164,782 research outputs found

    Studying the Behaviour of Model of Mirror Neuron System in Case of Autism

    Get PDF
    Several experiment done by the researchers conducted that autism is caused by the dysfunctional mirror neuron system and the dysfunctions of mirror neuron system is proportional to the symptom severity of autism. In the present work those experiments were studied as well as studying a model of mirror neuron system called MNS2 developed by a research group. This research examined the behavior of the model in case of autism and compared the result with those studies conducting dysfunctions of mirror neuron system in autism. To perform this, a neural network employing the model was developed which recognized the three types of grasping (faster, normal and slower). The network was implemented with back propagation through time learning algorithm. The whole grasping process was divided into 30 time steps and different hand and object states at each time step was used as the input of the network. Normally the network successfully recognized all of the three types of grasps. The network required more times as the number of inactive neurons increased. And in case of maximum inactive neurons of the mirror neuron system the network became unable to recognize the types of grasp. As the time to recognize the types of grasp is proportional to the number of inactive neurons, the experiment result supports the hypothesis that dysfunctions of MNS is proportional to the symptom severity of autism

    Learning with Delayed Synaptic Plasticity

    Get PDF
    The plasticity property of biological neural networks allows them to perform learning and optimize their behavior by changing their configuration. Inspired by biology, plasticity can be modeled in artificial neural networks by using Hebbian learning rules, i.e. rules that update synapses based on the neuron activations and reinforcement signals. However, the distal reward problem arises when the reinforcement signals are not available immediately after each network output to associate the neuron activations that contributed to receiving the reinforcement signal. In this work, we extend Hebbian plasticity rules to allow learning in distal reward cases. We propose the use of neuron activation traces (NATs) to provide additional data storage in each synapse to keep track of the activation of the neurons. Delayed reinforcement signals are provided after each episode relative to the networks' performance during the previous episode. We employ genetic algorithms to evolve delayed synaptic plasticity (DSP) rules and perform synaptic updates based on NATs and delayed reinforcement signals. We compare DSP with an analogous hill climbing algorithm that does not incorporate domain knowledge introduced with the NATs, and show that the synaptic updates performed by the DSP rules demonstrate more effective training performance relative to the HC algorithm.Comment: GECCO201

    Statistical physics of neural systems

    Get PDF
    The ability of processing and storing information is considered a characteristic trait of intelligent systems. In biological neural networks, learning is strongly believed to take place at the synaptic level, in terms of modulation of synaptic efficacy. It can be thus interpreted as the expression of a collective phenomena, emerging when neurons connect each other in constituting a complex network of interactions. In this work, we represent learning as an optimization problem, actually implementing a local search, in the synaptic space, of specific configurations, known as solutions and making a neural network able to accomplish a series of different tasks. For instance, we would like the network to adapt the strength of its synaptic connections, in order to be capable of classifying a series of objects, by assigning to each object its corresponding class-label. Supported by a series of experiments, it has been suggested that synapses may exploit a very few number of synaptic states for encoding information. It is known that this feature makes learning in neural networks a challenging task. Extending the large deviation analysis performed in the extreme case of binary synaptic couplings, in this work, we prove the existence of regions of the phase space, where solutions are organized in extremely dense clusters. This picture turns out to be invariant to the tuning of all the parameters of the model. Solutions within the clusters are more robust to noise, thus enhancing the learning performances. This has inspired the design of new learning algorithms, as well as it has clarified the effectiveness of the previously proposed ones. We further provide quantitative evidence that the gain achievable when considering a greater number of available synaptic states for encoding information, is consistent only up to a very few number of bits. This is in line with the above mentioned experimental results. Besides the challenging aspect of low precision synaptic connections, it is also known that the neuronal environment is extremely noisy. Whether stochasticity can enhance or worsen the learning performances is currently matter of debate. In this work, we consider a neural network model where the synaptic connections are random variables, sampled according to a parametrized probability distribution. We prove that, this source of stochasticity naturally drives towards regions of the phase space at high densities of solutions. These regions are directly accessible by means of gradient descent strategies, over the parameters of the synaptic couplings distribution. We further set up a statistical physics analysis, through which we show that solutions in the dense regions are characterized by robustness and good generalization performances. Stochastic neural networks are also capable of building abstract representations of input stimuli and then generating new input samples, according to the inferred statistics of the input signal. In this regard, we propose a new learning rule, called Delayed Correlation Matching (DCM), that relying on the matching between time-delayed activity correlations, makes a neural network able to store patterns of neuronal activity. When considering hidden neuronal states, the DCM learning rule is also able to train Restricted Boltzmann Machines as generative models. In this work, we further require the DCM learning rule to fulfil some biological constraints, such as locality, sparseness of the neural coding and the Dale’s principle. While retaining all these biological requirements, the DCM learning rule has shown to be effective for different network topologies, and in both on-line learning regimes and presence of correlated patterns. We further show that it is also able to prevent the creation of spurious attractor states

    Intrinsic adaptation in autonomous recurrent neural networks

    Full text link
    A massively recurrent neural network responds on one side to input stimuli and is autonomously active, on the other side, in the absence of sensory inputs. Stimuli and information processing depends crucially on the qualia of the autonomous-state dynamics of the ongoing neural activity. This default neural activity may be dynamically structured in time and space, showing regular, synchronized, bursting or chaotic activity patterns. We study the influence of non-synaptic plasticity on the default dynamical state of recurrent neural networks. The non-synaptic adaption considered acts on intrinsic neural parameters, such as the threshold and the gain, and is driven by the optimization of the information entropy. We observe, in the presence of the intrinsic adaptation processes, three distinct and globally attracting dynamical regimes, a regular synchronized, an overall chaotic and an intermittent bursting regime. The intermittent bursting regime is characterized by intervals of regular flows, which are quite insensitive to external stimuli, interseeded by chaotic bursts which respond sensitively to input signals. We discuss these finding in the context of self-organized information processing and critical brain dynamics.Comment: 24 pages, 8 figure

    Hopf Bifurcation and Chaos in Tabu Learning Neuron Models

    Full text link
    In this paper, we consider the nonlinear dynamical behaviors of some tabu leaning neuron models. We first consider a tabu learning single neuron model. By choosing the memory decay rate as a bifurcation parameter, we prove that Hopf bifurcation occurs in the neuron. The stability of the bifurcating periodic solutions and the direction of the Hopf bifurcation are determined by applying the normal form theory. We give a numerical example to verify the theoretical analysis. Then, we demonstrate the chaotic behavior in such a neuron with sinusoidal external input, via computer simulations. Finally, we study the chaotic behaviors in tabu learning two-neuron models, with linear and quadratic proximity functions respectively.Comment: 14 pages, 13 figures, Accepted by International Journal of Bifurcation and Chao
    • …
    corecore