

Yes Medium 175.42 -323.26 674.10 0.49 

Yes High 157.27 -313.14 627.69 0.51 

  

Marginal coefficients for effects of delirium prevalence and baseline cognition on 

mortality risk, demonstrating the greatest mortality risk occurs in those who 

experienced delirium with poorest baseline cognition. Baseline cognition derived 

from modified Telephone Interview of Cognitive Status plus two verbal fluency 

measures. Baseline cognition divided into tertiles.  
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Increasing delirium burden was associated with increased mortality risk on full 

adjustment in multivariate analyses (HR 7.14 95% CI 3.50 to 14.58 for low delirium 

burden; HR 13.74 95% CI 6.75 to 27.99 for high delirium burden respectively, p 

<0.0001 for trend) (table 8.16).  

An interaction between delirium burden and baseline cognition with mortality risk was 

also demonstrated in multivariate analyses. Poorer baseline cognition was 

associated with increased risk of death for participants who experience no or low 

burden of delirium. Participants who experienced low delirium burden, regardless of 

baseline cognition, had a greater mortality risk than those without delirium but also 

the poorest baseline cognition. However, for participants with the greatest delirium 

burden, mortality risk was similar regardless of baseline cognition, with hazard ratios 

of 9.75, 10.02 and 10.29 for low, medium and high baseline cognition respectively. 

Margins for each combination of delirium burden (none, low, high) with baseline 

cognition towards mortality risk are shown in table 5.17. The differential mortality 

risks stratified by baseline cognitive status in participants with no or low delirium 

burden, but not demonstrated in those with high delirium burden, is shown in figure 

5.6.  
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Table 5.16: Associations between delirium burden and mortality risk  

Linear regression analyses. Baseline and follow up cognition derived from modified Telephone Interview of Cognitive Status plus two verbal fluency measures; FI frailty index, minus 

cognitive items to avoid collinearity; NEWS national early warning score, calculated as mean over study admission days. Delirium burden derived by thresholding cumulative MDAS 
scores of participants who experienced delirium at median. Multivariable analyses show coefficients mutually adjusted for all other factors. Baseline cognition, FI and mean NEWS 

standardised per SD, age represented per year; * Variable centred and standardised ** p value for trend 

  
Univariate Analyses Multivariate Analyses (Groups as continuous) 

n = 1510   HR 95% CI P value HR 95% CI P value 

Delirium Burden None Ref    Ref    

 
Low 8.63 4.81 15.49  7.14 3.50 14.58  

 
High 24.13 15.18 38.37 <0.0001 13.74 6.75 27.99 <0.0001 

Baseline Cognition* 
 

0.58 0.51 0.64 <0.0001 0.64 0.49 0.83 <0.0001 

Delirium Burden - Baseline Cog interaction None     Ref    

 
Low      1.53 0.93 2.51  

 
High     1.59 1.14 2.20 0.02 

Education** 
 

        

Degree level 
 

Ref    Ref    

Up to secondary (12y schooling) 
 

0.54 0.32 0.91  1.00 0.57 1.74  

Up to primary (6y schooling) 
 

0.25 0.15 0.40 <0.0001 0.71 0.42 1.20 0.35 

Age 
 

1.11 1.08 1.14 <0.0001 1.27 1.02 1.57 0.03 

Female 
 

0.63 0.42 0.95 0.03 0.66 0.44 1.01 0.06 

FI (minus cog)* 
 

1.83 1.62 2.07 <0.0001 1.18 0.98 1.42 0.09 

NEWS (mean)* 
 

1.55 1.44 1.66 <0.0001 1.13 0.99 1.29 0.06 
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Table 5.17: Margins for delirium burden, baseline cognition and mortality risk 

Delirium burden Baseline cognition Margin 95% CI P value 

No Low 1.78 0.52 3.05 0.01 

No Medium 0.73 0.40 1.06 <0.0001 

No High 0.30 0.10 0.50 <0.0001 

Low Low 5.45 -0.65 11.56 0.08 

Low Medium 5.21 0.95 9.46 0.02 

Low High 4.97 -1.57 11.50 0.14 

High Low 9.75 2.03 17.47 0.01 

High Medium 10.02 1.54 18.49 0.02 

High High 10.29 -1.26 21.84 0.08 

 

  

Marginal coefficients for effects of delirium burden and baseline cognition on 

mortality risk, with the greatest cognitive decline demonstrated by those with the 

highest deliirum burden and baseline cognitive performance. Baseline cognition 

derived from modified Telephone Interview of Cognitive Status plus two verbal 

fluency measures. Delirium burden, defined as no, low (under median cumulative 

MDAS burden <=26) and high (above median cumulative MDAS burden >26). 

Baseline cognition divided into tertiles.  
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Fig 5.6: Kaplan Meier plots by delirium burden and baseline cognition 

 

 

Protective effects of high and medium baseline cognition on mortality risk if exposed to low delirium burden or no delirium. Participants with 

exposure to high delirium burden experienced similar survival trajectories, regardless of baseline cognition as evidenced by overlapping survival 

lines.  
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5.4 Discussion 

5.4.1 Summary of findings 

These findings demonstrate that across this population sample, higher baseline cognition reduces 

the risk of incident delirium. Over the whole population, in those with higher baseline cognition, 

any experienced delirium is of shorter duration, even after accounting for age, illness severity, 

educational attainment and frailty. However, the relationship between baseline cognition and 

delirium severity is non-linear: if delirium presents during acute illness, participants with the lowest 

and highest cognitive baselines experience the most severe delirium and arousal abnormalities. 

Delirium severity and abnormal arousal were closely related at all levels of cognition.  

Overall, delirium incidence increased cognitive decline and risk of death in a dose dependent 

manner at long-term follow up, as demonstrated by the association of cognitive decline with 

increasing delirium burden. However, the protective effects of higher baseline cognition on 

cognitive decline and future mortality risk only seemed apparent to those who experienced no 

delirium or low delirium burden. For participants who experienced high delirium burden, rates of 

cognitive decline and mortality risk were similar, suggesting an attenuation of the protective effects 

of baseline cognition in patients experiencing high delirium burden. 

Taken together, when acute illness is sufficient to lead to delirium, different factors may be at play 

across the range of baseline cognitive function. In the context of normal baseline cognition, 

recognising delirium could be the strongest indication of acute illness in older people, over and 

above physiological indices such as NEWS. These findings highlight how maximising baseline 

cognition can minimise later life cognitive decline and mortality risk. Moreover, the toxic effects of 

high delirium burden appear to overcome these protective effects of baseline cognition, 

emphasising the importance of preventing or reducing delirium severity during acute illness in 

older people. 

5.4.2 Significance and reasons for findings 

The effect size of delirium on cognitive decline is substantial, comparable to that observed in 

hereditary forms of Alzheimer’s disease. DELPHIC participants with the highest baseline cognition 

declined by 0.83 and 2.22 SDs with ‘no’ and ‘high’ delirium burden exposure respectively after two 

years on full adjustment. This is worse than that observed in the highest risk groups in the 

Alzheimer’s Dementia Neuroimaging Initiative (ADNI), who are positive for amyloid in PET imaging 

or in CSF samples and demonstrated declines of 1 SD over approximately three years (Mormino, 
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Papp et al. 2017), as well as to amyloid related decline in the normal population, estimated to be 

0.15 to 0.35 SD per year (van der Kall, Truong et al. 2021). My analysis suggest delirium per se is 

neurotoxic resulting in increased cognitive decline and increased mortality, likely via systemic 

dysfunction. Although the disorientating and distressing effects of inpatient hospitalisation are well 

recognised, the effects of delirium on cognitive decline are independent of admission to hospital. 

Limitations in illness severity ascertainment could confound the apparent finding that delirium is 

more adverse in those with high baseline cognition. Is it possible that those with higher baseline 

cognition were also less frail to begin with, hence the threshold for hospitalisation was higher for 

this subgroup and is a marker of higher illness severity not captured by NEWS alone? Conversely, 

was there a floor effect in detecting further cognitive decline on follow up in those with the poorest 

cognitive performance at the start of the study? This possibility is less likely because the baseline 

cognitive scores are normally distributed, with no apparent floor effects.  

Why might individuals with better baseline cognition be more vulnerable to cognitive decline 

associated with delirium? It is possible that the physiological precipitants of delirium in these 

individuals somehow had a more direct neurological impact than in those with worse baseline 

cognition. This finding echoes a previous result of a disproportionate impact of delirium on fitter 

individuals (Dani, Owen et al. 2018) or those without prior dementia (Pitkala, Laurila et al. 2005). 

In this context, delirium could be the best marker of acute illness severity in those with highest 

baseline cognition. Pragmatically, delirium should raise concern for subsequent cognitive decline 

in those with the “most to lose”. Cumulative MDAS scores are associated with longer length of 

stay, which may be a proxy for either a more severe illness severity or poorer functional baseline, 

even beyond what can be accounted for by NEWS and frailty index, respectively. As a result, 

compared with NEWS, cumulative MDAS burden across an admission may be a more informative 

metric. 

5.4.3 Alignment with current literature  

5.4.3.1 Poor baseline cognition with increased risk of delirium 

These broader findings align with previous experimental data from animal studies showing higher 

grades of prior neurodegeneration result in more severe and more prolonged delirium symptoms 

when challenged with a standardised inflammatory stimulus. In APP/PS1 mice, microglia were 

found to produce an exaggerated interleukin 1 beta (IL-1 beta) response and subsequent 

exaggerated astrocyte chemokine response to lipopolysaccharide-induced IL1-beta. This resulted 

in greater amyloid deposition and neuroinflammation. Macroscopically, hippocampal networks in 
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APP/PS1 mice were primed and hypersensitive to IL-1 beta challenge, resulting in an acute 

cognitively dysfunctional state analogous to delirium (Lopez-Rodriguez, Hennessy et al. 2021).  

Similar associations between premorbid cognitive impairment with delirium risk are evident in 

epidemiological studies. Any baseline cognitive impairment (defined as pre-diagnosed dementia, 

MMSE<23 or 24, IQCODE positive or TICS<30) was associated with an odds ratio for delirium 

between 1.3 and 5.5 (Fong, Davis et al. 2015). In a sample of the oldest-old, the odds ratio for 

incident dementia with delirium was 8.7 (Davis, Muniz Terrera et al. 2012). The findings that there 

is a non-linear relationship between baseline cognition and delirium severity, with those at lowest 

and highest cognitive baselines being at risk of the most severe delirium, is novel and extends 

current knowledge.  

In addition to increasing age, as anticipated, being related to increasing cognitive decline, the 

multivariate models also highlight frailty as an independent risk factor for worse cognitive 

impairment at follow up. This is consistent with previous studies that demonstrated frailty as a 

modifier for the clinical expression of dementia neuropathology, with frailer participants more likely 

to demonstrate an association between burden of Alzheimer’s neuropathological burden and 

expression of Alzheimer’s dementia symptoms (Wallace, Theou et al. 2019). 

5.4.3.2 Delirium exposure produces differential cognitive and mortality risks depending on baseline 
cognition  

The results are consistent with previous findings that prior delirium exposure is a risk factor for 

cognitive decline, independent of classical neuropathologies associated with dementia (Davis, 

Muniz Terrera et al. 2012). These findings support delirium to be directly toxic towards cognitive 

decline, instead of being an epiphenomenon of dementia during acute illness.  

The finding that delirium is an independent risk factor for mortality is also consistent with an earlier 

meta-analysis (Witlox, Eurelings et al. 2010). However, I note that the hazard ratios demonstrated 

in this cohort was over three times higher than previously reported in meta-analyses (6.5 vs 1.95). 

It is likely that more robust adjustment within our population cohort, for confounders not 

necessarily accurately possible in a meta-analysis such as baseline cognition, illness severity and 

baseline frailty, produced a more accurate hazard estimate. The finding that the adverse effects of 

increased delirium exposure is stratified by baseline exposure, in particular those with the best 

cognitive baseline have the most to lose after delirium, is a novel extension to current knowledge.  
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5.4.4 Strengths and limitations 

5.4.4.1 Limitations 

My findings should be interpreted in the context of several limitations. While recruited participants 

closely matched the sampling frame by age and socioeconomic position, the relative overall 

response rate to initial invitation was low, and specific reasons for non-participation remain 

unknown. Segments of the Camden population, for whom English is not their first language, are 

ethnically non-White Caucasian, are communicatively non-verbal or are unable to consent 

independently but lack a nominated next of kin or formal advocate, were under-represented.  

Second, although I had comprehensive methods to identify hospitalised participants, there is 

inevitably a degree of selection bias towards inpatients that would have missed cases who 

developed delirium but remained in the community. Furthermore, many patients were discharged 

with a confusional state that would still meet DSM-IV criteria for delirium on their final day of their 

inpatient stay. As a result, delirium duration could not be accurately defined for these patients 

while their true delirium burden would be under-estimated as their clinical course continued into 

the community.   

Despite the advantage of frequent clinical assessments, I made assumptions about missing data 

on delirium status over weekends and public holidays. I pragmaticaly decided that the nature of 

these missing data was not sufficient completely at random and that the employed approach of 

alternate forward and backfilling from the last ascertained date would be a reasonable 

compromise.  

My analyses did not account for any medication-related effects, nor did I explore possible 

differences attributable to underlying aetiology; these are areas of ongoing analyses. Examining 

delirium in further granularity would be of particular interest in potentially stratifying patients to 

differing management approaches with prognostication implications. Although I used validated 

inpatient scales for physiological derangements, these may not adequately quantify illness severity 

that particularly in oldest-old patients. There was appreciable loss to follow-up, though because 

this was more likely in those with poorer baseline cognition, my models may have under-estimated 

the impact of delirium on cognitive outcomes. In common with other observational studies, model 

estimates are subject to residual confounding.  
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5.4.4.2 Strengths 

The novel design of the DELPHIC study and its unique position to answer questions regarding the 

incidence and adverse deleterious consequences of delirium have been well described. 

Specifically, prospective capture of brain symptoms before and during acute illness allows for the 

most rigorous mapping of baseline cognition, hospitalisation and delirium in a community sample 

to date. DELPHIC made robust ascertainments of baseline and follow up cognition, function and 

co-morbidities. Our clinical features have been designed to allow direct comparisons to current 

DSM-IV delirium criteria, while the use of validated scales such as MDAS in full or in part allow 

sensitivity analyses of cortical and subcortical elements, hence examining delirium specific effects 

compared to those possibly caused by premorbid cognitive impairment.  

Although single studies are infrequently sufficiently powered for analyses with multiple exposures 

and multiple outcomes, all minimum sample sizes were calculated and published as a protocol 

prior to the start of DELPHIC. While delirium was specified as the primary outcome in the analyses 

of association between baseline cognition and delirium phenomenology, prior to DELPHIC, there 

was no consensus within literature on how best to operationalise “delirium”, whether as incidence, 

duration or a measure of cumulative exposure burden. However, the richness and size of the 

DELPHIC dataset, a main strength of this thesis, allowed multiple delirium definitions to be 

constructed. Regardless of how delirium was operationalised, the findings were consistent, further 

demonstrating the robustness of this thesis’ conclusions. The current terms to operationalise 

delirium within DELPHIC were arrived at via iterative discussions among contributors: it is 

envisaged these terms may further evolve, for even the same dataset, as more advanced methods 

are applied in future analyses. Similar progress can be anticipated within the delirium field, leading 

to greater consensus of what would constitute standardised delirium measures in future research. 

5.4.5 Summary and future directions 

Overall, these findings translate to significant clinical implications. It is vitally important to ascertain 

a patient’s baseline cognition on first presentation to stratify the subsequent increased risk of 

significant cognitive decline and death. Baseline cognition also helps identify patients most likely to 

experience the most severe delirium, as well as being those with “the most to lose” cognitively if 

faced with prolonged delirium exposure, emphasising the particular efforts needed to manage 

underlying precipitating and perpetuating factors in these specifically high risk cohorts. 

My findings open the possibility for offering more accurate prognostication of both delirium risk 

during future acute insults, informing patient expectations when making decisions on elective 
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surgeries and unexpected illnesses. For example, patients with baseline cognitive function in 

highest are likely to experience severe delirium, should this occur, which may be informative when 

consenting for general anaesthesia during an elective operation. We can also now prognosticate 

the likelihood of adverse outcomes depending on delirium duration: in an analogous example, the 

same patients with higher baseline cognition should also be informed that should they experience 

high delirium burden, despite being at lower risk of exposure, they will disproportionately 

vulnerable to subsequent cognitive decline, experiencing more than two standard deviations of 

decline in general cognition over two years.  

Lastly, these findings highlight the complex interactions between baseline cognition and acute 

illness. It is important to understand in even greater granularity if further nuanced associations 

exist when other modalities are taken into account, for example after inclusion of clinical 

phenotype, biochemistry, neuroimaging. Only then can personalised pathways of management 

and recovery measures be best targeted to the most appropriate patients. 
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6 Individualised patient prediction of mortality at 600 days post-
discharge 

 

 

 

 

 

 

 

 

 

 

Chapter 5 demonstrated the complex non-linear relationships between multiple contributing factors 

that lead to adverse outcomes across a population. However, our aspiration of personalised 

medicine requires translation of population associations into individualised prediction models. 

The second project of this thesis aims to offer a proof of concept for deploying multimodal high 

dimensional machine learning prediction algorithms for predicting outcomes in older patients with 

multimorbidities. I will use mortality as the predicted outcome for several reasons: first, it is the 

most accurately ascertained outcome in older people. Second, prognosis is one of the most 

common questions asked during acute illness. In addition, clinically, robust mortality prediction is 

critical for healthcare resource prioritisation and appropriate alignment of clinical interventions to 

patient prognoses (Powers, Chaguturu et al. 2015). In the context of this thesis, mortality risk 

provides an optimal foundation to build a pipeline of future prediction models for older people with 

multiple complex, interacting morbidities. The findings from this chapter were pubublished in a 

manuscript entitled “Predicting mortality in acutely hospitalised older patients” (Tsui, Tudosiu et al. 

2023). 

Chapter Outline 
- Introduction  

- Methods 

o Kaplan Meier and Cox proportional hazards 

o XG boost 

o Anatomical inference 

- Results 

o Multimodal prediction of mortality 

o Anatomical correlates of mortality and predictive performance 

- Discussion 

o Predictability of mortality from routine data 

o Mechanisms 

o A multimodal index of frailty 
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6.1 Chapter Introduction 

As a clinical outcome of arguably the greatest concern, mortality prediction instruments should 

have the highest fidelity: to guide expectations, target interventions, and identify modifiable 

mechanisms of disease (Powers, Chaguturu et al. 2015). Though death is narrowed to specific 

causes, it is also a general, constitutional risk in older people, distributed across a wide field of 

biological and pathological factors, both incident and enduring. The determinants of such 

vulnerability may be less in any specific condition than in the complex interaction of multiple 

accruing co-morbidities and age-related physiological changes that single disease-centred models 

cannot satisfactorily capture. Predicting mortality at older ages should require a patient-centred, 

fully-inclusive, population-focused approach, capable of absorbing the wide heterogeneity of 

factors plausibly determining individual risk: older people are the largest contingent of healthcare 

users, with the most variable intragroup functional and cognitive performance ranges (Lowsky, 

Olshansky et al. 2014). Though making up only 18% of the UK population, patients aged over 65 

account for 42% of acute hospital admissions ((ONS) 2018), a gap projected to widen as those 

aged over 60 double in number by 2050 worldwide .  

Causes of mortality after an acute hospital admission are heterogeneous and inherently 

challenging to predict. Chronological age alone has long been recognised to be poorly predictive 

of survival, particularly in older people (Knaus, Wagner et al. 1991). Several short and medium-

term mortality prediction instruments exist, such as APACHE-III (Knaus, Wagner et al. 1991), 

HELP (Teno, Harrell et al. 2000), BISEP (Inouye, Bogardus et al. 2003), SAFES (Drame, Jovenin 

et al. 2008) and HOMR (van Walraven 2014). However, their applicability to acutely admitted 

unselected older patients is limited by lack of validation beyond specific clinical settings such as 

critical care (Knaus, Wagner et al. 1991), poor calibration with age (Fischer, Gozansky et al. 

2006), variation in performance across population groups (Curtin, Dahly et al. 2019), or 

dependence on background information not readily available in the acute setting (van Walraven 

2014). All are linear constructions from relatively limited input variables, unlikely sufficient for 

accurately modelling the complex processes determining mortality risk after hospital admission: 

they do not take into account cognitive status or neuroimaging, despite established associations 

between dementia, delirium and later-life mortality in population studies (Tsui, Searle et al. 2022). 

They do not utilise direct or surrogate measures of musculoskeletal veracity such as soft tissue or 

bone density, despite associations between sarcopenia and osteoporosis with increased mortality 

risk via low-energy traumatic fractures. 
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Current instruments fail to address two cardinal potential characteristics of the problem: the 

distribution of factors relevant to mortality across multiple clinical domains and investigational 

modalities, and the likely presence of heterogeneous causal interactions accessible only to 

complex, high-dimensional statistical models. No instrument attempts to draw power from the 

synthesis of multiple, individually weakly predictive features—clinical or investigational—that may 

in aggregate be both highly predictive and robust to the distributional heterogeneities commonly 

observed in real-world healthcare data. Identifying mortality risk distributed across multiple 

investigational modalities, driven by non-linear interactions between remote variables, remains 

unexploited.  

Recent advances in complex modelling now allow a radically different approach. We can move 

beyond simple, unimodal, low-dimensional models to complex, multimodal, high-dimensional 

models that integrate rich information acquired during routine care. Crucially, we can quantify the 

comparative benefit—evaluated on out-of-sample data—of increasing model complexity to show 

the optimal prediction strategy. If higher model complexity is beneficial, an efficient strategy would 

be to vastly increase the number of model parameters using existing, routinely collected clinical 

data. When mortality prediction becomes saturated, further improvement would likely require the 

introduction of biologically novel measures not routinely captured. The distinction matters because 

the former can be rapidly introduced with algorithmic innovation only, without disturbing care 

pathways, where the latter is constrained by the long timelines and need to validate novel clinical 

investigations.  

I used a large, consecutive, unselected, fully-inclusive cohort of older patients acutely admitted to 

hospital to a) quantify the predictability of 2-year mortality from routinely acquired multimodal 

clinical data, b) compare the performance of predictive models varying in input modality, 

dimensionality and architectural flexibility, c) identify candidate causal mechanisms of increased 

mortality, and d) establish the foundations of a readily deployable clinical tool for predicting all-

cause mortality in unselected older patients admitted to acute hospitals, to be fully developed in 

future large-scale, multi-centre studies.  

6.2 Methods 

The dataset used for chapter 6 was described in chapter 4.4.2. The methods for constructing 

survival analyses, machine learning prediction models and neuroanatomical inferences were 

described in chapter 4. In summary, for the prediction models utilized in this chapter, a XGboost 

classifier was trained using ten-fold cross validation and hyperparameters optimised using grid 

searches. Performance was defined as area under the curve receiver operator characteristic 
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(AUCROC). Segmented brain sequences were linearly compared between ground truth and 

predicted alive-dead contrasts using SPM. 

6.2.1 Kaplan Meier and Cox Proportional Hazards 

I calculated length of time elapsed between each patient episode until the end of study data 

collection, categorising survival status at 600 days after initial hospital admission. This threshold 

was chosen based on approximately half of patients were alive at this timepoint. If a patient 

remained alive at each survival point, or if time elapsed was fewer than 1200 days from hospital 

admission, their data was censored. I plotted a Kaplan-Meier curve to illustrate survival up to 1200 

days after initial hospital admission, separated by each acute cognitive status class. Next, a Cox 

proportional hazards model was estimated using acute cognitive status, age, sex. For these initial 

models, I also adjusted for mean red cell distribution width, mean CRP, and mean baseline 

creatinine, because these are good clinically accepted markers for acute illness and biological 

indicators of baseline morbidity.  

6.2.2 XG boost classifier model 

I constructed a predictive model for 600 days post-discharge mortality with the gradient-boosting 

machines-based algorithm XGBoost (Chen T 2016). The choice of algorithm was motivated by the 

combination of robustness, flexibility, data efficiency, and optimisability given the scale of available 

data. To quantify the value of increased dimensionality, I estimated an array of models 

incrementally increasing in number and range of input variables : 1) age and sex (2 variables); 2) 

primary diagnosis, age and sex (17 variables); 3) cognitive status, age and sex (4 variables); 4) 

primary diagnosis, cognitive status, age and sex (19 variables); 5) bloods, primary diagnosis, 

cognitive status, age and sex (91 variables); 6) CT intracranial, primary diagnosis cognitive status, 

age and sex (5367 variables); 7) CT extracranial, primary diagnosis, cognitive status, age and sex 

(12989 variables); 8) CT whole brain, age and sex (18399 variables); 9) CT whole brain, bloods, 

primary diagnosis, cognitive status, age and sex (18494 variables); 10) CT whole brain, primary 

diagnosis, cognitive status, age and sex (18422 variables). The target outcome for all models was 

survival at 600 days from admission.  

The data were randomly split into training (70%) and testing (30%) partitions, stratified by 600-day 

mortality outcome to avoid uninformative training subsets without patients who had died. Where 

multiple CT images were obtained in the same admission episode, the first image was always 

used. The test partition contained unique patients only, which ensures avoidance of performance 

inflation. XGB models were trained and optimised using ten-fold cross-validation from the training 
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partition with 600-day mortality and the AUCROC as the evaluation metric. A manually targeted 

grid search followed a random initial parameter grid search to optimise model hyperparameters 

(number of estimators, maximum depth, minimum child weight, learning rate, gamma, subsample, 

column sample by tree. The best performing fold hyperparameters as defined by maximal 

AUCROC were used to quantify performance on held-out test data, evaluated through ten-fold 

cross-validation of the test set. 

6.2.3 Anatomical inference 

To understand the anatomical patterns driving the imaging contribution to model fidelity, I sought 

to identify linear and non-linear voxel-wise associations with the target outcome. First, to quantify 

the sensitivity of the imaging data to known anatomical variations with dementia status, I 

performed standard voxel-wise mass-univariate volumetric brain morphometry with grey and white 

matter tissue compartments as the input using CTseg function on SPM. Next, I used the same 

approach to identify linear anatomical associations with mortality separately within grey matter, 

white matter, soft tissue and bone tissue compartments, adjusted for age, sex, delirium status, 

dementia status, total brain volume and degree of atrophy. Third, to highlight potentially non-linear 

associations captured by the XGB model, its feature importances, indexed by ranked Gini impurity, 

were projected back into MNI space for anatomical visualisation. 

6.3 Results 

6.3.1 Study summary 

2951 admissions episodes with cognitive status and primary diagnoses were recorded from 1855 

unique patients during the study period. Following grouping of admissions within 28 days as a 

single episode, 1975 admission episodes, from 1601 unique patients, were defined with linkage to 

at least one complete set of blood tests within the first 48 hours of admission. Last, in the whole 

cohort, 804 admission episodes could be linked to a CT head 28 days before or after the day of 

admission. The mean age of the complete cohort was 84.5 years (table 6.1). Patient cognitive 

status (within an admission episode) were as follows: 44% were cognitively intact, 16% had a 

diagnosis of dementia alone, 21.9% delirium alone and 18% delirium superimposed on dementia; 

36.6% of admission episodes resulted in death 600 days after their day of admission (figure 6.1). 

The proportion of missing bloods data is described in table 6.2. 
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Fig 6.1 – Flow chart of patient inclusion and complete cohort compilation 
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Table 6.1 – Descriptive summary of complete cohort 

  
Alive at 600 days (n 

= 510) 
Dead at 600 days (n 

= 294) 
p value* 

Age (mean, SD) 83.7 (7.0) 85.9 (6.9) <0.01 

Women (%) 27.60% 16.80% <0.01 

Cognitive status    

Cognitively intact (%) 46.70% 39.77%  

Delirium only (%) 20.35% 24.86%  

Dementia only (%) 17.03% 14.36%  

Delirium superimposed on dementia (%) 15.93% 22.10% 0.02** 

Total brain volume (mls) 917 (89) 908 (98) 0.2 

Atrophy (%) 81.4 (2.1) 81.1 (2.0) 0.35 

Mean values for continuous variables (standard deviation in brackets). *Tests for significance: chi squared 
for categorical variables, 2 sample t-test for continuous variables. **p value for trend, assuming hierarchical 

increase in cognitive decline. 
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Table 6.2 – Percentage of blood data missing from original dataset   

Blood Percentage Missing 

Corrected Calcium 25.22% 

Prothrombin Time 14.73% 
Alanine Aminotransferase 9.42% 

Bilirubin 8.30% 
Alkaline Phosphatase 7.95% 

Albumin 6.68% 
Potassium 4.15% 

C-Reactive Protein 1.27% 

Red Cell Distribution Width 0.66% 
Platelet 0.51% 

Creatinine 0.51% 
Haemoglobin 0.46% 

Monocyte 0.46% 
Mean Corpuscular Volume 0.46% 

Basophil 0.46% 
Eosinophil 0.46% 

Red Cell Count 0.46% 
Lymphocyte 0.46% 

Haematocrit 0.46% 

White Cell Count 0.46% 
Neutrophil 0.46% 

Urea 0.35% 
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At 600 days after the admission date, 51% of patients in the complete cohort were alive. Crude survival of 

individual patients, stratified by cognitive status, demonstrated increased mortality risk in patients with 
delirium and delirium superimposed on dementia (figure 6.2).  

 

Fig 6.2: Unadjusted Kaplan Meier plot of survival as stratified by cognitive status during acute illness 
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Multivariate Cox proportional hazards demonstrated increased mortality risk with increasing age, higher 

mean CRP and red cell distribution width (table 6.3). While cognitive status alone was not significant in 
univariate analysis, a trend for increased mortality with worsening cognitive status was significant on full 

adjustment with covariates including degree of brain atrophy. 

Table 6.3: Univariate and multivariate Cox proportional hazards model 

 

Model full adjusted; HR hazard ratio 

*p value for trend 
**Standardised per standard deviation 

  

  Univariate Multivariate 
  HR 95% CI p value HR 95% CI p value 

Age 1.04 1.03 1.06 <0.01 1.04 1.03 1.06 <0.01 
Sex (Male) 1.34 1.11 1.62 <0.01 1.22 0.99 1.50 0.07 
Cognitive status*         

Cognitive intact Ref    Ref    
Delirium 1.15 0.90   1.02 0.79 1.32  
Delirium and Dementia 1.11 0.85   1.25 0.94 1.65  
Dementia 1.34 1.04 0.16 0.16 1.45 1.12 1.89 0.02 

CRP (mean)** 1.36 1.25 1.48 <0.01 1.27 1.14 1.40 <0.01 
RDW mean** 0.74 0.67 0.81 <0.01 0.81 0.73 0.90 <0.01 
Creatinine (mean)** 0.78 0.71 0.86 <0.01 0.90 0.81 1.01 0.06 
WCC (mean)** 1.19 1.07 1.31 <0.01 1.04 0.93 1.16 0.49 
Atrophy** 0.96 0.87 1.05 0.39 1.07 0.96 1.18 0.21 
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6.3.2 Mortality prediction from multimodal data 

Baseline XGB predictive models of age and sex achieved only a modest AUCROC of 0.672 

(SD=0.0781) on out-of-sample test data (figure 6.3). There was no significant benefit from the 

addition of cognitive status (AUROC=0.677, SD=0.0654, p=0.631,) or primary diagnosis 

(AUCROC=0.673, p=0.216, SD=0.0643) alone. However, addition of both cognitive status and 

admission diagnosis (AUROC=0.698, SD=0.0649, p<0.001) and bloods tests to the full clinical 

model yielded a modest but statistically significant improvement over the baseline 

(AUCROC=0.692, p<0.001, 0.0479) that was not explicable by the intention to investigate alone. 

A substantial jump in predictive performance was observed with the addition of imaging data to the 

full clinical model. The combination of intracranial imaging with demographic and clinical features 

yielded an AUROC of 0.82 (SD=0.0621), significantly higher than both baseline (p<0.001) and 

demographic and clinical data alone (p<0.001). The use of extracranial features produced 

marginally better performance (AUROC=0.848, p=0.0395, SD=0.0271) than intracranial features 

in otherwise identically specified models. Intracranial and extracranial compartments taken 

together with demographics advanced performance further (AUC = 0.854, p<0.001, SD=0.0484). 

The highest-performing model included the widest selection of inputs—demographics, clinical 

features, blood tests, intracranial and extracranial CT, exhibited an AUROC of 0.874 (SD = 0.455) 

(fig 6.4). Though the mean value was higher, this was not significantly different from the preceding 

model. Cross-validated training and test values are presented in table 6.5. The prediction model 

was re-applied onto the original population to demonstrate superior performance achieved by 

using bloods and neuroimaging compared to using acute cognitive status alone, illustrated in a 

Kaplan Meier plot showing predictive status alongside acute cognitive status (fig 6.5). 

In optimising the XGboost model, grid searches of hyperparameters, using AUCROC as the 

optimising metric, was performed using pre-selected tuning parameters within the ranges in table 

6.4a. The most optimal final hyperparameters listed in table 6.4b. 
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Table 6.4a: Hyperparameter 10 fold cross validation grid search range; 6.4b: XGboost final 

hyperparameters 

 

  

a) Hyperparameter grid search range 
Hyperparameter Grid search range 

Early stopping rounds 200 

n_estimators Free 

Maximum depth [3, 5, 7, 9] 

Minimum child weight [1, 3, 5, 7, 9] 

Gamma 0 to 1 (in 0.1 intervals) 

Subsample 0.6 to 1 (in 0.1 intervals) 

Column sample by tree 0.4 to 1 (in 0.1 intervals) 
 

 
b) XGboost final hyperparameters 

 
Hyperparameter Value 

Learning rate 0.1 

Minimum child weight 1 

N estimators 196 

Maximum depth 7 

Gamma 0 

Subsample 0.9 

Colsample by tree 0.6 

Scale position weight 1 

Random state 42 
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Table 6.5: 10 fold cross validation by hierarchical increasing number of modalities as predictive features 

 
CV fold 

Age & sex Admissions, age & sex 
Cognitive status, age & 

sex 
Cognitive status, admissions, age & sex 

Blood, cognitive status, 
admissions, age & sex 

Validation Test Validation Test Validation Test Validation Test Validation Test 

1 0.573413 

0.672191687 

0.55291 

0.697741326 

0.580688 

0.676571625 

0.577381 

0.697054277 

0.714286 

0.69203023 

2 0.687169 0.681878 0.680556 0.67791 0.681878 

3 0.558201 0.562831 0.672619 0.569444 0.69709 

4 0.677778 0.652778 0.688889 0.666667 0.661806 

5 0.765972 0.684722 0.795139 0.733333 0.75 

6 0.744444 0.704167 0.713889 0.709722 0.805556 

7 0.636054 0.634694 0.789796 0.693878 0.740136 

8 0.638095 0.595238 0.704762 0.678912 0.718367 

9 0.54898 0.582313 0.629252 0.62449 0.659864 

10 0.726531 0.741497 0.726531 0.77415 0.77483 

 
          

Mean 0.6557  0.6393  0.6982  0.6706  0.7204  

Standard Deviation 0.0781  0.0643  0.0654  0.0649  0.0479  

           
           

CV fold 

CT intracranial, cognitive status, 
admissions, age & sex 

CT extracranial, cognitive status, 
admissions, age & sex 

CT whole brain, age & sex 
CT whole brain, cognitive status, 

admissions, age & sex 
CT whole brain, bloods, 
admissions, age & sex 

Validation Test Validation Test Validation Test Validation Test Validation Test 

1 0.738095 

0.820164892 

0.834656 

0.847732738 

0.81746 

0.860958434 

0.829365 

0.854087942 

0.818783 

0.87427001 

2 0.75 0.787037 0.800265 0.78836 0.825397 

3 0.900794 0.862434 0.89418 0.871693 0.862434 

4 0.815278 0.806944 0.830556 0.809722 0.826389 

5 0.773611 0.85 0.856944 0.829167 0.843056 

6 0.872222 0.847222 0.883333 0.895833 0.888889 

7 0.880272 0.861224 0.914286 0.922449 0.912925 

8 0.734694 0.811565 0.819048 0.82585 0.789116 

9 0.77415 0.795918 0.764626 0.761905 0.767347 

10 0.834694 0.834014 0.855782 0.851701 0.881633 

 
          

Mean 0.8074  0.8291  0.8436  0.8386  0.8416  

Standard Deviation 0.0621  0.0271  0.046  0.0485  0.0455  
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Fig 6.3: Rainplot representing hierarchical increasing predictive performance accuracy with increasing 

modalities 

 

Red denotes AUCROC on held out test partition, intervals generated from ten cross validation 

folds for each model   
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Fig 6.4: ROC AUC of predicted mortality at 600 days 

Area under the curve plot for best performing model (0.874); random chance denoted by dotted 

line
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Fig 6.5:  Re-application of prediction model to original dataset with Kaplan Meier of patients predicted alive (orange) and dead (blue), demonstrating superior 

performance compared to utilising stratification into four classes of acute cognitive status 
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6.3.3 Anatomical correlates of mortality 

Sensitivity analyses confirmed the feasibility of my analytic approach, despite the biological 

heterogeneity of an unselected clinical dataset and the use of lower resolution CT instead of MR 

imaging. Comparing patients with and without dementia, there was significant loss of medial 

temporal grey and white matter in patients with diagnosed dementia, consistent with known 

changes in Alzheimer’s disease, the most common dementia subtype, 

Voxel-wise mass univariate models of ground-truth mortality revealed multiple loci of linear 

association distributed across the intracranial and extracranial compartments (fig 6.6). 

Intracranially, the most prominent associations were seen in the dorsal anterior cingulate grey 

matter. Extracranially, widespread differences was seen in the vicinity of the parietal and occipital 

bones, with further loci not surviving conservative multiple comparisons correction observed within 

the sinuses, and the region of the pituitary fossa.       

6.3.4 Anatomical features of predictive importance 

Projection of the anatomical feature importances derived from the best performing XGB model 

showed a widely distributed pattern of dependence (fig 6.7). Intracranially, left precentral gyrus, 

right anterior cingulate, right angular gyrus and right temporal pole, the region of the dorsal 

corticospinal tract, and the right superior longitudinal fasciculus were identified. Extracranially, 

parietal bone was highlighted as in the linear models and diffusely distributed soft tissue. However, 

I note that laterality of backprojected features should be interpreted with caution: the aim of high 

dimensional models is to select the best features for optimising task performance. In the case of 

bilateral features that contribute equally well, one would be discarded as redundant. As a result, it 

is not possible to ascertain whether a lateralising feature identified on high dimensional 

discriminative models is truly unilateral or represent a symmetrical bilateral contributor. Non-

anatomical features of predictive importance are presented in table 6.6 
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Fig 6.6: Statistical parametric map (SPM) demonstrating voxels of significance comparing 

contrasts of ground truth alive vs dead status at 600 days 

SPM demonstrating significant intracranial voxels (panel A) and extracranial voxels (panel B) on 

full adjustment by age, sex, dementia, delirium and total brain volume. T statistics of voxels 

demonstrated surviving full adjustment, with dorsal anterior cingulate and extracranial soft tissue 

identified as anatomical correlates of mortality. 
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Fig 6.7: Back-projection of feature importance of mortality 

Most contributory intracranial (panel A) and extracranial features (panel B) to XGB predictive 

model back-projected onto brain template, with degree of importance denoted by colour spectrum 
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Fig 6.8: AUCROC of predicted mortality at 600 days for baseline model with summarised blood 

variables compared to using intention to investigate for bloods alone.  

Summarised blood values demonstrating significantly greater contribution to prediction model than 

the intention to investigation of performing bloods alone, which is minimally more successful than 

random chance alone 
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Haematological and biochemical correlates of mortality  

Albumin, urea, alkaline phosphatase, C-reactive protein, haematocrit and platelet count were the 

greatest contributors to the predictive model. The first albumin reading of a patient’s admission 

was the most informative biochemical correlate, over fourfold more than the standard deviation of 

albumin and mean urea. Sensitivity analyses demonstrated the contributions of bloods over and 

above an intention to investigate effect, demonstrated by the improved performance of bloods only 

models when using summarised values instead of whether an investigation took place or not (fig 

6.8) 

Table 6.6: Feature importance of haematological and biochemical contributions to the predictive 

model. 

Non-anatomical Feature  
Predictive Model 
Importance 

Importance ranking of model 
contribution 

Albumin (baseline) 0.011143 15 

Albumin (SD) 0.002525 108 

Urea (mean) 0.002282 116 

ALP (SD) 0.001650 148 

Age 0.001122 180 

CRP (baseline) 0.000799 219 

ALP (mean) 0.000727 231 

CRP (mean) 0.000567 259 

Albumin (mean) 0.000220 350 

Haematocrit (mean) 0.000168 374 

Platelet (baseline) 0.000140 390 

Predictive model importance of non-anatomical features and rank of feature importance to whole 

model including full neuroimaging features; CRP – C-reactive protein, ALP – alkaline phosphate, 

SD – standard deviation 
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6.4 Discussion 

In this study, I examined a large, unselected cohort of acutely hospitalised older patients evaluated 

for the presence of acute or chronic cognitive impairment and imaged with cranial CT, then 

characterised the distribution of multimodal biological factors predictive of mortality over the 

subsequent 600 days. My findings quantify the predictive potential of cumulative multi-modal 

feature inputs for long term prognostication, while producing a clinical tool for medium-term 

mortality prognostication, operational at the point of admission and validated for the oldest-old 

patients.  

6.4.1 The predictability of mortality from routine clinical data  

Employing strictly out-of-sample evaluation of performance, I showed that 600-day mortality is 

predictable with high fidelity—AUCROC 0.874 —from the combination of basic clinical data with 

routine investigations. This suggests the presence of stronger predictive signals than are 

harnessed by current mortality prediction models—ranging from 0.51 (Di Bari, Balzi et al. 2010) to 

0.78 (Curtin, Dahly et al. 2019)—especially when applied to patients aged 75 and over (Yourman, 

Lee et al. 2012, Curtin, Dahly et al. 2019). Of note, the signal here is grounded primarily in 

fundamental, quantitative biological characteristics of the patient rather than the circumstances of 

their care—such as mode and specialty of admission—minimising the risk of poor generalisability 

across other healthcare systems observed for higher-performing scores such as Hospital One 

year Mortality Risk score (van Walraven 2014) (van Walraven, McAlister et al. 2015) (Curtin, Dahly 

et al. 2019).  

Our input features are not dependent on, or affected by, local healthcare trends, such as 

thresholds for emergency department admission, nor impacted by cultural norms such as the 

incidence of nursing homes admission for functionally impaired older patients. In contrast, 

alternative scores such as Hospital One year Mortality Risk score (van Walraven 2014) include 

population-specific features in its inputs, such admission by ambulance, number of emergency 

department visits and specialty of admitting service in its inputs, limiting its generalisability: very 

high levels of discrimination were initially reported in derivation (C statistic 0.92) (van Walraven 

2014) and internal validation cohorts (C statistic 0.89-0.92) (van Walraven, McAlister et al. 2015), 

but significantly attenuated on independent validation in an Irish cohort, with C statistic of 0.78 

(Curtin, Dahly et al. 2019). 

The limited contribution of age alone to mortality prediction in our model is in keeping with 

previous prognostic models (Teno, Harrell et al. 2000). In short term prediction models such as 
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APACHE-III, age only made up 3% of the score input despite being derived from intensive care 

unit patients with a wide age range (Knaus, Wagner et al. 1991). There is increasing recognition of 

the benefits of including care needs and physical function to mortality prediction models. HOMR 

produces a composite score of Charlson comorbidity index with age (van Walraven 2014), while 

HOMR-NOW further includes additional measures such as rehabilitation or nursing home 

admission (van Walraven and Forster 2017). The Health Assessment Tool, frailty index and 

walking speed are among the most accurate predictors of mortality in older patients (Zucchelli, 

Vetrano et al. 2019). However, subjective, time-consuming assessments and the wide variety of 

factors that lead to functional impairment, limit the use of these instruments. Objective measures 

of underlying aetiologies that lead to functional deficits, for example neuroimaging that may reflect 

volumetric loss associated with impaired cognitive functions, may offer a compromise. This would 

explain the high performance of this study’s prediction model. A critical contribution came from 

intra- and extracranial characteristics captured by CT imaging—a quantitative modality—that are 

reproducibly identifiable across clinical environments. Robustness to clinical and demographic 

variation naturally requires evaluation in other population samples, and I plan to validate our 

findings in an independent cohort formally. However, the level of observed fidelity motivates 

further exploration of such predictive models which can be implemented within the existing clinical 

pathway without disruption to established care. 

Simple predictive models are constitutionally incapable of integrating information distributed 

across multiple interacting factors. Where, as here, the causal field is plausibly wide and densely 

interdependent, statistical models of greater dimensionality and flexibility are required. Exploiting 

the flexibility and robustness of gradient-boosting machines, I have shown that escalating model 

dimensionality is rewarded by more accurate predictive performance—quantified out-of-sample. 

This indicates the presence of distributed, possibly interacting, factors that collectively strongly 

predict mortality even if they may be only weakly predictive in isolation. The scale of the 

informative dimensionality—thousands of variables—suggests room for improvement with more 

data and finer model architectural tuning. Note that any substantive increment in predictive fidelity 

is valuable for a model applied at the individual patient level—an imperfect model here can never 

be too accurate. The greater sensitivity of complex models to distributional shift is no longer 

insuperable: it is addressable algorithmically, and through expanding the scale and diversity of 

modelled data.  
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6.4.2 Possible mechanisms of increased mortality 

Mass-univariate analyses of haematological, biochemical, and especially imaging features 

implicate a unifying association of mortality with sarco- and osteopenia, as seen through 

modulation of parietal and occipital bone and cranial soft tissue involvement. Sarcopenia, defined 

as the progressive generalised loss of skeletal muscle, is associated with increased mortality risk 

(Cruz-Jentoft, Bahat et al. 2019), potentially mediated via impaired mobility, falls and respiratory 

complications (De Buyser, Petrovic et al. 2016, Bone, Hepgul et al. 2017). Similarly, osteoporosis 

and the increased fractures are well recognised to be associated with increased mortality risk: 

neck of femur fractures are associated with one-year mortality of around 30% (Roberts and 

Goldacre 2003). Albumin is commonly acknowledged to be a poor marker of nutritional status, 

particularly in the acute setting. In this context, albumin plausibly represents altered hepatic 

synthesis in favour of acute phase proteins indicating proinflammatory acute illness. The 

contributions of urea and alkaline phosphatase are consistent with possible links to sarcopenia 

and bone density respectively. 

Within the brain, striking involvement of medial frontal cortical areas implicated in voluntary motor 

behaviour and autonomic function principally the anterior cingulate, may be explained by the 

potential impact of dysfunction in either domain.  

It is reasonable to assume that in the absence of an acute ischaemic or traumatic intracerebral 

event, CT imaging is informative about baseline cognitive vulnerability but not the acute 

physiological insult. How highlighted brain regions contribute to vulnerability to medium-term 

mortality risk is not necessarily straightforward. It may reflect the importance of specific cognitive 

functions from particular brain regions for medium-term survival. Cognitive deficits from multiple 

brain regions would present as impairments in physical function, imprecisely quantified by poorer 

performance in functional indices such as the Barthel Index. Either alternatively or concurrently, it 

may be that we are observing the reduced capacity of a brain region to compensate for damage or 

atrophy. Sparing of frontal lobes may not necessarily suggest that frontal lobe function is less 

critical to survival but rather reflects greater redundancy to mitigate volumetric loss.  

The importance of motor function is reinforced by the enhanced multivariate feature importance of 

voxels falling within the primary motor cortex and the corticospinal tract. These changes may be 

explained not only by brain pathology, such as small vessel disease that either directly or indirectly 

reduces grey matter concentrations locally, but potentially by neural adaptation to long term 

immobility of non-neural origin. The involvement of areas with dense (angular gyrus) or remote 
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(temporal pole) connectivity suggests modulation here may also reflect differential rates of length-

dependent degeneration in white matter and the grey matter it connects.  

The implication of motor and somatosensory cortices may be hypothesised to result in motor 

weakness and impaired sensory perception, increasing the risk of falls and dangerous 

consequences such as fractures resulting in death. Neck of femur fractures are associated with 

one-year mortality of around 30% (Roberts and Goldacre 2003). Significant differences in medial 

temporal lobe volumes between prediction groups are consistent with typical patterns observed in 

Alzheimer’s dementia (Jack, Petersen et al. 1998), as is the specific implication of the left caudate 

nucleus, which is in keeping with asymmetric volume loss observed from MRIs of patients with 

dementia (Barber, McKeith et al. 2002, Jiji, Smitha et al. 2013). The left caudate is important in 

language monitoring and control (Crinion, Turner et al. 2006), while bilateral insula volume loss 

has is associated with non-fluent aphasia dementia syndromes (Mandelli, Vitali et al. 2016). This 

pattern of regional differences suggests particularly important mechanistic contributions of 

impaired short-term memory, working memory and language towards medium-term survival in 

older patients. These inferences may appear at odds with the lack of improved model performance 

with addition of acute cognitive status. However, this may reflect either the poor diagnostic rates of 

dementia, or the contributions of subclinical cognitive impairments to mortality, which while not 

overtly presenting as dementia syndrome, results in other subtle cognitive and consequently 

functional deficits impacting mortality risk. Further exploration of these biologically intelligible 

patterns is merited.     

6.4.3 A multimodal index of frailty 

A predictive model with high fidelity at the individual level has the potential to support clinical 

decision-making. Here quantifying the risk of death at the outset of a hospital admission enables 

proportionate pre-emptive action—by both patients and clinicians—to minimise it. Grounding an 

index of frailty in multimodal signals in principle renders it more robust to incidental variations by 

broadening its evidential support, and potentially widens the field of manipulable factors critical in 

any one patient, permitting more closely individuated interventions. Hardening the predictive 

model to missingness and distributional shift, and incorporating machinery for causal inference, 

require further algorithmic development with larger-scale data that this proof-of-concept now 

justifies. Crucially, since routine clinical and investigational data models appear to be sufficiently 

powerful here, real-world implementation of a decision-support tool does not require any changes 

to clinical pathways, substantially lowering barriers to implementation. Indeed, it may be argued 
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that clinicians have a moral duty to maximise the guiding intelligence extracted from the data they 

obtain from patients, often at individual, and always at institutional, cost. 

A high-fidelity individual index of frailty also has applications in stratifying patients in observational 

and interventional research studies, where unmodelled structured variability could otherwise 

conceal or distort inferred effects. Furthermore, multimodal models may reveal heterogeneities 

between subpopulations exhibiting the same risk, suggesting potential differences in causation 

that would confound inferences unless explicitly modelled. Attention to heterogeneity is paramount 

in the older patient, where the multiplicity and diversity of observed pathologies is high.   

6.4.4 Strengths and limitations 

The synthesis of multimodal signals spanning demographics, clinical features, blood tests, and CT 

imaging data is unique among prognostic models in this population. The use of objectively 

quantifiable features derived only from routinely collected data without the need for pre-admission 

information or potentially subjective clinical assessment is a central strength, promoting 

generalisation across healthcare systems and enabling implementation without disrupting 

established pathways. In addition, this cohort captured the acute admissions behaviour of oldest-

old patients, with a mean age of 85.5 years. Model development and out-of-sample validation on 

one of the largest unselected cohorts of older patients evaluated for acute illness in frail patients is 

grounds for confidence in the robustness of the findings. Participants were observed for at least 20 

months prior to determining the primary endpoint (mortality) to study medium-term mortality risk. 

This resulted in roughly equal group sizes of alive or dead individuals at the point of censoring.  

An array of limitations should be noted. In keeping with all observational analyses of routine 

clinical data, a degree of corruption by (potentially structured) missingness, acquisition and 

documentation errors, and clinical uncertainty is inevitable. Minimal improvements with addition of 

acute cognitive status was likely caused by inaccurate delirium and dementia diagnoses. Formal 

consultant delirium diagnosis did not guarantee the use of a validated diagnostic tool: the use of a 

delirium diagnostic instrument was not compulsory and may have contributed to inconsistency 

among diagnoses between different clinicians. Meanwhile, dementia under-diagnosis may have 

resulted from insufficient symptom recognition, use of corroborative imaging and healthcare 

engagement secondary to a variety of clinical and social factors. While medical records and 

collateral histories may be sufficient for a number of patients, this was not necessarily confirmed 

with a validation process such as IQCODE or formal corroboration with primary care records. 

Inherently, both required prior interaction with healthcare services – a lack of dementia diagnosis 
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secondary to lack of contact with healthcare practitioners did not equate to zero probability of 

clinical dementia.  

Equally, though the cohort is fully-inclusive of the clinical stream, only those with CT imaging of the 

head, carried out for indications individual to each patient, were retained in the analysis. We 

pursued this approach to maximise ecological validity, replicating the quality of data a real-world 

institution would naturally see. The impact of potential biases is minimised by the use of 

sequential, unselected data, enabling inference across all those in receipt of the criteria 

investigations. I explicitly quantify the effects of intention-to-investigate in relation to individual 

blood tests, finding it to contain negligible predictive signal. Institutional-level variability in clinical 

practices could impact generalisation and need exploration in future multi-centre studies.  

Third, the study offers only a view of relationships between a cross-sectional snapshot of 

biochemistry and plain CT structural neuroimaging with medium-term mortality risk. Longitudinal 

changes in biochemistry, neuroimaging and cognitive statuses with later-life mortality risk could 

not be investigated with this dataset. 

While the alternative use of structural or functional MRI instead of CT may have increased 

dimensionality and feature complexity, potentially improving model performance, finite resource 

allocation would limit the feasibility of this in practice. In keeping with all observational analyses of 

routine clinical data, a degree of corruption by (potentially structured) missingness, acquisition and 

documentation errors, and clinical uncertainty is inevitable. Finally, because it was not available, 

we do not model the cause of death, only the primary diagnosis on the admission that triggered 

entry into the cohort. There is no reason to expect the distribution of causes of death to differ 

substantially from that observed for the underlying population, and my focus here is the fact of it 

rather than its cause.   

6.4.5 Conclusion    

Examining the distribution of a wide array of multimodal predictive factors in older patients acutely 

admitted to hospital and imaged with cranial CT, I have demonstrated proof-of-concept of utilizing 

a high-dimensional approach to predictions in older patients and established the foundations of a 

multimodal approach to predict long-term mortality, operational at the point of admission and 

validated for unselected oldest-old patients. Our analysis demonstrates the benefit of using 

machine learning to enable models incorporating multiple modalities, highlighting the predictive 

potential of defining “multimodal frailty”. Inferences drawn from the prediction model suggest the 

importance of unimpaired higher motor and autonomic function towards medium-long term 
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survival. Taken together, this proof-of-concept study demonstrates the degree of performance 

accuracy possible by using advanced machine learning techniques on high-dimensional input 

features to predict mortality as well as make mechanistic inferences on the basis of extracranial 

and intracranial contributions of radiological features to these models.  
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7 Precise Identification of delirium Subtypes through Clinical 
Analyses (PISCA) 

 

 

 

 

 

 

 

 

 

 

Chapter 6 demonstrated the potential of high-dimensional, multi-modal machine learning to predict 

long term outcomes in older people presenting with acute illness. While state of the art, this 

approach is inherently computationally intensive and such resources may not be available in all 

healthcare settings. Clinically useful but albeit less impressive performanc, may be possible using 

a condensed set of features, requiring significantly less intensive computation. In addiiton, 

reduction into broader stratified subtypes may be sufficient for purposes such as clinical trials. This 

chapter is a preliminary study that explores the possibility of clustering as a middle ground 

solution. I will first describe the rationale for clustering. 

7.1 Rationale for clustering 

The delirium syndrome is inherently complex in its pathophysiology and heterogeneous in its 

clinical presentation. Despite this, it is commonly only operationalised as a dichotomous diagnosis, 

as the presence or absence of delirium. A binary diagnosis of delirium offers clinically useful 

information for mortality risk, when ascertained as cross-sectional incidence (Witlox, Eurelings et 

al. 2010) or period prevalence of delirium (Tsui, Searle et al. 2022). Yet there is likely further 

granularity within the arousal, attentional, cognitive, motor, neuropsychiatric and functional deficits 
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in delirium. Longitudinally, as demonstrated in earlier chapters, baseline features such as 

premorbid cognition and measures of frailty prior to acute illness also significantly contribute to the 

presentation and sequelae of delirium.  

While utilising the full spectrum of detailed cross-sectional and longitudinal measures in an acutely 

unwell patient may result in more accurate predictions of adverse outcomes (Chapter 6), there are 

further ways of harnessing the breadth and detail of high dimensional data. As described in 

Chapter 4, unsupervised machine learning techniques offer data-driven approaches to cluster 

data, offering a novel method to define clinical subtypes agnostic to clinical precedence. 

However, if greater numbers of input features can be anticipated to produce better-performing 

predictive clinical models, what are the additional advantages of clustering and reducing data 

dimensionality? First, while higher number of dimensions improve model performance, this is true 

up to an optimal point, after which further dimensions add more noise than signal to a model, and 

consequently model performance diminishes. Second, clustering may produce relatively accurate 

predictive performance, albeit less accurate than high dimensional and complex algorithms, yet 

with significantly lower computational requirements and hence, easier to implement in settings with 

limited resources. Third, clustering into clinical subtypes allows division into broad groups of 

treatment strategies. Fourth, subtyping may lead to greater pathophysiological understanding: do 

different delirium subtypes result from different aetiologies, or is delirium defined by a common 

final pathophysiological pathway? Fifth, clustering allows accurate stratification for future clinical 

trials: do different drugs have differential effects on patients with different delirium subtypes?  

Lastly, clustering would challenge our current definition of delirium. The current DSM syndrome is 

a consensus definition difficult to operationalise, can be subjectively interpreted and is imperfect in 

relation to predicting adverse outcomes. For example, there is no consensus on how best to 

objectively measure " disorganised thinking”. In contrast, high dimensional clustering can instead 

select the most important, relatively objective features, guided by their contribution towards an 

adverse outcome. This could lead to a more empirically-driven, clinically useful term for use in 

acute illness, beyond the current accepted definition of delirium.  

The most common approach to an unwell patient with an acute confusional state is to divide 

delirium by motor phenomenology, into hypoactive, hyperactive and mixed delirium, as initially 

proposed by Lipowski (Lipowski 1983). These subtypes have been reported to demonstrate 

clinical utility: hypoactive delirium across an older population was associated with higher mortality 

risk, with altered arousal associated with 6-fold mortality risk (Todd, Blackley et al. 2017) (Jackson, 

Wilson et al. 2016). In intensive care settings, hypoactive delirium was associated with worse 
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cognitive decline (Hayhurst, Marra et al. 2020). However, cross-sectional subtyping by motor 

phenomenology alone poses a number of limitations. First, associations with adverse outcomes 

are potentially heavily confounded by factors that may contribute to reduced motor activity, for 

example, prescription of sedating medications, particularly in enhanced care settings. Hypoactivity 

may also be confounded by greater illness severity and increased likelihood of a palliative setting 

(Meagher, Leonard et al. 2011).  

Secondly, except for defining an “acute change” in cognition, premorbid baselines of cognition or 

function are not currently routinely utilised. Chapter 5 demonstrated that a patient’s cognitive and 

functional baselines are essential in contextualising acute confusion to predict adverse outcomes 

optimally. As demonstrated in earlier analyses, the effects of delirium on cognitive impairment and 

mortality extend beyond a linear dose-dependent relationship. In addition, the contributions of 

function and social environment on cognitive outcomes are increasingly well-recognised. the 

modifying effects of frailty on the neuropathology–cognition relationship (Wallace, Theou et al. 

2019). 

Third, using motor phenomenology emphasises clinical attention on motor symptoms, instead of 

the nature and severity of an attentional or arousal deficit syndrome, which is pathognomic of 

delirium. Similarly, some patients may not necessarily satisfy diagnostic criteria of delirium, but 

certainly present with features of an acute confusional state with attentional deficits in the context 

of an acute precipitant. Commonly referred to as subsyndromal delirium, these patients would 

otherwise be excluded from clinical prognostication despite likely demonstrating features with 

some degree of clinical utility.  

Last, the delirium syndrome is currently routinely described using clinical features alone. Other 

cross-sectional modalities such as blood biomarkers, better articulating acute illness severity and 

premorbid frailty are not current features of the DSM-IV definition.  

7.2 Methods 

In this chapter, I will use the clinical data from the Delphic study, described in Chapter 5, to identify 

clusters and compare their clinical utility against current standards. The dataset was a combination 

of binary (e.g. sex), ordinal (e.g. MDAS item score) and continuous (e.g. blood results) features 

from cross-sectional assessments during acute illness and previously ascertained baseline 

parameters. I first projected this multidimensional dataset onto a two-dimensional manifold for 

ease of cluster visualisation. Similar data points were then designated as homogenous clusters 

using hierarchical clustering. Third, I constructed increasingly complex models to predict survival 
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and length of stay, comparing performances between baseline model of age, sex and delirium 

status, replacement of delirium status with clusters, and finally, full inclusion of individual features. 

Last, I interrogated the components of each cluster to infer mechanistic insights. 

7.2.1 Data pre-processing 

As for the main DELPHIC analyses, inpatient assessments were grouped by admission IDs. 

Features with more than one data collection point per admission were summarised into first, 

maximum, mean and standard deviation derived variables. Missing data was median imputed. The 

entire dataset was standardised. 

7.2.2 Autocorrelation 

Correlation coefficients were calculated between each clinical feature pair. These were then 

visually checked for autocorrelation in a plotted heatmaps. 

7.2.3 Two dimensional manifold 

First, I transformed the multidimensional dataset into a two-dimensional manifold. To reduce 

dimensionality to allow efficient t-distributed stochastic neighbour embedding (TSNE), the full set 

of derived clinical features were downsampled to the first 50 principal components, a compromise 

value between sufficient explanation of variance and computation requirements. I performed 

TSNE with a range of perplexities (5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 100. Individual two-

dimensional manifolds plotted for visual inspection. Lastly, after perplexity = 20 was selected as 

the most appropriate TSNE setting. Values for each clinical feature for each participant was 

plotted onto the two-dimensional manifold, to inspect if clustering was inherently over-contributed 

to by individual features.  

7.2.4 Cluster selection 

A dendrogram of agglomerative clustering was plotted using ward linkage and Euclidean affinity. 

The most optimal number of clusters to aim for was visually selected as the number of clusters 

transected by a horizontal line at the point of the dendrogram with the greatest vertical distances 

between clusters. The optimal cluster size was 10 and 12, with n=11 used to plot against the two-

dimensional TSNE manifold. 
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7.2.5 Model prediction 

Cluster designation was added to the pre-processed dataset. In order to accommodate uncertainty 

in the optimal number of clusters, predictions were performed using three to thirteen hierarchical 

clusters. Datasets were randomly split into training (70%) and testing (30%) partitions. The test 

partition contained unique patients only, with duplicate admissions for the same patient dropped, 

keeping on the first chronological episode. A predictive model using XGBoost was constructed for 

two outcomes: survival and length of stay. For survival, an accelerated failure time model was 

used instead of mortality at a timepoint, due to the imbalanced number of alive and dead 

participants by the end of the study. XGB regressor was used for length of stay. 

Each model was trained and hyperparameters optimised using ten-fold cross-validation from the 

training partition. The best-performing fold hyperparameters on cross-validation were used to 

quantify performance on held-out test data. The evaluation metric used was negative log likelihood 

(nloglik) for survival and root mean squared error (RMSE) for length of stay. 

For the survival model, lower and upper bounds were defined: if the patient was not censored by 

death, the lower bound was the study length, defined as the duration between date of baseline 

assessment and 1st June 2021, while the upper bound was the study length to infinity. However, if 

the patient was censored by death, the lower bound and upper bound were both the duration of 

the time the participant was in the study from baseline assessment until the date of death.  

XGB hyperparameters were optimised using grid searches. The hyperparameters selected for the 

XGB accelerated failure time model were: 

- Objective:  'survival:aft', 

- Evaluation metric: 'aft-nloglik', 

- Learning rate': 0.05,  

- Max depth: 3,  

- Subsample: 0.5, 

- Minimum child weight: 5, 

- Column sample by node :0.5 
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For all three outcomes, prediction outcomes using an incremental number of clusters, from three 

to thirteen, were compared against a baseline model including only age and sex, and a high-

dimensional model including all features. The interquartile range and mean of the ten cross 

validation training folds and the test result were plotted onto a comparative rainplot. 

7.2.6 Sensitivity Analyses 

All steps described in 7.2.5 were repeated in a series of sensitivity analyses, varying how binary 

(e.g present or absence of a cardiovascular diagnosis), categorical or ordinal variables have been 

used. First, all data were treated as continuous, assuming that all binary features were ordinal. 

Next, binary and categorical features were instead treated as categorical data, resulting in mixed 

data types when incorporated with continuous variables. Subsequent clustering was performed 

using a Gower matrix. Last, binary clinical features were excluded, only ordinal categorical 

variables and continuous features were included, with all features treated as continuous values 

instead of one-hot encoding for categorical variables. This last approach demonstrated the best 

clustering and predictive outcomes: this was thus selected as the definitive approach.   
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7.3 DELPHIC clustering results 

From the 1510 participants who underwent a baseline assessment, 209 were admitted during the 

course of the Delphic study for a total of 1999 episode days, over 371 unique admission episodes. 

The median time within the Delphic study was 860 days (IQR: 539 to 1141 days). By the end of 

the study, 73 deaths were recorded among participants who had been admitted to hospital at least 

once.  

In total, 152 features were used for clustering, comprising 144 summarised variables originating 

from baseline ascertainment and inpatient assessments.  

7.3.1 Autocorrelation 

Included features were first inspected and sense-checked for autocorrelations. Autocorrelation 

was demonstrated between summarised derivations of the same variables (for example, the first, 

mean, standard deviation and maximum values of MDAS item 1) (fig 7.1). MDAS items positively 

correlated with OSLA scores, while both were negatively correlated to baseline TICS-M questions. 

Specifically, MDAS 1 (level of consciousness) was positively correlated to HABAM scores of 

transfers and mobility, consistent with gating of mobility by a minimum level of arousal.  Minimal 

correlations were demonstrated between other clinical features.  
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Fig 7.1: Autocorrelation heatmap of features used for clustering 

 

Colour bar indicative of correlation, with dark red indicating correlation coefficient of 1 (perfect 
positive correlation)  
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7.3.2 Perplexity Selection 

After compression from multi-dimensional into a two-dimensional manifold, I selected a perplexity 

value of 20 on visual inspection for data transparency and sparseness, noting reasonable spatial 

distribution without obvious clumps of data. While there is no statistical method of determining the 

most optimal perplexity value, 20 is in keeping with between the range of 5 and 50 as 

recommended by TSNE authors (van der Maaten and Hinton 2008), and also consistent with N0.5 

= 19.26 as per convention (Oskolkov 2019).  
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Fig 7.2: TSNE with perplexity range from 5 to 100 

 

Visual inspection of local “clumps” and global transparency resulted in perplexity of 15-25 being 

chosen: with n0.5 being almost 20, perplexity 20 was used for the final TSNE plot  
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Individual topographic clusters in 2-dimensional representations were not heavily influenced by 

information arising from either imputation status of a feature (supplementary fig 1) or contributions 

of a specific feature (supplementary fig 2). All items of the baseline TICS-M except item 5 

(immediate recall) appeared to contribute similar topographical information. MDAS items 1 (level 

of consciousness) and 2 (disorientation) were similar in 2-dimensional representation, as were the 

baseline fluency items. 

7.3.3 Cluster size 

The mid-point of the maximal vertical distance on a plotted hierarchical dendrogram of 

agglomerative clustering crosses 10 to 12 clusters (fig 7.3). Subsequently, when eleven clusters 

were defined and replotted onto the two-dimensional TSNE manifold with perplexity 20, clusters 

with relative spatial distinction could be demonstrated in two-dimensional space (fig 7.4). 
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Fig 7.3: Agglomerative hierarchical cluster plot 

 

Horizontal transection of longest vertical distance in plot (red line) cuts through approximately 10 

to 12 clusters  
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Fig 7.4: Visualisation of dataset onto two-dimensional manifold by TSNE with individual data point 
marked by cluster definition 
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7.3.4 Survival prediction 

A trend was demonstrated for increasing survival prediction performance from baseline models 

(age, sex, delirium status alone), addition of clusters instead of delirium status, and finally, all 

features.  

Models including only age, sex and delirium status achieved a test C-index of 0.54. Addition of 

clusters, instead of delirium status, improved test performance, regardless of which of 3 to 13 

clusters were used (fig 7.5). The model with the best test performance utilised 11 clusters, 

achieving a test C index of 0.66. The best survival prediction performance was achieved with the 

complete model, achieving test C-index of 0.71. Different trajectories of survival for participants of 

each cluster are demonstrated in figure 7.6.  
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Fig 7.5: Rainplot comparing survival prediction (C-index) by baseline (age, sex, delirium status), 

with additional clustering and full features.  

 

Rainplots and confidence intervals generated from ten-fold cross validation folds. 

Red line denotes C-index on held out test partition
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Fig 7.6: Kaplan Meier comparing by designated cluster  
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Further interrogation of the clusters identified the clinical contributors to each subtype 

(supplementary fig 3). I will highlight the four most populous clusters: Cluster 1, composed of 74 

admission episodes from 55 unique participants, had participants with better baseline cognition 

and less frailty. Biochemically, they demonstrated higher albumin and lower creatinine, while also 

associated with higher CRP and platelet counts, suggestive of a pro-inflammatory picture. Their 

delirium severity and attentional deficits scores were low, with minimal working memory deficits. 

Participants in this cluster tended towards a relatively good survival outcome. Similarly, Cluster 3, 

(61 admission episodes from 33 unique participants), also demonstrated good survival outcomes. 

However, these participants had poor baseline cognition, high frailty, high levels of arousal 

attentional deficits and measures of delirium severity restricted to MDAS items 1 to 4 (measures of 

attention, arousal and disorganised thinking) but low scores for MDAS items 6 to 10 

(neuropsychiatric and sleep-wake symptoms). Biochemically, they demonstrate low albumin, high 

creatinine and low CRP.  

In contrast, participants in Cluster 11, who had the worst survival outcomes, (95 admission 

episodes from 75 unique participants), were associated with poor baseline function, high baseline 

cognitive function but biochemically low albumin, urea, creatinine and CRP. During acute illness, 

they demonstrated relative minimal arousal deficits, low delirium severity, low scores of illness 

severity and were generally younger. Cluster 2, made up of 40 admission episodes from 36 unique 

participants, also demonstrated bad survival outcomes. This cluster was associated with poor 

baseline cognition and baseline physical function, but high delirium severity and attentional deficit 

scores when unwell, low albumin without particularly raised inflammatory markers.  
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7.3.5 Length of stay prediction 

A general trend of training and testing performance demonstrated that the baseline model using 

age, sex and delirium was the least predictive model for length of stay (test RMSE = 6.4) (fig 7.7). 

When delirium was replaced by cluster designation, test predictive performance improved but with 

minimal differences between using 3 to 13 clusters. Test RMSE ranged between 3.8 and 4.1. The 

best performing mean train and test predictions were made using full features (test RMSE = 1.1). 

The train-cross-validation models performed consistently more poorly than the test partitions, likely 

a sequalae of random train-test split and reflective of the small number of observations, 

particularly in the test partition.  

The two patient groups with good survival outcomes, clusters 1 and 3, correspondingly also had 

the two shortest lengths of stay (table 7.1). However, the two groups with poor survival outcomes 

had relatively divergent admission lengths: cluster 11, patients with poor baseline function but 

good baseline cognition, had relatively short lengths of stay. In contrast, in Cluster 2, patients in 

whom had both poor baseline cognition and function, had admission episodes over three times 

longer on average.  

Table 7.1: Length of stay by cluster 

Cluster Number of participants Length of stay (mean, IQR) (days) 

1 55 1.9 (1-2) 

2 36 9.7 (6 - 11) 

3 33 2.7 (1-3) 

4 3 7.4 (4-10) 

5 30 8 (3-11) 

6 9 5.6 (3-7) 

7 15 3.3 (1-4) 

8 3 48.7 (39-55) 

9 1 6 

10 13 20.6 (11-26) 

11 75 3 (1-4) 
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Fig 7.7: Rainplot comparing length of stay predictions (RMSE) by baseline (age, sex, delirium 

status), with additional clustering and full features 

 

Rainplots and confidence intervals generated from ten-fold cross validation folds. 

Red line denotes C-index on held out test partition
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7.4 Conclusions 

7.4.1 Presence of structure during acute decompensation of older patients 

This pilot study, performed with a relatively limited number of observations, shows discernible 

structure in the patterns of decompensation during acute illness in older people. The clinical and 

biochemical distributions of acute changes are not random but likely clustered into subtypes of 

prognostic significance, as demonstrated with survival and length of stay. Optimal clusters 

definition requires knowledge of, but not limited to, a patient’s premorbid baseline cognition and 

functional deficits, as well as cross-sectional clinical features including cognitive performance, 

neuropsychiatric features and biochemical measures.  

Despite the preliminary nature of these analyses, it is already evident that there are finer 

granularities of detail to be captured at baseline and during acute illness. Identifying poor baseline 

function, low albumin, urea and creatinine in clusters with the poorest survival profiles, essentially 

highlights the importance of detailed multimodal definition of frailty in modelling mortality risk. The 

biochemical profile of a low muscle mass state correlated with poorly mobile functional state, is in 

keeping with the predictive importance of sarcopenia from ML models in Chapter 6. 

Conventional measures of raised inflammation do not necessarily correlate to a poor survival 

outcome during acute illness. It is possible the frailest patients may not physiologically generate 

the same proinflammatory state in response to an infectious stimulus as individuals with more 

robust premorbid baselines. However, it should also be considered whether a significant 

proinflammatory insult is necessary for death of the frailest patients – in this cohort, it is possible 

that mortality risk became overwhelmingly driven by the poor baseline, rendering conventional 

markers of illness insignificant, whether or not they are raised. The patient may have 

decompensated without generation of any significant systemic inflammation, reflecting minimal 

resilience to physiological insults in frailest patients. In turn, this implies acute illness is important 

for survival prediction only if a patient's baseline function and cognition exceed a minimum 

threshold. 

For length of stay, poorer long-term mortality outcome does not necessarily equate to longer 

admission. The disparity between the two clusters with poor survival outcomes but significantly 

different inpatient durations suggest baseline cognition is the most significant risk to admission 

length, with baseline physical function of minimal contribution. This raw analysis should be 

interpreted with respect to likely confounders – higher baseline cognition is likely to be associated 

with higher educational attainment, patient and family socio-economic status, with probable 
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already established social arrangements for care and greater personal ability to augment care if 

required. As a result, baseline cognition is unlikely to be the primary physiological mechanism 

towards a shorter length of stay. However, it may nonetheless be the most proximal indicator of 

contributing factors articulated above, hence offering a simple predictor with high clinical utility for 

personal, family and healthcare organisational planning.  

7.4.2 Importance of clustering 

This clustering approach was not designed to outperform to high-dimensional models for 

prediction. However, clustering can identify possible underlying mechanisms common across 

patients with specific outcomes. Empirically defining clusters could lead to our developing subtype-

specific clinical management. At the same time, improved stratification of potentially common 

mechanisms and outcomes may refine patient selection for future therapeutic trials.  

These preliminary findings emphasise the importance of interpreting acute illness in the context of 

baseline features, with more accurate prediction possible with increasing number and complexity 

of multimodal input. At the same time, they highlight the deficiencies of currently used terms such 

as the DSM-IV definition of delirium: a cross-sectional entity without objective comparison to 

baseline, biochemical or imaging inputs with only a narrow inclusion of cognitive factors without 

other clinical or psychiatric features. While the current definition of delirium may be sufficient to 

predict cognitive decline (Tsui, Searle et al. 2022), adding features may identify new subtypes. 

Broader and more detailed descriptions of acute illness, incorporating understanding of a patient’s 

premorbid baseline, may be more useful than current terms used in acute illness than current 

DSM-IV definition of delirium, which reflects on cross-sectional acute confusional state alone. 

These novel definitions may have offer prognostic prediction, be more informative on therapeutic 

strategies, while better explaining underlying pathophysiological mechanisms. With greater clinical 

use, these new conceptual terms may supersede current labels such as delirium. 

7.4.3 Strengths and limitations 

The scale of cross-sectional phenomenology and biochemical data, linked to outcomes and 

baseline, is the largest dataset of acute illness phenomenology collected outside critical care. The 

data are high-dimensional and multi-modal, including prospectively collected detailed 

ascertainment of cognitive and physical functional baseline. This is essential for understanding the 

context of subsequent acute illness. The cross-sectional clinical features across the spectrum of 

neuropsychiatric dysfunction, motor phenomenology, contemporaneous physiological and 

biochemical measures of illness severity can all be linked to prospective follow-up of outcomes. In 
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addition, I employed techniques agnostic to current definitions and pre-defined paradigms on 

acute illness in older people or delirium, allowing for a data-driven novel approach to subtype 

definition.  

Hierarchical clustering utilises no a priori inputs of the number of clusters, allowing the most 

clinically useful definitions to be articulated without prior prejudice from precedence. Prediction 

models were constructed using boosted trees machine learning techniques amenable to non-

linear associations, autocorrelation of variables while applying weighting of feature importance as 

appropriate in the data structure.  

My findings should be interpreted in the context of their limitations. Despite DELPHIC being the 

most extensive population dataset available, the number of inpatient days observations is still 

small relative to the number of derived clinical features after summary within an admission 

episode, particularly when multiple admissions are excluded for a participant in the testing split. 

There are features of the comparative survival rainplots suggestive of the limited size of the 

dataset. This includes the relatively wide variance between ten folds of cross-validation within the 

training set for the two most basic models, with narrower variation in training performance for the 

model using full features. Between prediction models, the test scores consistently outperformed 

mean performances in training partition for all models, again likely reflecting over-estimation of 

true performance due to the limited observations, particularly in the test partition. While the test C 

index trend across models allows comparisons between hierarchical models of increasing 

dimensionalities, the precise value of test performances may not be sufficiently precise to be 

definitive. I await external validation of our findings in an independent but harmonised cohort.  

Second, the dataset lacks ascertainment of illness within the community, either before admission, 

after discharge or for participants who do not become admitted to hospitals. As a result, too few 

study participants have clinical features data for predictive models of cognitive decline. Lastly, 

while the study utilises validated measures of delirium, these scales are limited in their outputs 

being multi-value ordinal data, with only blood data truly continuous in nature. During clustering 

analyses, a decision was thus required to use Euclidean approaches while recognising the 

limitations in applying to ordinal data. However, despite suboptimal operationalisation of ordinal 

data, the demonstrable clinical utility somewhat validates this pragmatic approach.  

Third, this chapter provides a proof of concept that patterns of decompensation in older people 

during acute illness can be informatively identified using longitudinal phenomenology and 

biochemical abnormalities. In a relatively small sample size, approaches that seek to test 

hypotheses would be reasonably subject to concerns of underpowering. However, by instead 
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utilising supervised machine learning in cross-validated train and held-out test partitions to 

measure clinical predictive fidelity, evaluative emphasis is shifted to metrics of test model 

performance, instead of minimum power for regression analysis. Such an alternative approach is 

inevitably accompanied by alternative concerns, namely hyperparameter optimisation and 

overfitting, which nonetheless require ever larger bigger datasets to improve performance as well 

as external data to demonstrate generalisability. 
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8 Conclusions 

 

8.1 What are the strengths of this thesis? 

As identified from chapter 3, there were multiple remaining evidence gaps within our knowledge of 

acute illness decompensation in older patients and in particular, delirium: first, although delirium 

period prevalence and symptomatic duration had been reported in elective surgical and intensive 

care settings, the epidemiology of delirium in medical older patients outside a critical care 

environment was poorly understood. The prevalence of delirium in older patients presenting to 

medical wards on the day of admission was unknown, as was the prevalence of unresolved 

delirium being discharged into the community.  

Second, the relative contributions to adverse sequelae after delirium were unclear. It was unknown 

whether delirium is simply an unmasking of underlying cognitive impairments or whether delirium 

is toxic per se, with possible dose dependent adverse consequences. There were inconsistencies 

within literature on the clinical phenotype that the term “delirium” referred to, as a result of shifting 

reference standards, simplistic cross-sectional diagnosis of delirium as a binary yes/no (or 

hyper/hypo/mixed) constructs, difficulties in operationising screening tools and insufficient 

emphasis on arousal deficits within diagnostic instruments. Fourth, the performances of long-term 

outcomes prediction models in older people were inconsistent, generalised poorly and strongly 

dependent on health-care settings. Last, there had been limited objective articulation of patterns of 

illness decompensation among older patients, despite clinical experience advocating the presence 

of phenotypic subtypes, with a status quo relying on over-simplistic descriptions such as hyper or 

hypoactive delirium.  

Here I will introduce how findings from this thesis have advanced previous research. For each 

finding, I will describe limits of previous evidence, summarise new findings from this thesis, 

Chapter Outline 

- Strengths of the thesis 

- Main thesis findings 

- Ongoing limitations and challenges in research of acute illness in older people 

- Questions for future research 

- Novel approaches to future studies 

- The future: a hypothesised case study  
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followed by how I have advanced understanding within the research field as well as their clinical 

implications for daily practice.  

8.1.1.1 Population-based associations of delirium and long-term cognition 

Incident delirium was known to be associated with increased mortality risk and greater rate of 

cognitive decline, independently of Alzheimer’s pathology (Davis, Muniz Terrera et al. 2012). 

However, robust adjustment for prospectively ascertained baseline cognitive status and delirium 

ascertainment were lacking, frequently reliant on retrospective collection alone. Few studies were 

performed outside critical care settings and even fewer involved community-based sampling 

(Devore, Fong et al. 2017). Studies presumed linear associations between delirium and cognitive 

outcomes, with more complex analyses limited by lack of statistical power. 

My findings first described the epidemiology of incident delirium in a predominantly medical 

population, as well as the prevalence of delirium on the day of admission, as well as significant 

number of patients being discharged with residual delirium into the community. In addition, I 

showed that poorer baseline cognition was associated with longer delirium duration, but those with 

the highest and lowest baseline cognition experienced the most severe symptoms in the event of 

delirium. Delirium was associated with greatest cognitive decline in those with highest baseline 

cognition. However, while better baseline cognition was protective against future cognitive 

impairment and death, the advantage of better baseline cognition are lost when exposed to high 

delirium burden. 

These findings highlight the importance of considering non-linear associations when modelling 

acute illness in the oldest-old, including interactions of acute illness with the baseline state. 

Clinically, this emphasises the need for accurate baseline cognition assessment, such as the 

IQCODE (Blandfort, Gregersen et al. 2020), to identify the population cohort with the “most to 

lose”, namely those with best baseline cognition. The high burden of cognitive impairment and 

mortality after incident delirium has implications for health services, for example, establishing 

delirium follow-up services for patients at highest risk of adverse outcomes. These epidemiological 

findings may encourage the inclusion of baseline cognition and delirium burden to illness severity 

scales such as early warning scores.  

8.1.1.2 High-dimensional multimodal machine learning is feasible and accurate in oldest-old patients: a 

demonstration with long-term mortality prediction 

Previously, predictive accuracy of mortality risk was poor for oldest-old patients, mainly only 

estimating short-term prognosis with limited generalisability across healthcare settings and 
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cultures (Curtin, Dahly et al. 2019). Models utilised limited numbers of within-patient features such 

as sex and comorbidities, one-year death risk from population-based life tables, and 

hospitalisation-specific factors such as number of admissions in one year, admission urgency, 

clinical service referred to and laboratory-based acuity scores (Curtin, Dahly et al. 2019). Their 

utility was thus limited beyond the specific clinical settings they were validated in, with wide 

performance variations across population and age groups, while some models were dependent on 

background information not readily available in acute settings (van Walraven and Forster 2017). 

In this thesis, I showed how highly accurate, long-term mortality prediction is possible by using 

high dimensional, multimodal approaches while using cross-sectional routine data without a priori 

knowledge, producing prediction models agnostic to healthcare cultures and settings. This 

approach demonstrated proof-of-concept that constructing accurate prediction models in patients 

with interacting multi-morbidities is feasible. The implication for research includes greater 

emphasis on machine learning for modelling complex multifactorial biology, such as oldest 

patients, and the need to account for potentially non-linear associations in prediction modelling. 

Clinically, these findings offer significantly improved individualised prognostication, allowing better 

patient and family communications while guiding clinicians on the most appropriate management 

course. Identifying patients at the highest risk for health services allows allocation of finite 

healthcare resources to prioritise those at greatest risk of deterioration. Objective identification of 

sarcopenia and reduced bone density, as well as intracranial pathologies, being significant 

contributors to long-term mortality risk, again highlight the need for comprehensive geriatric 

assessments when managing older patients during acute illness. 

8.1.1.3 Inference of intracranial brain and extracranial skull structures  

Previously, contributors to mortality risk in older patients had been restricted to basic patient 

characteristics, such as age, sex, cancer status, and healthcare setting-specific factors such as 

the acuity of medical needs, rather than anatomical or biochemical factors. Features were 

frequently binary or categorical, limiting their power for predictive and inferential models.  

My analyses demonstrate the relevance of including structural neuroimaging to improve prediction 

models. Using CT scans segmented with adapted MRI algorithms makes it possible to achieve a 

high degree of information from a relatively accessible imaging modality. The overall approach 

appears to identify targets for associated pathophysiology. Neuroanatomical regions such as the 

anterior cingulate and angular gyri as specific areas of interest, indicating motor and autonomic 

functions may contribute to mortality risk. They also implicate mechanisms associated with 

musculoskeletal abnormalities commonly referred to in sarcopenia, osteoporosis and presenting 
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non-specifically as “falls”. Adding structural intracranial and extracranial neuroimaging would 

augment current definitions of frailty, improving the clinical utility of the term “frailty” with its 

additional prognostic information, highlighting potential targets for further mechanistic research. 

However, causal directions in terms of whether central neural dysfunction directly results in motor 

deficits, or conversely if long-term immobility results in neural adaption of which central motor 

degeneration is a consequence, remains unclear. 

8.1.1.4 Patterns in acute illness of older people 

Although cognitive and functional decompensation during acute illness were already well 

recognised in older patients, the best-utilised quantification related to subjective measures of 

mobility deficits. In daily clinical practice, delirium was frequently conceptualised as a binary 

diagnosis, with colloquial subtypes primarily based on motor phenomenology. 

Despite the limited numbers of initial observations available for analyses, preliminary findings 

within this thesis demonstrated underlying data structures during acute illness of older patients 

within cross-sectional clinical, biochemical, and premorbid baseline features. I showed distinct 

clinical patterns within clusters, with differing adverse event outcomes for mortality risk and lengths 

of stay. 

The next step requires validation of these preliminary results on an external, independent dataset 

to demonstrate generalisability. At the same time, as shown in chapter 6, the richness of clinical 

data can be augmented by including additional modalities as they become available, such as 

neuroimaging, potentially improving cluster definitions. 

Pragmatically, my findings may offer a novel term to describe acute illness in older people, 

contextualising the acute presentation by encompassing pre-morbid cognitive and baseline 

functional performances. This may be used in conjunction with, or perhaps even supersede if 

more clinically useful, the current cross-sectional definition of delirium. The benefits of subtyping 

range from significantly improved stratification when planning clinical therapeutic trials to 

highlighting of common pathophysiological pathways, which may be targets for potential novel 

research and pharmacological or non-pharmacological therapies.  

8.1.2 Datasets 

The size and granularity of both datasets were particular strengths of this thesis: DELPHIC is, to 

my knowledge, the largest dataset currently collated with cognitive ascertainment in older patients 

with baseline, long-term follow-ups and incident acute illness clinical and biochemical features. 
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The UCLH admissions cohort is one of the largest available multimodal datasets, comprising of 

cognition, blood, neuroimaging, and mortality outcomes. The consecutive nature of clinical data 

capture minimised recruitment bias inherent to research cohorts while implementation of novel CT 

segmentation algorithms allowed accurate delineation intracranial and extracranial of contributions 

towards predictive model fidelity.  

In addition, the study design for DELPHIC was particularly unique: contextualisation of acute 

illness against an accurate pre-morbid baseline allowed differentiation between contributions of 

underlying cognitive and functional impairments, and toxic consequences of delirium per se. 

Standardised baseline and outcome cognitive measures, with discrete fluency and memory 

ascertainment, allowed direct long-term longitudinal comparisons with domain-specific detail. 

Inclusion of multiple baseline factors particularly important to older people, such as care input, 

mobility aid requirements, commonly missing from cohort studies, offered a comprehensive 

assessment of baseline frailty to optimise covariate adjustments. Last, delirium ascertainment 

during acute illness episodes was particularly rich and unique: specific inclusion of arousal 

features, assessment using a severity scale, consecutive daily assessments to capture phenotypic 

fluctuations, concurrent inclusion of functional activities and mobility impairments, all provided a 

multifaceted articulation of acute illness and delirium.  

8.2 Ongoing limitations and challenges across the research field 

There are significant challenges to the study of decompensation in older patients during acute 

illness. Some issues may be mitigated by thorough and innovative study planning. However, 

others are challenges either specific to or particularly prevalent in this patient cohort, which must 

be considered when interpreting any future study results. I will describe research challenges 

related to sampling and study design, outcome ascertainment and choice of dependent variables. 

For each, I will first highlight how the DELPHIC and UCLH acute illness studies have been novel in 

mitigating some of these limitations, advancing previous knowledge through more robust 

methodology. However, I will also articulate how other limitations remain yet unaccounted for 

within my thesis, and how they can be minimised in the future.  

8.2.1 Study design and sampling 

Selection bias is a common issue for both epidemiological and machine learning studies, involving 

patients of all ages, potentially resulting in models that generalise poorly to previously unseen data 

in new healthcare cultures and settings. Consequently, in epidemiological studies, associations 

and effect sizes demonstrated may only be applicable in a relatively narrow population from which 
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the sample was drawn, while in machine learning models, performances become less accurate 

when applied to different population cohorts. External validation is the most robust method to 

confirm validity and robustness of an epidemiological or machine-learning model. However, 

availability of sufficiently similar external datasets, in independent geographic and healthcare 

setting with harmonisable outcomes and features for comparison, are particularly scarce in older 

people research. 

The study design of DELPHIC aimed to limit selection bias by utilising a population-based 

sampling frame. Potential participants were excluded only for practical reasons such as ability to 

consent due to language, capacity, or hearing. There were active efforts to recruit patients from 

residential institutions and over-sampling patients known to the memory service to include 

previously neglected population groups. Similarly, the UCLH acute illness dataset included 

consecutively admitted patients to the medicine for the elderly service, regardless of reason for 

admission.  

Nonetheless, limitations remain for both studies. In DELPHIC, patients for whom English is not 

their first language and those cognitively impaired without a named next of kin were inevitably 

under-represented. In addition, findings from both studies may generalise less well to rural 

populations: participants in DELPHIC live in an urban environment with higher educational 

attainment and more affluent socioeconomic status compared to the national average. Similarly, 

the UCLH dataset consisted of patients acutely admitted from a central London population that 

overlaps with the DELPHIC sampling frame (Goodyer, Mah et al. 2022). As a result, rural 

populations and those with lower levels of formal educational attainment are not as well 

represented in the studies within this thesis.  

Third, there is an accepted logistical difficulty in designing studies across primary, secondary and 

community care. Both studies in this thesis included inpatients only, with no ascertainment for 

decompensation that may present as delirium and treated in primary care alone. However, 

delirium is most often present at the point of hospital admission (e.g. it developed beforehand), 

and in DELPHIC, 40% of patients with delirium were still delirious on discharge. Accurate 

ascertainment of acute illness is therefore limited to secondary care capture alone. As a result, 

study findings may potentially generalise poorly for patients in the community. In addition, the true 

duration, severity and hence cumulative exposure of an illness and its associated clinical 

syndromes such as delirium, cannot accurately measured, resulting in less accurate dose-

dependent models of acute illness, delirium and their consequent adverse events. 
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8.2.2 Outcome ascertainment 

Heterogeneity in outcomes is common for older people. This makes it harder to demonstrate true 

underlying associations with dependent variables and reduces accuracy of prediction models. The 

cardinal outcomes for acute decompensation generally include mortality, long-term cognitive 

impairment, delirium incidence, length of stay and increased level of care. Mortality is an easily 

defined and accurate binary outcome. This is not the case for length of stay or increased level of 

care, which in addition to organic factors, are determined by a range of non-organic factors such 

as premorbid social organisation, capacity of local social services, availability of district nursing, 

delivery of functional equipment and rehabilitation capacity.  

For delirium, target definition remains challenging. Firstly, even with the gold standard DSM-IV 

criteria, difficulty in operationalising has resulted in a range of possibilites, each with its own 

subjective interpretation. Regularly used tools in research include CAM-ICU, DRS and MDAS 

(Inouye, van Dyck et al. 1990, Rockwood, Goodman et al. 1996, Breitbart, Rosenfeld et al. 1997), 

with poor ability to be directly harmonised and hence robustly comparable. In addition, most 

accepted tools may be insufficient to capture reference-standard delirium. Even in the case of the 

DELPHIC study, with dedicated research staff providing daily inpatient assessments and was the 

most detailed and intensive delirium ascertainment of any cohort to date, records of features 

fluctuations were limited to retrospective corroborative accounts as formal assessments were 

performed only once in 24 hours. 

There remains no consensus method for quantifying delirium dose. This thesis proposed the 

relatively crude product of delirium duration and daily severity. However, it is already recognised 

that the current measures of delirium duration are suboptimal, particularly when studies are 

restricted to secondary care alone. First, the lack of ascertainment outside of inpatient care would 

exclude uncaptured pre and post-hospital burden, or any delirium at all in patients not admitted to 

hospital. Second, if only inpatient care is included within studies and considering significant 

number of patients are discharged still with delirium by DSM-IV criteria, delirium duration becomes 

increasingly entwined with length of stay and its associated range of non-organic factors. 

Measures of the delirium severity component to burden is similarly challenging, even if using a 

single metric such as MDAS. Despite being a scale for delirium, a number of items will likely score 

in patients with dementia alone but without delirium. As a result, more innovative 

operationalisation is required, such as additional thresholding to only include DSM-IV positive 

MDAS scores or subcortical items without those that overlap with a dementia only diagnosis, to 

refine existing tools. 
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Next, delirium will require articulation in greater granularity than an incidentally binary diagnosis. 

The findings in Chapter 7 raise questions about different clinical, cognitive and biochemical 

patterns, at baseline and at the point of decompensation, resulting in differential adverse outcome 

risks. Cross-sectionally, describing delirium alone in greater granularity may no longer be the most 

clinically useful approach. Instead, aiming for a broader term that includes a greater range of 

features, incorporating those currently used to describe delirium, may have greater utility.  

Longitudinally, it is currently assumed that presence of delirium is an equal construct for all 

patients, at all temporal points of their delirium course. However, it remains unclear how delirium 

results in toxic effects on long-term adverse outcomes. Given the fluctuating nature of the 

syndrome and potential reversibility of symptoms, it seems unlikely that delirium pathophysiology 

is entirely underpinned by neuronal loss. Therefore, a reversible intermediate delirium state, 

perhaps difficult to delineate using clinical examination alone from an irreversible unidirectional 

deterioration trajectory, awaits articulation. This deep phenotyping will likely encompass a 

combination of baseline and incidental clinical features, corroborated biomarkers, neural network 

ascertainment, and multimodal structural and functional neuroimaging. This approach will improve 

rigour of definitions and add greater consistency to entities such as persistent delirium, syndromal 

delirium, delirium superimposed on dementia and repeated punctuated episodes of delirium.  

8.2.3 Lack of multimodality, granularity and prosepective capture in covariate ascertainment 

Challenges in ascertainment of dependent variables limit optimal epidemiological model 

adjustment, machine learning model predictive power and ability to describe significant 

interactions. Dependent variables are commonly retrospective, observer-dependent and 

subjective, resulting in significant interrater variability and inherently inaccurate or incomplete 

capture. In addition, the binary or ordinal nature of data, such as presence of symptoms and 

MDAS items respectively, frequently limits power within modelling. Even when continuous 

measures have been available, for example, physiological measures such as heart rate and blood 

pressure, there has been a pragmatic trend towards thresholded measures at sparse time 

intervals for ease of manual calculation (e.g the National Early Warning Score). Despite the rapid 

technological advances in availability of wearables, motion and geographic sensors, these have 

been slow to be incorporated into routine use for data collection in large cohorts, with currently 

unrealised potential of large volumes of longitudinal, highly granular time-series data.  

Specifically in the study of decompensation during acute illness, accurate articulation of illness 

severity is problematic in older people. It is well recognised that routinely used inpatient 

physiological parameters are suboptimal for articulating illness severity in older patients: clinical 
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experience informs us that temperature spikes do not always occur even in severe infections. 

Markers of acute inflammation such as white cell count and C-reactive protein (CRP) may not rise 

to the extent as would be expected in younger patients. Appropriate adjustment for the amplitude 

of the insult is essential for modelling decompensation during acute illness. This is unlikely to be 

practical nor useful to be a measurement of the dose of the insult itself. As witnessed during the 

Covid pandemic, peak of symptoms and decline occurred approximately 7 days after the infection, 

differential outcomes in older people are unlikely to represent the size of the viral exposure 

received, but rather more downstream mechanisms that reflected varying degrees of inflammatory 

responses.  

Lastly, as briefly explained as a corroborative tool for target ascertainment, the use of multi-modal 

data sources remains lacking. Our findings in chapter 6 highlight the importance of multimodality in 

maximisation of accuracy in predictive algorithms and no doubt, extends for adjustment in 

epidemiological models. Practical and funding challenges and a lack of validated consensus 

operational protocols are well-recognised in large cohorts. Confused patients are frequently 

unable to stay sufficiently still for artefact-free imaging. While functional imaging would likely 

provide novel insights into hypothesised dysfunctional brain networks during acute illness, findings 

may be confounded by sedating drug effects necessary for sufficient image capture. Recognised 

resting and task-based imaging protocols would be limited by poor engagement during acute 

confusional states. Meanwhile, the cost and availability to process and analyse highly specialised 

tests such as genomics, proteomics or metabolomics await to be overcome.  

8.2.4 Questions for future research 

This final sub-section identifies the next urgent research questions extending from the novel 

findings from this thesis. Because of the previously described heterogeneous nature of outcomes 

such as length of stay and increased care needs, I will focus these questions on delirium and 

mortality.  

8.2.4.1 Epidemiology of delirium 

An immediate question is to further characterise the broad heterogeneity of delirium by longitudinal 

cognitive and clinical features and biochemical profiles, as explored in chapter 7 and awaiting 

external validation. Further work is required to address how the temporal course of delirium 

impacts potentially adverse outcomes.  

1. Can delirium or acute illness be further classified into further adverse outcome-driven 

subtypes? 
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2. Is persistent delirium as toxic a driver towards cognitive decline and mortality as incident 

resolved delirium? At what duration does delirium become persistent based on adverse 

outcomes? Does persistent delirium demonstrate the same reversibility profile for patients with 

different baseline cognition? 

3. Are punctuated repeated delirium episodes independent of their adverse effects, or do they 

produce adverse outcomes more severe than their individual episodic components? 

4. Is post-delirium cognitive decline immediately irreversible in all patients, or does it progress via 

an intermediate reversible state? 

5. If there is a period of intermediate reversibility, does the length of a window of reversibility differ 

for patients of varying baseline cognition? 

8.2.4.2 Pathophysiological substrate 

Understanding the neural substrate of post-delirium cognitive impairment is an urgent frontier in 

delirium research. The differential effects of incident delirium on varying cognitive baselines 

suggest different underlying neuropathology depending on premorbid cognitive state. Within the 

acute episode, the fluctuating nature of delirium, with periods of deterioration and transient 

improvement, seem poorly explained by neuronal death alone, which would inherently result in 

unidirectional deterioration. Defining the culprit mechanism will add an entirely new dimension to 

the understanding of delirium, in terms of better defining delirium subtypes, prognoses and 

appropriateness of treatment streams. A more likely hypothesised candidate mechanism would be 

disruption of functional brain networks: evidence of global network oscillation dysfunction from 

EEG studies from patients with delirium have demonstrated lowing or dropout of the posterior 

dominant rhythm, generalized theta or delta slow-wave activity, poor organisation of the 

background rhythm (Jacobson and Jerrier 2000). 

1. Is there evidence of progressive functional network dysfunction in the initial presentation of 

delirium, in the short-term post delirium presentation and in the long-term when cognitive 

impartment is clinically demonstrable? 

a. Are there changes demonstrable in global measures such as EEG features, 

extraneuronal field potentials such as from deep brain oscillatory recordings? 

b. Can they be demonstrated using resting state and evoked tasks on functional 

neuroimaging? 
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c. Can drug effects be sufficiently separated from organic pathological signals? 

d. Do features of network dysfunction differ depending on baseline cognition? 

e. Do biomarkers of neuronal damage, such as neurofilament light, correlate to network 

abnormalities and are these patterns different for varying cognitive baselines? 

f. Is network dysfunction caused by local or global pathogenic activity or loss of global 

coherence between essential brain regions?  

g. Can dynamic modelling demonstrate causality between focal anatomical pathologies 

and clinical phenotype?  

2. How does any functional dysfunction mechanistically result in neuronal death? 

a. Is there an analogous comparison with epileptiform activity, in which chronic 

pathological intracerebral discharge would result in neuronal damage? 

b. Does chronic disconnection of brain regions and subsequent hypoactivity progress 

towards neuronal loss? 

8.2.4.3 Individualised prediction 

Building on the anticipated advances in better delirium definition and patient stratification by 

mechanisms and outcomes, there should be aims to extrapolate findings from populations to 

individual patients. 

1. What is an individual’s risk of delirium incidence for a defined anticipated insult, such as 

elective surgery? What is the anticipated duration, severity and burden? 

2. Following on from an episode of delirium, what is the individual patient’s risk of mortality 

and cognitive decline of pre-determined amplitude? 

3. What is the degree of anticipated reversibility of cognitive dysfunction for a patient with 

current delirium? 

8.2.4.4 Therapeutics options 

Clinical trials of potential therapeutic strategies can be planned in patients predicted to have or 

demonstrated to show potential reversibility of cognitive decline. Mechanism-agnostic therapies 

such as cognitive rehabilitation in the short-term after delirium and “brain training” maintenance 
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exercise would likely be strategies. However, confirmation of network dysfunction may raise 

further interest in potential specific therapies ranging from repurposing existing drugs, such as 

anti-epileptics to more interventions modulating brain networks, such as transcranial magnetic 

stimulation. 

1. Can a randomised controlled trial of cognitive rehabilitation demonstrate therapeutic benefit in 

a pre-stratified population of patients with delirium showing features of likely cognitive 

reversibility? 

2. Building on robust predictive models of cognitive decline, can stochastic therapeutic inference 

demonstrate signals of candidate drugs from existing formularies that may reduce long-term 

impairment for further larger trials? 

3. Are focal or global network dysfunction demonstrable in patients with reversible delirium 

deficits modifiable by targeted experimental therapies such as transcranial magnetic 

stimulation? 

8.2.5 Novel approaches to future studies 

Answering these outstanding questions will no doubt require concurrent approaches using 

traditional epidemiology and machine learning methods. Relevant to all population cohort and 

machine learning studies, the most limiting current issue is not incorporating robust external 

validation. This needs harmonisable outcomes and predictive features across international 

collaborations to overcome local overfitting. Mutually validating models could also aim to 

generalise across languages and cultures. It will be crucial for future studies to be designed with 

closely collaborative national and international centres in simultaneous conjunction. 

It is essential to anticipate the exponential need for computational power to study acute 

decompensation sufficiently. This would have to accommodate greater volumes of data and more 

computationally intensive techniques. Future studies will utilise novel real-time monitoring 

modalities to collect continuous scales and time series data in dense temporal epochs, replacing 

ordinal or binary single data such as from informant reporting. For example, this evolution could 

include: deployment of extracranial modalities to study cerebral networks (e.g. EEG and MEG); 

real-time data collection of specific measures such as wearable heart rates monitors, eye 

movements, and behavioural measures through infra-red motion detectors. Increasing 

digitalisation of healthcare and everyday life will generate unprecedented volumes of data, each 

able to provide clinically useful data if able to extract significant signals from inevitable noise. 
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Furthermore, incorporating devices outside typical medical modalities will offer an increasingly 

complete articulation of a patient’s clinical phenotype, such as smart meters for electricity and 

water consumption, smart devices on appliances including refrigerators, kettles to describe 

stereotyped and abnormal behaviour. Unsupervised machine learning techniques such as deep 

neural networks will likely supersede supervised tree-based algorithms as datasets become larger 

and more complex, requiring projection across multiple manifolds.  

The outcome variable will become increasingly detailed and articulated for epidemiological and 

machine-learning approaches. Biomarkers of irreversible neuronal damage and dementia 

pathology such as neurofilament light, amyloid ratios and phosphorylated tau could be more 

routinely integrated as outcome variables. It will be essential to utilise reversible markers of 

delirium mechanisms of any intermediate delirium state, either in isolation such as depressed 

oscillatory network frequency activity or resting state MRI abnormalities. The DELPHIC study 

establishes the absolute requirement of baseline ascertainment to measure cognitive decline 

robustly. At the same time, the definition of delirium itself will become increasingly harmonisable 

and comparable across studies, with greater agreement over definitions of duration, severity and 

composition of motor and non-motor clinical features.  

Machine learning prediction models extend the findings of associations identified on a population-

level epidemiology and allow individualised application at the patient level. 

Incorporating an increasing number of modalities and feature dimensions, such as structural and 

functional neuroimaging, EEG, fNIRs and TMS, blood and CSF biomarkers of neuronal 

dysfunction and death, metabolomics, proteomics, transcriptomics and genomics can be used to 

construct increasingly complex and sophisticated unsupervised machine learning models. Using 

better-defined outcome ascertainment for delirium, care needs and mortality, such a model can 

inform patient and next of kin choices: what is the risk of delirium if a patient undergoes an elective 

procedure? If a patient in the community develops an illness of severity requiring hospitalisation, 

what is the risk of delirium when admitted to hospital? What is the likely duration, severity and 

overall burden if delirium occurs? What is the likely risk of significant cognitive impairment beyond 

X% of baseline and death following incident delirium? Quantifying these outcomes offers a novel 

dimension to informed patient choice when deciding on elective surgery, better advanced care 

planning for frail patients in the community, and appropriate early input from palliative services. 

Prediction models for patients with incident delirium, in which the outcome is a probable 

intermediate reversible state, likely defined by markers of functional network dysfunction and lack 

of evidence of neuronal damage, would similarly transform acute care of patients with delirium. 
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These models would offer more objective methods of identifying patients most likely to benefit 

from currently available cognitive rehabilitation. Equally important, these models allow better 

stratification of patients most likely to benefit from future therapeutics for modifying the disease 

course of delirium and hence most appropriate to participate in clinical trials of candidate 

interventions. 

Constructing accurate prediction models of potential recovery from delirium allows inferences to 

be made about the underlying neuroanatomical and functional inferences, as well as the potential 

for therapeutic inference. As pioneered in Chapter 6 of this thesis, neuroimaging features from a 

well-performing prediction model highlight potentially plausible contributory brain areas. Lastly, 

large datasets incorporating pharmacy data, in which reversibility of patients with delirium is 

available as an outcome, can be used to for therapeutic inference of candidate drugs for further 

investigations. For example, are patients with antiepileptics less likely to be predicted to 

experience irreversible cognitive impairment, and if so, what is the relative contribution of these 

drugs? The most likely candidates can be considered for feasibility pilot studies followed by 

potential larger clinical trials.  

8.3 The Future 

Mrs P is now an 88-year-old referred to the orthopaedic outpatient clinic by her GP, having 

experienced worsening bilateral knee pain for the past 18 months. Initial X rays demonstrated 

significant loss of joint space and osteophyte formation, consistent with severe osteoarthritic 

changes. Despite multiple trials of topical non-steroidal anti-inflammatory drugs and intra-articular 

steroid injections, the symptoms had progressed to the point her mobility was significantly 

restricted. She is now limited to short distances around her two-storey house with the aid of a 

walking stick and requires a stairlift. She attends with her son for a multidisciplinary assessment 

day to discuss the possibility of knee replacement surgery. 

First, the surgeon, Miss G, following clinical examination and reviewing her images, agrees that 

surgery under a general anaesthetic would be appropriate. In addition to the intended benefits of 

the procedure, she describes the general risks of bleeding, infection and inability to complete the 

procedure successfully. She mentions that there is a risk of delirium for all patients undergoing a 

general anaesthetic and a surgical procedure. Mrs P and her son are alarmed at this prospect in 

particular – they recall an episode 15 years earlier when she was admitted to hospital with a chest 

infection, during which she had developed delirium. She recalls it being an extremely distressing 

experience as a patient, which her son also concurred to as well as a next of kin to witness. In 

addition, despite “recovering” from the confusion, both felt her memory had not been quite the 
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same. They were particularly surprised by how good her cognition had been prior to the chest 

infection. She also felt she had “slowed down” noticeably and now requires a carer twice a day to 

help her with dressing and washing.  

Acknowledging this and encouraging both to discuss further, Miss G takes both the patient and her 

son to the adjacent consulting room, where a liaison geriatrician, Prof. D, awaits both. He first 

refers the patient for a new set of blood tests including an advanced multiomics and peripheral 

neurological biomarker panel, a structural and functional MRI of her head, an EEG and a battery of 

cognitive tests. Reviewing the completed investigations and utilising a now well-established 

algorithm, he counsels both on the likely risk of adverse events following a bilateral knee 

replacement under a general anaesthetic – Mrs P has a 23% risk of developing delirium at any 

point during this procedure and its recovery, 4% risk of mortality within 30 days and 36% risk at 2 

years after this procedure, with an estimated 4 days length of stay as an inpatient. The risk of her 

requiring an increase to her current level of care is 3%. Should Mrs P develop delirium, however, 

there would be a 87% chance that reversibility to within 80% of her baseline cognition within 4 

weeks – Prof D advises that the active treatments she would receive are cognitive rehabilitation in 

a dedicated post-delirium unit. In addition, she would be treated with a well-tolerated anti-epileptic 

medication to reduce the duration and severity of delirium, which has recently been identified from 

a large-scale inference study.  

Mrs P emphasises again that it is the distress of delirium and “getting dementia after it” that she 

was initially most uneasy about but felt more reassured there are treatments to minimise the risk. 

At this point, Prof. D also introduces her to an ongoing research trial that she would be eligible for 

– the latest research suggests that manipulation of abnormal brain networks during delirium may 

be reversible or event prevented using techniques called fNIRS, median nerve stimulation and 

transcranial magnetiic stimulation – all of which are non-invasive.  

Approaching the end of the assessment day, Mrs P and her son feel they are sufficiently informed 

of the potential risks of adverse effects after surgery and decided to proceed. They note that this is 

much different from when she first experienced illness and delirium 15 years ago, regarding how 

much doctors can tell her and how it can be treated. She is keen on enrolling in the research study 

and remarks that any intervention that can prevent or treat the delirium she had previously 

experienced would be life-changing for any patient.  
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