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Abstract

The ability of processing and storing information is considered a characteristic
trait of intelligent systems. In biological neural networks, learning is strongly
believed to take place at the synaptic level, in terms of modulation of synaptic
efficacy. It can be thus interpreted as the expression of a collective phenomena,
emerging when neurons connect each other in constituting a complex network of
interactions. In this work, we represent learning as an optimization problem, actually
implementing a local search, in the synaptic space, of specific configurations, known
as solutions and making a neural network able to accomplish a series of different
tasks. For instance, we would like the network to adapt the strength of its synaptic
connections, in order to be capable of classifying a series of objects, by assigning to
each object its corresponding class-label. Supported by a series of experiments, it
has been suggested that synapses may exploit a very few number of synaptic states
for encoding information. It is known that this feature makes learning in neural
networks a challenging task. Extending the large deviation analysis performed in
the extreme case of binary synaptic couplings, in this work, we prove the existence
of regions of the phase space, where solutions are organized in extremely dense
clusters. This picture turns out to be invariant to the tuning of all the parameters of
the model. Solutions within the clusters are more robust to noise, thus enhancing the
learning performances. This has inspired the design of new learning algorithms, as
well as it has clarified the effectiveness of the previously proposed ones. We further
provide quantitative evidence that the gain achievable when considering a greater
number of available synaptic states for encoding information, is consistent only up
to a very few number of bits. This is in line with the above mentioned experimental
results. Besides the challenging aspect of low precision synaptic connections, it is
also known that the neuronal environment is extremely noisy. Whether stochasticity
can enhance or worsen the learning performances is currently matter of debate. In
this work, we consider a neural network model where the synaptic connections
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are random variables, sampled according to a parametrized probability distribution.
We prove that, this source of stochasticity naturally drives towards regions of the
phase space at high densities of solutions. These regions are directly accessible by
means of gradient descent strategies, over the parameters of the synaptic couplings
distribution. We further set up a statistical physics analysis, through which we
show that solutions in the dense regions are characterized by robustness and good
generalization performances. Stochastic neural networks are also capable of building
abstract representations of input stimuli and then generating new input samples,
according to the inferred statistics of the input signal. In this regard, we propose a
new learning rule, called Delayed Correlation Matching (DCM), that relying on the
matching between time-delayed activity correlations, makes a neural network able
to store patterns of neuronal activity. When considering hidden neuronal states, the
DCM learning rule is also able to train Restricted Boltzmann Machines as generative
models. In this work, we further require the DCM learning rule to fulfil some
biological constraints, such as locality, sparseness of the neural coding and the Dale’s
principle. While retaining all these biological requirements, the DCM learning
rule has shown to be effective for different network topologies, and in both on-line
learning regimes and presence of correlated patterns. We further show that it is also
able to prevent the creation of spurious attractor states.
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Chapter 1

Introduction

Understanding how the brain is able to process and store information is one of the
biggest challenges that the neuroscientific community is proposed to overcome. The
research in this field takes on many facets and it is led at different scales.

The basic components of the brain are the neurons. They represent specialized
cells able to quickly spread and share information over very large distances. To
accomplish this task, neurons receive signals in the form of electric pulses, conveyed
towards the centre of the cell, namely the soma, through extensions of the cell body,
called dendrites. If the incoming stimulus is strong enough to make the membrane
potential of the cell to exceed a certain threshold value, a neuron emits a sequence of
electric pulses, that propagates across a long projection of the nerve cell, known as
the axon.

The amplitude of each pulse, also called spike or action potential, is around
100 mV and it typically covers a time period of 1-2 ms [1]. Within a sequence of
action potentials, or spike train, the time distance between one spike and another
is established by the refractory period. During this interval of time, a neuron is
completely insensible to whatever external stimulus, even the strongest one.

Neurons interact with the surrounding cells through the synapses. These are
highly qualified structures that transmit the signal from the axon of a pre-synaptic
neuron to the dendritic tree of the surrounding post-synaptic ones. In the synapses, the
electrical signal is, most of the time, converted into a chemical one. Its transduction
occurs through a series of complex bio-chemical stages, culminating in the release of
special molecules: the neurotransmitters. These molecules are detected by specific
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receptors that activate the opening of the ion-channels, located at the membrane of
the post-synaptic cell. Their activation leads to a flux of ions from the extra-cellular
medium to the inside of the cell, causing a change in the membrane potential of the
cell itself [2].

Although still far from being exhaustive, the conquered knowledge about the
biophysical and biochemical functioning of the nerve cells has inspired the design of
several neural models, at various levels of accuracy. Whether to choose one model
or another depends on the intended purpose.

For instance, many models aim to reproduce and to shed lights about the detailed
functioning of single neurons. To this class belong the integrate-and-fire or the
Hodgkin-Huxley models [3, 4]. These models typically end up in a series of coupled
differential equations, through which they try to describe the fundamental electrical
mechanisms undergoing within the nerve cells.

Conversely, there exist models of neurons embodying an oversimplified version
of biological nerve cells: extremely complex and detailed models of single neurons
are less prone to catch interesting phenomena, arising from the collective behaviour
of an ensemble of nerve cells [5].

Indeed, it is hardly believed that processes like learning and memory emerge
when neurons get connected with each other in creating a complex network of
interactions. These collective phenomena are thus quite not affected by the details
related to the single components of the network, in the same vein of what happens in
other physical systems, like magnets, liquid crystals or superfluids [6].

The simplest neuronal model we can think of is the one of formal or artificial
neurons, proposed by McCulloch and Pitts in 1943 and actually representing the first
attempt in mathematically modelling neural networks [7]. Formal neurons constitute
a caricature of biological nerve cells, here modelled as bistable linear thresholds
elements, whose state is described through a binary variable sss, according to the fact
that a neuron can fire or not.

Inputs from the external world, as well as, signals exchanged by the neurons
within the network, cause the state of each neuron to change in time: a neuron decides
to be in an active or in a quiescent state by weighting the incoming stimuli exerted
by surrounding neurons, according to the strength of their synaptic connections, and
then comparing their sum to a local threshold [6]:
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si (t +1) = φ

(
∑
j ̸=i

Wi js j (t)−θi

)
, (1.1)

where Wi j are known as synaptic couplings or weights, θi is the spiking threshold,
while φ (x) represents some non linear activation function.

In this work, we will refer to this kind of neuronal model, of which we provide a
qualitative drawing in Fig. 1.1.

Fig. 1.1 Example of formal neurons. The incoming signal is first weighted (Σ) according to
the strength of the synaptic couplings and then compared to a local threshold θi, by means of
the non-linear activation function φ . This determines the neuronal state si [6].

When combined together, formal neurons give rise to different neural network
topologies. In the discussions that follow, we will only consider the two harshest
architectures, namely feed-forward and recurrent artificial neural networks. In par-
ticular, in the forthcoming sections of this first chapter, we will show how various
methods borrowed from statistical physics, can come into play in the mathemati-
cal and physical investigation of feed-forward and recurrent neural networks, by
exploiting the strong analogy between the physics of neural and disordered systems.

In the following chapters, we will instead present our work and our recent results
related to both types of network architectures. In particular, in the second and
third chapter, we will analyse the learning phenomenon in the simplest kind of
feed-forward neural network: the Perceptron. In the fourth chapter, we will instead
focus on the study of associative memory through recurrent neural networks, and
network representations of the external stimuli. Finally, we will address conclusions,
discussions and further perspectives to the fifth chapter. We remind to the Appendices
for most of the technical details, related to both analytic calculations and numerical
simulations.
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1.1 Feed-Forward Neural Networks

A feed-forward neural network is an artificial neural network whose connections
among neurons do not create cycles. It is typically organized in a sequence of
l = 1, ...,L neuronal layers, connected each other by a set of synaptic couplings
W =

{
Wlk

∣∣1≤ l < L,1 < k ≤ L
}

, actually codifying the strength of the synaptic
connections. Since no cycles are allowed, the input signal propagates forward from
the input layer up to the output one: neurons belonging to the l-th layer only feed
those in the (l +1) layer, by processing the incoming stimulus exerted by the ones
in the (l−1) layer. According to Eq. 1.1, this simply means:

sl+1
i = φ

(
∑
j∈l

W l+1,l
i j sl

j−θ
l+1
i

)

= φ

(
∑
j∈l

W l+1,l
i j φ

(
∑

j∈l−1
W l,l−1

i j sl−1
j −θ

l
i

)
−θ

l+1
i

)
,

(1.2)

with the non-linear activation function φ(x) being often chosen as the rectified
linear function (ReLU): φ(x) = max(x, 0) [8]. A qualitative drawing of a feed-
forward neural network is shown in Fig. 1.2.

Fig. 1.2 Drawing of a feed-forward neural network. The thick and dashed circles represent
the visible and the hidden neurons respectively. The input signal propagates from the bottom
(input layer) to the top (output layer).

Neurons in the inner layers are often called hidden units, to distinguish them
from those belonging to the input layer, usually known as visibles, given that their
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state is completely clamped to the one imposed by the external stimulus. When
multiple layers of hidden units are added, we refer to deep or multilayer feed-forward
neural networks.

The architecture of a feed-forward neural network makes it particularly suitable
in implementing K-classification tasks. In a K-classification task, the input signals
are grouped into a number of K different classes, the network has then to correctly
assign the corresponding class label to each one of the inputs. For instance, we can
imagine to have at our disposal a set of images, each one depicting a different kind
of animal. On the basis of these data, the network has to learn how to extract those
aspects and features characterizing the animal, and that make it to belong to a given
species rather than another one.

The features extraction is performed through the hidden layers: starting from the
input data, from layer to layer, the network proceeds to build increasingly higher-level
and more abstract representations of the input data, enhancing those traits of the data
relevant for a good classification and neglecting useless details. For example, in the
context of image classification, the first hidden layer usually specializes in detecting
the edges of an image at particular positions and at given orientations. These are
then usually combined by the subsequent hidden layers for the detection of more
complex motifs (see Fig. 1.3) [8]. Currently, a turning point in image classification
and recognition tasks is represented by a kind of deep feed-forward neural networks,
known as convolutional neural networks, inspired by the organization of the neurons
in the visual cortex [9].

The ensemble of methods and techniques enabling a machine to perform features
extraction is known as representational learning [10]. In the case of a multi-layer
feed forward neural network, when more than one level of representation of the input
data is involved, we refer to deep learning.

A fundamental trait of deep learning is that the features related to a set of data
are not given or fixed a priori. On the contrary, the network itself spontaneously and
progressively learns how to extract them from the data. In the next section we will
go more in details on that, by explaining how a neural network, trained according to
specific learning protocols, can accomplish a given classification task.



6 Introduction

Fig. 1.3 Example of features extraction in feed-forward neural networks [10]. The input
signal is represented by an hand-written digit in the MNIST dataset [11]. The network builds
increasingly higher representations of the input data, allowing the network to recognize
which number is represented in the image.

1.1.1 The Learning problem in classification tasks

Imagine that we have at our disposal a set of p input data or patterns
{

ξξξ
µ
}p

µ=1. For
example, they could be a series of grey-scale images featuring hand-written digits,
as the ones collected in the MNIST data set [11], or a bunch of coloured images
depicting different kinds of objects, like those gathered in the CIFAR data set [12].
Each one of the inputs is characterized by its own class-label {yµ}p

µ=1, having K
different classes.

This series of input data represents the training set and it is exploited by the
neural network as a set of examples, through which the network learns how to detect
useful features for a successful classification. A classification is successful if, given
an input pattern ξξξ

µ , for instance a vector of pixels in the case of an image data, the
response of the network is such that the input data is assigned to its corresponding
class. The response is provided in the form of a vector of scores sµ,L, one score for
each class, readable as the configuration of the output layer and quantifying how
likely is for the pattern to belong to a given class rather than another one. If the
network has learnt to correctly classify the input data, then the index of the vector in
correspondence with the highest score, coincides with the actual class of the input
pattern [8].
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This condition can be eventually reached only at the end of a training phase,
during which the network adjusts its own parameters, namely the thresholds and
the strength of the synaptic connections, in such a way to minimize a cost function
E. This function quantifies a sort of distance between the response of the network
and the desired one. Several cost functions can be defined, whether to choose one
or another depends on the task we want to consider. For example, for a many-
class classification problem we typically employ the categorical cross-entropy [10],
namely E

(
yµ ,sµ,L)=−∑

K
k=1 yµ

k log
(

sµ,L
k

)
.

In this way, the learning process simply translates into an optimization problem,
whose solutions are represented by those configurations of the network parameters
that minimize the training error, namely the number of wrongly classified patterns. In
other words, the cost function defines an ’energy’ landscape in the high-dimensional
space of the network parameters, where the minima correspond to those configura-
tions of the network satisfying a given classification task [8]. This is quite in analogy
with a widespread belief in Neuroscience, according to which learning in the brain
takes place in terms of modulation of synaptic efficacy [13–15].

In order to minimize the cost function, the strength of the synaptic couplings is
progressively adapted by following the gradient of the cost function, a procedure
known as gradient descent (GD) [16]:

W l+1,l ←W l+1,l +η

p

∑
µ=1

∂E
∂W l+1,l , (1.3)

with η representing the learning rate and actually quantifying the size of the
steps of the descent. The gradient of the cost function is carried out by means of the
chain rule, according to Eq. 1.2:

∂E
∂W l+1,l =

∂E
∂ sµ,l+1

∂ sµ,l+1

∂φ

∂φ

∂W l+1,l . (1.4)

Then, during the training phase, a pattern is presented to the input layer of a
feed-forward neural network. The signal propagates forward up to the output layer,
where the response of the network, in the form of a vector of scores, is collected.
Then, the distance between the desired configuration of the output layer and the
actual response of the network is computed through a cost function, that adds a
penalty for every wrongly classified pattern. This generates a signal that propagates
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backward through the layers of the network, modulating the strength of the synaptic
connections in order to reduce the training error. The process is repeated for every
pattern, until a minimum of the cost function is reached. This learning protocol is
known as back-propagation, actually representing the core of such learning from
examples or supervised learning [17].

One thing to notice here is that several variants of the standard GD algorithm are
actually possible, one of them being the Stochastic Gradient Descent (SGD) [16, 18].
In this case, instead of summing up the contributions of all the p patterns, as shown
in Eq. 1.3, the gradient is cumulated just on a small subset of the training set, called
batch. The word ’stochastic’ comes from the fact that the actual gradient is here
replaced with a noisy estimation. The fluctuations thus introduced should help in
reaching minima that can guarantee better classification performances [18].

The classification performances of the network can be checked at the end of the
training on a bunch of input data that the network has never seen before, i.e. the test
set, by looking at the generalization error, namely the equivalent of the training error
on the test set.

The structure of the energy landscape is currently matter of a lively debate. We
typically seek to minimize a non-convex cost function, characterized by many local
minima. However, are all the minima accessible to current learning algorithms only
local or can they find even global ones? Are they low-lying? Do flat minima provide
better generalization performances than the sharper and isolated ones? Indeed it is
believed that flat minima are more robust to noise and fluctuations and thus recently
some efforts have been devoted in the design of GD-based algorithms that can
effectively look for such regions [19].

As statistical physicists, we would like to investigate these problems and to shed
lights on the actual functioning of deep-learning methods. In the next sections we
will thus introduce the statistical physics approach to learning problems, especially
focusing on the simplest kind of feed-forward neural network, the Perceptron, of
which this work aims to provide more insights.

1.1.2 The statistical physics of learning from examples

The capability of inferring the underlying rule according to which a given input
data is assigned to its corresponding class, is considered a characteristic trait of
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intelligent systems. The fact that artificial neural networks can accomplish this task
by learning from examples has significantly inspired the research on this field in
statistical mechanics. Indeed, it is hardly believed that understanding the theory of
learning starting from simple models, can provide more insights on the complex
functioning of advanced intelligent systems.

Learning has always been a central topic in several disciplines, such as philosophy
or psychology. However, thanks to the development of new tools for the analysis of
complex systems, statistical physics has begun to provide its own contributions to
the theory of learning from examples [20]. Despite the fact that it has only focused
on quite simple models up to now, it has anyway proposed innovative points of view.
Indeed, statistical physics has played a great role in the quantitative characterization
of learning scenarios in simple learning systems, especially by pointing out the
conditions under which good learning performances can be achieved. In this regard,
great progress have been done by exploiting the strong analogy between learning
and spin glass systems [21]. In this section we thus would like to briefly describe the
approach of statistical physics to learning.

Statistical physicists do not look for bounds to the worst case, they are instead
interested in characterizing the typical behaviour of a physical phenomenon. Simi-
larly, in the theory of learning, we do not focus on the analysis of a specific learning
scenario, emerging from a special choice of the training set. We are instead interested
in the typical one. For this reason, we treat both the input patterns

{
ξξξ

µ
}p

µ=1 and
their associated class-labels {yµ}p

µ=1 as random variables, drawn from some given
probability distribution [22].

The synaptic couplings or, more generally, the parameters of the network rep-
resent the degrees of freedom of a learning system. Although their number can be
consistently big, reaching hundreds of millions in deep networks [8], it is typically
assumed to be of the order of the total number N of neurons within a network. Then,
the limit N→ ∞ can be thus considered as a reasonable thermodynamic limit [6].

As the size of the network gets larger and larger, we expect the number of training
examples p to scale as:

p = αN (1.5)
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where α is a proportionality constant, known as storage load or network capacity
[22]. Indeed, the more degrees of freedom we have the more constraints we need to
fix them.

In the thermodynamic limit, typical does not simply mean ’most probable’. On
the contrary, it also implies that the probability for every other not-typical event to
occur, is negligible compared to a typical one. In this limit, we can thus identify
some observables for which their typical value simply coincide with the averaged
one, being their probability distribution sharply peaked around the typical value.
Because of this property, these observables are called self-averaging: the average
well represents the whole sample [23, 24].

In order to describe the typical learning scenario, the approach of statistical
physics then consists in first identifying the self-averaging quantities, and second
switching to the thermodynamic limit for computing their expectation values, well
representing the typical behaviour. In the next section, we will concretely see how
this strategy can be exploited, in order to extrapolate useful information about the
theory of learning in Perceptrons.

1.1.3 The Perceptron

The simplest kind of feed-forward neural network is represented by the so called
Perceptron. Introduced by Rosenblatt for the first time in 1961, high expectations
have been suddenly placed in it for the development of artificial intelligence [25].
In fact, despite its simple structure, it has been proposed as a candidate model for
catching some of the basic cognitive abilities of the brain.

A Perceptron is a single layer feed-forward neural network characterized by a set
of N input neurons, whose state is described through binary variables {si}N

i=1 . The
input layer is connected to a single binary output unit σ , through a set of synaptic
couplings {Wi}N

i=1 . A sketch of such a network is shown in Fig. 1.4.

The Perceptron typically acts as a linear classifier: given a set of p input patterns{
ξξξ

µ
}p

µ=1, representing specific configurations of the input layer, a Perceptron asso-
ciates to each pattern a label, corresponding to one of the two possible states of the
output unit, by performing a weighted sum of the incoming stimulus:
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Fig. 1.4 Drawing of a Perceptron. The input layer is constituted by N input neurons,
connected to a single output unit σ , through the synaptic couplings vector WWW = {W1, ...,WN}.

σ
µ = φ

(
N

∑
i=1

Wiξ
µ

i −θ

)
∀µ = 1, ..., p,

where θ is the spiking threshold, while φ (x) represents, as usual, some non-
linear activation function. For the sake of simplicity, in the following we will choose
as activation function the sign function: φ(x) = sign(x) = {1 for x > 0, 0 for x =
0, −1 for x < 0}. This does not represent a limitation for the purpose of the
forthcoming discussions.

The set of input patterns is then automatically divided in two different classes: a
pattern ξξξ

µ belongs to the Ξ+ (Ξ−) class if it holds σ µ = 1(−1). In particular, the
condition:

W ·ξξξ µ −θ = 0 (1.6)

defines the hyper-plane in the high-dimensional space of the input patterns, at
which the classification switches from one class to the other. The collection of points
satisfying Eq. (1.6) represents the decision boundary.

As for generic feed-forward neural networks, given a set of p input patterns{
ξξξ

µ
}p

µ=1 and their corresponding class-labels {yµ}p
µ=1, the learning problem con-

sists in inferring one or more possible configurations of the synaptic couplings,
allowing a Perceptron to successfully assign to each one of the input patterns its



12 Introduction

corresponding class-label. When this is the case, the response of the network σ µ

precisely matches the desired one yµ .

This condition is eventually achieved at the end of a training phase, during which
the Perceptron adjusts the strength of its synaptic connections, according to some
given learning protocol, in order to reduce the training error. This quantity is thus
exploited by the Perceptron as a feed-back signal, quantifying how many patterns
have been wrongly classified up to a given point [26]:

εt

(
WWW ;
{

ξξξ
µ
}p

µ=1

)
=

1
p

p

∑
µ=1

Θ(−σ
µyµ) , (1.7)

where Θ(x) is the Heaviside step function: Θ(x) = {1 for x > 0, 0 otherwise}.

Unfortunately the training error does not represent a good indicator of the actual
classification performances, since it is referred only to a subset of all the possible
input patterns, namely the training set. As we have already pointed out, a better
indicator is provided by the generalization error, viewed as the expectation over all
possible patterns, namely not only the ones in the training set, of wrongly classifying
a given input pattern [26]:

εg (WWW ) = ∑
{ξξξ}

P(ξξξ )Θ(−σy) . (1.8)

The training error then represents just an estimation of the generalization error, in
the same way as frequencies represent estimations of probabilities. We thus expect
the training error to converge towards the generalization error, as soon as the number
of training patterns p gets larger and larger.

According to how the set of class-labels {yµ}p
µ=1 is provided, we can distinguish

between two main scenarios:

• the teacher-student or generalization scenario, where the class-labels are
supplied through an underlying target rule g, that a student Perceptron has to
infer: yµ = g

(
ξξξ

µ
)
. Typically the input-output association g is implemented

by another Perceptron, usually called teacher;

• the storage or classification scenario, where the class-labels are chosen inde-
pendently at random, according to a given probability distribution.
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The initial excitement about the Perceptron started vanishing in 1969, when
Minsky and Papert highlighted the limitations of such a neural network model [27].
Therefore, the research in this field did not proceed until the beginning of the 1980’s.
The turning point was represented by the work by Hinton on deep-networks and by
Hopfield on recurrent neural networks, which we will discuss more in details in the
second main section of this chapter.

However the Perceptron still represents the building block of the statistical
mechanics of learning, as the hydrogen atom for the quantum world or the Ising
model in statistical physics. It still constitutes an interesting and valuable model, on
which both analytic calculation and numerical simulation can be carried out, as well
as the starting point in the understanding of the more complex functioning of deep
artificial neural networks.

In the following two sections, we will focus on two specific models of Perceptron:
the continuous Perceptron and the binary Perceptron. We will present the approach
of statistical physics to the analysis of both models, by showing the most relevant
achievements, and, at the same time, we will briefly describe the learning protocols
that are actually employed for training the two different topologies of Perceptrons.

Continuous Perceptron

The continuous Perceptron is a Perceptron model whose synaptic couplings are
continuous variables, taking values on the real axis. This model has been the object
of various studies, mainly because of its simplicity combined with the chance of an
easy training by means of GD-based strategies, as we will see in the next section.

With no loose of generality, the vector of synaptic couplings is typically normal-
ized to a sphere of radius

√
N:

W2 =
N

∑
i=1

W 2
i = N. (1.9)

Making the vector lying on an N-dimensional sphere does not represent a limi-
tation when the neuronal state variables are taken to be binary, and it determines a
proper scaling in the thermodynamic limit. A continuous Perceptron satisfying this
normalization constraint is known as spherical Perceptron.
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In the forthcoming section we will analyse the learning problem in spherical
Perceptrons, by means of methods and tools borrowed from statistical physics. The
resulting approach goes under the name of Gardner Analysis. We will investigate
both the teacher-student and the storage learning scenario, pointing out the theoretical
scheme and the subsequent results.

The Gardner Analysis of spherical Perceptron models Statistical Physics turned
out to be a powerful tool for the analysis of learning problems in Perceptron models.
The solutions of a learning problem are represented by those configurations of the
synaptic couplings, enabling a Perceptron to correctly classify a given set of input
patterns. Learning can be thus seen as a dynamical and exploratory process across
the N-dimensional synaptic space, that looks for those configurations of the synaptic
couplings optimizing the training error.

As we have already pointed out, statistical physicists are interested in describing
the typical learning scenario and not a specific realization, due to a special choice of
the initial conditions and/or the training set. Therefore, both the input patterns and
their associated class-labels are treated as random variables, sampled according to
given probability distributions, respectively P

(
ξξξ

µ
)

and P(yµ).

Rephrasing the learning problem in the language of statistical physics, the synap-
tic couplings represent the microscopic variables of a learning system, leaving in
the phase space. As the learning dynamics converges towards the equilibrium, the
synaptic weights distribute in the phase space according to the Gibbs measure [22]:

P(W) =
1

Z
({

ξξξ
µ
}p

µ=1

)exp
(
−βεt

(
WWW ;
{

ξξξ
µ
}p

µ=1

))
, (1.10)

where, as anticipated, the role of the energy is actually played by the training
error. The normalization factor Z

({
ξξξ

µ
}p

µ=1

)
is known as the partition function and

it is defined as a sum over all possible configurations of the synaptic couplings of the
Gibbs measure:

Z
({

ξξξ
µ
}p

µ=1

)
=
∫

dµ (W)exp
(
−βεt

(
WWW ;
{

ξξξ
µ
}p

µ=1

))
. (1.11)
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Here, dµ (W) represents the measure ensuring the spherical constraint to be
satisfied:

dµ (W) =
dWδ

(
W2−N

)∫
dWδ (W2−N)

. (1.12)

In the low temperature limit, namely β → ∞, the Boltzmann-Gibbs distribution
is fully focused on the minima of the energy function, namely on the solutions of the
learning problem. They occupy a region of the phase space known as the version
space. In this limit, the partition function then simply translates into the volume
of the version space, by restricting the integral over the synaptic couplings to the
minima of the energy function:

Ω
(
ξξξ

µ ;yµ
)
=
∫

dµ (W)
p

∏
µ=1

Θ
(
σ

µ
(
W,ξξξ

µ
)

yµ
)
. (1.13)

The volume of the version space is a quantity of interest in describing a learning
scenario. Indeed, looking at how its size changes by varying the learning parameters,
such as the storage load, it is possible to predict the specific conditions under which
a learning problem switches from a satisfiability (SAT) phase, where one or more
solutions can be detected, to an unsatisfiability (UN-SAT) one, when no solutions
exist at all.

The volume of the version space represents a random variable itself, because
defined through a product of randomly chosen training examples. In order to de-
scribe the typical learning scenario, we should thus average this quantity over the
distribution of the training set, namely P

(
ξξξ

µ
)

and P(yµ). Unfortunately, the volume
of the version space is not a self-averaging quantity: a product of random variables
is known to be characterized by long tails probability distributions, for which the
expected value do not coincide with the typical one [6].

A quantity that it is known to be extensive, and thus expected to be self-averaging
in the thermodynamic limit, is the entropy, defined as the logarithm of the volume of
the version space [28]:

S
(
ξξξ

µ
,yµ
)
= lnΩ

(
ξξξ

µ
,yµ
)
. (1.14)
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Indeed, the entropy turns a product of random variables into a sum of random
components. Because of the Central Limit Theorem (CLT), the distribution of a sum
of an infinite number of random variables converges towards a Gaussian distribution,
for which the mean coincides with the typical value:

Stypical =
〈
lnΩ

(
ξξξ

µ
,yµ
)〉

P(ξξξ
µ ,yµ) (1.15)

The average over the training set, is quenched [22]: the time scales of the
fluctuations introduced by randomly chosen training sets, are much bigger with
respect to the ones characterizing the learning dynamics [29].

The computation of the quenched average is not straightforward. However, a
series of pioneering papers has shown for the first time how to apply the replica trick
to artificial neural networks in order to simplify this calculation [30–33]. In honour
of their author, the resulting statistical physics approach goes under the name of
Gardner Analysis.

The replica method has been largely exploited in the field of Spin Glass physics
for dealing with quenched averages [24]. It is based on the trick of generating n
different copies of the same system:

〈
Ω

n (
ξξξ

µ ;yµ
)〉

P(ξξξ
µ ,yµ) =

〈
exp
(
n lnΩ

(
ξξξ

µ ;yµ
))〉

P(ξξξ
µ ,yµ) . (1.16)

In the limit of the number of replicas going to zero, the dominant contributions
can be considered the ones at most linear in n:

〈
Ω

n (
ξξξ

µ ;yµ
)〉

P(ξξξ
µ ,yµ) ∼ 1+n

〈
lnΩ

(
ξξξ

µ ;yµ
)〉

P(ξξξ
µ ;yµ) . (1.17)

Then, taking the logarithm of both the right and the hand side and considering
once again only the leading contributions, it comes out the identity:

Stypical = lim
n→0

1
n

ln
〈
Ω

n (
ξξξ

µ ;yµ
)〉

P(ξξξ
µ ,yµ) . (1.18)

The main advantage of the replica trick is that it allows to compute the average
over the training set as first, thus applying the logarithm only afterwards. The
exchange of the two operations considerably simplifies the computation of the
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quenched average. The price we pay is that we have now to deal with n different
copies of the same learning system.

In the next two sections, we will briefly describe the way of proceeding in
computing the quenched entropy by means of the replica trick, in both the teacher-
student and the storage learning scenario. We will then analyse the main results.

Teacher-Student scenario In the teacher-student or generalization scenario, a
teacher learning system, typically a Perceptron, assigns to a set of p input patterns{

ξξξ
µ
}p

µ=1 their corresponding class-labels {yµ}p
µ=1. A student Perceptron has then

to adjust its own synaptic couplings in such a way to infer the target rule:

yµ = g
(
T,ξξξ µ

)
∀µ = 1, ..., p, (1.19)

according to which the teacher has divided the bunch of input patterns into two
different classes, where TTT represents the teacher synaptic couplings vector.

In order to determine how close the student is in classifying the series of examples
exactly as the teacher, it is typically introduced a parameter known as the teacher-
student overlap:

R =
W ·T

N
. (1.20)

Since both the teacher and the student coupling vectors lie on a N-dimensional
sphere of radius

√
N, the teacher-student overlap precisely measures the cosine of

the angle ϕ between the two vectors. Indeed, as it is shown in Fig. 1.5, where a
projection in two dimensions of the N-dimensional sphere is provided, the teacher
and the student couplings vectors identify two distinct decision boundaries, at which
the classification of the input examples switches from one class to the other one. The
region between the two planes then highlights the set of input patterns for which
the response of the student, i.e. σ µ , differs from that of the teacher, i.e. yµ . Its size
directly depends on the angle ϕ .

The generalization learning scenario has been intensively studied in the past
through statistical physics [26, 34–37]. In this setting, the volume of the version
space is given by the sum over all possible configurations of the student synaptic
couplings, that classify the set of input patterns in agreement with the teacher:
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Fig. 1.5 Two dimensional sketch of the hyper-sphere on which the teacher and the student are
confined. They select two different decision boundaries at which the classification switches
from one class to another one. The region between the two boundaries is relative to those
patterns for which the response of the student does not coincide with the one provided by the
teacher [6].

Ω
(
ξξξ

µ
,T
)
=
∫

dµ (W)
p

∏
µ=1

Θ

((
1√
N

T ·ξξξ µ

)(
1√
N

W ·ξξξ µ

))
. (1.21)

Taking advantage of the replica trick, the teacher-student quenched entropy can
be written in terms of the logarithm of n different replicas of the volume of the
version space:

Stypical
t-s = lim

n→0

1
n

ln
〈
Ω

n (
ξξξ

µ
,T
)〉

P(ξξξ
µ ,T)

= lim
n→0

1
n

ln

〈∫ n

∏
a=1

dµ (Wa)
n,p

∏
a,µ=1

Θ

(
1
N

(
T ·ξξξ µ

)(
Wa ·ξξξ µ

))〉
P(ξξξ

µ ,T)

,

where both the training patterns and the teacher synaptic couplings are sampled
according to the distributions:
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P(ξξξ ) =
N

∏
i=1

[
1
2
(ξi−1)+

1
2
(ξi +1)

]

P(T) = (2πe)−
N
2 δ
(
T2−N

)
,

(1.22)

thus assuming uncorrelated input examples and uniformly sampled teacher synap-
tic couplings on the N-dimensional sphere.

To proceed further, we need to constrain the teacher-student overlap and the
overlap between different replicas of the student couplings vector, to the parameters
Ra and qab respectively:

δ

(
qabN−WaWb

)
=

1
2π

∫
dq̂ab exp

(
q̂ab
(

qabN−WaWb
))

δ (RaN−WaT) =
1

2π

∫
dR̂aexp

(
R̂a (RaN−WaT)

)
.

(1.23)

This allows to express the quenched entropy in terms of the integrals over the
overlap parameters and their conjugates:

Stypical
t-s ∼ lim

n→0

1
n

ln
∫

dqabdq̂abdRadR̂aexp
(

Nψ

(
qab, q̂ab,Ra, R̂a

))
. (1.24)

The function ψ (x) is typically called action. In the thermodynamic limit, the
integrals can be carried out by means of the saddle-point approximation:

Stypical
t-s ∼ N lim

n→0

1
n

[
extr

qab,q̂ab,Ra,R̂a
ψ

(
qab, q̂ab,Ra, R̂a

)]
. (1.25)

At the saddle point the conjugate overlap parameters, namely q̂ab and R̂a can
be expressed as functions of the overlap parameters qab and Ra, so that the action
depends explicitly only on the latter.
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The action can be computed by assuming symmetry among replicas, namely
qab = q and Ra = R. The replica symmetry (RS) ansatz seems a reasonable assump-
tion: on the basis of how replicas have been introduced, there is no reason to believe
that each replica should behave in a different way with respect to all the others.

The RS ansatz turns out to be verified at the saddle point. However, as we will
see, this is not always true when considering other kinds of models. When this is
the case, the RS ansatz provides only an estimation of the action at the saddle point,
whose stability has to be checked by means of perturbative techniques.

A further symmetry can be identified by noting that the teacher synaptic cou-
plings are uniformly sampled in the weight space, according to the probability
distribution P(T). The same holds for the student synaptic couplings through the
measure dµ (W). It is then natural to assume the student-student overlap to be
indistinguishable from the teacher-student one: R = q.

Taking into account these assumptions, the action becomes a function of the
solely teacher-student overlap:

Stypical
t-s ∼ N lim

n→0

1
n

[
extr

R
ψ (R)

]

= Nextr
R

[
1
2

ln(1−R)+
R
2
+2α

∫
DtH

(
−
√

R
1−R

t

)
lnH

(
−
√

R
1−R

t

)]
,

(1.26)

with H(x) =
∫

∞

x Dt and Dt =
(
dt/
√

2π
)

exp
(
−t2/2

)
. The values of R optimiz-

ing the action have to be determined through the saddle-point equation:

R =
α

π

√
1−R

∫
Dt

exp
(
−Rt2/2

)
H
(√

Rt
) , (1.27)

with α being as usual the storage load. The saddle point equation thus relates the
teacher-student overlap to the storage load of the network. When the storage load is
equal to zero (α = 0), the teacher student overlap vanishes (R = 0). Whereas, in the
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limit of infinite storage loads (α → ∞), the teacher-student overlap converges to one
(R→ 1).

Indeed, when no training examples have been yet shown to the network, every
possible configuration of the student synaptic couplings can correctly classify a null
number of input patterns. During the training, an increasing number of examples
is presented to the network. This causes a shrink of the version space: those
configurations that are unable to satisfy all the input patterns at once are progressively
rejected, until only the teacher survives. In the teacher-student scenario we can thus
identify the solely SAT phase, since the classification problem is always satisfied at
worst by the teacher.

A plot of the teacher-student overlap as a function of the storage load, is shown in
Fig. 1.6 (dashed line), together with the generalization error (solid line). In particular,
the inset provides a plot of the teacher-student quenched entropy at the saddle-point.
Its decreasing behaviour as a function of the storage load is a clear sign of the shrink
of the version space.

Fig. 1.6 Dashed line. Teacher-Student overlap R as a function of the storage load α . Solid
line. Generalization error εg as a function of α . Inset. Quenched entropy density as a
function of the network capacity α [6].

The Storage scenario In the Storage or Classification scenario, the class-labels
{yµ}p

µ=1 are provided by sampling them at random from a given probability distri-
bution P(yµ). They are thus completely uncorrelated with the input patterns.
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This learning scenario can be considered as an overly noisy teacher-student
setting: the classification performed by the teacher is fully ruled by noise, making
the role played by the teacher itself completely vain. In this context, the student
has to be able to assign to each example its own class label, given that there is no
correlation between the twos.

The aim of statistical physics is here to predict how many input patterns can be
correctly classified by the student at the end of the training phase, thus determining
the critical value of the storage load for which perfect classification is still possible.

The Gardner Analysis provides an answer to this question [30]. The starting
point is once again the definition of the volume of the version space, written as a
sum over all possible configurations of the synaptic couplings solving the learning
problem:

Ω
(
ξξξ

µ
,yµ
)
=
∫

dµ (W)
p

∏
µ=1

Θ

(
1√
N

yµ
(
WWW ·ξξξ µ

)
− k
)
, (1.28)

where k represents the stability parameter, enhancing the requirement of suc-
cessful classification. The replica trick comes then into play for the computation of
the storage quenched entropy:

Stypical
s = lim

n→0

1
n

ln
〈
Ω

n (
ξξξ

µ ;yµ
)〉

P(ξξξ
µ ,yµ)

= lim
n→0

1
n

ln

〈∫ n

∏
a=1

dµ (Wa)
n,p

∏
a,µ=1

Θ

(
1√
N

yµ
(
WWW a ·ξξξ µ

)
− k
)〉

P(ξξξ
µ ,yµ)

,

(1.29)

where both the training patterns and the class-labels are assumed to be identically
and independently distributed:
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P(ξξξ ) =
N

∏
i=1

[
1
2
(ξi−1)+

1
2
(ξi +1)

]

P(yµ) =
1
2
(yµ −1)+

1
2
(yµ +1) .

(1.30)

As in the teacher-student learning scenario, the parameter qab, quantifying the
overlap between two different replicas of the synaptic couplings vector, is introduced.
At the saddle-point, assuming symmetry among replicas, namely qab = q, the action
can be written as a function of the solely overlap parameter:

Styp
s ≃ N extr

q

[
1
2

ln(1−q)+
q

2(1−q)
+

α

2

∫
Dt ln Erf

(
k−√qt√
2(1−q)

)]
, (1.31)

where the value of q optimizing the quenched entropy has to be determined
through the saddle-point equation:

q
1−q

=
α

π

∫
Dtexp

(
−
(
k−√qt

)2

1−q

)[
1
2

Erf

(
k−√qt√
2(1−q)

)]−2

. (1.32)

Once again, the saddle point equation relates the overlap parameter to the storage
load. When no training examples have been presented to the network yet, namely
α = 0, all configurations of the synaptic couplings are solutions of the learning
problem, namely q = 0. Whereas, as the storage loads converges towards a critical
value (α→ αc), the overlap parameter goes to one (q→ 1), meaning that the version
space has collapsed to a single point. Above the critical capacity, no more solutions
to the learning problem can be found, as it is shown in Fig. 1.7. Therefore, in
contrast to the teacher-student learning scenario, the Gardner Analysis here reveals
the existence of a transition from a SAT to an UN-SAT phase.

Expanding the quenched entropy at the critical point, it is possible to determine
the critical capacity as a function of the stability parameter:
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Fig. 1.7 Sketch of the shrink of the version space as a function of the storage load. The
arrows describe two different couplings vectors WWW . When the storage load α is equal to zero,
whatever angle between the two vectors is allowed. As α starts increasing, the number of
admissible angles starts getting smaller and smaller, up to the point where the two vectors
simply collapse to a unique one [6].

1
αc

=
∫ k

−∞

Dt (k− t)2 . (1.33)

As it is shown in Fig.1.8, the critical capacity is maximum when no stability is
required, and it starts decreasing as soon as the stability parameter gets larger and
larger. The depicted decreasing behaviour is something to be expected being the
stability of a solution an extra requirement.

Fig. 1.8 Critical capacity αc as a function of the stability parameter k [6].

In the next section we will see how these solutions can be concretely accessed
through the design of suitable learning algorithms.
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Learning algorithms for spherical Perceptrons Suppose to have a given set of
p input examples

{
ξξξ

µ
}p

µ=1 together with their corresponding class-labels {yµ}p
µ=1.

As said, a Perceptron learns how to assign to each example its own class label through
a training process, during which the strength of the synaptic couplings is gradually
modulated in such a way to optimize a given cost function.

The cost function represents a feed-back signal, providing information about
how many examples have been wrongly classified up to a given stage of the training.
As anticipated in the context of more complex architectures, its optimization can
be carried out by means of GD-based strategies. These algorithms provide the
recipe according to which the synaptic couplings have to be modified, in order to
accomplish a given classification task. The recipe is typically called learning rule.

Depending on which cost function is chosen, it is possible to distinguish between
different kinds of learning rules. However, for the purpose of the forthcoming
discussions, we confine ourselves to a brief description of just two of the most
popular ones: the Perceptron and the Delta learning rule.

The Perceptron learning rule has been introduced for the first time by Rosenblatt
around the 1960s, becoming widely spread right after [25]. In this case, the synaptic
couplings are modified only if the example to be classified has been assigned to the
wrong class, otherwise they remain unchanged:

W←−

W+ η√
N

yµξξξ
µ if yµ W·ξξξ µ

√
N

< 0

W otherwise.
(1.34)

The update of the synaptic couplings has to be performed for every pattern and for
a certain number of times, known as epochs, until all examples have been correctly
classified.

The Perceptron learning rule can be derived by applying GD, as shown in Eq.
1.3, to the cost function:

E (W) =
p

∑
µ=1

(
−yµ W ·ξξξ µ

√
N

)
Θ

(
−yµ W ·ξξξ µ

√
N

)
, (1.35)
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which adds a penalty for every misclassified example. The advantage of this
prescription is that it is quite easy to implement and it manages to find a solution to
the classification problem in a reasonable number of epochs [6].

The Delta learning rule has been originally proposed by Widrow, the same time
that the Perceptron learning rule made its first appearance [38]. As cost function, it
resorts to the square error between the response of the network and the desired one
[28]:

E (W) =
1
2

p

∑
µ=1

(yµ −σ
µ (W))2 =

1
2

p

∑
µ=1

(
yµ −φ

(
W ·ξξξ µ

√
N
−θ

))2

, (1.36)

being φ (x) a differentiable neuronal activation function. The optimization of
the cost function by means of GD-strategies, leads to the Delta learning rule for the
updates of the synaptic couplings:

W←−W+η

(
yµ −φ

(
W ·ξξξ µ

√
N
−θ

))
φ
′
(

W ·ξξξ µ

√
N
−θ

)
ξξξ

µ
, (1.37)

with φ ′ (x) being the derivative of the activation function with respect to the
synaptic weights.

In contrast to the Perceptron learning rule, this prescription provides for an
adaptive increment of the synaptic couplings, depending on the deviation between
the response of the network and the desired one. If compared to the Perceptron
learning rule, where the increments are independent from the synaptic couplings,
this guarantees a faster convergence of the rule in detecting a solution. Indeed, it
has been shown that the squared error decreases exponentially with the number of
epochs needed to reach a solution [39]. Another positive aspect is that it is possible
to generalize the Delta rule to deep networks [6].

To summarize, we have shown how the Gardner Analysis can provide a quite
comprehensive overview on the typical learning scenario, characterizing spherical
Perceptron models. In particular, we have seen that, the teacher-student learning
problem is always satisfied at least by the teacher, whereas, in the storage learning
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scenario we can identify a critical value of the storage load, above which no more
solutions to the classification problem can be detected. This determines a transition
from a SAT to an UN-SAT phase, completely absent in the generalization scenario.
In the SAT phase, the solutions to the learning problem can be concretely accessed
through learning rules, based on GD strategies. We have described two of the most
important ones.

In the next section we will instead focus on a different learning model: the
binary Perceptron. We will see how the same statistical physics analysis can be
set up by taking care of the due variations. Moreover, we will briefly describe the
main algorithms exploited for training a binary Perceptron in accomplish a given
classification task.

Binary Perceptron

The binary Perceptron is a Perceptron model, whose weights are allowed to take
only two possible values, describing two different states of a synapse. It is equiva-
lently called Ising Perceptron, in analogy to the well-known Ising model related to
ferromagnetic systems.

Recent biological considerations and experimental evidence have suggested
that synapses may act as binary switch devices, exploiting 1 to 5 bits per synapse
for encoding information [40–42]. Then, despite the fact that synaptic couplings
are typically assumed to be continuous, it would be relevant to start devising new
learning models, where synapses are constrained to discrete values.

There are several reasons for which this kind of models are interesting to study:
statistical physics analysis have shown that the critical capacity of binary networks
is not consistently worse with respect to continuous models, discrete synaptic states
are more robust to noise with respect to their continuous counterparts [6, 43, 44],
they are also more suitable for machine learning applications. Binary networks are
attractive even from a biological point of view: some experiments [40, 45], as well
as theoretical arguments and numerical simulations [46–49], have pointed out that
considering discrete synapses, rather than continuous ones, allows to reach long term
information storage.

Training a binary network in solving a learning problem exhibits significant
discrepancies with respect to the case involving continuous synaptic couplings. As
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shown in the previous section, learning how to satisfy a given classification task in
spherical Perceptrons can be easily tackled by means of GD-based strategies [6].
However, these algorithms can not be exploited in the context of binary networks,
because of the discrete nature of the synaptic couplings. Learning is thus made much
more difficult by the inherent structure of the binary model: a well known result has
shown that training a binary Perceptron in solving a classification task represents an
NP-complete problem in the worst case scenario [50, 51].

The origin of the computational hardness in training binary Perceptrons, has
been clarified through statistical physics analysis, concerning the characterization of
the typical learning scenario. These studies have shown that the energy landscape
of a binary Perceptron model is characterized by many local minima in the thermo-
dynamic limit [44, 52–54]. Usual local searching algorithms, based on Simulated
Annealing and Monte Carlo strategies, are thus going to fail [55]. Moreover, a recent
analysis, investigating the geometric properties of the version space, has revealed
that solutions are typically isolated in binary Perceptrons models, making them even
more hardly accessible by usual learning protocols [56].

Recently, more sophisticated algorithms, based on message-passing strategies,
have been devised as learning protocols for the detection of those configurations of
the synaptic couplings, enabling a binary Perceptron to solve a given classification
task [57–60]. These algorithms have shown to be effective up to storage loads quite
close to the theoretical bound, estimated by means of the Gardner Analysis, revised
for the binary case [44].

The fundamental issue is how these newly proposed learning algorithms are
actually able to detect a solution, despite the fact that typical solutions are isolated
and embedded in an energy landscape characterized by exponentially many local
minima. In the second chapter, we will try to explain why this is the case.

In the forthcoming sections, we will first show the relevant results emerging
from a computation à la Gardner in binary Perceptron models. Then, we will briefly
describe the above-mentioned learning protocols. The picture portrayed in the
following sections will lay the basis for the discussions provided in the second and
third chapter, where our direct contribution to the theory of discrete networks models
is outlined.
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The Gardner analysis of a binary Perceptron In order to shed lights on the
typical learning scenario in binary Perceptron models, a powerful tool is as usual
represented by the Gardner Analysis. The resultant theoretical scheme can be here set
up qualitatively in the same way we have seen in the context of spherical Perceptron
models.

In the next two sections, we will thus describe the main results concerning
both the storage and the teacher-student learning scenario in binary Perceptron
models. We will see to what extent the emerging picture deviates with respect to the
continuous case, especially because of the binary nature of the synaptic couplings.

The storage scenario In the storage or classification scenario, the volume of
the version space is defined as usual as a sum over all those configurations of the
synaptic couplings, enabling a Perceptron to correctly classify a bunch of p input
patterns {ξξξ µ}p

µ=1, with a certain confidence k. The class-labels {yµ}p
µ=1 are here

considered as identical and independently distributed random variables:

Ω
(
ξξξ

µ
,yµ
)
= ∑
{Wi=±1}

p

∏
µ=1

Θ

(
1√
N

yµ
(
WWW ·ξξξ µ

)
− k
)
. (1.38)

Notice that, with respect to the spherical case of Eq. (1.28), the integral over the
measure dµ (W), and ensuring the spherical constraint to be satisfied, has been here
replaced with a sum over all binary couplings.

The definition of the volume of the version space represents the starting point of
the Gardner Analysis, leading to the estimate of the quenched entropy by means of
the saddle-point approximation [6]:

Stypical
S (α)∼ extr

q,q̂

[
− q̂

2
(1−q)+

∫
Dz ln2cosh

(√
q̂z
)
+α

∫
Dt lnH

(
k−√qt
√

1−q

)]
,

(1.39)

where it has been assumed symmetry among replicas, namely qab = q and
q̂ab = q̂, with qab being the parameter describing the overlap between two different
replicas and q̂ab its conjugate, as defined in Eq. (1.23).
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The value of the overlap parameter and its conjugate optimizing the storage
quenched entropy, have to be derived through the corresponding saddle-point equa-
tions [6]:

q =
∫

Dz tanh2
(√

q̂z
)

q̂ =
α

2π (1−q)

∫
Dt exp

(
−
(
k−√qt

)2

1−q

)[
H
(

k−√qt
√

1−q

)]−2

.
(1.40)

Once again, the two equations establish the link between the overlap parameter
and the storage load. They can be solved numerically, leading to the estimation of
the critical capacity, at which the transition from the SAT to the UN-SAT phase takes
place, namely αc ≃ 1.27 when no stability is required (k = 0) [44].

Indeed, the expansion of the quenched entropy in the limit of storage loads
approaching the critical capacity, namely α → αc, predicts a critical value of the
storage load (αc = 4/π) quite close to the one estimated numerically (αc ≃ 1.27)
[44].

At first glance, this prediction may seem reasonable. Indeed, the Gardner Analy-
sis of the storage scenario in spherical Perceptron models, estimates as maximum
achievable capacity αc = 2 [61]. The very same analysis, performed instead in the
context of binary Perceptron models, predicts the slightly lower value αc ≃ 1.27 [44].
This is something to be expected, being the binary Perceptron model a special case
of the spherical one, where the synaptic couplings are constrained to binary values.

Unfortunately, this results is not reliable. Indeed, the amount of information
needed to correctly classify a number p = αN of input patterns is encoded in the
synaptic couplings, through their synaptic strength. Since the number of synaptic
couplings in a Perceptron is exactly N, it means that there are at most N bits available
for encoding the information carried by all the input patterns. Because of that, the
critical capacity can never exceed one [6].

The reason why the Gardner Analysis leads to a wrong estimation of the critical
capacity, has to be addressed to the improper assumption of symmetry among
replicas. Indeed, analysing the stability of the RS saddle-point by means of local
perturbations, it turns out that the RS assumption is verified at the saddle point
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only up to αs ≃ 1.015 [44]. The wrongly predicted capacity is thus quite far away
from the domain where the assumption of symmetry among replicas provides stable
saddle-points.

The unreliability of the RS assumption takes its origin on the geometric properties
of the version space [6]. Indeed, according to the theory of disordered systems, the
assumption of symmetry among replicas typically describes quite well a system
characterized by an ergodic dynamics [29]. Ergodicity implies a connected version
space: given two possible solutions of the learning problem, there must always be at
least one path joining the twos, without leaving the version space [6].

Unfortunately, contrary to the spherical case, the version space of a binary Percep-
tron model is not guaranteed to be connected [6]. The constraint of binary synaptic
couplings makes the phase space to assume the structure of an N-dimensional hy-
percube, where each vertex represents one possible configuration of the synaptic
couplings, including those representing a solution of the learning problem. Therefore,
having a look at Fig. 1.9, two cases are possible: either two distinct binary solutions
(filled dots) are connected through an edge of the hypercube, without leaving the
version space of the spherical model (coloured region), as shown in (a), or they are
not (b).

Fig. 1.9 Sketch in two dimensions of the hypercube denoting the geometry of the phase
space for binary synaptic couplings. Each vertex of the hypercube represents a configuration
of the synaptic couplings. In particular, the coloured vertices are the solutions of the binary
learning problem. The coloured regions define the version space of the spherical Perceptron.
a. Two solutions are connected by a path, without leaving the version space. b. The two
solutions are disconnected, because there is no path joining the two without leaving the
version space [6].

The solutions of the binary learning problem are thus spatially organized in dif-
ferent disconnected regions within the version space. Breaking the symmetry among
replicas, is then necessary in order to make a distinction between configurations
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of the synaptic couplings belonging to the same portion of the version space, and
configurations belonging to different ones.

The simplest way to break the symmetry is to introduce two different parameters,
namely q1 and q0, describing respectively the overlap between replicas within the
same region of the version space and the one between replicas belonging to distinct
ones [6]:

qab =

q1 0 < |a−b|< m

q0 otherwise.
(1.41)

The same holds for the conjugate parameters:

q̂ab =

q̂1 0 < |a−b|< m

q̂0 otherwise.
(1.42)

Here m represents a parameter counting the number of replicas that belong to the
same region of the version space, with m ∈ [1, ...,n]. In the limit of the total number
n of replicas going to zero, m switches from an integer to a real number: m ∈ [0,1],
assuming the meaning of the probability for two distinct replicas to belong to two
different portions of the version space [6].

The above symmetry assumption is usually known as one-step replica symmetry
breaking (1-RSB) [24]. It leads to a slightly different expression for the quenched
entropy, that takes into account the corrections due to the first level of symmetry
breaking [6]:
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(1.43)
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The value of the m and the overlap parameters optimizing the quenched entropy
have to be determined, as usual, through their corresponding saddle-point equations.
Close to the critical point, the saddle-point equations related to the overlap parameters
depict a picture quite close to the one already met in spherical Perceptron models:
the ensemble of the disconnected regions of solutions is expected to collapse to a
single point (q1→ 1) when approaching the critical capacity, thus determining a
shrink of the version space. Instead, in the same limit, the saddle-point equation
associated to the m parameter, namely

0 =−mq̂0

2
(1−q0)+

1
m

∫
Dz ln2cosh

(√
q̂0z0

)
+

αc

m

∫
Dt lnH

(
−
√

q0t
√

1−q0

)
,

(1.44)

provides a criterion for the estimation of the critical value of the storage load [6].
Indeed, replacing q0 and q̂0 with q and q̂/m respectively, the right hand side of Eq.
(1.44) becomes exactly equal to the estimate of the quenched entropy under the RS
assumption shown in Eq. (1.39). Therefore, it is not strictly necessary to face the
more involved 1-RSB calculation, it is just sufficient to look for which value of the
storage load, the RS estimate of the quenched entropy vanishes:

Stypical
RS (αc) = 0. (1.45)

This criterion is reasonable when dealing with binary synaptic couplings. In this
case, the quenched entropy exactly counts the number of solutions that can be found
at a given value of the storage load [44]. Then, a vanishing entropy at the critical
point is the clear sign of a shrink in the version space, where all configurations
satisfying the classification problem are converging towards a unique one. The
estimate of the critical capacity through the zero entropy criterion gives: αc ≃ 0.83,
which is now consistent being smaller than one [44].

Teacher-student scenario In the teacher-student learning scenario, the vol-
ume of the version space is defined as the sum over all possible configurations of
the student synaptic couplings, that classify a set of p input patterns {ξξξ µ}p

µ=1 in
agreement with the teacher:
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Starting from this definition, the Gardner Analysis provides, as usual, the theoret-
ical scheme required for the estimation of the quenched entropy. Once again, this
quantity can be derived under the assumption of symmetry among replicas at the
saddle-point [6]:

Styp (α) = extr
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(1.47)

As already pointed out in the context of spherical Perceptron models, the teacher-
student scenario is characterized by the further symmetry q = R. This allows to take
into account only the saddle-point equations relative to the teacher-student overlap
and its conjugate respectively [6]:

R =
∫

Dztanh
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R̂z+ R̂
)

R̂
√

1−R =
α

π

∫
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−Rt2/2
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H
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) .

(1.48)

As usual, the two equations establish the link between the teacher-student overlap
and the storage load. Unfortunately, as seen in the storage scenario, even in this
setting the RS assumption at the saddle point is not verified for every value of
the storage load: the RS saddle-point optimizes the quenched entropy only up
to αd ≃ 1.245, as shown in the inset of Fig. 1.10 [22]. Above αd , the extreme
value of the quenched entropy is no more the one obtained evaluating the quenched
entropy at the RS saddle-point, but the one the quenched entropy assumes at the
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boundary, namely Stypical (R = 1) = 0. This signals the existence of a first order
phase transition from a poor (R ̸= 1) to a perfect (R = 1) generalization phase [22].

Because of the unreliability of the RS assumption, in principle, it should be
necessary to introduce at least one level of symmetry breaking among replicas.
However, the zero-entropy criterion introduced in the previous section, determines
exactly αd as critical capacity: Fig. 1.10 clearly shows that the RS estimate of
the quenched entropy goes to zero exactly at the point where the assumption of
symmetry among replicas is no more verified [22]. Therefore, despite the fact that
the RS assumption does not provide stable fixed points beyond αd , the instability
occurs precisely at the point where the version space is dominated by the solely
teacher. This allows to describe the entire learning scenario within the RS assumption
[6].

Fig. 1.10 Thin line. Quenched entropy as a function of the storage load α . Thick line.
Generalization error as a function of the storage load α . The transition point αc ≃ 1.245
occurs precisely where the instability of the RS assumption (dashed lines) starts to appear.
Inset. Quenched local entropy as a function of the typical teacher-student overlap parameter
R, for increasing value of α . The quenched entropy is maximized by the RS saddle point
only up to αc. As α goes beyond the critical capacity, the maximum is provided by R = 1
[6].

Learning algorithms for binary Perceptrons The Gardner Analysis sketched in
the previous section, provides some hints on the geometric structure of the version
space in binary Perceptron models: the need of breaking the symmetry among
replicas suggests the picture of a fragmented version space, where the solutions to
the classification problem are grouped in different disconnected regions.
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As already pointed out in the description of the Gardner Analysis for spher-
ical Perceptron models, the same analysis can be extended to the limit of finite
temperatures, if considering the synaptic couplings to be distributed at equilibrium
according to the Gibbs measure in Eq. (1.10) [22]. The resulting phase diagram
in the α-temperature plane reveals the existence of a spin glass phase that, accord-
ing to the theory of disordered systems, it is known to be characterized by a huge
number of meta-stable states, whose energy barriers diverge with the system size
[24, 44, 52–54]. .

As a consequence of that, the dynamics leading the network towards a minima
of the cost function consistently slows down when crossing the spin glass phase. In
binary Perceptrons, local searching algorithms are thus not effective as solvers of the
learning problem: as soon as they enter the spin glass phase, they get easily trapped
in the meta-stable states, thus being unable to reach a solution in a reasonable time
[55].

Recently, a further analysis on the geometry of the version space has shown that
the minima of the cost function, or, equivalently, the solutions to the binary learning
problem, are typically isolated within the version space [56]. In binary Perceptron
models, learning how to accomplish a give classification task is thus recognized to
be an NP-complete problem [50, 51].

However, despite the fact that the picture emerging from the theoretical analysis
is far from being encouraging, new effective learning algorithms, mostly based on
Belief Propagation (BP), have been proposed over the last ten years. BP is a kind of
message-passing algorithm: it computes the marginals related to the set of variables
characterizing a physical system, through messages defined on factor graphs [62].
Notice that, in the case of learning systems, the variables are nothing but the synaptic
couplings. Given the marginals, all the other physical quantities of interest, such as
the free energy or the entropy, can then be estimated. A remind of how BP works is
provided in Appendix A.

These newly proposed learning algorithms manage to detect a solution in a sub-
exponential time, reaching critical capacities that are close to the theoretical bound
of αc ≃ 0.83. In the following, we will briefly describe how they works.

The oldest one goes under the name of Reinforced Belief Propagation (R-BP)
[57]. Along the lines of message passing-guided decimation strategies, this algorithm
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turns BP into a solver for the binary classification problem, reaching an algorithmic
critical capacity of αR−BP

c ≃ 0.74.

The decimation strategy is the one usually implemented for solving constraint
satisfaction problems. It is divided in three different steps: first, it exploits a message-
passing algorithm for estimating the marginals associated to the variables of a
physical system; then, it takes advantage of the estimated marginals to set one of
the variables to a specific value; finally, it tries to solve the constraint satisfaction
problem, having fixed one of the variables to the given value. If this procedure does
not produce any contradiction, the final configuration of the variables represents one
of all the possible solutions of the constraint satisfaction problem [63].

R-BP can be meant as a kind of smooth decimation strategy in which all the
variables are progressively and collectively fixed, until they reach a desired configu-
ration. Fixing the value of a given variable, is equivalent to apply an infinite external
field on it, that forces the variable to assume a specific value. Then, in R-BP, all the
variables are subject to a time-dependent external field, whose function is to make
them polarizing towards a solution of the problem [57].

The second learning algorithm, known as Reinforced Max-Sum (R-MS), is based
on the same principle of R-BP but, instead of taking advantage of BP for the
estimation of the marginals, it relies on the Max-Sum (MS) algorithm [58]. The latter
can be conveniently viewed as the zero-temperature limit of the Belief Propagation
algorithm. The reached critical capacity is here αR−MS

c ≃ 0.75.

With the purpose of designing a more biologically plausible learning algorithm,
some simplifications of BP have been taken into account, giving rise to a third solver:
the Belief-Propagation Inspired (BPI) learning algorithm [59]. In this case, the
synaptic couplings are updated on-line, only according to information that are locally
available to the synapses themselves. The resulting learning rule is very close to the
Perceptron learning rule for spherical Perceptron models, although the two differ for
two distinct reasons. First, BPI introduces a set of hidden variables, with the aim
of modelling the internal states of each synapse. Second, it deals with situations in
which the incoming signal is not consistently above or below threshold. BPI turns
out to be very robust to noise. The biological requirements do not affect consistently
the performances of the network, leading to a critical capacity of αBPI

c ≃ 0.69.

The last learning algorithm is known as Clipped Perceptron Plus Reinforcement
(CP+R) [60]. It represents a further simplification and variation of the BPI algorithm:
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the learning rule taking care of all those signals close to threshold, is here replaced
by a generalized, stochastic and unsupervised reinforcement process of the synaptic
couplings. This does not induce any additional improvement in terms of network
capacity, being the critical storage load the same achievable through BPI, namely
αCP+R

c ≃ 0.69.

To sum up, training a binary Perceptron in satisfying a given classification task,
is harder with respect to the continuous case, where simple GD-based strategies can
instead be adopted. We have seen how the approach of statistical physics to binary
learning problems, can clarify the origins of such a computational hardness: the
version space is disconnected and typical solutions are isolated and embedded in
a landscape rich of meta-stable synaptic states. Nevertheless, we have also seen
that there exist a bunch of recently proposed learning algorithms, that are actually
effective in detecting solutions, approaching capacities quite close to the theoretical
bound in reasonable time.

In the second and third chapter of the present work, we will try to solve this
apparent contradiction, by showing how the previous described theoretical analysis
were basically incomplete. We will see how a large deviation analysis can instead
reveal the existence of extremely dense clusters of solutions, towards which we
believe the recently proposed learning algorithms converge.

Up to now, we have seen how artificial neural networks can be exploited as
discriminative models, where a bunch of different objects have to be assigned to their
corresponding classes. However, artificial neural networks can actually be employed
in a variety of different tasks. For instance, they can be exploited as memory devices,
in order to store a set of patterns to be retrieved in due time, or they can be employed
as generative models, in order to produce new samples according to the statistics of
the training data. In the next section, we will thus provide an introduction to this
different kinds of neural networks models, which represent the object of our recent
work, proposed in the fourth chapter.

1.2 Recurrent Neural Networks

A Recurrent Neural Network is an artificial neural network, whose connections
among neurons are allowed to generate cycles. In a cycle, the response of a neuron
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Fig. 1.11 Sketch of an highly recurrent neural network: each neuron is connected to all the
others within the network. The thick circles are visible units while the dashed ones represent
the hidden units.

plays the role of the incoming signal for all the other neurons to whom it is connected,
thus giving rise to feedback mechanisms [64]. A sketch of an highly recurrent neural
network is provided in Fig. 1.11. In this case, each neuron is connected to all the
other neurons constituting the network. However, connections can be restricted to
just a subset of all the neurons, as in the case of diluted recurrent neural networks.

The dynamics of a recurrent neural network is far to be as simple as the one
already encountered in feed-forward neural networks. In the latter, the incoming
signal simply propagates forwardly, from the input layer up to the output one. Due
to the presence of feedback loops, the dynamics of a recurrent neural network can
be instead rather complex: in principle, the network can chaotically explore all the
possible configurations of the neuronal activity, without never reaching a stationary
state [6].

Fortunately, this is not always the case: recurrent neural networks can exhibit
an attractor dynamics for proper sets of synaptic couplings [6]. In this case, the
dynamics of the network:

si (t +1) = φ

(
∑
j ̸=i

Wi js j (t)−θi

)
,

progressively evolves towards a configuration of the neuronal activity, that stays
stable in time:
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ξi = φ

(
∑
j ̸=i

Wi jξ j−θi

)
. (1.49)

The pattern of activity ξξξ then represents an attractor state or, equivalently, a
fixed point of the network dynamics: once the dynamics of the network reaches an
attractor state, it will never run away from it.

Recurrent neural networks are typically employed in different contexts. For
instance, they have been widely exploited as models of associative memory. In this
case, the network store a bunch of p input patterns {ξξξ}p

µ=1 as stable attractors of the
network dynamics. Then, when triggered by a noisy or corrupted version of a given
pattern, the network is able to retrieve the original one [64].

Statistical Physics turns out to be a powerful tool for shedding lights on recurrent
neural networks as models of associative memory. It allows to answer questions like
how many patterns is possible to store within a recurrent neural network, how the
synaptic couplings have to be set in order to achieve the best storage performances,
how much noisy a version of a given pattern can be for not preventing the network
to retrieve the original one, what happens when the patterns are correlated and how
much this correlation affects their retrieval. We will go through all these issues in
the next section, entirely devoted to the Hopfield model, namely the first model of
recurrent neural networks, that has been proposed for modelling associative memory.

Recurrent neural networks are further exploited as generative models. In this
case, the network learns how to produce new samples of patterns, that preserve the
same features of the ones on which it has been trained for accomplishing the task. We
will deal with this topic in the section devoted to generative models. In particular, we
will briefly introduce the Boltzmann Machines, a well-known kind of energy-based
generative model.

1.2.1 The Hopfield Model

A turning point in the history of computational Neuroscience occurred at the be-
ginning of the 1980s, when the physicist Jhon J. Hopfield proposed a model for
associative memory [65]. The Hopfield model is considered as a milestone in the
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field of neural networks. Indeed, it represents the first attempt of explaining how a
memory can be retrieved, when triggered by an external stimulus.

In the Hopfield model, a recurrent neural network made of N binary neurons,
namely si ∈ {−1,1}, is employed for storing a set of p patterns {ξξξ µ}p

µ=1 as stable
attractors of the dynamics, ruled by the Ising-like Hamiltonian:

H =−1
2

N

∑
i, j=1

Wi jsis j, (1.50)

where the strength of the synaptic couplings is determined through the well-
known Hebbian learning principle [66], according to which if two neurons are found
to spike frequently together, their connection is reinforced, otherwise it is depressed:

Wi j =
1
N

p

∑
µ=1

ξ
µ

i ξ
µ

j . (1.51)

In 1985 Amit et al set up a statistical physics analysis of the Hopfield model,
within the formalism of replicas [67]. This study has pointed out for which values
of the storage load α = p/N, the patterns to be stored can be identified with the
minima of the Ising-like Hamiltonian of Eq. (1.50). The resulting phase diagram in
the storage load - temperature plane is provided in Fig. 1.12a. The phase diagram
clearly shows three different phases:

• the ferromagnetic phase (below Tc): the set of patterns {ξξξ µ}p
µ=1 coincides

with the global minima of the Ising-like Hamiltonian;

• the spin-glass phase (between Tc and TM): the set of patterns {ξξξ µ}p
µ=1 appears

as meta-stable states of the Ising-like Hamiltonian;

• the paramagnetic phase (above TM): the set of patterns {ξξξ µ}p
µ=1 does not

represent the minima of the Ising-like Hamiltonian.

Fig. 1.12b shows the number of wrongly retrieved patterns at T = 0, as a function
of the storage load. As shown, perfect retrieval occurs only up to α = 0.055. Above
this value of the storage load, the number of errors starts progressively to increase,
setting the critical capacity of the Hopfield model at αc = 0.138.
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Fig. 1.12 Left. Phase diagram of the Hopfield model in the α−T plane. From left to right
we can distinguish three different phases: ferromagnetic, spin glass and paramagnetic phase.
The TR line is relative to the region of the phase diagram below which replica symmetry
braking is needed. Right. Generalization error as a function of the storage load α [67].

The Glauber Dynamics

The Hopfield model suggests the image of a network that moves from state to state in
an energy landscape characterized by valleys and hills, till an attractor state, namely
the bottom of a valley, is reached. The size of a valley is typically called basin of
attraction [64]. Fig. 1.13 provides a sketch of the energy landscape of the Hopfield
model in the ferromagnetic phase.

Modelling associative memory as an attractor dynamics, defined over an energy
landscape, has been quite inspiring for physicists, being them used to the study of
energy functions as well as the design of processes relaxing towards energy minima.

The attractor dynamics is typically simulated through a stochastic process that
goes under the name of Glauber Dynamics. At each time, the state of every neuron
is determined according to the Glauber transition probability [64]:

P
(

st+1
i

∣∣st)
∝ exp

(
βht

is
t+1
i
)
, (1.52)

where ht
i represents the neuronal local field, generally defined as the sum of two

contributions, the external field and the field exerted by the surrounding neurons on
neuron i, namely ht

i = hext
i +∑ j ̸=iWi jst

j. Note that, in the limit of β →∞, the Glauber
dynamics translates into the deterministic dynamics of Eq. (1.1). The temperature
then plays effectively the role of a noise source in the system.
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Fig. 1.13 Qualitative drawing of the energy landscape of the Hopfield model. If a pattern
has been stored as a stable attractor of the network dynamics, then initializing the state of the
network close to the pattern, it spontaneously converges towards the attractor state.

A pattern of activity is said to be properly stored within the network if, starting
from a noisy version of it and performing a certain number of steps of Glauber
dynamics, the configuration of the neuronal activity of the network converges towards
the pattern itself.

In simulating the dynamics of the network, it is necessary to take care of the order
according to which each neuron modifies its state in view of the Glauber transition
probability. There are basically two different choices [64]:

• synchronous dynamics: all the state of the neurons are updated at once at time
t +1, on the basis of the network activity at time t. In this case, it is like all the
neurons follow a clock signal, after which they all update their state in parallel.
This kind of dynamics is not completely reliable from a biological point of
view: each neuron emits a spike whenever its membrane potential exceeds a
certain threshold. However, this event is independent from the spiking of all
the other neurons;

• asynchronous dynamics: the state of each neuron is updated one at a time, such
that the update of every neuronal state relies on a configuration of the network
activity where some of the neurons have already updated their state, while
some others not yet. This dynamics is more biologically plausible, because
it takes into account that signals among neurons propagate with different
delays. Therefore, even if neurons may start firing synchronously, they will
a-synchronize quite soon.
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Limits of the Hopfield model

The Hopfield model and, in particular the Hebbian learning principle show several
limitations. First of all, they are based on the two strong assumptions of both
symmetric synaptic couplings (Wi j =Wji) and full connectivity. These requirements
are far to be realistic from a biological point of view. It is known that biological
networks are sparse: each neuron is typically connected just to a subset (ρ = 10−6)
of all the others. Moreover, connections in biological networks are asymmetric: in
principle, signals sent by neuron i to neuron j are never of the same strength of the
ones sent by neuron j to neuron i [68].

The Hebbian learning principle allows to achieve the maximum storage load
αc = 0.138, which is quite unsatisfactory. In particular, trying to add one more
pattern, thus exceeding the critical capacity, the system enters in a glassy phase
where, not only the newly proposed pattern can not be retrieved, but even the
previously stored ones are completely forgotten by the network. This represents a
well-known phenomenon that goes under the name of catastrophic forgetting [64].

Finally, the Hebbian learning rule as defined in Eq. (1.51), works just for unbiased
independent and identically distributed random patterns. However, in more realistic
and biological scenarios, the patterns of neuronal activity are instead correlated either
spatially or semantically. One way to introduce correlations among patterns is to
sample them from a biased probability distribution:

P
(
ξ

µ

i
)
= f δ

(
ξ

µ

i −1
)
+(1− f )δ

(
ξ

µ

i +1
)
, (1.53)

with f being the bias [69]. In this case, the Hebbian leaning rule is not able to
store biased patterns as stable attractors of the network dynamics, unless the rule is
modified in light of a direct knowledge on the statistics of the patterns to store:

Wi j =
1
N

p

∑
µ=1

(
ξ

µ

i − f
)(

ξ
µ

j − f
)
. (1.54)

In the fourth chapter of the present work, we will go trough all these issues by
proposing a new learning rule, able to overcome some of the limitations of Hebbian
learning, while retaining a set of constraints that make a learning rule amenable from
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a biological point of view. The newly proposed learning rule has been also tested in
the context of generative models, which represents the main topic of the next section.

1.2.2 Generative Models

Feed-forward neural networks learn how to detect the relevant features of an object,
in order to assign the object to its corresponding class. They thus typically act as
discriminative models, devised for gathering sets of objects in different categories,
on the basis of their characteristic traits. As seen in Sec. 1.1, to accomplish this task,
the network is trained relying on a set of examples, made of pairs of input patterns
and class-labels. This way of learning goes under the name of supervised learning.

Artificial neural networks can however be employed in satisfying a variety
of different tasks, that go beyond object classification and that define new sets
of machine learning techniques. As seen in the previous section, recurrent neural
networks have been widely exploited as devices for the storage of patterns of neuronal
activities. However, they are often also employed as generative models.

A generative model is a machine learning technique, designed for providing
new data samples of the same kind of the ones constituting a training dataset. To
accomplish this task, the model makes a guess on the unknown probability distribu-
tion according to which the data in the training set have been drawn, by building a
complex parametrization of it. New data samples can then be generated, by directly
sampling from the parametrized probability distribution. When this is the case, it is
often said that the model has built an internal representation of the input data [70].

To fit the parameters of the guessed probability distribution, it is typically defined
a suitable cost function, that has to be optimized with respect to the parameters
of the distribution, in light of the training data. What suitable here means is not
straightforward as in the case of learning in discriminative models: at the end of the
training, the model is required to be able to catch complex correlations in the data
structure and capable of good generalization performances.

Which cost function is the most fit for purpose is currently an open issue. How-
ever, there exists a wide variety of generative models, that takes advantage of the
negative log-likelihood as suitable cost function for fitting the data. The negative log-
likelihood is defined as the negative of the logarithm of the parametrized probability



46 Introduction

distribution, according to which a set of p input data {ξξξ µ}p
µ=1, is supposed to be

distributed:

L =−1
p

p

∑
µ=1

log
(
P
(
ξξξ

µ ;{λ}
))

, (1.55)

with λ being one of the parameters of the guessed probability distribution and
P(x) being the likelihood, which, in statistical physics, coincides with the probability
of having observed a set of realizations of a physical system, given the parameters of
the model that is supposed to better describe the system [71].

Among all kinds of generative models, there exists a specific class known as
Energy-Based generative model. In this case, the likelihood is assumed to be of the
form of a Boltzmann-Gibbs probability distribution:

P
(
ξξξ

µ ;{λ}
)
=

exp
(
−βH

(
ξξξ

µ ;{λ}
))

Z ({λ})
, (1.56)

with H (x) being the Hamiltonian and Z (x) the partition function, defined as
a sum over all possible configurations of data samples, including the ones in the
training dataset:

Z ({λ}) = ∑
{ξξξ}

exp(−βH (ξξξ ;{λ})) . (1.57)

To determine the parameters of the distribution that best fit the data, the optimiza-
tion of the corresponding negative log-likelihood is performed, as usual, by means
of GD-based algorithms:

λ ← λ +η
∂L

∂λ
. (1.58)

In the case of energy-based generative models, the computation of the gradient
of the negative log-likelihood leads to a matching condition between two distinct
contributions:

∂L

∂λ
=

〈
∂H
(
ξξξ

µ ;{λ}
)

∂λ

〉
data
−
〈

∂H (ξξξ ;{λ})
∂λ

〉
model

, (1.59)
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where ⟨·⟩data represents the empirical average over the set of data, while ⟨·⟩model
denotes the expected value over the parametrized probability distribution. The two
contributions are respectively called positive phase and negative phase.

The optimal configurations of the parameters of the guessed probability distri-
bution, are then the ones that match the two phases, by lowering the energy of the
samples that are close to the training data, and increasing the energy of the ones that
instead deviate from them.

It is here important to notice that the estimation of the expected value is usually
not straightforward. There are cases in which it can be estimated analytically
(tractable likelihood), and others where instead it is necessary to resort to Monte
Carlo samplings (intractable likelihood). Generative models significantly differ
from discriminative models on this point: to optimize the cost function, the latter
can take advantage of all the machinery of automatic differentiation through back-
propagation.

In the next section we will briefly describe a specific kind of energy-based
generative model, namely the Boltzmann Machine. In particular, we will focus on
the special case of Restricted Boltzmann Machines.

Boltzmann Machines

A Boltzmann Machine is an example of energy-based generative model. It is consti-
tuted by a recurrent neural network where some of the neurons are visible, namely
clamped on the input data, and some others are hidden, being their state not con-
strained a-priori to the one imposed by the input.

The presence of hidden units has the effect of increasing the representational
power of the generative model. Indeed, the hidden units are left free to catch complex
correlations in the data structure, thus allowing the network to construct an its own
internal representation of the input data [72].

The reason why this is the case can be explained considering that, when hidden
units are taken into account, the likelihood is defined by marginalizing over the
hidden states:
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P
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. (1.60)

The procedure of integrating out degrees of freedom gives rise to complex
interactions among the visible units. This effect is nothing but the one observed, for
example, in solid state physics where, tracing out the phonon degrees of freedom,
has the effect of inducing complex interactions among the free electrons of the lattice
[73].

In the context of Boltzmann Machines, the likelihood is parametrized by the
synaptic couplings. The configuration of the synaptic couplings that best fit the input
data is then determined by matching the positive and the negative phase:

Wi j←Wi j +η

〈
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(
ξξξ

µ ;
{

Wi j
})

∂Wi j

〉
data
−

〈
∂F
(
v;
{

Wi j
})

∂Wi j

〉
model

, (1.61)

having defined v as the vector of visible units states and F (x) as the free energy
function, that takes into account the marginalization over the hidden states:

F (v;{W}) =−log

(
∑
{hhh}

exp(βH (v,hhh;{W}))
Z ({W})

)
. (1.62)

However, as anticipated, while the positive phase simply represents an empirical
average over the training data, the negative phase consists in an expected value over
the parametrized distribution:

P(v;{W}) ∝ exp(−F (v;{W})) , (1.63)

which can not be treated analytically. The negative phase needs then to be
approximated by means of Monte Carlo Markov Chain (MCMC) importance sam-
pling, which allows to estimate expected values as arithmetic averages, by sampling
according to the desired probability distribution:
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Wi j←Wi j +η

[
1
p

p

∑
µ=1

∂F
(
ξξξ

µ ;
{

Wi j
})

∂Wi j
− 1

n

n

∑
s=1

∂F
(
vs;
{

Wi j
})
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]
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where n denotes the number of sampled configurations of the visible units.

Unfortunately, MCMC methods usually require very long mixing-times, making
the training of a Boltzmann Machine intractable [74]. A simplified version of
Boltzmann Machines is then typically taken into account. It goes under the name of
Restricted Boltzmann Machine.

Restricted Boltzmann Machines A Restricted Boltzmann Machine (RBM) is a
simplified version of a Boltzmann Machine, where only connections between visible
and hidden units are allowed [75]. A sketch of an RBM is provided in Fig. 1.14.

Fig. 1.14 Sketch of an RBM with only one layer of hidden units. The thick circles are the
visible units while the dashed ones are the hidden units. The filled circles represent the
biases.

In RBMs, the associated energy then acquires the Ising-like functional form:

H (vvv,hhh;{W}) =−bv

V

∑
i=1

vi−bh

H

∑
i=1

hi−∑
i j

Wi jvih j, (1.65)

where bv and bh represent the external fields, or bias, that can be applied on
both visible and hidden units. The corresponding free energy is then obtained by
marginalizing over the hidden states:
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The configurations of the synaptic couplings that best fit the training data, are then
determined according to the learning rule established by Eq. (1.64). The samples of
configurations of the visible units {vvvs}n

s=1 are typically extracted according to a kind
of MCMC method, that goes under the name of Gibbs Sampling. Instead of sampling
from the joint probability distribution of a set of random variables, this method
approximate the joint distribution as the product of the marginals of the variables,
conditioned to the value assumed by all the others, and then extract samples from
this factorized distribution.

In the specific case of RBMs, because hidden-hidden and visible-visible con-
nections are forbidden, all the visible units are independent, once the configuration
of all the hidden units has been fixed. Therefore, in this case, the joint probability
distribution simply coincides with the conditional factorized approximation:

P(vvv;{W}) =
V

∏
i=1

P(vi|hhh;{W}) . (1.67)

The same holds for the hidden units:

P(hhh;{W}) =
H

∏
i=1

P(hi|vvv;{W}) . (1.68)

It is thus possible to set up a Markov Chain, where, at each step of the chain
t, the state of a given visible is sampled according to its corresponding probability
distribution:

vt+1
i ∼ P

(
vt+1

i

∣∣hhht ;β ,{J,θ}
)
. (1.69)

Once again, the same holds for the hidden units:

ht+1
i ∼ P

(
ht+1

i

∣∣vvvt ;β ,{J,θ}
)
. (1.70)
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As already pointed out, MCMC methods require very long mixing-times. How-
ever, it has been shown that it is not necessary to estimate exactly the gradient of the
negative log-likelihood, for making an RBM capable of generating an internal repre-
sentation of the training data. What has been suggested is that even very few steps of
Gibbs sampling can be sufficient. Moreover, some tricks can be exploited in order to
make the convergence of the Gibbs sampling faster [76]. For example, initializing
the Gibbs chain directly on the training data, biases the sampling, at the point that
even one single step of the chain is sufficient for ensuring good performances:

Wi j←Wi j +η

[〈
∂F
(
vvv1;{W}

)
∂Wi j

〉
1

−

〈
∂F
(
ξξξ

µ ;{W}
)

∂Wi j

〉
0

]
. (1.71)

Here, the subscript 1 refers to the unique sample extracted from the first step of
the Gibbs chain while the subscript 0 refers to the initial state of the Gibbs chain,
clamped on the training data. The resulting update rule is known as Contrastive
Divergence (CD) and represents the current state-of-the-art in RBMs training [77].



Chapter 2

The Discrete Perceptron

The first section of the first chapter provides an overview on learning in feed-forward
neural networks. Their architecture makes this topology of artificial neural network
particularly suitable as discriminative model. In this case, the network is required to
classify a set of objects, by assigning to each object its corresponding class-label.
This condition is eventually reached at the end of a training phase, where the synaptic
couplings are progressively modulated, in order to optimize a given cost function
carrying information on the number of wrongly classified objects.

Learning how to accomplish a classification task, then simply translates into an
optimization problem, whose solutions are represented by those configurations of
the synaptic couplings enabling the network to minimize the number of wrongly
classified patterns.

We have shown how statistical physics can come into play, in order to shed
lights on the typical learning scenario. In particular, we have pointed out how
methods borrowed from the physics of disordered systems, can extrapolate useful
information on learning in the simplest kind of feed-forward neural network, namely
the Percetron. We have especially focused on the binary Perceptron model, namely
when only two synaptic states are available for encoding information. We have
seen that, the analysis of the typical learning scenario in binary Perceptron models
suggests the picture of a disconnected space of solutions, where exponentially many
typical solutions are isolated and embedded in a landscape rich of meta-stable
synaptic states.
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Despite the fact that the theoretical analysis depicts a scenario where solutions
are typically hard to find, we have seen that a set of recently proposed learning
algorithms have shown to be effective in solving the binary Perceptron learning
problem. These solvers work reasonably well, even in their simplified formulation
and even when trying to be more conceivable from a biological point of view.

Why this is the case is the central question which we will investigate in this
second chapter. We will show how the previous theoretical analysis were basically
incomplete. In particular, we will propose a large deviation analysis that can reveal
the existence of extensive and extremely dense clusters of solutions, towards which
the above-mentioned learning algorithms seem to converge.

The existence of sub-dominant and extremely dense clusters of solutions has
been already shown to be a characteristic feature of binary Perceptron models [78].
Here, we want to extend both the typical analysis in Ref. [56] and the large deviation
analysis in Ref. [78] to the more general case of discrete Perceptron models, namely
when the number of available synaptic states lies on a finite and discrete range.
We sometimes refer to this model as the Potts Perceptron, in analogy to the well-
known Potts model in statistical mechanics. In particular, we will show how the
above-mentioned scenario still holds in this more general setting, even when taking
into account some relevant biological constraints, like the Dale’s principle or the
sparseness of the neural coding.

This chapter is divided in four different sections. In the first section, we introduce
the discrete Perceptron learning model. In the second section, we present the
main results emerging from the analysis of the typical learning scenario in discrete
Perceptron models. In the third section, we set up the large deviation analysis aiming
to shed more lights on the complex structure of the solution space. Finally, in the
fourth section, we propose a new learning algorithm for discrete Perceptrons, that
goes under the name of Entropy Driven Monte Carlo (EDMC). The technical details
related to the analytic calculation sketched in the present chapter can be found in
Ref. [79].
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2.1 The model

The discrete or Potts Perceptron is a Perceptron model, whose synaptic couplings are
constrained to take values in a finite and discrete range. For the sake of simplicity,
we assume the synaptic states to lie in the range Wi ∈ {0,1, ...,L}. This assumption
does not affect the final result, being our analysis general and thus independent from
the specific choice of the synaptic states.

As anticipated, we want to investigate the learning scenario in discrete Perceptron
models, while retaining some biological constraints. First of all, we need to consider
that biological networks are characterized by sparse neural coding. In the following,
we will thus consider the neuronal states to be described by si ∈ {0,1} binary
variables, thus avoiding the unrealistic feature of symmetry between the active and
the quiescent state of the si ∈ {−1,1} binary model. Second, the synaptic couplings
are required to satisfy the Dale’s principle, according to which synaptic connections
are either excitatory (positive synaptic couplings) or inhibitory (negative synaptic
couplings) [80, 81]. The chosen range of available synaptic states then fits this
requirement.

In a classification task, the Perceptron is required to correctly assign to a set of p
input patterns

{
ξξξ

µ
}p

µ=1 their corresponding class-labels {yµ}p
µ=1. These defines the

training set. As anticipated, in statistical physics, we are not interested in a specific
realization of the learning scenario, dictated by a special choice of the training set,
we are instead interested on the typical case. We thus treat both the input patterns
and their associated class labels as independent, identically and biased distributed
random variables:
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[
f δ
(
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µ

i −1
)
+(1− f )δ

(
ξ

µ

i
)]

P(yµ) = f δ (yµ −1)+(1− f )δ (yµ)

, (2.1)

where the bias f specifies the level of sparseness of the neural coding, therefore
it is typically known as sparsity or coding level. In principle, we could consider two
distinct coding levels for the patterns and the class-labels, however this represents
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an unnecessary complication and it does not constitute a remarkable detail for the
following discussion.

The Perceptron decides whether to assign an input pattern to one class or another,
by performing a weighted sum of the incoming stimulus and comparing it to a local
threshold:

σ
µ = Θ

(
N

∑
i=1

Wiξ
µ

i −θN

)
∀µ ∈ {1, ..., p} . (2.2)

The learning problem then consists in determining those configurations of the
synaptic couplings, enabling the Perceptron to minimize the number of wrongly
classified patterns, namely those patterns for which the response of the network
σ µ does not coincide with the actual class-label yµ . The learning problem is thus
translated into an optimization problem, whose solutions are represented by those
configurations of the synaptic couplings minimizing the training error:

E (W) =
αN

∑
µ=1

Θ
(
− (2σ

µ −1)(2yµ −1)
)
. (2.3)

This optimization problem can be equivalently viewed as a constraint satisfaction
problem, where each pattern imposes a constraint in the search of the optimal
configuration of the synaptic couplings. The optimum will then be represented by
the configurations of the synaptic couplings that satisfies all the constraints at once:

Xξ ,y (W) =
αN

∏
µ=1

(
1−Θ

(
− (2σ

µ −1)(2yµ −1)
))

= 1. (2.4)

According to how the class-labels are provided, we know we can basically
distinguish between two different learning scenarios: the teacher-student (or gen-
eralization) and the storage (or classification) scenarios. Despite the fact that the
teacher-student scenario is more interesting than the storage one, in this work we
will only consider the latter. Indeed, it has already been shown that, the picture
emerging from the large deviation analysis of the storage scenario in binary Percep-
trons, remains qualitatively unchanged in the teacher-student setting [58]. We thus
reasonably believe that this is also the case when considering the generalization to
multi-valued synaptic couplings.
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2.2 The Typical Analysis

In order to investigate the typical learning scenario in discrete Perceptron models, the
starting point is as usual represented by the Gardner Analysis. As seen, the ultimate
goal of the Gardner Analysis is the estimation of the quenched entropy as the average
over the training set of the volume of the version space:

Styp =
1
N

〈
log ∑
{WWW}

Xξ ,y (WWW )

〉
P(ξξξ

µ ,yµ)

. (2.5)

As seen, in the case of discrete models, the quenched entropy directly counts the
number of configurations of the synaptic couplings solving the learning problem.
Computing this quantity through the formalism of replicas then leads to the estima-
tion of the critical value of the storage load, that determines the transition from the
SAT to the UN-SAT phase.

In the next section, we will show the relevant results emerging from the Gardner
Analysis. In particular, we will see how the critical capacity is modified by tuning
the parameters of the model, namely the coding level and the number of available
synaptic states.

2.2.1 Critical storage load

The Gardner Analysis of the storage learning scenario in binary Perceptron models,
has revealed the existence of a critical value of the storage load, namely αc = 0.833,
at which the learning system switches from a SAT phase, where more than one
solutions to the learning problem can be detected, to an UN-SAT phase, where
instead no solutions can be found at all.

This sharp transition is actually a characteristic trait of Perceptron models with
discrete synaptic couplings. A similar Perceptron model, with two available synaptic
states (L = 1) and unbiased training set ( f = 0.5), is characterized by the same
discontinuous learning behaviour, with a critical value of the storage load αc = 0.59
[43]. When L→∞, the discrete Perceptron model reduces to a continuous Perceptron
model, where the synaptic couplings are constrained to satisfy the Dale’s law. In
this case, the critical capacity has been shown to be αc = 1 [82], which is consistent
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with the maximum achievable capacity αc = 2, predicted by the Gardner Analysis
for spherical Perceptron models.

In the following, we show how the critical value of the storage load behaves as a
function of a generic coding level f and of a generic number of available synaptic
states L+1. Having a look at Fig. 2.1A, the sparser the neural coding is, the more
training patterns the network is able to successfully classify. Indeed, sparse neural
codings are capable of encoding greater amount of information [83]. Similarly, the
critical capacity increases with the number of available synaptic states, having the
network at its disposal a greater number of bits for encoding information. Moreover,
the behaviour of the critical capacity as a function of the number of synaptic states,
looks quite the same for lower coding levels. These results are in accordance with
the ones obtained in a slightly different scenario [43].
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Fig. 2.1 A. Critical storage load αc as a function of the number of available synaptic states
L+1. The different colors refer to different coding levels f . B. Fit of the critical storage
load αc as a function of the number of available synaptic states L+1, when f = 0.5. The red
triangles are points obtained through the replica calculation of the quenched entropy. The
gray line is the corresponding fit.

However, the gain in storage load achievable by increasing the number of avail-
able synaptic states is significant only up to very small numbers. The critical capacity
then quickly saturates to the asymptotic value αL→∞

c = 1. Fig. 2.1B shows an
estimate of the saturation rate: we fit the theoretical result, predicted by the Gardner
Analysis for f = 0.5, with the function:

αc ∼ α
L→∞
c − a

Lb , (2.6)

with the parameters of the fit turning out to be a≃ 0.5 and b≃ 0.85.
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This result suggests that synapses may not exploit an infinite number of synaptic
states for encoding information: when a few number of bits of synaptic precision are
employed, the network performances, in terms of computational or representational
power, are quite soon comparable with the ones achieved in the case of infinite
precision. This is in line with the belief that, the strategy implemented by biological
synapses is not to infinitely increase their synaptic precision but to behave, in a very
extreme case, as binary switches [40–42].

2.2.2 The geometry of the version space

The quenched entropy can only provide information on the number of optimal
configurations of the synaptic couplings, as a function of the storage load. However,
in order to design effective learning algorithms, it would be interesting to understand
how solutions are spatially organized within the version space. In other words,
we would like to set up a statistical physics analysis that aims to investigate the
geometric properties of the version space.

To this end, the general strategy is to select a reference configuration of the
synaptic couplings, sampled from the Boltzmann-Gibbs distribution, and then to
count the number of solutions surrounding the reference configuration at a given
distance.

In statistical physics, this strategy goes under the name of Franz-Parisi potential.
It has been originally introduced in the physics of disordered systems for character-
izing the nature of the meta-stable states in discontinuous mean-field spin glasses,
like the p-spin spherical model. In this case, the potential plays the role of the free
energy cost that has to be paid, in order to keep constant the overlap between two
different configurations of the system, at different temperatures [84–86].

The quantity measuring how many solutions can be found at a given distance
from a planted configuration, is known as local entropy:

Slocal (W̃WW ,D
)
=

1
N

log ∑
{WWW}

Xξ ,y (WWW )δ
(
d
(
WWW ,W̃WW

)
−D

)
, (2.7)
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with W̃WW being the reference configuration of the synaptic couplings and D denot-
ing a specific value of the distance between a solution of the learning problem and
the reference configuration, computed in terms of the square distance:

d
(
WWW ,W̃WW

)
=

1
4N

N

∑
i=1

(
Wi−W̃i

)2
, (2.8)

where we introduce the pre-factor 1/4 to make the measure consistent with the
Hamming distance, in the extreme case of binary synaptic couplings.

The local entropy is a self-averaging quantity. Therefore, averaged over the train-
ing set, it can provide information on the typical number of solutions, surrounding
the reference configuration:

SFP (D) =

〈
∑
{W̃WW}

P
(
W̃WW
)

Slocal (W̃WW ,D
)〉

P(ξξξ
µ ,yµ)

, (2.9)

where the subscript FP is a short for Franz-Parisi and P(x) is the Boltzmann-
Gibbs distribution. In this work, we have only considered the zero-temperature limit.
As discussed, in this limit, the Boltzmann Gibbs distribution simply reduces to a flat
distribution, focused on the configurations of the synaptic couplings that minimize
the training error:

PF
(
W̃WW
)
=

Xξ ,y
(
W̃WW
)

∑
{

W̃WW ′
}Xξ ,y

(
W̃WW ′
) . (2.10)

The picture emerging from the computation of the quenched local entropy in Eq.
(2.9) by means of the replica approach, does not differ from the one already depicted
in the specific case of binary synaptic couplings [56], and it is robust to the tuning of
both the coding level and the number of available synaptic states. Indeed, having
a look at Fig. 2.2, we can clearly notice that there exists a minimum value of the
distance at which the quenched local entropy (blue lines) vanishes, becoming then
negative for smaller distances than the minimum one.

A negative entropy is not a physical result when dealing with discrete synaptic
couplings, since, in this case, the entropy precisely counts a number of solutions.
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As seen, this result should be interpreted as a failure of the replica symmetry (RS)
assumption: breaking the symmetry among replicas should provide a vanishing
entropy at all distances smaller than the minimum one.

The existence of a minimum distance below which no more solutions surround a
reference one, as pointed out by a vanishing entropy, proves that typical solutions
are actually isolated, even when generalizing the Perceptron model to multi-valued
synaptic states and biased training sets.

2.3 The Large Deviation Analysis

The statistical physics analysis of the typical learning scenario in discrete Perceptron
models has pointed out that, even in the generalization to multi-valued synaptic states
and biased training sets, typical solutions are isolated and therefore hardly accessible
by classical local-searching algorithms.

Nevertheless, as seen, there exists a set of recently proposed learning protocols,
that manage to detect a solution in sub-exponential times, reaching critical capacities
really close to the theoretical bound. This apparent contradiction can be solved by
justifying the effectiveness of the above mentioned learning protocols, in light of
the existence of regions of the version space where solutions are not isolated but
organized in extremely dense clusters [78]. These sets of solutions are quite atypical
for the broad range of classical local-searching algorithms, while they are extremely
appealing for the newly proposed learning protocols.

In the following, we set up a large deviation analysis with the purpose of demon-
strating the existence of sub-dominant but extremely dense clusters of solutions
in discrete Perceptron models. To this end, we introduce an out of equilibrium
measure, aiming to scale down the Gibbs weight of typical solutions, in favour of
rare but extremely dense regions of solutions. The new measure then assigns an
higher weight to all those configurations of the synaptic couplings surrounded by an
exponential number of solutions, by re-weighting each configuration in light of the
local entropy:
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PRC
(
W̃WW ;ζ ,D

)
=

Xξ ,y
(
W̃WW
)

exp
(

ζ NSlocal (W̃WW ,D
))

∑
{

W̃WW ′
}Xξ ,y

(
W̃WW ′
)

exp
(

ζ NSlocal
(

W̃WW ′,D
)) , (2.11)

in the case where the reference configuration is required to be a solutions of the
classification problem (the subscript RS stays for Re-weighted, Constrained), and:

PRU
(
W̃WW ;y,D

)
=

exp
(

ζ NSlocal (W̃WW ,D
))

∑
{

W̃WW ′
} exp

(
ζ NSlocal

(
W̃WW ′,D

)) , (2.12)

in the case where the reference configuration is not required to be a solution of
the classification problem (the subscript RU stays for Re-weighted, Unconstrained).
The ζ parameter can be here interpreted as an inverse temperature: in the limit of
ζ →∞, the configurations with the highest statistical weight are the ones surrounded
by the highest number of solutions. This out of equilibrium measure goes under the
name of Robust Ensemble (RE).

To shed lights on the typical learning scenario described by the robust ensem-
ble, we define the quenched free entropy density for both the constrained and the
unconstrained case:

ΦRC (D,ζ ) =
1
N

〈
log ∑
{W̃WW}

Xξ ,y
(
W̃WW
)

exp
(

ζ NSlocal (W̃WW ,D
))〉

P(ξξξ
µ ,yµ)

ΦRU (D,ζ ) =
1
N

〈
log ∑
{W̃WW}

exp
(

ζ NSlocal (W̃WW ,D
))〉

P(ξξξ
µ ,yµ)

,

where, in the latter definition, we have simply neglect the constraint on the
reference configuration to correctly classify all the input patterns at once. Through
the quenched free entropy we can compute two main observables:
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• the analogue of the quenched local entropy of Eq. (2.9), counting the number
of solutions surrounding a reference configuration:

SRC (D) =
∂

∂ζ
ΦRC (D,ζ )

=

〈
∑
{W̃WW}

PRC
(
W̃WW ;ζ ,D

)
Slocal (W̃WW ,D

)〉
P(ξξξ

µ ,yµ)

(2.13)

• the external quenched entropy, counting the number of reference configurations
embedded in a region dense of solutions:

ΣRC (D,ζ ) = ΦRC (D,ζ )−ζ SRC (D,ζ ) (2.14)

The same holds for the unconstrained case. The constrained and the uncon-
strained case are strictly related: in the limit of ζ → ∞, the unconstrained case
simply reduces to the constrained one. Indeed, when the reference configuration is
surrounded by an extremely high number of other solutions, it is very unlikely for
the reference configuration not to be a solution itself.

The constrained and the unconstrained cases are both fascinating to study for
several reasons. The constrained case is directly comparable with the analysis of
the typical case, described in the previous section. Instead, the unconstrained case
naturally guides towards the design of new efficient learning algorithms, based on
the concept of local entropy, as we will see in the next section.

In both the two cases, the results emerging from the computation of the quenched
entropy by means of the replica approach may not be fully accurate. First of all,
we have performed the calculation under the RS assumption, which, as seen, it
is typically not verified at the saddle point in discrete Perceptron models [6]. In
principle, we should then take into account at least one level of replica symmetry
breaking. Second, we have estimated the solutions of the saddle-point equations
numerically, thus inducing a finite level of accuracy in the final result.

In spite of this, the pictures depicted by both the constrained and the uncon-
strained cases are quite on the same line. This, together with the outcome of some
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numerical experiments, make us confident on the final results. In the following two
sections, we will discuss more in details both the constrained and the unconstrained
cases.

2.3.1 Re-weighted Constrained case

In the robust ensemble, the parameter ζ plays the role of an inverse temperature like
parameter, defining the density level of solutions within a cluster: the more ζ is high,
the more dense the cluster is. As anticipated, we want to detect those clusters of
solutions characterized by the highest density level, which corresponds to the limit
of ζ → ∞.

Unfortunately, in this limit, the computation of the external quenched entropy
leads to unreliable results: this quantity turns out to be negative for every choice of
the number of available synaptic states and of the coding level, clearly pointing out
that at least one level of symmetry breaking should be taken into account.

The need of breaking the symmetry can be explained in geometrical terms: the
RS ansatz is simply assuming that there exists only one single reference configuration
of the synaptic couplings optimizing the local entropy. Indeed, in the RS assumption,
the overlap between two reference configurations:

qab =
1
N ∑

i
W̃ a

i W̃ b
i , (2.15)

is assumed to coincide with the self-overlap:

q =
1
N ∑

i
W̃ 2

i . (2.16)

The failure of the RS assumption then suggests that, in the limit of ζ → ∞,
the version space fragments in several highly dense clusters, such that more than
one single reference configuration is surrounded by an extremely dense number of
solutions.

In order to properly describe this scenario, we should then perform at least one
step of replica symmetry breaking. However, already at the 1-RSB level, the saddle
point equations are really hard to solve, both because there is a greater number of
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Fig. 2.2 Quenched local entropy as a function of the distance D from the reference configura-
tion W̃WW . Blue lines. Quenched local entropy computed through the equilibrium measure, for
different values of α . Red lines. Quenched local entropy computed through the re-weighted
constrained and unconstrained measures, for different values of α . In the plot f = 0.1 and
L = 4.

parameters and also because some of the saddle-point equations are characterized by
a series of nested integrals, whose treatment requires extremely high computational
times. Moreover, even if in the limit of ζ → ∞ these technical difficulties become
less challenging, it turns out that even the 1-RSB assumption is not sufficient for
preventing the external quenched entropy to be negative. Then, further levels of
replica symmetry breaking should actually be taken into account.

Because of that, instead of considering the limit of ζ → ∞, we can determine the
maximum value of ζ for which the RS external quenched entropy is still guarantee
to be non negative, namely ζ ⋆, and then analyse the subsequent results. Indeed, the
external quenched entropy is a decreasing function of ζ : as soon as we increase ζ , it
starts decreasing, till it vanishes in correspondence of the maximum value of ζ for
which the RS assumption is still verified.
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2.3.2 Re-weighted Unconstrained case

At first glance, the unconstrained case may seem easier to treat analytically, by
looking at the definition of the corresponding quenched free entropy. Unfortunately,
this is not the case: the need of breaking the symmetry among replicas is here even
much stronger. In this case, even looking for the maximum value of ζ for which the
RS external quenched entropy is still guarantee to be non-negative, does not lead to
consistent results. For instance, the RS assumption predicts non-vanishing quenched
local entropies even for values of the storage load exceeding the critical capacity of
the network.

Therefore, in this case, we can not avoid to break the symmetry among replicas,
by relying on the 1-RSB assumption. As in the constrained case, the saddle-point
equations become easier to solve in the limit of ζ → ∞. This allows for a direct
comparison with the constrained case at finite ζ , described in the previous section. It
turns out that both the external quenched entropy and the quenched local entropy
are indistinguishable in the two cases. This implies that the strategy we exploited in
the constrained case, reasonably approximates the scenario at higher values of the
temperature-like parameter ζ .

The 1-RSB assumption still predicts a negative external quenched entropy, as we
have already observed in the constrained case. However, contrary to the constrained
case, its modulus is now really close to zero when approaching very small distances.
Moreover, the not physical solutions, predicted by the RS assumption for values of
the storage load exceeding the critical capacity, no longer exist.

The emerging picture is comparable with the one already described in the ex-
treme case of binary synaptic couplings. In particular, Fig 2.2 shows the quenched
local entropy as a function of the distance from a reference configuration, sampled
according to the flat measure (blue lines) in Eq. (2.10) and to the constrained and
unconstrained re-weighted measure (red lines) of Eq. (2.11) and Eq. (2.12). At the
resolution scale of the plot, the latter two are actually indistinguishable, then, they
will be treated as a unique case in the following discussion.

For what concerns the flat measure, we can clearly notice that there exists a
minimum value of the distance, below which no more solutions surrounding the
reference configuration can be found. In this case, typical solutions are thus isolated.
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On the contrary, for what concerns the re-weighted measure, the resulting picture is
completely different:

• For storage loads smaller than a specific value αU , the quenched local entropy
converges at small distances towards the curve estimated for α = 0, namely
the limiting case where all the configurations of the synaptic couplings are
solutions of the learning problem, given that no input patterns have been yet
presented to the network. In this case, the reference configuration is thus
surrounded by exponentially many solutions, constituting an extremely dense
cluster. In the plot: 1.55 < αU < 1.62.

• For storage loads higher than αU but smaller than the critical capacity αc, two
different things can happen: no solutions can be found or if some solution
is detected, the corresponding quenched local entropy assumes a negative
value. Once again, this behaviour can be explained in terms of the geometric
properties of the version space: we believe that, within this range, the dense
clusters either divide in smaller components that are isolated and disconnected,
or, completely disappear.

2.3.3 The αU storage load

The αU storage load signals the transition point where the highly dense cluster of so-
lutions either disappears or breaks into several isolated and disconnected components.
Estimating the value of αU is not straightforward for several reasons, related to both
the technical difficulties in solving numerically the saddle-point equations and to
hardware issues concerning machine precision. These issues are further amplified
close to the point at which the transition occurs.

Fortunately, the RS assumption provides a reasonably estimate of αU , close to
the one predicted by the 1-RSB corrections and regardless of the fact that the RS
assumption can lead to some not physical results. For instance, the RS assumption
estimates αU ∈ (1.55,1.62) for a discrete Perceptron model, with a coding level
f = 0.1 and a number of available synaptic states L = 4. The 1-RSB assumption
predicts instead αU ≃ 1.6.
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Fig. 2.3 A. Quenched local entropy as a function of the distance D from the reference
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quenched local entropy, we plot its derivative with respect to the distance, as a function of
the distance itself. For the network model we are here considering, that is f = 0.5 and L = 2,
αU ≃ 0.6998.

In Fig.2.3A, we show the quenched local entropy as a function of the distance,
for different values of the storage load. We can easily distinguish three different
phases by tuning the network capacity:

• α < αV : the quenched local entropy is a concave function of the distance;

• αV < α < αU : the quenched local entropy changes its concavity in a certain
range of distances, becoming a convex function;

• αU < α < αc: the quenched local entropy breaks in two distinct branches,
giving rise to a gap.

We can thus identify the transition point as the point where the gap starts ap-
pearing. Having a look at Fig.2.3B, the value of the storage load at the transition
point can be then determined as the one at which the derivative of the quenched local
entropy, with respect to the distance, reaches a minimum in zero:

∂

∂D
SαU (Dzero,∞) = 0. (2.17)

This behaviour is extremely robust when tuning the parameters of the model and
when applying the corrections due to replica symmetry breaking. This strategy thus
provides a way for estimating the value of the storage load at the transition point. To
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this end, Fig. 2.4A shows the estimated values of αU as a function of the number
of available synaptic states L+1, for different sparsity levels f . The resulting plot
is qualitatively similar to the one already provided in Fig. 2.2 and concerning the
analysis of the typical learning scenario, described by the zero temperature limit
of the Boltzmann-Gibbs measure. In the limit of continuous synaptic couplings,
namely L→ ∞, both αU and αc are expected to collapse on the critical capacity of
the continuous model, as it seems to be from the plot in Fig. 2.4B.

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 2.5 3 3.5 4 4.5 5 5.5 6

tr
a

n
s
it
io

n
 p

o
in

t 
�
�

number of states �+1

coding rate �

0.1

0.2

0.3

0.4

0.5

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

2 2.5 3 3.5 4 4.5 5 5.5 6

�
�

/ 
�
�

number of states �+1

coding rate �

0.1

0.2

0.3

0.4

0.5

A B

Fig. 2.4 A. αU as a function of the number of available synaptic states L+1, for different
values of f . B. The ratio αU/αc as a function of the number of available synaptic states
L+1, for different coding levels f .

It is not yet clear if the appearance of a gap at the transition point is just a
consequence of the replica symmetry assumption or if, instead, it describes a real
scenario. To solve this issue, in principle, we should be able to numerically access
the regions of the version space where the highly dense clusters are supposed to
break in several disconnected components. Unfortunately, the recently proposed
learning algorithms for the discrete learning problem, are able to detect solutions
only up to values of the storage load that are really close to αU , thus being unable to
explore the learning scenario emerging at higher network capacities.

This points out a very interesting point: the efficiency of these solvers is strongly
linked to the accessibility of the solutions constituting a cluster. For instance, in the
discrete Perceptron model with unbiased inputs ( f = 0.5) and two available synaptic
states (L = 1), the predicted critical capacity is αc = 0.59 [43]. A stochastic version
of the BPI solver (SBPI) reaches the algorithmic critical capacity αSBPI

c ≃ 0.5 [59].
Instead, the large deviation analysis predicts the value of the storage load at the
transition point as αU ≃ 0.54, which is really close to the maximum achievable
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capacity by means of the SBPI learning algorithm. The recently proposed learning
algorithms are then reasonably expected to converge towards solutions belonging to
the dense clusters.

The transition point underlines a change in the nature of the learning problem.
Indeed, at the transition point, the learning problem switches from a phase of easily
accessible solutions to a phase where they are really hard to detect. This is a quite
common picture in constraint satisfaction problems, such as random K-satisfiability
(K-SAT). In this case, for instance, already at the level of the equilibrium analysis,
we can distinguish between an easy and an hard phase [87].

The reason why this is not the case in neural networks should be once again
addressed to the geometric properties of the version space. To shed light on these
scenarios, more powerful techniques, both numerical and analytic, should be de-
signed. Up to this point, what we can say on the geometric properties of the version
space in discrete Perceptron models is that the version space is extensive, there are
no jumps in the density of solutions and solutions are organized in more than one,
even if still less than an exponential number, extremely dense clusters.

2.4 Entropy Driven Monte Carlo

While investigating the geometry of the version space, the large deviation analysis
provides a theoretical explanation of why there exist efficient algorithms able to
solve the learning problem in discrete Perceptron models. As seen, these algorithms
converge towards regions of the version space, where solutions are organized in
extremely dense clusters. These clusters are rare, because sub-dominant in the typical
learning scenario described by the Boltzmann-Gibbs measure, they are accessible
to the recently proposed learning algorithms and finally, they are robust, since they
represents an agglomeration of solutions, where each one of them is surrounded by
exponentially many other solutions [88].

The large deviation analysis does not only represent a tool for shedding lights
about the functioning of already existing learning algorithms. It can also be employed
to design new solvers looking for highly dense regions of solutions, on the same line
of how a broad range of classical algorithms exploits the equilibrium measure. In
this section, we thus describe a new learning algorithm based on the concept of local
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entropy, which goes under the name of Entropy Driven Monte Carlo (EDMC). The
equivalent algorithm in the context of binary synaptic couplings is described in Ref.
[89]. The proposal of another solver can instead be found in Ref. [88].

In the same vein of Simulated Annealing (SA), EDMC implements a local search,
with the aim of detecting those regions of the version space, optimizing the local
entropy rather than the energy of the system, as in the case of SA strategies. EDMC
is based on four fundamental steps: it starts by choosing an initial configuration
of the synaptic couplings, it selects one of the synaptic couplings at random, it
then proposes to increase or decrease its value by one, computing the local entropy
difference between the old and the newly proposed value of the synaptic coupling:

∆Slocal = Slocal
(

W̃WW ′,D
)
−Slocal (W̃WW ,D

)
, (2.18)

finally, it decides whether to accept or reject the move, according to the usual
Metropolis-Hastings rule [90] at the temperature T = ζ−1.

After that a series of moves has been accepted, the algorithm starts increasing
ζ and decreasing D, in order to look for regions of the version space, characterized
by increasingly higher local entropies at smaller distances. We call annealing
the strategy of progressively increasing ζ , in analogy with the cooling strategy of
simulated annealing, and scoping the one of progressively decreasing D. To estimate
the local entropy difference, we take advantage of the Belief Propagation algorithm.
The resulting BP equations are derived in details in Appendix A.

The local entropy counts the number of solutions surrounding a reference con-
figuration of the synaptic couplings at a given distance. As shown in Eq. (2.7), this
is equivalent to impose an hard constraint on the distance between the reference
configuration and a given solution, when summing over all possible configurations
of the synaptic couplings. Alternatively, we can define a local free entropy density:

Slocal
f

(
W̃WW ,γ

)
=

1
N

log ∑
{WWW}

X
ξξξ

µ ,σ µ (WWW )eγd(WWW ,W̃WW), (2.19)

where the control on the distance is realized by imposing a soft constraint through
the parameter γ: as γ increases, we focus on regions of the phase space closer and
closer to the reference configuration. The local free entropy and the local entropy
are related through a Legendre transform: instead of controlling the distance through
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the parameter D, we rely on the Legendre conjugate parameter γ . The twos are
linked by a bijective relation that holds for a wide range of the parameters of the
model, meaning that, the hard and the soft constraint are basically interchangeable.
Unfortunately, this is no more true at high values of the storage load [89].

The control parameter D is better suited for analytic and theoretical analysis. On
the other hand, the parameter γ is more suitable from an algorithmic point of view:
the soft constraint on the distance can be easily implemented in BP by introducing a
set of external fields of intensity γ , that progressively push the configuration of the
synaptic couplings towards the reference one. In this case, the scoping procedure is
realized by gradually increasing γ .

Relying on a Monte Carlo strategy, EDMC is not as fast as the other learning
protocols, where a solution can be achieved in less than an exponential time. Despite
that, it is anyway attractive and fascinating from several points of view. First of
all, it is general, in the sense that it can be applied to whatever model for which a
local entropy can be defined and then computed. Second, its functioning is fully
understandable from a theoretical point of view: it does not rely on heuristics for
which the connection with the theoretical background is not clear at all. Finally, the
last, and more important reason, is that it provides a prove on the fact that the entropy
landscape is consistently different from the energy one [88].

Indeed, the numerical experiments we performed by running EDMC in compar-
ison with SA, have shown that while SA gets trapped in one of the exponentially
many local minima of the energy landscape, this is not the case for the EDMC: it can
always find a solution, even when directly starting at very low temperatures, without
resorting to any cooling process.

Fig. 2.5 shows an example of the energy landscape (gray curve) overlaid to the
entropy landscape (red curves), for different choices of the γ parameter. The energy
landscape can be very jagged: solutions are typically isolated (right minima in the
plot) and embedded in a landscape rich of meta-stable synaptic states. However, the
large deviation analysis has revealed the existence of extremely dense agglomerate
of solutions, that give rise to wide-ranging global minima in the energy landscape
(left of the plot).

The entropy landscape is instead very smooth for low values of γ (red curves).
Increasing γ , the global minimum of the entropy landscape focuses more and more
on the wide-ranging global minima of the energy landscape. Notice that, in the limit
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Fig. 2.5 Sketch of the comparison between the energy landscape (gray curve) and the entropy
landscape for increasing value of the γ parameter (red curves) [88].

of γ → ∞, the entropy landscape exactly matches the energy landscape. However,
as soon as γ is kept finite, the smoothness of the entropy landscape allows the
learning algorithms implementing a local searching, like EDMC, to easily reach the
wide-ranging global minima [88].

The performance of the EDMC algorithm can be further improved with few tricks.
For instance, instead of starting from a random reference configuration, we can
initialize the configuration of the synaptic couplings by clipping the corresponding
marginals. This can be done by running BP in absence of any constraint on the
distance, till a fixed point is reached. We can also exploit BP itself for determining
the move to propose instead of making a random choice.

In Fig. 2.6 we show the result of a numerical test we performed on the discrete
Perceptron model with N = 501, α = 1.2, f = 0.1 and L = 4 at ζ = ∞. We plot the
training error in log-log scale as a function of the number of Monte Carlo iterations,
for four different algorithms: SA, standard EDMC, EDMC with clipped initial
configurations and EDMC with the move proposal implemented through BP.

We can suddenly notice that, the number of iterations that SA requires in order
to solve the classification problem, is a way longer than the number needed by the
EDMC solvers. Indeed, as suggested by the plateau, SA gets stuck for a long time
in a local minimum and then only eventually reaches an optimal solution. This is
a characteristic feature of simulated annealing strategies when applied to glassy
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systems [55, 56, 88]. In this case, the time need for escaping from a local minimum
grows exponentially with the system size. On the contrary, the improvements we
performed on standard EDMC make EDMC even faster.
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Fig. 2.6 Comparison between the SA algorithm, the standard version of the EDMC and its
two variants. We plot the evolution of the training error, defined in Eq. (2.20), as a function
of the number of iteration needed to reach a solution of the learning problem.

When the initial reference configuration is chosen at random, we start the scoping
procedure at γ = 0.5 and then we progressively increase γ of steps of ∆γ = 1.0. In this
way, we help the convergence of the BP equations and we do not get contradictory
results from BP when the reference configuration is still far to be a solution. In the
case of the starting configuration of the synaptic coupling obtained by clipping the
marginals, we set the starting γ at the higher value γ = 3.5.

Since SA is not able to find a solution at higher storage loads, even when
implementing cooling protocols, we decided to exploit a different cost function with
respect to the training error:
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E∆

(
W̃
)
= ∑

µ

(
−(2yµ −1)

(
∑

i
W̃iξ

µ

i −θN

))
+

, (2.20)

having defined (x)+ = x if x > 0 and 0 otherwise. This quantity again measures
the number of wrongly classified patterns. However, in this case, the correct classifi-
cation of a pattern is required to be stable up to a confidence level of θN. The value
of θ has to be determined through the replica calculation. The cooling scheme starts
from ζ = 1.0 and then proceeds by decreasing ζ at a rate of rζ = 1.005, after 100
accepted moves.



Chapter 3

The Stochastic Perceptron

Feed-forward neural networks learn how to assign a set of objects to their corre-
sponding class by building increasingly abstract representations of the input data,
that enhance those traits of the object relevant for a successful classification and
neglect useless details. As seen, this condition is eventually achieved at the end
of a training phase, during which the network adjusts the strength of its synaptic
connections, in such a way to make the response of the network coinciding with the
actual class-label. By applying the soft-max operator, the response of the network
is provided in terms of a vector of scores, that quantifies how likely is for a given
object to belong to a specific category rather than another one [8].

Learning how to accomplish a given classification task, is thus translated into
an optimization problem where, given a set of p input patterns {ξξξ µ}p

µ=1 and their
corresponding class-labels {yµ}p

µ=1, the network seeks for those configurations of
the synaptic couplings that optimize the probability of having correctly classified all
the bunch of input patterns, namely the log-likelihood [71]:

max
WWW

L (WWW ) = max
WWW

p

∑
µ=1

P
(

yµ |ξξξ µ
,WWW
)
. (3.1)

A widespread belief is indeed that learning in biological neural networks occurs at
the synaptic level in terms of modulation of the synaptic efficacy [13–15]. Moreover,
neural computation takes place in an extremely noisy environment [91], where it is
possible to detect several sources of stochasticity, among which the unreliable release
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of synaptic vesicles, induced by the pre-synaptic action potentials [92]. Synapses
should then be considered as stochastic components.

It is not yet clear if stochasticity can enhance the cognitive abilities of the brain
or if instead it detrimentally interferes during the learning process. Quite recently, it
has been suggested that the noise acting on synaptic transmission may be essential
for learning, exactly how genetic mutation is crucial for the evolution of the species
[93].

In this third chapter, we thus propose a stochastic discrete Perceptron model,
where synaptic couplings are treated as random variables, sampled according to a
parametrized probability distribution Qm (WWW ). In this case, learning translates into
an optimization problem over the parameters of the synaptic couplings distribution:

max
mmm

L (mmm,WWW ) = max
mmm

p

∑
µ=1

logP
(

yµ |ξξξ µ
,WWW
)

Qm (WWW ) . (3.2)

The aim of this chapter is to point out how stochasticity naturally drives the
optimization of the log-likelihood in Eq. (3.2) towards extremely dense clusters of
solutions, which, in the second chapter, we have shown to be a characteristic trait of
low precision Perceptron models.

This optimization problem presents strong analogies with Bayesian Learning,
where the ultimate goal is to determine the whole spectrum of the synaptic couplings,
each one weighted with its own probability, rather than the solely optimal config-
urations of the synaptic weights, as in usual learning problems [94]. In Bayesian
learning, the probability distribution of the synaptic couplings is determined through
the reshape of an initial guess, i.e. the prior, in light of the training data:

P
(

WWW |yµ ,ξξξ
µ
)

∝ P
(

yµ |ξξξ µ
,WWW
)

P(WWW ) . (3.3)

Then, the probability of correctly classifying an input pattern not belonging to
the training set, can be estimated by the Bayesian predictor, averaging over the
probability distribution of the synaptic couplings:

P
(

y|ξξξ ,
{

ξξξ
µ
}p

µ=1

)
=
∫

dWWWP(y|ξξξ ,WWW )P
(

WWW |yµ ,ξξξ
µ
)
, (3.4)



3.1 The Model 77

where the input-output pair (ξξξ ,y) represents the test case [94].

At first glance, optimizing the log-likelihood with respect to the parameters of the
synaptic couplings distribution rather than considering the usual learning problem in
Eq. (3.1), may not seem to improve the complexity of learning in discrete Perceptron
models. However, we should first of all consider that the optimization can now
be tackled by means of GD-based strategies [16, 18], being the parameters of the
distribution assumed to be continuous variables. Second, the optimization of the
log-likelihood in Eq. (3.1), typically requires the contribution of some regulirizers,
like dropout [95] or the L2-norm [73], for improving the generalization performances.
In this case, instead, the fact that stochasticity leads to regions of the version space
where solutions are surrounded by exponentially many other solutions, naturally
improves generalization, as it has been argued by relying on Bayesian arguments:
solutions located at the centre of a cluster are the ones that contribute the most to the
optimal Bayesian predictor, because representative of an entire region of solutions
[78, 96].

This chapter is organized in four different sections. In the first section, we
describe the stochastic Perceptron model. In the second section, we propose the
resulting GD-based learning algorithm. In the third section, we set up a statistical
physics analysis, aiming to investigate the typical learning scenario in stochastic
binary Perceptron models. Finally, in the fourth section, we further consider the
specific case where the parameters of the synaptic couplings distribution are assumed
to be binary variables themselves.

3.1 The Model

A stochastic and binary Perceptron is a Perceptron model whose synaptic couplings
are considered as binary random variables, sampled according to the probability
distribution:

Qm (WWW ) =
N

∏
i=1

[
1
2
(1+mi)δWi,1 +

1
2
(1−mi)δWi,−1

]
, (3.5)

with N being the total number of neurons and δa,b being the Kronecker delta. In
the following, we will denote the parameters of the probability distribution {mi}N

i=1
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as control parameters or magnetizations, being them assumed to lie in the range
mi ∈ [−1,1]. In a Bayesian framework, this probability distribution would represent
the prior of the model.

As anticipated, learning to accomplish a classification task, in binary stochas-
tic Perceptron models, translates into an optimization problem over the control
parameters of the synaptic couplings probability distribution:

max
mmm

L (mmm,WWW ) = max
mmm

p

∑
µ=1

log Θ

(
yµ

N

∑
i=1

ξ
µ

i Wi

)
Qm (WWW ) , (3.6)

where the choice about the functional form of the likelihood is the one allowing
for a direct comparison with the discrete Perceptron models, discussed in the previous
chapters and exploiting the training error as the cost function.

According to the central limit theorem, in the limit of N→ ∞, the weighted sum
of the inputs is Gaussian-distributed. This allows to trace out the synaptic couplings
degrees of freedom, leading to express the log-likelihood in function of the solely
magnetizations:

L (mmm) =
p

∑
µ=1

log H

− yµ
∑i miξ

µ

i√
∑i(1−m2

i )
(
ξ

µ

i
)2

 , (3.7)

having defined H (x) =
∫

∞

x dz exp
(
−z2/2

)
/
√

2π .

As we will see in the next section, this naturally guides towards the design of a
GD-based learning algorithm for training binary Perceptrons in solving classification
tasks. Indeed, when the mean squared norm of the control parameters, namely
q∗ = ∑

N
i=1 m2

i /N, tends to one, the parametrized probability distribution polarizes
towards a solution of the binary learning problem:

Qm (WWW ) →
q∗→1

δ
(
WWW −ŴWW

)
, (3.8)

with ŴWW = sign(m̂mm) and m̂mm being the configuration of the control parameter such
that its mean squared norm equals one, thus optimizing the log-likelihood.
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3.2 Learning in Stochastic Perceptrons

The central limit theorem allows to express the log-likelihood as a function of
the solely control parameters, thus translating a binary learning problem into a
continuous one. Indeed, in the stochastic Perceptron model, the control parameters
are assumed to be continuous variables, lying in the range mi ∈ [−1,1].

Optimizing the log-likelihood with respect to the magnetizations, rather than
the synaptic couplings, then makes us able to take advantage of the usual methods
exploited for continuous optimization, such as the Gradient Descent algorithm and
all its variants, discussed in the first chapter.

As seen, GD determines the optimal configurations of the control parameters,
by updating the magnetizations along the direction of the gradient [16] of the log-
likelihood:

mmmt+1← clip
(

mmmt +η
1
p

p

∑
µ=1

∇mmm L (mmm)

)
, (3.9)

where η represents a suitable learning rate and clip(x) = max(−1,min(1,x)), to
ensure the control parameters to lie in the range mi ∈ [−1,1]. In our setting, GD has
shown to be already effective in detecting solutions. In spite of this, GD variants,
such as SGD [18], can be equivalently exploited. We have further tested the above
proposed learning algorithm in a different scenario where, instead of optimizing the
log-likelihood over the magnetizations, we have taken into account the corresponding
fields hi = arctanh(mi). This has not affected the performances, further showing a
resemblance with the natural gradient heuristic [97].

The adopted learning scheme is the following. We generate the training set by
sampling both the input patterns and the corresponding class labels, according to
an unbiased and uniform probability distribution. We further initialize the control
parameters as Gaussian random variables with zero mean and variance 1/N. During
the training, the synaptic couplings are updated according to the learning rule in Eq.
(3.9). Then, at each epoch t, we check the number of wrongly classified patterns,
estimating the corresponding training error:
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Êt =
1
p

p

∑
µ=1

Θ

(
yµ

N

∑
i=1

ξ
µ

i W t
i

)
, (3.10)

with WWW t = sign(mmmt). A solution to the binary learning problem is then eventually
reached when the training error equals zero.

The plot on the left of Fig. 3.1 shows the GD dynamics in looking for a solution
of the binary learning problem: as expected, as soon as the mean squared norm of
the control parameters approaches one, the parametrized distribution of the synaptic
couplings focuses on one solution of the binary learning problem, as highlighted
by the descent of the training error towards zero. This behaviour presents strong
analogies with the scoping strategy, described in the second chapter when dealing
with the EDMC learning algorithm.

The plot on the right of Fig. 3.1 shows instead the scaling with the network size
of the probability of having correctly classified all the bunch of the input patterns,
as function of the storage load α = p/N. We can clearly notice that the maximum
achievable storage load is, in this case, αGD ≃ 0.63. As expected, this value is
lower than the theoretical bound estimated through the Gardner Analysis αc ≃ 0.833
[44], but comparable with the algorithmic critical capacities reached by the recently
proposed and message-passing based learning algorithms for binary Perceptrons,
which lie in the range αMP ∈ [0.6,0.74] [57–60]. Moreover, as shown in the inset of
the same plot, the training error is still reasonably low when exceeding the critical
capacity.

3.2.1 More Biologically Plausible Variants

In order to better understand the role played by stochasticity in the process of learning,
we have tried to adapt to more biologically plausible scenarios, the learning rule:

mmmt+1← clip

(
mmmt +η

1
p

p

∑
µ=1

K
(
−yµ h̄µ

σ̄ µ

)(
yµξ

µ

i
σ̄ µ

+

(
ξ

µ

i
)2 h̄µ

(σ̄ µ)3

))
, (3.11)

where we have made explicit the expression of the gradient of the log-likelihood
in Eq. (3.9) and we have defined K (x) = ∂xlog H (x), h̄µ = mmm · ξξξ µ and σ̄ µ =
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Fig. 3.1 Left. GD dynamics in looking for a solution. The training error (blue curve), namely
Ê, goes to zero as soon as the mean squared norm of the magnetizations (violet curve),
namely q∗, approaches one. In the numerical simulation, α = 0.55 and N = 10001. The
results are averaged over 100 samples. Right. Estimation of the algorithmic capacity and
its scaling with the network size. Because of finite size effects, the probability of success,
namely the probability of having correctly classified all the input patters, is slightly higher
for the network size N = 10001 (red curve), with respect to N = 1001 (blue curve). The
results are averaged over 100 samples. In the inset. Training error as a function of the storage
load, in the proximity of the algorithmic capacity.

√
(1−mmm2) ·

(
ξξξ

µ
)2. We should here notice that, already at this level, the learning

rule adapts the control parameters in light of the pre and post-synaptic activity, as
prescribed by the Hebbian learning principle [66]. The pre-factor K (x) actually
plays the role of a reward signal [98].

In this model, stochasticity develops on two different levels. On one side, we
should consider the stochastic nature of synaptic plasticity while, on the other side,
we need to take into account that synapses are intrinsically stochastic [91, 92]. We
model the first type of stochasticity by relying on SGD updates, with batch size equal
to one. Whereas, we take into account the second type of stochasticity by replacing
the mean pre-activation h̄µ with its single-sample realization hµ =WWW ·ξξξ µ , where the
synaptic couplings are sampled according to Qm (WWW ). Moreover, the mean variance
σ̄ µ is here considered as an external parameter kept fix to σ =

√
0.5N. This gives

rise to a new learning rule, namely

mmmt+1← clip

(
mmmt +ηK

(
−yµhµ

σ

)(
yµξ

µ

i
σ

+

(
ξ

µ

i
)2 hµ

σ3

))
. (3.12)



82 The Stochastic Perceptron

0 200 400 600 800 1000
training epoch

0.0

0.1

0.2

0.3

0.4

0.5
E

E

0.0

0.2

0.4

0.6

0.8

1.0

q

q

0.3 0.4 0.5 0.60.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s p

ro
ba

bi
lit

y N = 1001
N = 10001

0.4 0.5 0.6
0
1
2
3
4
5

E (%)

Fig. 3.2 Left. GD dynamics in looking for a solution. The training error (blue curve), namely
Ê, goes to zero as soon as the mean squared norm of the magnetizations (violet curve),
namely q∗, approaches one. In the numerical simulation, α = 0.55. Right. Probability of
success, namely the probability of having correctly classified all the input patters in 2000
epochs, as a function of the storage load α and its scaling with the network size. In the inset.
Training error as a function of the storage load, in the proximity of the algorithmic capacity.
In both the experiments, when N = 1001, η = 10−2 and the results are averaged over 100
samples, whereas, when N = 10001, η = 10−3 and the results are averaged over 10 samples.

This rule acquires the structure of a Delta rule [38], already discussed in the
context of spherical Perceptron models (see Eq. (1.37)). In this case, the derivative
of the activation function is represented by K (x).

The resulting GD dynamics is shown in Fig. (3.2). Comparing the performance
of the new learning rule with respect to the ones shown in Fig. (3.1), we can clearly
notice that the maximum storage load has now reduced to α ≃ 0.45. Despite that,
the rule still manages to correctly classify an extensive number of input patterns and
the training error only slightly increases just above the algorithmic capacity.

Disregarding the correction in the second term of Eq. (3.12) and substituting the
pre-factor K (x) with an Heaviside step-function, we can obtain a further simplified
version of the learning rule in Eq. (3.11):

mmmt+1← clip

(
mmmt +η

(
yµξ

µ

i
σ

)
Θ

(
−yµhµ

σ µ

))
. (3.13)

This rule closely resembles the Perceptron learning rule [25], provided in Eq.
(1.34), where, in this model, the role of the continuous synaptic couplings is played
by the magnetizations and the mean pre-activations are replaced with their single-
sample realizations. It is here important to underline that, binarizing the continuous
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solutions detected by the Perceptron learning rule, does not provide a valuable
strategy for solving the binary learning problem: the resulting synaptic couplings
configurations are not solutions of the problem. Contrary, the stochastic version of
the Perceptron learning rule in Eq. (3.13) is actually able to solve the classification
problem.

The pre-activation in Eq. (3.13), namely hµ =WWW ·ξξξ µ , can be estimated whether
choosing as synaptic couplings the sign of the magnetizations, in this case the
resulting rule closely resembles the Clipped Perceptron (CP) learning rule [59, 60],
or directly sampling the synaptic couplings according to Qm (WWW ), in this case we
obtain a stochastic version of the Clipped Perceptron algorithm (CP-S). However,
CP very badly scales with the network size. For better scaling performances, we
should rely on the learning rule in Eq. (3.12).

3.3 The Statistical Physics Analysis

In order to shed light on the effectiveness of the learning algorithm proposed in the
previous section, we can set up an analysis à la Gardner, aiming to characterize
the typical learning scenario in binary stochastic Perceptron models [30–33]. The
starting point is represented, as usual, by the partition function:

Z =
∫

Ω
∏

i
dmi δ

(
∑

i
m2

i −q∗N

)
exp(βL (mmm)) , (3.14)

expressed as the integral over all magnetizations of a Gibbs-like measure, where
the role of the Hamiltonian is here played by the log-likelihood in Eq. (3.7). The
integration domain is defined in the range Ω = [−1,1]N and the parameter β is
the inverse temperature. We have introduced the hard constraint over the mean
squared norm of the magnetizations, in order to make the theoretical analysis directly
comparable with the dynamics of the gradient descent.

As specified several times, since we are interested in the typical learning scenario,
a quantity for which the typical value coincides with the averaged one is represented
by the quenched free entropy density. This quantity is defined as the logarithm of
the partition function, averaged over the training set:



84 The Stochastic Perceptron

Φ =
1
N
⟨log Z⟩P(ξξξ

µ ,yµ) . (3.15)

In order to perform the average over both the input patterns and the corresponding
class-labels, we can take advantage of the usual formalism of replicas. A sketch of
the calculation can be found in Ref. [99]. However, we should here to point out that,
in the zero-temperature limit (β →∞), namely the one we are more interested in, the
RS assumption does not provide stable saddle-points. This suggests that in principle,
we should break the symmetry among replicas.

Instead of going through this more involved calculation, we can study the typical
learning scenario in the finite temperature limit and then determine an upper bound
of the temperature, beyond which the RS assumption is no longer guaranteed to be
locally stable.

To this end, we can slightly perturb the RS saddle-points and look how this
perturbation reflects on the quenched free entropy density. This analysis however
provides a necessary but not sufficient conditions on the stability of the RS saddle-
points [6]. In Fig. 3.3, we show the result of the perturbation analysis: each one of
the two curves defines, for different values of α , the collection of points in the q⋆−β

plane at which the RS saddle-point switches from being locally stable to unstable.

3.3.1 Energy of a binarized configuration

The dynamics of the gradient descent relaxes towards a solution of the binary learning
problem when the mean squared norm of the magnetizations tends to one. This
relaxations can be investigated analytically in the typical scenario, by estimating the
average training error associated to a binarized configuration, i.e. WWW = sign(mmm), as a
function of the mean squared norm of the control parameters:

E (q∗) = lim
N→∞

1
αN

EP(ξξξ
µ ,yµ)

[
p

∑
µ=1

〈
Θ

(
−yµ

∑
i

sign(mi)ξ
µ

i

)〉]
, (3.16)

where the average ⟨·⟩ denotes the thermal average:
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Fig. 3.3 Phase plane. For different values of the storage load, namely α =
0.5 (purple curve), 0.55 (green curve), 0.6 (blue curve), we plot the (q∗,βc) pairs above
which the RS saddle-points are no more stable. Indeed, in our numerical simulations we set
β = 20 when α = 0.55.

⟨·⟩=
∫

Dmmm · δ
(
∑i m2

i −q∗N
)

exp(βL (mmm))∫
Dmmmδ

(
∑i m2

i −q∗N
)

exp(βL (mmm))
. (3.17)

This quantity can be computed relying on the usual replica formalism. The plot
on the left in Fig. 3.4 shows the outcome of the replica calculation (green curve),
whose technical details can be found in Appendix B. This is compared with both
the standard GD dynamics (blue curve) and a slow GD dynamics (orange), where
the system is required to equilibrate at a fixed mean squared norm of the control
parameters, thus allowing for a fairer comparison with the theoretical predictions.

The deviation of the GD dynamics from the theoretical predictions can be ex-
plained by pointing out that, the analytic result defines an equilibrium scenario,
whereas the GD dynamics describes a dynamical process that can get stuck in
meta-stable states. Moreover, finite size effect should be taken into account.
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Fig. 3.4 Left. Energy of the clipped center versus the mean squared norm of the control
variables q∗. Blue curve, evolution of the GD dynamics. Orange curve, GD simulation with
the mean squared norm rescaled to q∗ along the evolution of the gradient descent. Green
curve, theoretical result, determined through the analysis of the typical learning scenario. In
the simulation, N = 10001 and the curves are averaged over 20 samples. Right. Quenched
entropy as a function of the distance D from a reference configuration. Purple curves. The
reference configuration is sampled according to the thermal measure. The three curves refer
to different values of the mean squared norm of the magnetizations, namely, from top to
bottom, q∗ = 0.7,0.8,0.9. Red curve. The reference configuration is sampled according to
the uniform measure of the binary Perceptron. Green curve. The reference configuration is
sampled according to the uniform measure of the spherical Perceptron and then binarized. In
the simulations, β = 20, in the case of the stochastic Perceptron and β = ∞, in the case of
both spherical and binary Perceptrons. In the two plots α = 0.55.
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3.3.2 The Geometry of the Version Space

In the second chapter, we have seen that typical solutions in binary Perceptrons
models are isolated and embedded in a landscape rich of meta-stable synaptic states.
A large deviation analysis has however revealed the existence of regions in the version
space, where solutions are organized in extremely dense clusters. These solutions
are a-typical at equilibrium, where synaptic couplings are distributed according to
the Gibbs measure. However, they can be detected through the definition of a new
measure, enhancing the statistical weight of all those solutions surrounded by an
exponential number of other solutions [78, 79].

In this section, we want to provide quantitative evidence of the fact that, in
the limit of q∗ → 1, the version space of binary stochastic Perceptron models is
characterized by the presence of dense clusters of solutions.

To this end, we can resort to the Franz-Parisi approach [84–86], where the
geometric properties of the version space are investigated by estimating the number
of solutions that can be found at a given distance D from a reference configuration
of the synaptic couplings. This quantity is provided by the constrained partition
function:

Z(mmm,D) = ∑
{Wi}

p

∏
µ=1

Θ

(
−yµ

N

∑
i=1

Wiξi

)
δ

(
ND−

N

∑
i=1

sign(mi)Wi

)
. (3.18)

To describe the typical learning scenario, we need, as usual, to average over both
the training set and the thermal measure:

S(D) = lim
N→∞

1
N
EP(ξξξ

µ ,yµ) ⟨log Z(mmm,D)⟩ . (3.19)

Once again, this computation can be tackled by means of the replica formalism.
A sketch of the entire calculation is provided in Ref. [99] . The plot on the right
of Fig. (3.4) shows the Franz-Parisi entropy S(D) (purple curves) as a function of
the distance D from a reference configuration, sampled according to the thermal
measure. The three purple curves refer to increasingly higher values of q∗.
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We can clearly notice that, as q∗ approaches one, the distance at which the Franz-
Parisi entropy vanishes, tends to zero, meaning that the reference configuration is no
more isolated but surrounded by an exponential number of solutions. For comparison,
in the same plot, we show the same quantity when the reference configuration is
sampled according to the uniform measure of the spherical Perceptron (green curve)
[30] and the one of the binary Perceptron (red curve) [56]. We can thus notice
that, contrary to the stochastic binary Perceptron model, the typical configurations
obtained by binarizing the ones of the spherical Perceptron and the typical solutions
of the binary Perceptron model are isolated.

As a proof of concept, we can perform a numerical experiment, where we
select the reference configuration by running GD and rescaling the mean squared
norm of the magnetizations to q∗ after each update, till convergence. We switch to
the next value of q∗ exploiting a slow updating schedule. We finally estimate the
corresponding Franz-Parisi entropy through Belief Propagation. The plot in Fig.
(3.5) shows the comparison between the outcome of this numerical experiment and
the result of the replica calculation.

Once again, the slightly difference between the twos can be addressed to different
reasons. First of all, we need to consider that, because of the instability of the
RS saddle-point at zero-temperature, we perform the replica calculation at β > 0.
Second, GD describes a dynamical process through which we select the reference
configuration. On the contrary, in the replica calculation, the reference configuration
is selected according to the thermal measure of Eq. (3.17), describing the system at
equilibrium. Finally, even in this case we should take into account finite size effects.

To shed more lights on the geometric properties of the version space in binary
stochastic Perceptron models, we introduce a new observable defined as the average
training error, associated to the set of synaptic configurations surrounding a reference
solution of the learning problem:

Ê (WWW ,D) = EWWW |WWW ′,D
1
p

p

∑
µ=1

Θ

(
−yµ

N

∑
i=1

Wiξi

)
, (3.20)

where we denote with WWW the reference solution and with WWW ′ one of the config-
urations of the synaptic couplings placed around it. Here, the average is defined
as:
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Fig. 3.5 Franz-Parisi entropy as a function of the distance D from a reference configuration at
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scenario. Green curves. Franz-Parisi entropy estimated by means of Belief Propagation. In
both simulations, the results are averaged over 100 samples.
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T SA CP CP-S GD BP+R
1 0.578(3) 0.628(3) 0.644(3) 0.642(3) 0.657(2)

Table 3.1 Comparison on the generalization accuracy of the five different learning algorithms:
simulated annealing (SA), clipped Percptron (CP), stochastic clipped Perceptron (CP-S),
gradient descent (GD) and Belief Propagation plus reinforcement (BP+R), in the teacher-
student learning scenario. In the simulations, N = 1001 and α = 0.4.

EWWW |WWW ′,D ·=
∑WWW ′ · δ

(
N (1−2D)−∑

N
i=1WiW ′i

)
∑WWW ′ δ

(
N (1−2D)−∑

N
i=1WiW ′i

) . (3.21)

This quantity allows to provide more insights on the nature of the synaptic
configurations surrounding a reference solution, thus providing information on the
heterogeneity of the energy landscape. Therefore, the configurations of the synaptic
couplings WWW ′ do not necessarily represent solutions of the learning problem, they
can be then easily sampled from the reference solution by randomly flipping dN
spins.

To compare the performances of the learning algorithm proposed in this chapter,
with the ones of others already existing learning protocols, we extract as reference
solution a solution of the teacher-student learning problem according to the learning
rule (GD) in Eq. (3.11), the two variants in Eq. (3.12) (CP and CP-S), the BP+R
learning algorithm for binary Perceptrons and, finally, the SA algorithm with the
objective function H = ∑

p
µ=1

((
yµ/
√

N
)

WWW ′ ·ξξξ µ
)

Θ
(
−
(
yµ/
√

N
)

WWW ′ ·ξξξ µ
)
.

The results are shown in Fig. 3.6. We can clearly notice that, SA (green curve)
experiences a sharp jump in the average training error as soon as we move from
the reference solution, further approaching the limit where the reference solution is
represented by the teacher itself (purple curve). Indeed, it is known that the teacher
represents an isolated solution of the binary model. Contrary, the solutions identified
by the other learning protocols are surrounded by configurations characterized by
lower training errors.

Moreover, we can also notice that, the solutions determined by the CP learning
algorithm are characterized by a less flattered energy landscape, despite the fact that
they are not isolated as the ones detected by SA.
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Fig. 3.6 Averaged training error as a function of the Hamming distance of the synaptic
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instead in standard GD it is η = 0.1. In BP+R, the reinforcement term is adjusted according
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(
1−10−3

)
. Finally, cooling in SA is performed according

to the schedule β t+1 = β t
(
1+5∗10−3

)
.
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To compare the generalization performances of the above mentioned learning
algorithms, we tested each one of them on the classification of a new pattern, not
belonging to the training set. In Table (3.1), we show the probability of having
correctly classified the new test case. We can clearly notice that, there exists a link
between the smoothness of the energy landscape and the generalization performances.
Indeed, SA annealing is the one showing the worst generalization ability. The
technical details concerning the numerical simulations can be found in Ref. [99].

3.4 Binary control parameters

A more explicit connection with the large deviation analysis described in the second
chapter, can be done by assuming the magnetizations to be binary variables, namely
mi =

√
q∗m̃i with m̃i = {−1,1}. The definition of the log-likelihood then needs to

be modified in light of the new assumption:

L (m̃mm) =
p

∑
µ=1

logH

−ρ
yµ

∑i m̃iξ
µ

i√
∑

N
i=1
(
ξ

µ

i
)2

 , (3.22)

where we have defined ρ =
√

q∗
1−q∗

. The statistical physics analysis we set up in
the previous section can be here performed in the same way. The estimation of the
main quantities thus introduced, can be carried out by relying on the usual replica
formalism.

In the specific case of binary control parameters, we can not rely on GD-based
strategies in order to optimize the corresponding log-likelihood. We can instead
implement a Monte Carlo method, where the energy function is represented by the
log-likelihood in Eq. (3.22). In Fig. (3.7), we show the behaviour of the training
error with respect to q∗. The result of the replica calculation (green curve) is quite in
good agreement with the outcome of the Monte Carlo simulation.

The case of binary magnetizations is valuable for study also because, in this
setting, we can identify an interesting link with the dropout/drop-connect strategy,
typically exploited in deep-learning for improving the generalization performances of
a neural network. In the dropout scheme, some of the inputs are randomly neglected,
according to some probability p [95]. Whereas, in the drop-connect scheme, are
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Fig. 3.7 Training error as a function of q∗. The green curve provides the result of the replica
calculation, whereas the purple curve shows the outcome of the Monte Carlo simulation,
performed at N = 1001 and averaged over 100 samples. In both cases α = 0.55 and β = 15.

the synaptic connections to be progressively erased [100]. We can then consider
an equivalent stochastic model where some of the input neurons, or some of the
synaptic connections, are randomly deleted. The log-likelihood of this model simply
matches with the one in Eq. (3.22), provided that it holds p = 1−q∗.



Chapter 4

The Delayed Correlation Matching
learning rule

Learning and memory are strongly believed to occur in biological networks in
terms of modulation of the synaptic efficacy [13–15]. This phenomenon has widely
inspired machine learning methods as well as the design of neuromorphic devices. It
goes under the name of synaptic plasticity [101]. In biological networks, synaptic
plasticity is usually modelled through learning principles, that tend to link the
modulation of the synaptic strength to both the pre and post-synaptic activity. All
these principles share a common ancestor, namely the Hebbian learning principle
[66].

Hebbian learning relies on the assumption that long term synaptic potentiation
(LTP) is induced by the reiterated and persistent stimulation of post-synaptic neurons
by means of the pre-synaptic ones. On the contrary, long term depression (LTD)
arises when the activity of the pre-synaptic neurons does not affect post-synaptic
cells. The Hebbian learning principle is often conveniently synthesized with the
expression “cells that fire together are wired together”[66].

In the first chapter, we have seen that Hebbian learning can induce an attractor
dynamics in recurrent neural networks [6]. In the past years, this capability of the
learning principle has generated great excitement in Neuroscience, since it provides
a way of modelling the different expressions of persistent neuronal activity that have
been observed within several areas of the brain [102, 103].
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In this regard, the first attempt in modelling associative memory is represented
by the Hopfield model [65]. As seen in the first chapter, in the Hopfield model, the
minima of an Ising-like Hamiltonian can be identified with the stable attractors of
the network dynamics, when the synaptic couplings are selected according to the
Hebbian learning principle. The core idea of representing memories as energetically
favoured states of an Ising-like Hamiltonian, has been suggested by the very well
known phenomenon of frustration in disordered systems [24].

Despite the fact that Hebbian learning allows the storage of an extensive number
of unbiased and uncorrelated patterns of neuronal activity, several variants and re-
statements have been suggested over the years in order to adapt the Hebbian learning
principle to wider settings. For instance, as seen in the first chapter, when considering
the more realistic scenario of correlated patterns of activity, the Hebbian learning
rule has to be modified by encoding in the synaptic couplings, the information con-
cerning the statistics of the input stimulus [69]. The Hebbian learning principle has
been further adapted to rates neural networks models [104] up to the more recently
proposed spiking neural networks [105].

When trying to get more insights on phenomena like learning or memory retrieval,
we need to consider that the neuronal environment is extremely noisy [91]. Within the
brain, stochasticity takes place at different levels and scales. For instance, we could
mention the variability of neuronal responses to the same external stimulus [106,
101], the untrustworthy transport of synaptic vesicles [92], the strong fluctuations
in the opening and closing of the ion channels [107] as well as the ripples of the
neuronal membrane potential [64]. The sensory input itself is characterized by a not
negligible noisy component [108].

Therefore, it would seem reasonable to take into account stochastic models of
neural networks and then to exploit the strong connection between learning and
inference problems [109]. Boltzmann machines work in this direction. As seen in
the first chapter, they are able to construct an internal representation of the sensory
input, allowing the network to generate new data samples that, in principle, are
indistinguishable from the input itself [72]. However, as already pointed out, training
a Boltzmann Machine is a challenging task, mostly because relying on Monte Carlo
sampling [74]. Therefore, simpler models, such as Restricted Boltzmann Machines
(RBMs), have been taken into account [75].
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In biological neural networks, synaptic connections are typically asymmetric and
time varying [68]. This observation has motivated the development of purely kinetic
models, whose ultimate goal is the analysis of the dynamics of learning processes.
However, the research in this field requires great computational efforts. Indeed, if
there exist stationary states of the dynamics, it is not straightforward how to deal
with them both from an analytic and a numerical point of view [110–112].

In this chapter, we will try to face all these different issues, with the purpose of
designing a more realistic and biological amenable learning model in recurrent neural
networks. This will naturally guide us towards the proposal of a new learning rule,
allowing a recurrent neural network to store a set of patterns of neuronal activities as
well as to build an internal representation of the sensory world.

In the following, we will thus consider stochastic recurrent neural networks,
whose synaptic connections are not symmetric and modulated according to in-
formation only locally available to each synapse. Learning will be treated as an
unsupervised process, namely not influenced by strong external stimulus or feed-back
signals, as in the case of learning from examples. The resulting learning rule turns
out to be consistent with the Dale’s principle [80, 81] and effective in an on-line
inspired learning scenario. Moreover, notice that, in the course of this work, we
will only consider a discrete-time dynamics, even if the model can be generalized to
continuous time.

This chapter is organized as follows. In the first section, we will present the
learning model driving towards the definition of the new learning rule. In the second
section, we will consider the case of a recurrent neural network made of solely
visible units. In this case, we will extend the new learning rule to more biologically
plausible settings, by introducing some additional constraints, such as weak external
signals and sparse neural coding. We will then compare the performances of the new
rule with respect to Hebbian learning, when dealing with correlated patterns, on-line
learning scenarios and spurious attractors. In the third section, we will instead apply
the new learning rule in training Restricted Boltzmann Machines. We will test its
performances on features extraction and classification tasks, comparing the results
with the performances achieved by the state-of-the-art in RBMs training described
in the first chapter, namely Contrastive Divergence [77]. All the technical details are
provided in Appendix C.
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4.1 The model

The neural network we are are going to deal with in this chapter is the one of a
recurrent neural network, made of N neurons and characterized by asymmetric
synaptic couplings, namely Wi j ̸=Wji. The state of each neuron si evolves in time
according to the Glauber transition probability [64]:

P
(
sss′|sss;β

)
=

N

∏
i=1

σ
(
s′i|hi;β

)
, (4.1)

describing a discrete and synchronous dynamics. Here, σ (x) ∝ exp(βhi (x)) is a
sigmoid-shaped function and hi is the local field, defined as the sum of two distinct
contributions, namely the external field and the field exerted by the surrounding
neurons on neuron i: hi = hext

i +∑ j ̸=iWi js j−θi, with θi being the local threshold.
Neurons are thus treated as intrinsically stochastic components, with the temperature
T = 1/β actually playing the role of noise. The dynamics described by the Glauber
transition probability in Eq. (4.1) is ergodic, provided that the external field does
not depend on time and that the synaptic couplings do not diverge [110]. In this
case, it can relax towards a stationary state, whose analytic expression can not be
derived explicitly in the context of kinetic models, namely when synaptic couplings
are assumed to be asymmetric [110].

Our goal is to design a new learning rule allowing the network to store a set
of p patterns of neuronal activity

{
ξξξ

µ
}p

µ=1 or, more generally, to build an internal

representation of the statistics of the inputs
{

ξξξ
µ
}p

µ=1, while not relying on any
additional supervising or feed-back signal.

To this end, we distinguish two different subset of neurons: the visible neurons
are the ones subject to the external input, whereas the hidden neurons are the ones
left free to catch the complex correlations in the statistics of the input patterns. We
then consider the following learning scenario. An input pattern ξξξ

µ is presented to the
visible units as an external stimulus, under the form of an external field of intensity
λ ext and oriented along the direction of the input pattern itself. The intensity of the
external field is chosen in order to only bias the activity of the network towards the
input pattern, thus preventing the network to be completely clamped on the external
stimulus.
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After this initial phase, the external field starts rapidly vanishing, namely λ ext→ 0.
We then want both the synaptic couplings and the thresholds to adapt in order to
compensate the effect of the vanishing external field. When this is the case, the
dynamics of the network left free to evolve without any supervisory signal, closely
resembles the one prompted by the external stimulus. At the end of the training,
starting from a noisy version of the input pattern, the network is then eventually able
to retrieve the original pattern, while not relying on any biasing signal.

This condition can be achieved by requiring to modulate the strength of the
synaptic couplings and the thresholds in such a way to reduce the Kullback-Leibler
(KL) divergence between the dynamics of the network in presence of an external
field of intensity λ ext

1 , and the dynamics of the same network in presence of a weaker
external field of intensity λ ext

2 :

〈
KL
(
P
(
·|sss;λ

ext
1 ,β

)
||P
(
·|sss;λ

ext
2 ,β

))〉
P(sss) =

= ∑
{sss}

P(sss) ∑
{sss′}

P
(
sss′|sss;λ

ext
1 ,β

)
log

P
(
sss′|sss;λ ext

1 ,β
)

P
(
sss′|sss;λ ext

2 ,β
) , (4.2)

where P(sss) denotes the average over all possible initial states of neuronal activity,
which we choose in such a way to make the initial state of the network close to the
pattern induced by the external stimulus. Because of that and because of the presence
of both the external field and the recurrent stimulus exerted by surrounding neurons,
the successive network states, namely sss′, will remain close to the input pattern.

For the sake of simplicity, we start considering the extreme case where the
external field is initially applied with infinite intensity, namely λ1→ ∞, and then
suddenly dropped to zero, namely λ2 = 0. As we will point out, this learning scenario
allows for a straightforward comparison with Hebbian learning. Applying an infinite
external field, makes the state of the visible units to be completely clamped on the
pattern of neuronal activity imposed by the external stimulus. The distribution over
the initial network states then assumes the simpler factorized form:

Pclamp (sss;ξξξ ) =

(
∏
i∈V

δsi,ξi

)
P(sssH |sssV ) , (4.3)
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where δxy is the Kronecher Delta and V and H denote respectively the subset of
visible and hidden units. For the time being, we do not write an explicit expression
of the distribution over the hidden network states, this would invalidate the generality
of the present discussion.

In this case, optimizing the KL divergence in Eq. (4.2), with λ1→ ∞ and λ2 = 0,
leads to a learning rule for both synaptic couplings and thresholds, that acquires the
form of a matching condition between activity correlations, subject to different field
intensities:

∆Wi j ∝

(〈
s′is j
〉

clamp,∞−
〈
s′is j
〉

clamp,0

)
∆θi ∝−

(〈
s′i
〉

clamp,∞−
〈
s′i
〉

clamp,0

)
,

(4.4)

where sss and sss′ are two consecutive configurations of neuronal activity and
⟨·⟩clamp,λ ext denotes the average over all possible states that can be reached starting
from the initial one, namely

〈
s′is j
〉

clamp,λ ext = ∑
{sss′,sss}

s′is j P
(
s′i|sss;λ

ext)Pclamp (sss;ξ )

〈
s′i
〉

clamp,λ ext = ∑
{sss′,sss}

s′i P
(
s′i|sss;λ

ext)Pclamp (sss;ξ ) .
(4.5)

The analytic derivation of the update rules in Eq. (4.4) can be found in Appendix
C. Notice that, in the limit of strong external fields, the activity of the network
is completely clamped on the input pattern, such that it holds

〈
s′is j
〉

clamp,∞ = ξiξ j.
Hebbian learning thus arises as the limiting case of the above described learning
scenario, when considering strong biasing signals.

In biological networks, external stimuli are known to be comparable with the
recurrent signal exchanged among the neurons within the network. Therefore, with
the purpose of modelling a more biologically plausible learning scenario, we need
to leave the setting of strong biasing signals, in light of a more realistic framework,
where the intensity of the external signal, acting on a given neuron, is close to the
one exerted by surrounding cells.
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Fig. 4.1 Qualitative drawing of the descent of the external field. The symbol ⋆ highlights the
time at which the update of the synaptic couplings and thresholds takes place.

In the following, we will thus consider the more realistic scenario of a finite
and gradually vanishing external field. The descent of the field develops according
to the following schedule. We initialize the external field to a finite value, namely
λ ext (t = 0) = λmax. We then start decreasing the field intensity of steps of ∆λ after
2T steps of the network dynamics, till reaching zero. The learning rule turns out to
be robust to whatever choice of these external parameters. We provide a sketch of
the descent of the external field in Fig. (4.1).

In this more biologically plausible scenario, the learning rule retains the form
of a matching condition, where the correlations are now the ones induced by the
external fields of intensities λ1 = λ and λ2 = λ −∆λ , namely

〈
s′is j
〉

λ
= ∑
{sss′,sss}

s′is j P
(
s′i|sss;λ

)
P(sss)

〈
s′i
〉

λ
= ∑
{sss′,sss}

s′i P
(
s′i|sss;λ

)
P(sss) .

(4.6)



4.2 Fully-Visible 101

This time, the distribution P(sss) just places the state of the visible neurons around
the input pattern, instead of clamping it.

As it is shown in Appendix C, estimating correlations in kinetic models can
be tackled by means of mean field methods, despite the lack of an Hamiltonian.
In the following, we will however consider the more realistic learning scenario
where correlations are directly estimated from the network dynamics. Indeed, if the
dynamics of the network is ergodic, the ensemble average ⟨·⟩

λ
can be identified with

the temporal average over all the states explored by the network dynamics. This
condition is achieved when the initial field intensity, namely λmax, is chosen strong
enough to border the dynamics of the network in the basin of attraction of the input
pattern, and when the evolution of the activity of the network in time, stays close to
this region as soon as the external field starts vanishing. In the basin of attraction, the
network is then free to explore every possible configuration of the neuronal activity.

The resulting learning rule for synaptic couplings and thresholds, namely

∆Wi j ∝

(〈
st+1

i st
j
〉

t,λ −
〈
st+1

i st
j
〉

t,λ−∆λ

)
∆θi ∝−

(〈
st+1

i
〉

t,λ −
〈
st+1

i
〉

t,λ−∆λ

)
,

(4.7)

goes under the name of Delayed Correlation Matching (DCM). A pseudo-code
of the learning algorithm is provided in Appendix C.

4.2 Fully-Visible

The learning model described in the previous section, is relative to the general
case of recurrent neural networks constituted by both visible and hidden units and
characterized by asymmetric synaptic couplings. In this section, we instead focus
on the specific architecture of a recurrent neural network made of solely visible
neurons. As said, in the case of symmetric synaptic couplings, the network dynamics
is characterized by the presence of specific patterns of neuronal activity, playing the
role of attractors for the network dynamics. However, kinetically persistent neuronal
states can be identified even in the case of asymmetric synaptic couplings, thus
preserving the concept of attractor state.
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In this case, the DCM learning rule is required to make the network able to store
a set of p = αN input patterns

{
ξξξ

µ
}p

µ=1, with ξ
µ

i ∈ {−1,1} and α being the storage
load.

In the context of strong biasing external signals suddenly vanishing to zero,
the optimization of the KL divergence translates into an on-line version of a log-
likelihood factorized approximation, known as log-pseudo-likelihood [71, 113]:

L
({

ξξξ
µ
}p

µ=1 |Wi j,θ ;β

)
=

=
1
p

p

∑
µ=1

N

∑
i=1

logP
(

si = ξ
µ

i |
{

s j = ξ
µ

j

}
j ̸=i

;λ
ext = 0

)
.

(4.8)

The resulting DCM plasticity rule, namely

∆Wi j ∝

ξ
µ

i ξ
µ

j −∑
st+1
i

P
(

st+1
i |

{
s j = ξ

µ

j

}
j ̸=i

;λ
ext = 0

)
st+1

i ξ
µ

j

 , (4.9)

can then be derived through the optimization of the log-pseudo-likelihood in Eq.
(4.8) or, equivalently, through the one of the KL divergence in Eq. (4.2).

In this learning scenario, DCM shows two features that make it to significantly
differ from Hebbian learning. First of all, it preserves the asymmetry of the synaptic
couplings. Second, it relies on the difference between two distinct contributions,
namely the Hebbian contribution and a second term, known as comparator. The pres-
ence of the comparator prevents the appearance of possible out-of-control positive
feed-back loops, by avoiding to update the synaptic couplings in case of matching
between the two contributions. Indeed, if the information carried by the external
signal has already been encoded within the synaptic couplings, there is no reason for
them to adapt. We can further notice that, in the limit of β → ∞, the DCM learning
rule translates into the Perceptron learning rule in Eq. (1.34).

Fig. (4.2) shows the maximum achievable storage load as a function of the
required size of the basin of attraction, for both the DCM learning rule (blue curve)
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and Hebbian learning (red curve). We can clearly notice that, the critical capacity of
the DCM plasticity rule is always well above the one reached by Hebbian learning,
namely αc = 0.138, despite the fact that it still stays below the limit of αc = 2, set
by the Gardner Analysis, because of the sources of stochasticity introduced in the
model.
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Fig. 4.2 Storage load as a function of the noise level. The behaviour of the DCM learning
rule (blue curve) and the one of Hebbian learning (red curve) are averaged over 10 samples.
The error bars are not visible at the plot resolution. In the simulation N = 401 and β = 2.

4.2.1 Weak external fields

The case of strong external signals is not consistent from a biological point of view.
Indeed, high intensities of the external field bias the neuronal activity towards the
inputs, so that the dynamics of the network is fully dominated by the incoming
stimulus. On the other hand, weak intensities make the evolution in time of the
neuronal activity to be entirely ruled by the noisy recurrent stimulus, exerted on a
given neuron by means of the surrounding nerve cells. One important issue is then
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how the intensity of the external field has to be chosen in order to balance the two
different effects.

To this end, we need to consider that the recurrent stimulus relies on the strength
of the synaptic connections. However, as long as the network learns new patterns, the
synaptic connections get stronger and stronger. The intensity of the external field has
then to grow as well, in order to compensate the increasingly strength of the recurrent
stimulus. This effect is shown in Fig. (4.3), where we plot the maximum achievable
storage load as a function of the external field intensity. Notice that, the critical
capacity quite quickly saturates to the asymptotic value (dashed line), estimated for
infinite external fields. In particular, as the inset in Fig. (4.3) shows, these values of
the maximum storage load are observable for intensities of the external fields slightly
smaller than the ones of the recurrent stimulus. Therefore, weak external signals
seem to be already sufficient for achieving good learning performances, as already
suggested [114].

4.2.2 Sparse neural coding and Dale’s law

A series of experimental and theoretical evidences have pointed out that, in biological
networks, the number of simultaneously active neurons is just a fraction of the entire
population. This suggests that the neural coding is actually sparse. Sparse coding
can improve the processing of information within the brain. For instance, it saves
metabolic energy and increases the memory capacity, reducing the cross-talk between
the different patterns of neuronal activity ([83] and references therein).

To this end, in the following, we will consider the neuronal states to be described
by si ∈ {0,1} binary variables, thus avoiding the implausible feature of symmetry
between the active and the quiescent state of the si ∈ {−1,1} binary model. The
sparsity or coding level f is then defined as the average fraction of simultaneously
active neurons, namely f = 1

N ∑
N
i=1 si.

In order to make this scenario even more consistent from a biological point of
view, we introduce a further biological constraint, imposed by the Dale’s principle.
According to the Dale’s principle, a neuron can be either excitatory (positive synaptic
couplings) or inhibitory (negative synaptic couplings) [80, 81]. This is known to
reduce the critical capacity mostly up to the half [115].
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Fig. 4.3 Critical capacity as a function of the external field intensity. In the simulation,
N = 401, T = 20 and ∆λ = λmax/3, β = 2. In the retrieval phase the noise level is set at
χ = 0.3. In the inset, external field intensity (yellow curve) and recurrent stimulus from
surrounding neurons (green curve) as a function of the maximum storage load. The curves
are averaged over 100 samples.
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For the sake of simplicity, in this work, only the synaptic couplings of the
excitatory neurons undergo through synaptic plasticity. The inhibitory network is
instead replaced by three different inhibitory schemes, designed for miming more
complex inhibitory phenomena. Their task is to regulate the current activity of
the network, namely St = 1

N ∑
N
i=1 st

i, according to the desired coding level f . This
prevents the excitatory network to converge towards the trivial states of all on or all
off neurons. The details concerning the analytic derivation of the three schemes are
provided in Appendix C.

In the first inhibitory scheme, the role of the inhibitory network is played by a
global inhibitory unit, which set the activity of the network to the desired coding
level, relying on an elastic feed-back signal [116]. The second inhibitory scheme
has to be thought as a soft “winner-takes-all” mechanism [117–127]. In this case,
an inhibitory signal is triggered by the active neurons when their number reaches
the desired activity level. The signal then sets down the local fields of the neurons
in the quiescent state, thus avoiding their activation. The last inhibitory scheme is
based on the widely observed phenomenon of threshold variability in the central
nervous system [128]. It has been shown that, in presence of highly correlated
stimuli, threshold variability is fundamental for enhancing neural computation [115].
Actually, as we will see, this is also the case in our learning model, where threshold
variability turns out to be a necessary requirement for allowing the storage of an
extensive number of patterns in the on-line learning regime.

Fig. (4.4) shows the maximum achievable storage load α as a function of the
number of epochs required for storing a number p = αN patterns, for both synaptic
couplings constrained to satisfy the Dale’s principle (red curves) and unconstrained
synaptic couplings (blue curves). We can clearly notice that, the introduction of the
biological constraints imposed by the sparseness of the neural coding and the Dale’s
principle, only slightly decreases the maximum achievable storage load, detectable
when the number of required learning cycles starts diverging.

4.2.3 The DCM in comparison with the Hebbian learning

In this section, we want to compare the DCM learning rule with Hebbian learning
for what concerns biased and correlated patterns, spurious attractors and on-line
learning settings.
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Fig. 4.4 Required number of epochs versus the maximum storage load. The dashed curve
refers to N = 200, while the thick curve is obtained for N = 400. In the simulation, the level
of noise in the retrieval phase is χ = 0.3 while the coding level is f = 0.5. The exploited
inhibitory scheme is the one of the soft winner-takes-all mechanism.

Correlated and Biased patterns

The sensory inputs from the external world are typically not only sparse but also
redundant. A learning model has then to be able to deal with correlated input signals,
in order to describe more realistic scenarios.

As anticipated in the first chapter, one way of introducing correlations among
patterns of neuronal activity is to sample them according to a biased probability
distribution (see Eq. (1.53)) [69]. Fig. 4.5 shows the maximum achievable capacity
as a function of the pattern bias. We can clearly notice that the DCM learning rule
(blue curves) achieves higher critical capacities with respect to Hebbian learning (red
and green curves). Moreover, as pointed out in the first chapter, when dealing with
biased patterns, Hebbian learning has to be modified (green curve) in light of the
pattern bias (see Eq. (1.54)) [69]. Notice that, the not vanishing critical capacity in
the case of standard Hebbian learning (red curves), is due to finite size effects as well
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Fig. 4.5 Maximum storage load as a function of the pattern bias. The dashed and the thick
curves refer to different network sizes, respectively N = 200 and N = 400. The blue curves
are relative to the DCM learning rule, whereas the red and the green curves refers respectively
to standard Hebbian learning and biased Hebbian learning. In the simulations, the results are
averaged over 10 samples. The error bars are not detectable at the resolution level of the plot.
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Fig. 4.6 Maximum storage load as a function of the dictionary length. The blue curve
is relative to the DCM learning rule, whereas the red one refers to Hebbian learning. In
the simulation, the sparsity level of each feature, namely f , is set at 0.1. The patterns are
obtained as a linear combination of 6 features out of the 200 contained in the dictionary.
The inset shows the mean Pearson correlation as a function of the dictionary length. In the
simulation, the results are averaged over 10 samples. The error bars are not detectable at the
resolution level of the plot.

as the vanishing maximum storage load for small biases of the modified Hebbian
learning.

Another way of introducing correlations among patterns is to write them as a
linear combination of sparse vectors ϒ, called features and sampled according to
the distribution P(ϒi) = f δ (ϒi−1)+(1− f )δ (ϒi). To this end, we first generate
a dictionary of L features, namely D = {ϒν}L

ν=1. We then construct each pattern as
a linear combination of a certain number of features, namely ξ

µ

i = Θ
(
∑

L
ν=1 cµ

ν ϒν
i
)
,

where cµ

ν ∈ {0,1} are the coefficients of the linear combination, selecting a specific
feature in the dictionary, and Θ(x) is the Heaviside step function, acting as the logic
OR operator.
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Fig. (4.6) shows the maximum achievable storage load as a function of the
dictionary length. We can clearly see that the DCM learning rule (blue curve)
reaches higher critical storage loads compared to Hebbian learning (red curve),
further profiting of the higher correlation level for smaller dictionary lengths. The
inset provides a measure of the correlations among patterns as a function of the
dictionary length, measured in terms of the mean Pearson correlation.
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Fig. 4.7 Number of spurious attractors as a function of the storage load. In the plot, we
compare the number of detected spurious attractors for both the DCM learning rule (blue
curve) and Hebbian learning (red curve). We identify them through 1000 restarts of the
network evolution, made of 200 steps of Glauber dynamics. In the simulation, the size of the
network is N = 400, and the results are averaged over 10 samples.

Spurious Attractors

One of the limits of Hebbian learning, affecting the retrieval of stored patterns, is the
presence of spurious attractor states. Indeed, because the Hopfield Hamiltonian is
invariant with respect to the change of sign of the neuronal state variables, not only
the patterns we want to store are minima of the Hopfield Hamiltonian but also the
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ones obtained reversing the patterns sign. More generally, any linear combination of
the patterns is itself a stable minimum of the Hopfield Hamiltonian. The spurious
states are also called mixture states, since they typically lie at the intersection between
two distinct basins of attraction, relative to two different patterns [64].

Fig. 4.7 shows the number of spurious attractors as a function of the storage
load (see Appendix C for the details concerning the numerical simulation). We can
clearly notice that, contrary to Hebbian learning (red curve), the DCM learning rule
seems to be not affected by spurious attractors, thus being capable of preventing
the basins of attraction from overlapping. The first peak of Hebbian learning can
be explained as a finite size expression of the actual exponential growth of spurious
states in the sub-extensive regime, namely very small storage loads [129]. In the
extensive regime, namely higher storage loads, linear combinations of a large number
of patterns start disappearing, so that they are no more exponentially many. In this
case, only mixtures of odd numbers of patterns survive [129].

4.2.4 One-Shot learning

In the on-line inspired learning scenario described in this work, the input patterns
are presented to the network one at a time. We switch to the next pattern only when
the previous one has been already properly stored. The patterns that have been
correctly retrieved are never shown again to the network. After a certain number of
iterations, we expect this learning regime to reach a steady state, where the number of
stored patterns does not grow any more. This basically because the previously stored
patterns give way to the newly stored ones. The capacity at which this stationary
condition is reached is known as palimpsest capacity [130].

In this setting, considering si ∈ {−1,1} binary neuronal state models, the DCM
learning rule is able to store an extensive number of input patterns, reaching the
palimpsest capacity αp ≃ 0.05. This result is comparable with other learning rules
proposed for on-line learning regimes [130–132]. The same holds if we consider the
sparse neuronal model si ∈ {0,1}. However, in this case, for this to be true we need
to further take into account threshold variability (see Appendix C).

Fig. 4.8 shows the number of stored patterns as a function of the total number
of patterns that we wish the network to store, for different network sizes. We can
clearly notice that after a transient regime, where all the input patterns are correctly
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Fig. 4.8 Scaling of the palimpsest capacity with the network size. In the plot we show the
number of stored patterns as a function of the total number we want to store within the net-
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The neuronal state model here considered is si ∈ {−1,1}. The dashed gray curve are obtained
as an average over the last 3 measurements and the results are averaged over 10 samples.
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retrieved, the learning rule reaches a stationary condition when approaching the
palimpsest capacity.

4.3 Visible-Hidden

In the previous section, we have considered the specific case of a recurrent neural
network, made of solely visible units. In this section, we instead focus on the more
general case of a recurrent neural network when endowed of additional hidden
neuronal states. As pointed out in the first chapter, the introduction of hidden units
has the effect of increasing the representational power of the network, by allowing it
to catch more complex correlations in the data structure. In this case, the network is
then able to infer the statistics of the external stimulus and then to generate new data
samples according to it, thus acting as a generative model.

The learning model proposed in this chapter, can be equivalently applied to
this context. In particular, in the following, we will consider the specific case of
a recurrent neural network where the synaptic connections are restricted to the
solely visible-hidden units. As said, this model goes under the name of Restricted
Boltzmann Machine (RBM).

The DCM learning rule does not require any further adjustment or restatement
in this case. It is always derived through the optimization of the KL divergence
in Eq. (4.2). In particular, in the specific case of strong biasing signals, we can
explicitly write the expression of the probability distribution over all the possible
initial neuronal states in Eq. (4.3). Indeed, since in RBMs the connections are
restricted to the solely visible-hidden units, the distribution over the hidden states
factorizes at fixed configurations of the visible ones:

Pclamp (sssV ,sssH ;ξξξ ) = ∏
i∈V

δsi,ξi ∏
j∈H

P
(
s j|sssV = ξξξ

)
. (4.10)

The synaptic couplings are then adapted according to the resulting DCM learning
rule:



114 The Delayed Correlation Matching learning rule

∆Wi j ∝ P
(
s j|sssV = ξξξ

)
ξis j− ∑

{sk∈H}
∏
k∈H

P(sk|sssV = ξξξ )P
(
s′i|sssH

)
s′is j, (4.11)

with i ∈V and j ∈ H. As pointed out in the case of fully-visible networks, even
in this case, the optimization of the KL divergence can be translated into an on-line
optimization of the log-pseudo-likelihood:

L
({

ξξξ
µ
}
|Wi j,θ ;β

)
=

=
1
M

M

∑
µ=1

∑
i∈V

log

(
∑

sk∈H

∏
k∈H

P(sk|sssV = ξξξ )P
(
s′i = ξ

µ

i |sssH ;λ
ext = 0

))
.

(4.12)

The two optimization problems are then equivalent and lead two the same learning
rule in Eq. (4.11). The only difference with respect to the fully-visible case, is that
the synaptic couplings have now to be inferred from a set of incomplete data. Indeed,
only the visible units are subject to the external stimulus.

The updated rule of Eq. (4.11) is quite close to Contrastive Divergence in Eq.
(1.71). Indeed, even in this case we can distinguish between a positive phase, where
the state of the visible units is clamped on the input data, and a negative phase,
where instead the configurations of the neuronal states need to be sampled according
to Gibbs chains. We thus believe that our derivation can shed more lights on the
effectiveness of Contrastive Divergence, even when single samples of the Gibbs
chain are performed, by directly initializing the chain on the input data.

However, we need here to point out that, while Contrastive Divergence has
been designed for energy-based generative models, where the symmetry of synaptic
couplings is a crucial requirement for the definition of an Hamiltonian, the DCM
rule is completely asymmetric and, therefore, legitimately applicable to the context
of kinetic models.

Fig. 4.9a shows the features extracted by the hidden units from the images
of hand-written digits in the MNIST data set [11], according to the learning rule
in Eq. (4.11), namely in the case of strong biasing signals suddenly dropped to
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b 

Fig. 4.9 Features extraction. The plot makes a comparison between the features extracted in
the case of strong biasing signal suddenly depressed, where the correlations are estimated
by means of the TAP approach (a), and the features extracted when considering the more
biological plausible scenario of weak external fields progressively vanishing, where the
correlations are directly measured from the network dynamics. In this case, we exploit the
si ∈ {0,1} neuronal state model, together with the soft winner-takes-all inhibitory scheme.

zero. The ensemble average in Eq. (4.11) is estimated by means of the mean field
Thouless-Anderson-Palmer (TAP) approach [133], that has been shown to hold in
the context of kinetic models [110–112]. In Appendix C, we provide the extension
of the derivation of the TAP equations for kinetic models of Ref. [110], to the case
of si ∈ {0,1} binary neuronal state models. This learning scenario allows for a direct
comparison with the performance achieved by the Contrastive Divergence algorithm
in RBMs training. Fig. (4.9)b shows instead the features extracted by the hidden units
in a more biologically plausible learning scenario. In this case, the input patterns
are presented to the network as external fields of weak intensity and the correlations
are directly estimated from the dynamics of the network, simulated through the
Glauber stochastic process. Moreover, we introduce the further constraints of sparse
neural coding and the one imposed by the Dale’s law. In this case, we choose the
soft-winner-takes all as the inhibitory mechanism, aiming to mimic the underlying
effect of the inhibitory network.

The ability of the network to generate new data sample according to the statistics
of the input data, is shown instead in Fig. 4.10. The two sets of samples refer
respectively to the case of strong biasing signals (a) and the more biologically inspired
learning scenario (b). We can clearly notice that, the introduction of the biological
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Fig. 4.10 Samples generations. The plot shows the sample generated after 100 time-steps of
Glauber dynamics, when initialized on 8 different states of neuronal activity. The samples
are readable as the probability associated to the final configuration of the visible units, at
the end of the dynamics. (a) Case of strong biasing external signals suddenly vanishing.
The correlations are estimated through the TAP approach with no inhibitory schemes. In
the simulation, β = 2. (b) Case of weak external signals progressively vanishing. The
correlations are directly estimated from the dynamics and the inhibitory scheme employed
is the one of soft winner-takes-all. In the simulation, β = 30. The higher resolution in (a)
has to be addressed to the different choice of the inverse temperature parameter in the two
simulations.

constraints seems to not consistently affect the performances of the network as a
generative model.

Finally, we have compared the performances achieved by the network in classifi-
cation tasks, when considering both the two above mentioned learning scenarios. In
a classification task, the RBM is required to recognize which number is depicted in
the image, thus assigning to each image its corresponding digit. To this end, we add
a further layer of 10 neurons, one for each digit, where to read the response of the
network. During the training, one of the ten neurons receives an external supervisory
signal, in the form of an external field, whenever the corresponding digit is shown to
the network as input signal [134].

The generalization error turns out to be εg ≃ 2.76% in the case of strong biasing
signals, and εg ≃ 7.74% in the case of the more biological inspired learning scenario.
These values need to be compared with the ones achieved by Contrastive Divergence,
namely εg ≃ 0.3% [11]. The discrepancy between the two results has to be addressed
to the smaller size of the network involved in the classification task, and to the
addition of stochastic components. These results should then not be disregarded,
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especially if we consider that they have been obtained in a more biologically setting,
where the introduction of some biological constraints inevitably affects the cognitive
abilities of the network. Moreover, we should also take into account that we have not
employed a proper supervisory signal. More details on the numerical simulations in
this section are provided in Appendix C.



Chapter 5

Conclusion, Discussions and Further
Perspectives

It is strongly believed that phenomena like learning and memory emerge when neu-
rons are connected with each other, constituting a complex network of interactions.
In the same vein of what happens in other physical systems, characterized by many
interacting particles, these collective phenomena are typically studied by means of
methods borrowed from statistical physics and relying on simplified models of single
neurons [6].

This work investigates neural networks from the perspective of statistical physics.
It is mainly focused on the two extreme topologies of neural networks, namely
feed-forward and recurrent neural networks.

In feed-forward neural networks, the input signal propagates forward from the
input layer up to the output one. The topology of this kind of networks make them
particularly suitable in implementing classification tasks. They are thus typically
employed as discriminative models, whose aim is to gather a given number of objects
in different categories, on the basis of their characteristic features. This condition
can be eventually achieved at the end of a training phase, during which the synaptic
couplings of the network are adapted in order to assign the object to its corresponding
class. Learning can then be thought as a search in the space of synaptic states, looking
for those configurations of the synaptic couplings satisfying the classification task
and actually representing the solutions of the learning problem [8].
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In this regard, we have mainly focused on the simplest kind of feed-forward
neural networks, namely the Perceptron. After having introduced the spherical
Perceptron model, namely when synaptic couplings are assumed to be continuous
variables confined on an hyper-sphere, and the binary Perceptron model, namely
when synaptic couplings are instead thought as binary variables, we have investigated
the more general and realistic case of the Discrete Perceptron model, where a
finite and discrete number of synaptic states are actually employed for encoding
information and where the sparseness of the neural coding, as well as, the Dale’s
principle are taken into account.

To this end, we extended both the analysis of the typical learning scenario [56]
and the corresponding large deviation analysis [78] of binary Perceptron models, to
this more general setting. It turned out that the same qualitative scenario holds for
the two models: typical solutions are isolated in the version space and embedded in a
landscape rich of meta-stable synaptic states. Despite that, there exist regions of the
version space, not detectable in the typical learning scenario described by the Gibbs
measure, but revealable thanks to the definition of an out-of-equilibrium measure,
that re-weights the statistical weight of the synaptic configurations in light of the
number of solutions surrounding a reference one. Within these regions, solutions are
organized in extremely dense clusters.

Thanks to the replica formalism, we have been able to detect for which values of
the storage load, the clusters are still guarantee to exist. In particular, we managed
to determine the specific value of the storage load at which the cluster is supposed
to either disappear, or to break in several disconnected components. This value has
always been found above 0.9αc, with αc being the critical capacity of the model,
namely the one above which no more solutions can be detected. This picture turned
out to be really robust to the tuning of both the number of available synaptic states
and the sparsity level.

We need here to point out one important further result. The critical capacity
of the discrete Perceptron model quite quickly saturates to the asymptotic limit of
continuous synaptic couplings. This suggests that synapses may exploit very few
bits of precision for encoding information [79].

One of the aim of the statistical physics approach to discrete Perceptron models,
was also to prove that the existence of extremely dense and robust clusters of solu-
tions, is still preserved in more biologically plausible settings. From the biological
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point of view, the discrete Perceptron model proposed in this work, is more realistic
with respect to the binary one, although still very far from describing real learning
scenarios, where typically input-output correlations have to be taken into account. In
spite of this, we have anyway show that the existence of extreme dense clusters of
solutions seems to be a characteristic trait of discrete networks, not affected by the
specific details of the model.

Moreover, despite the fact that the statistical physics analysis in the second
chapter, has been performed on a simple model, it can anyway provide more insights
on more biologically plausible ones. Indeed, it corroborates the hypothesis, suggested
by several experiments [40–42], of synaptic connections as binary switch devices,
providing at least one reason why this should be the actual strategy implemented by
the brain: the existence of extremely dense clusters provides regions of the version
space, where learning can take place in a much more efficient way, especially in
terms of robustness to noise.

This has indeed inspired the design of new learning algorithms as solvers of
the discrete Perceptron models, like the Entropy Driven Monte Carlo, and clarified
the reasons determining the effectiveness of the already existing learning protocols,
based on message-passing.

A still open question is the one concerning the role played by stochasticity in
neural computation. In the third chapter, we have thus proposed a binary Perceptron
model, where synapses are considered as intrinsically stochastic components. In
this setting, we have shown that stochasticity naturally drives the learning process
towards extremely dense regions of solutions. We have proved this to be the case
both from a theoretical point of view, by setting up a statistical physics analysis
based on the replica formalism, and from an algorithmic point of view, by designing
a new learning algorithm, able to translate the binary learning problem into a con-
tinuous optimization problem. We thus hope that the proposed learning model can
provide more insights on learning in biological networks, where stochasticity and
low precision in synaptic connections are currently matter of a lively debate.

Through an analysis concerning the geometric properties of the version space in
stochastic binary Perceptrons models, we have further highlighted the connection
between the flatness of the energy landscape in dense regions of solutions and the
generalization performances, by comparing the new learning algorithm, and its more



121

biologically inspired variants, with both Simulated Annealing [135] and Reinforced
Belief Propagation [57].

As a next step, we have recently started to extend the stochastic learning model
of the third chapter, to deep learning settings. We have trained a feed-forward neural
network with three layers of hidden units by means of the backpropagation algorithm,
employing the stochastic gradient descent schedule and exploiting an approximation
of uncorrelated neurons [136]. We have already obtained ∼ 1.7% as generalization
error on the MNIST data set [99]. This is an encouraging result, if we consider that
in deep learning synaptic couplings are usually continuous and convolutional layers
are typically employed for image recognition. Moreover, we should also notice
that, the previously proposed learning algorithms for binary Perceptrons have never
been extended to deep learning, and that the newly proposed learning model can be
straightforwardly generalized to other constraint satisfaction problems.

In the fourth chapter, we have mainly focused on recurrent neural networks,
namely those networks where the response of each neuron plays the role of the
incoming signal for the other neurons to whom it is connected. As seen, these
networks are typically exploited as devices for the storage of specific patterns of
neuronal activity as well as generative models, namely those models able to infer
the statistic of the input data and then to generate new data sample according to the
inferred statistics.

In this context, we have proposed a new learning rule, according to which the
synaptic couplings have to adapt, in order to make the network able to store a given
set of patterns, or, more generally, to behave as a generative model. This new
learning rule, which we have called Delayed Correlation Matching, arises from the
optimization of the KL divergence between the dynamics of the network in presence
of an external field of intensity λ1 and carrying information on the input data, and the
dynamics of the same network but in presence of a weaker external field λ2. In the
case of strong biasing signals suddenly vanishing, we have seen that optimizing the
KL divergence is actually equivalent to optimize an on-line log-pseudo-likelihood.

Moreover, we have further shown that all the information needed to adapt the
synaptic couplings can be directly deduced from the dynamics itself. Indeed, the
DCM learning rule relies on a matching condition between time-delayed correlations
in presence of different field intensities, which aims to absorb the driving effect of
the external field within the synaptic connections.
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The DCM learning rule shows some common features as well as some distinct
traits with both Hebbian learning [66] and Contrastive Divergence [77]. Indeed, all
the three learning rules update the synaptic connections exploiting only information
that are locally available to each synapse. In particular, Hebbian learning can be
derived as the limit of strong biasing signals of the DCM learning rule. However,
we need here to point out that, conversely to the other two learning rules, DCM
preserves the asymmetry of synaptic couplings, thus being applicable to the context
of kinetic models.

The ultimate goal of this work was to design a new learning rule while relying on
a series of biological constraints, which can make the learning rule more amenable
from a biological point of view. We have thus considered the case of weak external
fields, that prevent the dynamics of the network from being fully dominated by the
external stimulus. We have further taken into account the sparsity of the neural
coding and the further constraint imposed by the Dale’s law, according to which
we can identify two different neuronal populations, namely the excitatory and the
inhibitory neurons [80, 81]. In particular, we have proposed three different inhibitory
schemes, aiming to mimic the effect of the underlying inhibitory network. We have
shown that, the introduction of all these biological constraints does not consistently
affect the network performances in terms of maximum achievable storage loads. This
still holds when adding hidden neuronal states: the DCM learning rule preserves
the representational power of the network, even in presence of the above-mentioned
biological constraints.

The DCM learning rule is further able to store patterns of activity in an online
learning regime, surprisingly reaching an extensive palimpsest capacity, and to deal
with correlated input patterns.

However, we should here to point out that matching two different quantities in
presence and in absence of an external stimulus, and then exploiting this matching for
learning, is not a new idea. This intuition has been already exploited in the context
of both discrete-time dynamics [137] and spiking neural networks [138, 139], where
the matching quantities are typically local currents, rather than correlations among
neuronal states [140–142]. However, despite the fact that these models are more
detailed and closer to biology, they typically rely on not local learning protocols.

The same idea of matching correlations has been already developed in Ref.
[114]. However, in this case, the learning rule can only provide symmetric synaptic
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couplings, being based on the matching between equal times correlations, estimated
through Belief Propagation.

The model in Ref. [114] is relative to diluted recurrent neural networks, namely
those networks where each neuron is connected to just a subset of all the other
neurons in the network. Recently, we have adapted the same model to the case of
fully connected neural networks [143]. In particular we have shown that, in presence
of highly correlated patterns of activity, the performances of the resulting learning
rule can be enhanced if, instead of matching the correlations in presence of an initial
external field of intensity λ1 with the ones in presence of a vanishing field λ2, we
match the first ones with the correlations estimated in presence of an antagonist
external field of intensity −λ1. Why this is the case can be explained considering
that, the last matching not only requires the synaptic connections to absorb the
driving effect of the external field, but also to react to an external stimulus trying to
detrimentally interfere with the storage of the input patterns. In this way we are thus
introducing some robustness within the model. As a next step, we will then apply
this idea to the DCM learning rule, in order to see if this can further improve the
learning performances in presence of correlated patterns.

In Ref. [116], the authors designed a three threshold learning rule based on
biological features and relying on the distribution of the input data, instead of the
evolution of the network. However, conversely to what happens when applying the
DCM learning rule in the context of weak external fields, it would seems that the
three threshold learning rule needs stronger external signals, being the storage load
drastically decreasing with the external fields.

In the next future, it would be interesting to generalize this learning model to
continuous time scales, spiking networks and time-dependent inputs. Moreover,
more complex architectures of visible and hidden neurons than RBMs should be
taken into account.
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Appendix A

Belief Propagation (BP)

In Statistical Physics, we typically deal with systems characterized by many compo-
nents, whose states are defined by mutually dependent random variables, through a
series of more or less complex interactions. The scheme of the interactions among
random variables is provided by means of graphical models, relying on factor graphs
[62].

In this regard, suppose to have a system characterized by N interacting random
variables xxx = {xi}N

i=1 taking values in a finite alphabet χ , whose joint probability
distribution can be written in the following factorized form:

P(xxx) =
1
Z

M

∏
a=1

Pa (xxx∂a) , (A.1)

where Z is a normalization constant and ∂a denotes a sub-set of the interacting
variables, distributed according to Pa (xxx∂a). For instance, for the 1D Ising model,
where χ = {−1,1}, P(xxx) is given by:

P(xxx) =
1
Z

exp(−βH (xxx))

=
1
Z

N−1

∏
i=1

exp(βJxixi+1)
N

∏
i=1

exp(βhxi) ,

(A.2)
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being H (xxx) =−J ∑
N−1
i=1 xixi+1−h∑

N
i=1 xi, with J > 0 the interaction or coupling

constant and h the external field. The joint probability distribution can be easily
visualized through a graph made of two kinds of nodes:

• the variable nodes, associated to the N variables of the problem;

• the function nodes, related to the M groups of interacting variables.

In the following, we will use the index i for denoting the variable nodes and the
index a for the function nodes.

Belief Propagation is an iterative algorithm that estimates the marginals of the
joint probability distribution P(xxx), provides samples according to P(xxx) and computes
many interesting quantities arising from P(xxx), such as the partition function or the
free energy.

The way it works is the following. It associates to each edge (i,a) of the
factor graph, two messages: ν t

i→a (xi), namely the message that propagates from
the variable node i to the function node a, and ν̂ t

a→i (xi), namely the message that
instead propagates in the opposite direction. Here t is the index associated to each
iteration of the algorithm. The messages are then updated according to the following
BP-equations:

ν
t+1
i→a (xi)≃ ∏

b∈∂ i\a
ν̂

t
b→i (xi)

ν̂
t
a→i (xi)≃ ∑

xxx∂a\i

Pa (xxx∂a) ∏
j∈∂a\i

ν
t
j→a
(
x j
)
.

(A.3)

These two messages have a precise meaning. Indeed, when t → ∞, ν∞
i→a (xi)

simply coincides with the marginal probability distribution of xi in the specific case
the function node a has been removed from the factor graph. Equivalently, ν̂∞

a→i (xi)

represents the marginal probability distribution of the variable xi in absence of the
variable node i. The marginal probability distribution is then estimated at the t-th
iteration as:



137

ν
t
i (xi)≃ ∏

a∈∂ i
ν̂

t−1
a→i (xi) . (A.4)

This approximation can be proven to be exact for tree factor graphs. However,
being the BP equations based on local updates, it can be considered as a valuable
estimate even in those regions of loopy factor graphs, where a local tree structure
can be detected.

The BP equation in the Discrete Perceptron model

The Belief Propagation algorithm is usually widely exploited in Constraint Satisfac-
tion Problems. In these kinds of problems, a set of random variables has to satisfy a
certain number of constraints. This is the case of the classification problem in the
discrete Perceptron model, where the constraints are denoted by the set of p input
patterns {ξ µ}p

µ=1, that the network has to properly classify, whereas the microscopic
variables are exactly represented by the synaptic couplings {Wi}N

i=1.

As seen in the main text, the joint probability distribution of the synaptic cou-
plings is given by selecting all those configurations that manage to satisfy all the
constraints at once:

P(WWW ) =
1
Z

p

∏
µ=1

Θ

(
yµ

(
WWW ·ξξξ µ

√
N
−θ
√

N
))

, (A.5)

where yµ defines the class-label associated to the pattern ξξξ
µ , that is multiplied

with the actual response of the network, compared to a local threshold θ
√

N. The
joint probability distribution of the synaptic couplings shows the same factorized
form of the probability distribution in Eq. (A.1), where the interactions among
variables are here restated in terms of constraints.

In the following, we derive the BP-equations associated to this constraint satis-
faction problem, in order to extract the marginals of the joint probability distribution
P(WWW ). The BP-equations of a discrete Perceptron learning problem can be written
in this case as:
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ν
t+1
i→µ

(Wi)≃ ∏
µ ′∈∂ i\µ

ν̂
t
µ ′→i (Wi)

ν̂
t
µ→i (Wi)≃ ∑

WWW ∂ µ\i

Θ

(
yµ

(
WWW ·ξξξ µ

√
N
−θ
√

N
))

∏
j∈∂ µ\i

ν
t
j→µ

(
Wj
)
.

(A.6)

We proceed computing the message from function to variable nodes, defined in
the last equation. Indeed, the expression of the message from variable to function
nodes, directly follows from it. To this end, we can start introducing the following
definition:

uµ =
WWW ·ξξξ µ

√
N
−θ
√

N (A.7)

by means of the Dirac-Delta, namely

ν̂
t
µ→i (Wi)≃

∫
duµ

∑
WWW ∂ µ\ j

Θ(yµuµ)δ

(
uµ −WWW ·ξξξ µ

√
N

+θ
√

N
)

× ∏
j∈∂ µ\i

ν
t
j→µ

(
Wj
)
.

(A.8)

We then express the Dirac-Delta through its integral representation:

ν̂
t
µ→i (Wi)≃

∫ duµdûµ

2π
∑

WWW ∂ µ\i

Θ(yµuµ)exp
(

iûµ

(
uµ +θ

√
N
))

× ∏
j∈∂ µ\i

exp

(
−iûµ

Wj ·ξ µ

j√
N

)
∏

j∈∂ µ\i
ν

t
j→µ

(
Wj
)
,

(A.9)

where we have further exploited the identity WWW · ξξξ µ
= ∑ j∈∂ µ\iWj · ξ µ

j , being
the summation over all possible configurations of WWW restricted only to the nearest
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neighbours of the function node µ , except i. Thanks to that, we are now able to
factorize over the index j, thus exploiting the following identity:

∑
WWW ∂ µ\i

·= ∏
j∈∂ µ\i

∫
dµ
(
Wj
)
·, (A.10)

where dµ (W ) denotes the measure over the synaptic couplings, namely

dµ (W ) =
∫

dW
L

∑
l=0

δ (W − l) , (A.11)

being L+1 the total number of available synaptic states. The function to variable
message is then given by:

ν̂
t
µ→i (Wi)≃

∫ duµdûµ

2π
Θ(yµuµ)exp

(
iûµ

(
uµ +θ

√
N
))

× ∏
j∈∂ µ\i

[∫
dµ
(
Wj
)

exp

(
−iûµ

Wj ·ξ µ

j√
N

)
ν

t
j→µ

(
Wj
)]

.

(A.12)

We can now perform an asymptotic expansion of the exponential for large N:

exp

(
−iûµ

Wj ·ξ µ

j√
N

)
≃ 1− iûµ

Wj ·ξ µ

j√
N
− (ûµ)2

2

(
Wj ·ξ µ

j

)2

N
. (A.13)

Plugging this expansion in Eq. (A.12), we get:
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ν̂
t
µ→i (Wi)≃

∫ duµdûµ

2π
Θ(yµuµ)exp

(
iûµ

(
uµ +θ

√
N
))

× ∏
j∈∂ µ\i

[∫
dµ
(
Wj
)

ν
t
j→µ

(
Wj
)

× exp

log

1− iûµ
Wj ·ξ µ

j√
N
− (ûµ)2

2

(
Wj ·ξ µ

j

)2

N



 ,

(A.14)

where we have further exploited the properties of exponential and logarithmic
functions. The variable to function node message, namely ν t

j→µ

(
Wj
)
, represents the

marginal distribution of the synaptic coupling Wj in absence of the function node µ ,
at the t-th iteration of the BP equations. Therefore we can write:

ν̂
t
µ→i (Wi)≃

∫ duµdûµ

2π
Θ(yµuµ) ∏

j∈∂ µ\i

[
exp
(

iûµ

(
uµ +θ

√
N
))

× exp

log

1− iûµ

〈
Wj
〉
·ξ µ

j√
N

− (ûµ)2

2

(〈
Wj
〉
·ξ µ

j

)2

N



 ,

(A.15)

where we have defined: ⟨·⟩ =
∫

dµ
(
Wj
)
· ν t

j→µ

(
Wj
)
. At this point, we can

further expand the logarithm for large N, thus obtaining:

ν̂
t
µ→i (Wi)≃

∫ duµdûµ

2π
Θ(yµuµ)exp

(
iûµ

(
uµ +θ

√
N
))

× ∏
j∈∂ µ\i

[
exp

(
−iûµ

〈
Wj
〉
·ξ µ

j√
N

− (ûµ)2

2N
Var
(
Wj
)(

ξ
µ

j

)2
)]

,

(A.16)
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with Var
(
Wj
)
=
〈

W 2
j

〉
−
〈
Wj
〉2. Exploiting the properties of the exponential

function, we then obtain:

ν̂
t
µ→i (Wi)≃

∫ duµdûµ

2π
Θ(yµuµ)

× exp

(
iûµ

(
uµ +θ

√
N−

mcav
W√
N

)
− (ûµ)2

2
σcav

W
N

)
,

(A.17)

where we have defined:

mcav
W = ∑

j

〈
Wj
〉
·ξ µ

j −⟨Wi⟩ ·ξ µ

i

σ
cav
W = ∑

j
Var
(
Wj
)(

ξ
µ

j

)2
−Var(Wi)

(
ξ

µ

i
)2
.

(A.18)

These two quantities represent respectively the cavity mean and variance, since
they quantify the mean and the variance of the synaptic couplings distribution,
in absence of the synaptic variable node i. We can notice that the ûµ -integral is
a Gaussian integral, thus it can be easily computed analytically, leading to the
following result:

ν̂
t
µ→i (Wi)≃

∫ duµ√
2π

((
σcav

W
)2
/N
)

×Θ(yµuµ)exp

−
(

uµ +θ
√

N− mcav
W√

N

)2

2(
σcav

W )
2

N

 .

(A.19)

The remaining uµ -integral can be computed analytically as well, by splitting the
domain of integration into different intervals, according to the theta-function. We
thus finally obtain:



142 Belief Propagation (BP)

ν̂
t
µ→i (Wi)≃



1
2erfc

(
Nθ−mcav

W√
2(σcav

W )
2

)
if yµ = 1

1− 1
2erfc

(
Nθ−mcav

W√
2(σcav

W )
2

)
if yµ =−1.

(A.20)

In the end, the BP-equations for a discrete Perceptron model are given by:

ν
t+1
i→µ

(Wi)≃ ∏
µ ′∈∂ i\µ

1
2

erfc

 Nθ −mcav
W√

2
(
σcav

W
)2

δ

(
yµ ′−1

)
+

+

1− 1
2

erfc

 Nθ −mcav
W√

2
(
σcav

W
)2

δ

(
yµ ′+1

)

ν̂
t
µ→i (Wi)≃

1
2

erfc

 Nθ −mcav
W√

2
(
σcav

W
)2

δ (yµ −1)+

+

1− 1
2

erfc

 Nθ −mcav
W√

2
(
σcav

W
)2

δ (yµ +1)

 .

(A.21)

These equations need to be iterated till a fixed point is reached. From the
messages, as we said, we can then compute every other interesting quantity, such as
the partition function, the free energy and, in particular, the entropy.



Appendix B

Statistical Physics Analysis of the
Stochastic Perceptron

B.1 Energy of a Binarized Configuration

In this section, we compute the average training error associated to a binarized
configuration, i.e. Wi = sign(mi), namely

E (q∗) = 1− lim
N→∞

1
αN

EP(ξξξ
µ ,yµ)

[
p

∑
µ=1

〈
Θ

(
yµ

∑
i

sign(mi)ξ
µ

i

)〉]
, (B.1)

whit ⟨·⟩ being the thermal average, defined as:

⟨·⟩=
∫

Dm · δ
(
∑i m2

i −q∗N
)

exp(βL (m))∫
Dmδ

(
∑i m2

i −q∗N
)

exp(βL (m))
. (B.2)

In the specific case of random identically and independently distributed input
data

{
ξξξ

µ
,yµ
}p

µ=1, we can simply neglect the summation over all patterns and then
compute the resulting mean training error per pattern:

e(q∗) = 1− lim
N→∞

1
αN

EP(ξξξ
µ ,yµ)

〈
Θ

(
yµ

∑
i

sign(mi)ξ
µ

i

)〉
. (B.3)
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The quenched average can be tackled by means of the replica formalism. To this
end, we imagine to replicate our system n times, so that we can write:

EP(ξξξ
µ ,yµ)

〈
Θ

(
yµ

∑
i

sign(mi)ξ
µ

i

)〉
=

= lim
n→0

Eξ

[∫ n

∏
a=1

Dma
δ

(
∑

i
(ma

i )
2−qaaN

)
θ

(
∑i sign(m1

i )ξ
1
i√

N

)

×∏
µ,a

Hβ

(
− ∑i ξ

µ

i ma
i√

N
(√

1−q∗
))] ,

(B.4)

where we have made explicit the expression of the log-likelihood L (ma) in Eq.
(3.7). We can then introduce the following auxiliary variables:

uµ
a =

1√
N ∑

i
ξ

µ

i ma
i

ũ =
1√
N ∑

i
sign(m1

i )ξ
1
i

(B.5)

through Dirac-deltas and then exploit their integral representation, so that in the
end we obtain:
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EP(ξξξ
µ ,yµ)

〈
Θ

(
yµ

∑
i

sign(mi)ξ
µ

i

)〉
=

= lim
n→0

∫
∏
i,a

dma
i

∫
∏

a

dq̂aa

2π
exp

(
−1

2 ∑
a

(
Nq̂aaqaa− q̂aa ∑

i
(ma

i )
2

))

×
∫

∏
µ,a

duµ
a dûµ

a

2π
∏
µ,a

Hβ

(
− uµ

a√
1−q∗

)
EP(ξξξ

µ ,yµ)

[∫ dũd ˆ̃u
2π

θ(ũ)

× exp

(
i∑

a,µ
uµ

a ûµ
a − i ∑

µ,a,i

ξ
µ

i ma
i√

N
ûµ

a + iũ ˆ̃u− i
∑i sign(m1

i )ξ
1
i√

N
ˆ̃u

)]
.

(B.6)

The average over the training set can be carried out, by assuming that: ξ̄
µ

i = 0
and Var

[
ξ

µ

i
]
= 1. In order to compute this average, we need however to distinguish

between two different cases:

• µ ̸= 1:

EP(ξξξ
µ ,yµ)

[
exp

(
− i√

N ∑
a,i

ξ
µ

i ma
i ûµ

a

)]
= exp

(
− 1

2N ∑
i

∑
a,b

ma
i mb

i ûµ
a ûµ

b

)

• µ = 1:

EP(ξξξ
µ ,yµ)

[
exp

(
− i√

N ∑
i

(
∑
a

ma
i û1

a + sign(m1
i ) ˆ̃u
))]

=

= exp

(
− 1

2N ∑
i

(
∑
a,b

ma
i mb

i û1
aû1

b + ˆ̃u2 +2sign(m1
i ) ˆ̃u∑

a
ma

i û1
a

))
.

Recombining the two cases into one single expression, we then obtain:
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EP(ξξξ
µ ,yµ)

[
θ

(
∑i sign(mi)ξ

µ

i√
N

)]
=

= lim
n→0

∫
∏
i,a

dma
i

∫
∏

a

dq̂aa

2π
∏

a
exp

(
−1

2 ∑
a

Nq̂aaqaa− q̂aa ∑
i
(ma

i )
2

)

×
∫

∏
µ,a

duµ
a dûµ

a

2π
∏
µ,a

Hβ

(
− uµ

a√
1−q∗

)
×
∫ dũd ˆ̃u

2π
θ(ũ) exp

(
i∑

a,µ
ûµ

a uµ
a + i ˆ̃uũ

)

× exp

(
− 1

2N ∑
µ,i

∑
a,b

ûµ
a ûµ

b ma
i mb

i −
1

2N ∑
i

(
ˆ̃u2 +2sign(m1

i ) ˆ̃u∑
a

û1
ama

i

))
.

(B.7)

At this point, we introduce the overlap parameters, namely

qab =
1
N ∑

i
ma

i mb
i

pa =
1
N ∑

i
sign(m1

i )m
a
i

(B.8)

through Dirac-deltas, that can be then expressed through their integral represen-
tation. Therefore, we obtain:
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EP(ξξξ
µ ,yµ)

[
θ

(
∑i sign(mi)ξ

µ

i√
N

)]
=

= lim
n→0

∫
∏
a<b

dqab ∏
a≤b

dq̂ab

2π

∫
∏

a

d pad p̂a

2π
exp

(
−N

(
1
2 ∑

a,b
q̂abqab +∑

a
p̂a pa

))

×G N
S
(
q̂∗, q̂, p̂, ˆ̃p

)
×G M−1

E (q∗,q)×G ′E (q∗,q, p, p̃) ,

(B.9)

where we have defined:

GS =
∫ 1

−1
∏

a
dmaexp

(
1
2 ∑

a,b
q̂abmamb + sign(m1)∑

a
p̂ama

)

GE =
∫

∏
a

duadûa

2π
∏

a
Hβ

(
− ua√

1−q∗

)
exp

(
i∑

a
uaûa−

1
2 ∑

a,b
qabûaûb

)

G ′E =
∫

∏
a

duadûa

2π

∫ dũd ˆ̃u
2π

∏
a

Hβ

(
− ua√

1−q∗

)
θ(ũ)

× exp

(
i∑

a
uaûa−

1
2

ˆ̃u2 + iũ ˆ̃u− 1
2 ∑

a,b
qabûaûb− ˆ̃u∑

a
paûa

)
(B.10)

The two factors GS and GE are respectively called entropic and energetic part.
The term entropic refers to the fact that GS is defined through a sum over all synaptic
couplings satisfying a given constraint, while the term energetic refers to the fact
that GE contains information on the energy function of the model.

At this point, we apply the RS assumption, even if we need to break the symmetry
for making a distinction between the order parameter qab, describing the overlap
between two distinct replicas, and the self-overlap qaa, constrained to the mean
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squared norm q∗. Moreover, we have to make a further distinction between the cases
a = 1 and a ̸= 1, associated to the pa overlap parameter. Then:

qab =

q∗ if a = b

q if a ̸= b

pa =

p if a = 1

p̃ if a ̸= 1
.

(B.11)

The same holds for the conjugate parameters. Applying the RS assumption on
the structure of the order parameters, we obtain, for the entropic part:

GS =
∫

Dz
∫ 1

−1
dm1

[∫ 1

−1
dmexp

(√
q̂zm+

1
2
(q̂∗− q̂)m2 + ˆ̃psign(m1)m

)]n−1

,

(B.12)

while, for the energetic part:

GE =
∫

Dz
[∫ dudû

2π
Hβ

(
− u√

1−q∗

)
exp
(
−1

2
(q∗−q) û2 + i(

√
qz+u) û

)]n

.

(B.13)

Finally, for G ′E we get:
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G ′E =
∫

Dz
∫

D ˆ̃u
∫ dũ√

2π
θ(ũ)exp

(
iũ ˆ̃u
)

×
[∫ dudû

2π
Hβ

(
− u√

1−q∗

)
exp
(
−1

2
(q∗−q) û2 + i

√
qzû+ iuû− p̃û ˆ̃u

)]n−1

×
∫ dudû

2π
Hβ

(
− u√

1−q∗

)
exp
(
−1

2
(q∗−q) û2 + i

√
qzû+ iuû− pû ˆ̃u

)
.

(B.14)

Taking the limit of n→ 0, we then obtain:

GS =
∫

Dz
∫ 1

−1
dm1

exp
(√

q̂zm1 + 1
2 (q̂∗− q̂)

(
m1)2

+ p̂sign(m1)m1
)

∫ 1
−1 dmexp

(√
q̂zm+ 1

2 (q̂∗− q̂)m2 + ˆ̃psign(m1)m
)

GE = 1

G ′E =
∫

Dz
∫

D ˆ̃u
∫ dũ√

2π
θ(ũ)exp

(
i ˆ̃uũ
)

×
[∫ dudû

2π
Hβ

(
− u√

1−q∗

)
exp
(
−1

2
(q∗−q)û2 + iuû+ i

(√
qz+ ip̃ ˆ̃u

)
û
)]−1

×
∫ dudû

2π
Hβ

(
− u√

1−q∗

)
exp
(
−1

2
(q∗−q)û2 + iuû+ i

(√
qz+ ip ˆ̃u

)
û
)
.

(B.15)

In order to solve the integrals in G ′E , first of all, we perform the following rotation:
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z′ =
√

qz+ ip̃ ˆ̃u√
q− p̃2

→ z =
√

qz′− ip̃ ˆ̃u′√
q− p̃2

ˆ̃u′ =
˜√q ˆ̃u− ip̃z√
q− p̃2

→ ˆ̃u =

√
q ˆ̃u′+ ip̃z′√

q− p̃2
.

(B.16)

In this way, we can rewrite G ′E in the form:

G ′E (q∗,q, p, p̃) =
∫

Dz
f (z)
g(z)

, (B.17)

where the denominator, performing the û-Gaussian integral, is given by:

g(z) =
∫

Du Hβ

(
−u
√

q⋆−q− z
√

q− p̃2
√

1−q∗

)
, (B.18)

whereas, the numerator is defined as:

f (z) =
∫

D ˆ̃u
∫ dũ√

2π
θ(ũ)exp

(
i

(√
q ˆ̃u+ ip̃z√
q− p̃2

)
ũ

)∫ dudû
2π

Hβ

(
− u√

1−q∗

)

× exp

(
−1

2
(q∗−q)û2 + i

(
u+

(q− pp̃)z+ i
√

q(p− p̃) ˆ̃u√
q− p̃2

)
û

)
.

(B.19)

We now proceed computing the integrals appearing in the numerator f (z), start-
ing from ˆ̃u-integral. Grouping all together the ˆ̃u-dependent contributions, we recog-
nize the ˆ̃u-integral to be a Gaussian integral, thus obtaining:
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f (z) =
∫ dudû

2π
Hβ

(
− u√

1−q∗

)∫
D ˆ̃udũ√

2π
θ(ũ) exp

(
i

(√
qũ+ i

√
q(p− p̃) û√

q− p̃2

)
ˆ̃u

)

× exp

(
−1

2
(q∗−q)û2 + i

(
u+

(q− pp̃)z√
q− p̃2

)
û+ i

ip̃z√
q− p̃2

ũ

)

=
∫ dudû

2π
Hβ

(
− u√

1−q∗

)∫ dũ√
2π

θ(ũ)exp

−1
2

(√
qũ+ i

√
q(p− p̃) û√

q− p̃2

)2


× exp

(
−1

2
(q∗−q)û2 + i

(
u+

(q− pp̃)z√
q− p̃2

)
û+ i

ip̃z√
q− p̃2

ũ

)
.

We can then compute the ũ-integral by first expanding and then completing the
squares. This makes the ũ-integral to be a Gaussian integral, that we can easily solve:

f (z) =

√
q− p̃2
√

q

∫ dudû
2π

Hβ

(
− u√

1−q∗

)
H

 i
√

q
(
(p− p̃) û− ip̃

√
q−p̃2

q z
)

√
q− p̃2



× exp

(
−1

2
(q⋆−q) û2 + iû

(
u+

(
q− p̃2)√
(q− p̃2)

z

)
+

1
2

p̃2z2

q

)
.

(B.20)

The û-integral, after some change of variables, can be rewritten as:
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f (z) =

√
q− p̃2√

q(q∗−q)
exp
(

1
2

p̃2z2

q

)∫ du√
2π

Hβ

(
− u√

1−q∗

)

× exp

− 1
2(q⋆−q)

(
u+

(
q− p̃2)√
(q− p̃2)

z

)2


×
∫

D û H


(p−p̃)√

q∗−q û+ i (p−p̃)
q∗−q

(
u+ (q−p̃2)√

(q−p̃2)
z

)
− ip̃
√

q−p̃2

q z

√
q−p̃2

i
√

q

 .

(B.21)

Then, to perform the integration we take advantage of the formula for the inte-
gration of error functions, namely

∫
DxH

(
Ex+F

G

)
=

F√
E2 +G2

. (B.22)

This formula, applied to the û-integral, finally gives:

f (z) =

√
q− p̃2√

q(q∗−q)

∫ du√
2π

Hβ

(
− u√

1−q∗

)

× exp

− 1
2(q⋆−q)

(
u+

(
q− p̃2)√
(q− p̃2)

z

)2

+
1
2

p̃2z2

q



×H


(

i (p−p̃)
q∗−q

(
u+ (q−p̃2)√

(q−p̃2)
z

)
− ip̃
√

q−p̃2

q z

)
√

(p−p̃)2

q∗−q −
q−p̃2

q

 .

(B.23)
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To simplify this expression we can make the further change of variable u+
(q−p̃2)√
(q−p̃2)

z→ u, so that we get:

f (z) =

√
q− p̃2
√

q
exp
(

1
2

p̃2z2

q

)∫
Du Hβ

−
√

q∗−qu− (q−p̃2)√
(q−p̃2)

z

√
1−q∗



×H


(

i (p−p̃)√
q∗−qu− ip̃

√
q−p̃2

q z
)

√
(p−p̃)2

q∗−q −
q−p̃2

q

 .

(B.24)

At this point, we can combine together the numerator f (z) with the denominator
g(z), thus obtaining the full expression for G ′E , namely

G ′E =

√
q− p̃2
√

q

∫
Dz

[∫
Du Hβ

(
−u
√

q⋆−q− z
√

q− p̃2
√

1−q∗

)]−1

exp
(

1
2

p̃2z2

q

)

×
∫

Du Hβ

−
√

q∗−qu− (q−p̃2)√
(q−p̃2)

z

√
1−q∗

H


(

i (p−p̃)√
q∗−qu− ip̃

√
q−p̃2

q z
)

√
(p−p̃)2

q∗−q −
q−p̃2

q

 .

(B.25)

To simplify this expression we can perform the further change of variable p̃√
qz→

z, which in the end gives back the very last expression for G ′E , namely

G ′E =
∫

Dz

∫
Du H

− ( (p−p̃)√
q∗−q u− p̃√

q z
)

√
1− p̃2

q −
(p−p̃)2
q∗−q

 Hβ

(
−
√

q∗−qu−√qz√
1−q∗

)
∫

Du Hβ

(
−u
√

q⋆−q−√qz√
1−q∗

) . (B.26)
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The remaining integrals in u and z have to be solved numerically, thanks to the
help of one of the different methods provided for numerical integration. The mean
training error per pattern is finally given by:

e(q∗) = 1− lim
N→∞

1
αN

lim
n→0

∫
∏
a<b

dqab ∏
a≤b

dq̂ab

2π

×
∫

∏
a

d pad p̂a

2π
exp(−Nψ (qab, q̂ab, pa, p̂a))G

′
E (qab, pa) ,

(B.27)

where, within the RS assumption and for n = 0, the integrand is given by, for
what concerns the action ψ (x):

ψ =−1
2

nq∗q̂∗−
1
2

n(n−1)qq̂− pp̂− (n−1)p̃ ˆ̃p+ lnGS +α lnGE

=−pp̂+ p̃ ˆ̃p+ lnGS +α lnGE ,

(B.28)

whit the entropic and the energetic part given by:

GS =
∫

Dz
∫ 1

−1
dm1

exp
(√

q̂zm1 + 1
2 (q̂∗− q̂)

(
m1)2

+ p̂sign(m1)m1
)

∫ 1
−1 dmexp

(√
q̂zm+ 1

2 (q̂∗− q̂)m2 + ˆ̃psign(m1)m
)

GE = 1,

(B.29)

whereas, for what concerns G ′E , it is the one provided in Eq. (B.26). The integrals
over the overlap parameters can be solved through the saddle-point approximation,
thus leading to the following set of saddle-point equations:
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∂ψ

∂ p

∣∣∣∣
sp
= 0→ p̂sp = 0

∂ψ

∂ p̃

∣∣∣∣
sp
= 0→ ˆ̃psp = 0

∂ψ

∂ p̂

∣∣∣∣
sp
= 0→ psp =

∫
Dz
∫ 1
−1 dmsign(m)m exp

(
−1

2 (q̂− q̂∗)m2 +
√

q̂zm
)∫ 1

−1 dm exp
(
−1

2 (q̂− q̂∗)m2 +
√

q̂zm
)

∂ψ

∂ ˆ̃p

∣∣∣∣
sp
= 0→ p̃sp =

∫
Dz
∫ 1
−1 dm exp

(
−1

2 (q̂− q̂∗)m2 +
√

q̂zm
)

sign(m)[∫ 1
−1 dm exp

(
−1

2 (q̂− q̂∗)m2 +
√

q̂zm
)]2

×
∫ 1

−1
dmm exp

(
−1

2
(q̂− q̂∗)m2 +

√
q̂zm

)
,

(B.30)

where the subscript “sp” is a short for saddle-point. Notice that, at the saddle
point: GS = 1. Within the saddle point approximation, these equations provide the
values of the optimal parameters that contribute the most to the integral in Eq. (B.27),
thus allowing for a direct estimation of the average training error, associated to
a binarized configuration, as a function of the mean squared norm of the control
parameters, namely q∗.



Appendix C

DCM learning rule

C.1 DCM derivation

The Delayed Correlation Matching (DCM) learning rule, described in the main
text, tries to match the dynamics of the network in presence of an external field of
intensity λ1, described by the transition probability P(sss′|sss;λ1), and the dynamics of
the same network but subject to a weaker external field λ2, described by the transition
probability P(sss′|sss;λ2). A measure of distance between two probability distributions
is provided by the Kullback-Leibler (KL) divergence. In the specific case we are
here considering, we can write the KL divergence as:

⟨KL(P(·|sss;λ1) ||P(·|sss;λ2))⟩P = ∑
{sss}

P(sss) ∑
{sss′}

P
(
sss′|sss;λ1

)
log

P(sss′|sss;λ1)

P(sss′|sss;λ2)
, (C.1)

where we further average over all possible configurations of the initial state
P(s). The transition probabilities are defined according to the Glauber dynamics in
Eq. (4.1), where the explicit expression of the sigmoidal-shaped activation function
depends on the neuronal state model we are considering. In particular, in the case of
si ∈ {−1,1} state variables, the activation function is given by:

σ±1

(
s|hλ ;β

)
=

e−β shλ

eβh + e−βhλ
. (C.2)
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On the contrary, in the case of sparse neuronal models, si ∈ {0,1} it can be
written as:

σ01

(
s|hλ ;β

)
=

e−β shλ

1+ e−βhλ
, (C.3)

where hλ
i = hext,λ

i +∑ j ̸=iW λ
i j s j − θ λ

i is as usual the local field, given by the
contribution of both the external field and the recurrent signal from surrounding
neurons, while β is the inverse temperature parameter.

Replacing the definition of the Glauber transition probability of Eq. (4.1) in Eq.
(C.1), we obtain the more explicit expression for the average KL divergence:

⟨KL(P(·|sss;λ1) ||P(·|sss;λ2))⟩P = ∑
{sss}

P(sss)∑
i

∑
s′i

σ

(
s′i|h

λ1
i

)
log

σ

(
s′i|h

λ1
i

)
σ

(
s′i|h

λ2
i

) . (C.4)

To determine the configuration of the network parameters, namely synaptic
couplings and thresholds, optimizing the KL divergence, we then need to differentiate
Eq. (C.4), with respect to W λ2

ik and θ
λ2
i , thus obtaining:

− ∂

∂W λ2
ik

⟨KL(P(·|sss;λ1) ||P(·|sss;λ2))⟩P = ∑
{sss}

P(sss)∑
s′i

σ

(
s′i|h

λ1
i

)(
s′i−

〈
s′i
〉)

sk

=
〈
s′isk
〉

P,λ1
−
〈
s′isk
〉

P,λ2

− ∂

∂θ
λ2
i

⟨KL(P(·|sss;λ1) ||P(·|sss;λ2))⟩P = ∑
{sss}

P(sss)∑
s′i

σ

(
s′i|h

λ1
i

)(
s′i−

〈
s′i
〉)

=−
(〈

s′i
〉

P,λ1
−
〈
s′i
〉

P,λ2

)
,

where we have exploited the identity:

∂

∂h
logσ (s|h;β ) = s−⟨s⟩h , (C.5)

with ⟨s⟩h = ∑s sσ (s|h;β ). The above derived equations rely on a matching
between activity correlations, subject to different intensities of the external field.
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The parameters of the network are then required to adapt in order to encode the
progressively vanishing and driving effect of the external field. We should here
notice that, the equation relative to thresholds is strictly necessary only in the sparse
neuronal model, being the notion of threshold in the ±1 model redundant, unless we
want to introduce some kind of robustness.

C.1.1 Kullback-Leibler divergence and log-pseudo-likelihood

In the specific case of strongly biasing external signals suddenly vanishing to zero,
namely λ1→ ∞ and λ2 = 0, optimizing the KL divergence is equivalent to optimize
an on-line version of the log-pseudo-likelihood. As we have already anticipated in
the main text, the log-pseudo-likelihood can be viewed as an approximation of the
log-likelihood, when the joint probability distribution of the input data is unknown
and therefore approximated by means of a product of conditional probabilities over
the neuronal states:

P
(
sss = ξξξ

µ
)
= ∏

i
P
(

si = ξ
µ

i |
{

s j = ξ
µ

j

}
j ̸=i

)
. (C.6)

Replacing the expression of the probability distribution over all possible initial
states in the case of strongly biasing signals, namely

Pclamp (sss;ξξξ ) =
N

∏
i=1

δsi,ξi, (C.7)

in the definition of the average KL divergence, we get:

〈
KL
[
P
(
·|sss;λ

ext = ∞
)
||P
(
·|sss;λ

ext = 0
)]〉

Pclamp(sss;ξξξ ) =

=−
N

∑
i=1

logP
(

si = ξi|
{

s j = ξ j
}

j ̸=i ;λ
ext = 0

)
.

(C.8)

Then, summing over all the patterns of activity that we want to store within
the network, we finally obtain the exact expression of an on-line version of the
log-pseudo-likelihood:
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L
({

ξξξ
µ
}
|Wi j,θ ;β

)
=

1
M

M

∑
µ=1

N

∑
i=1

logP
(

si = ξ
µ

i |
{

s j = ξ
µ

j

}
j ̸=i

;λ
ext = 0

)
.

(C.9)

The optimization of the log-pseudo-likelihood can be equivalently viewed as a
patterns stability criterion, since it enhances the probability for the network dynamics
to remain confined in the basins of attraction of a given pattern ξξξ

µ , even in absence
of the external field.

C.2 Inhibitory Schemes

In this section, we describe three different inhibitory schemes that we exploit in order
to mimic the effect of the inhibitory network. Indeed, it is known that, when the
synaptic couplings of the excitatory network are constrained to take a positive sign
and when the neuronal states are described by sparse neuronal models, an inhibitory
network is necessary for regulating the activity of the excitatory one, thus preventing
the dynamics to collapse in the trivial states of all on or all off neurons.

C.2.1 A global inhibitory unit

This scheme relies on the introduction of a global inhibitory unit, that has to replace
the effect of an entire network of inhibitory neurons. Here we propose the same
scheme of Ref. [116], but extended to a more general setting.

To this end, we consider a number G of different excitatory neuronal species, each
one constituted by a number Nα of neurons, such that the total number of excitatory
neurons is given by N = ∑

G
α=1 Nα . In order to keep the activity of each group of

neurons, namely Sα = ∑
N
i=1 sα

i , to the desired level faN, we introduce G different
global inhibitory units. The way through which the inhibitory units accomplish this

task, is to send a feed-back signal, namely I α

({
f β ,Sβ

}G

β=1

)
, to each group α of

neurons. The feed-back signal elastically drives the activity of each sub-population
of neurons towards the desired activity level, according to the current activity of both
the neurons within the same sub-population, and the ones belonging to the other
ones. We write the feed-back signal as:
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I α

({
f β ,Sβ

}G

β=1

)
=Hα

0 +ν
αα (Sα − f αNα)+ ∑

β ̸=α

ν
αβ

(
Sβ − f β Nβ

)
, (C.10)

where Hα
0 is a constant related to the basal inhibitory signal, namely when the

activity of the sub-population of neurons already coincides with the desired one,
while ναβ quantifies the intensity of the elastic signal. We need to determine these
two quantities in order to fully identify the inhibitory contribution.

To this end, we suppose that the local fields hα
i are Gaussian distributed. Then,

if we want exactly f αNα neurons to be active, we need to center the mean of the
Gaussian distribution around the mean threshold T α =

〈
θ α

i
〉
, such that it holds:

⟨hα
i ⟩= T α −H−1 ( f α)σα , (C.11)

where H−1 (x) =
√

2erfc−1 (2x) is the inverse error function, denoting how many
standard deviation σα of the Gaussian distribution are needed in order to exactly find
f αNα local fields above threshold.

In the left hand side of Eq. (C.11), we can compute the mean value
〈
hα

i
〉

by
relying on the definition of the local fields as a sum of three different contributions:
the usual two contributions, namely the external field and the recurrent contribution
from surrounding neurons, and the additional term constituted by the feed-back
inhibitory signal:

⟨hα
i ⟩=

〈
hext,α

i +∑
j ̸=i

W αα
i j sα

j + ∑
β ̸=α

∑
j

W αβ

i j sβ

j −Hα
0 +

−ν
αα (Sα − f αNα)− ∑

β ̸=α

ν
αβ

(
Sβ − f β Nβ

)〉
.

(C.12)

If we now sum and subtract the term ∑β W αβ Sβ in the right hand side of Eq.
(C.12), we get:
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⟨hα
i ⟩= hext,α +W αα (Sα − f α)− ∑

β ̸=α

W αβ Sβ −Hα
0 +

−ν
αα (Sα − f αNα)− ∑

β ̸=α

ν
αβ

(
Sβ − f β Nβ

)
.

(C.13)

Finally, we can compute the standard deviation σα in the right hand side of Eq.
(C.11), by relying on both the definitions of local fields and variances of probability
distributions in terms of squares of mean values. We thus obtain:

σα =

√(
σαα

W
)2
(Sα − f α)+ ∑

β ̸=α

(
σ

αβ

W

)2
Sβ , (C.14)

with σ
αβ

W being the standard deviation associated to the synaptic couplings
distribution. We can now expand σα around the desired activity level f αNα , thus
getting:

σα =

√
f α (Nα −1)

(
σαα

W
)2

+ ∑
β ̸=α

(
σ

αβ

W

)2
f β Nβ×

×

1+

(
σαα

W
)2
(Sα − f αNα)+∑β ̸=α

(
σ

αβ

W

)2(
Sβ − f β Nβ

)
2
(

f α (Nα −1)
(
σαα

W
)2

+∑β ̸=α

(
σ

αβ

W

)2
f β Nβ

)
 ,

(C.15)

where, in the last expression, we have further summed and subtracted the term

∑β

(
σ

αβ

W

)2
f β Nβ within the square root, before performing the expansion. Plugging

Eq. (C.13) and Eq. (C.15) into Eq. (C.11), we finally get both Hα
0 and ναβ :
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Hα
0 = hext,α +(Nα −1)W αα f α + ∑

β ̸=α

NβW αβ f β+

+ H−1 ( f α)

√
f α (Nα −1)

(
σαα

W
)2

+ ∑
β ̸=α

(
σ

αβ

W

)2
f β Nβ −T α

ν
αα =W αα +

H−1 ( f α)
(
σαα

W
)2

2

√
f α (Nα −1)

(
σαα

W
)2

+∑β ̸=α

(
σ

αβ

W

)2
f β Nβ

ν
αβ =W αβ +

H−1 ( f α)
(

σ
αβ

W

)2

2

√
f α (Nα −1)

(
σαα

W
)2

+∑β ̸=α

(
σ

αβ

W

)2
f β Nβ

.

(C.16)

We need here to point out that, the modulation of the synaptic efficacy through
the DCM learning rule is assumed to be an adiabatic process. Therefore, the mean of
the synaptic weights, namely W αβ , and the variance, namely σ

αβ

W , are not required
to adapt during the training phase, since their fluctuations take place at very long
time scales.

Moreover, in the equation related to the basal inhibitory constant Hα
0 , it is present

a contribution coming from the external field, namely hext,α . This simply implies
that, those neurons that are not subject to any external field are kept fixed to their
quiescent state.

We derived these equations in a quite general context. The fully-visible case can
then be obtained by simply considering one single sub-population, namely G = 1,
whereas the visible-hidden case can be recovered by considering two different sub-
populations of neurons, namely the visible and the hidden neurons. In this case,
G = 2.

C.2.2 The soft winner-takes-all scheme

We design the soft winner-takes-all scheme directly acting on the network dynamics,
described by the Glauber transition probability in Eq. (4.1). Before the dynamics
drives the network towards the next configuration of neuronal activity, all the local
fields are sorted in an increasing order, according to their magnitudes. An inhibitory
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signal then sets the spiking threshold just below the f N-th local field. This scheme
presents the advantage of having more control on the precise value of the network
current activity.

In the case of visible-hidden units, we separately apply the soft winner-takes-all
scheme to both populations of neurons.

C.2.3 The spiking threshold modulation scheme

The adaptive threshold inhibitory scheme arises from the exact mapping between the
±1 and sparse neuronal states model, namely ŝi→ si = 2ŝi−1, with ŝi ∈ {0,1} and
si ∈ {−1,1}. In the sparse neuronal states model, the local field takes into account
the further contribution of the local threshold:

ĥi = ĥext
i +∑

j
Ŵi j ŝi− θ̂i. (C.17)

According to the mapping mentioned above, provided that it holds ĥext
i = 2hext

i ,
Ŵi j = 4Wi j and θ̂i = 2∑ j Wi j =

1
2 ∑ j Ŵi j , the local field of the sparse neuronal states

model in Eq. (C.17), can be written in terms of the parameters of the ±1 neuronal
states model as:

ĥi = 2

(
hext

i +∑
j

Wi jsi

)
. (C.18)

Notice that the condition on the local threshold, namely

θ̂i =
1
2 ∑

j
Ŵi j, (C.19)

in the case we set the desired mean activity of the network to f = 1/2, translates
into:

θ̂i = f ∑
j

Ŵi j =

〈
∑

j
Ŵi j ŝi

〉
. (C.20)
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Because of that, we can then rewrite the local fields of the sparse neuronal states
model as:

ĥi = ĥext
i +∑

j
Ŵi j ŝi− θ̂i

= ĥext
i +∑

j
Ŵi j (ŝi− f ) .

(C.21)

This induces a slightly change in the definition of the DCM learning rule, namely

∆Wi j ∝

(〈
st+1

i
(
st

j− f
)〉

t,λ1
−
〈
st+1

i
(
st

j− f
)〉

t,λ2

)
. (C.22)

Therefore, for the exact mapping to hold, the thresholds are required to adapt
in light of the modulation of the synaptic couplings. Even if this holds only when
f = 1/2, it reveals to be necessary in the on-line learning regime in order to achieve
an extensive palimpsest capacity.

C.3 TAP Approach

The DCM learning rule relies on the matching between activity correlations in
presence of different intensities of the external field. Estimating correlations in
kinetic models may be not an easy task. Indeed the lack of an Hamiltonian, does
not allow to straightforwardly take advantage of the usual Mean Field methods. As
pointed out in the main text, in the more biologically plausible setting, we directly
estimate these correlations from the network dynamics, through Monte Carlo Markov
Chains (MCMCs) and assuming ergodicity to hold. However, in kinetic models,
correlations can be also computed by means of a mean-field method, that goes under
the name of Thouless-Anderson-Palmer (TAP) approach. This has been shown in
Ref. [110].

The advantage of exploiting a Monte Carlo sampling instead of resorting to
the TAP approach is that, through MCMCs, we are actually miming the network
dynamics. Conversely, through the TAP approach, we can provide better estimates,
relying on the computation of the marginals of the neuronal states variables. Given
the marginals, we can then easily determine both averages and pairwise correlations.
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The method proposed in Ref. [110] has been derived in the context of si ∈{−1,1}
spin model and asynchronous Glauber dynamics. Here we present our extension
to sparse neuronal states models, namely si ∈ {0,1}, and synchronous Glauber
dynamics.

As already pointed out in the main text, when dealing with kinetic models, the
explicit expression of the steady-state distribution, assuming that a stationary state
exists, is unknown. However, in the manifold of all possible probability distributions,
we can choose to approximate the joint distribution of the stationary state, namely
P(s|h,W ), with the single-site factorized distribution:

PMF (s|hMF)= N

∏
a=1

exp
(
hMF

a sa
)

1+ exp(hMF
a )

. (C.23)

The above Mean Field approximation holds if assuming a weakly interacting
regime, where the synaptic couplings are of order 1/

√
N. If P(s|h,W ) is the unknown

stationary distribution, then we can think to expand it around the Mean Field limit,
namely hMF = h− dh and W MF = dW , whit h and W being the parameters of the
stationary probability distribution. Notice that, in our model, W are the synaptic
couplings and h corresponds to the local fields, given by the sum of two contributions:
the external field and the thresholds, namely ha→ λ ext (ξa− 1

2

)
−θa.

We then want to determine the configuration of h and W , optimizing the KL diver-
gence between P(s|h,W ) and its Mean Field approximation, namely PMF (s|hMF):

KL
[
P||PMF]= ∑

{s}
P(s|h,W ) log

(
P(s|h,W )

PMF (s|hMF)

)
. (C.24)

The optimization of the KL divergence in Eq. (C.24) leads to a matching
condition for the first moments of the two distributions, namely

ma−mMF
a = 0 ∀a = 1, ...,N, (C.25)

whit ma = ∑{s}P(sa)sa. Expanding the first moment of P(s|h,W ) up to the
second order, we get:
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0 = ma−mMF
a ≈∑

i

∂ma

∂hi

∣∣∣∣
MF

dhi +∑
i< j

∂ma

∂Wi j

∣∣∣∣
MF

dWi j+

+∑
i j

∂ 2ma

∂hi∂h j

∣∣∣∣
MF

dhidh j +∑
i< j

∑
k<l

∂ 2ma

∂Wi j∂Wkl

∣∣∣∣
MF

dWi jdWkl+

+2 ∑
i< j

∑
k

∂ 2ma

∂Wi j∂hk

∣∣∣∣
MF

dWi jdhk,

where the derivatives can be explicitly computed, thus leading to the following
set of equations:

∂ma

∂hi

∣∣∣∣
MF

= ma (1−ma)δai

∂ma

∂Wi j

∣∣∣∣
MF

= m jma (1−ma)δai

∂ 2ma

∂hi∂h j

∣∣∣∣
MF

=
(

ma (1−ma)
2− (ma)

2 (1−ma)
)

δaiδa j

∂ 2ma

∂Wi j∂hk

∣∣∣∣
MF

= m jma
(
1−m j

)
(1−ma)δaiδ jk+

+m j

[
ma (1−ma)

2− (ma)
2 (1−ma)

]
δaiδak

∂ 2ma

∂Wi j∂Wkl

∣∣∣∣
MF

= m jml (1−ml)ma (1−ma)δliδak+

+mlm j
(
1−m j

)
ma (1−ma)δ jkδai+

+
〈
s jsl
〉

MF

(
ma (1−ma)

2− (ma)
2 (1−ma)

)
δaiδak.

At this point, if we further exploit the identity
〈
s jsl
〉

MF = δ jlm j +
(
1−δ jl

)
m jml

and we disregard all those contributions in the expansion higher than the second
order, the matching condition finally reads:
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hMF
a = ha +∑

j
m jWa j +

1
2
(1−2ma)∑

j

(
m j
(
1−m j

))
W 2

a j. (C.26)

The resulting first moments can then be derived by applying the sigmoid function,
namely sigm(x) = (1+ e−x)

−1, to the above equation, thus obtaining the exact
expression of the TAP equations:

mi = sigm

(
θi +∑

j
m jWi j−

(
mi−

1
2

)
∑

j

(
m j
(
1−m j

))
W 2

i j

)
. (C.27)

This is a self-consistency equation that needs to be solved recursively, starting
from an initial value of the magnetizations and then iterating up to a fixed point is
reached. The connected correlations are then given by:

χ
D
i j =

〈
s′is j
〉
−mim j =

〈
si
(
sigm

(
h j
)
−m j

)〉
, (C.28)

where the first moments mi ∀i = 1, ...,N are provided by Eq. (C.27), whereas
the disconnected correlations are computed as usual as:

〈
s′is j
〉
= ∑
{s}

P(s)s j ∑
s′i

P
(
s′i|s
)

s′i

=
〈
sigm(hi)s j

〉
,

(C.29)

where in the last equation, we explicitly sum over all the possible neuronal states.
As it is for the magnetizations, even this quantity can be estimated by means of a
second order expansion in the parameters of the stationary distribution, thus leading
to the following set of equations:
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∂ χD
ba

∂hi

∣∣∣∣
MF

= 0

∂ χD
ba

∂Wi j

∣∣∣∣
MF

= mbma (1−mb)
(
1−m j

)
δa jδbi

∂ 2χD
ba

∂hi∂h j

∣∣∣∣
MF

= 0

∂ 2χD
ba

∂Wi j∂hk

∣∣∣∣
MF

= mamb (1−ma)(1−mb)(1−2mb)δa jδbkδbi

∂ 2χD
ba

∂Wi j∂Wkl

∣∣∣∣
MF

= mamb (1−mb)(1−2mb)δbkδbi×

×
(
δa jδal +

(
1−δa j

)
δalm j (1−ma)

)
.

(C.30)

Then, taking advantage of the identity:

〈
sas jsl

〉
MF = δa j (δalma +(1−δal)maml)+

+
(
1−δa j

)(
δalmam j +(1−δal)ma

〈
s jsl
〉

MF

)
,

(C.31)

we can finally obtain the equations for the connected correlations in light of the
magnetizations:

χ
D
i j = (mi (1−mi))

(
m j
(
1−m j

))(
Ji j +

1
2
(2mi−1)

(
2m j−1

)(
Wi j
)2
)
, (C.32)

The disconnected correlations can then be straightforwardly determined relying
on the connected ones:
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〈
s′is j
〉
= (mi (1−mi))

(
m j
(
1−m j

))
×

×
(

Wi j +
1
2
(2mi−1)

(
2m j−1

)(
Wi j
)2
)
+mim j.

(C.33)

C.4 Simulations Details

C.4.1 The training phase

In this section we provide the details concerning both the implementation and
simulations of the training process, during which the network learns how to store
a given number of patterns, on the base of the DCM learning rule. The learning
protocol consists in adapting both the synaptic couplings and thresholds, according
to Eq. (4.7). At the beginning of the training phase, in case of ±1 neuronal states,
we uniformly initialize the synaptic couplings within the range

[
− 1√

N
, 1√

N

]
and

we set the thresholds all to zero. Conversely, in the case of sparse neuronal states,
we initialize the synaptic couplings within the range

[
0, 1√

N

]
and we set all the

thresholds to the constant value 0.3. We need here to point out that, because of the
role played by the inhibitory mechanisms, the initialization of the thresholds in the
latter neuronal model is actually redundant.

During the training, for every pattern ξξξ
µ , we initialize the intensity of the external

field at the starting value λ = λ max and we perform Tinit steps of Glauber dynamics.
As said, this is needed for centering the activity of the network around the pattern
ξξξ

µ . Then, we start recording the time-delayed correlations for a certain number T of
steps, under the presence of an external field of intensity λ . After that, we decrease
the external field of ∆λ and we record the same correlations for another number T
of time steps. We finally update the synaptic couplings and the thresholds according
to the update rules of Eq. (4.7). We repeat this schedule for every pattern and for a
certain number of epochs, that we typically set to 1000, even if, for finite external
fields we lowered it up to 250.

The number of steps needed for recording the time-delayed correlations, namely
T , has to be chosen in such a way to ensure that, at the end of the T steps, the
activity of the network is still close to the pattern ξξξ

µ , otherwise we would need to
re-initialize the state of the network. In our simulations, we always set T within the
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range [3,25], while we kept the learning rate η constant, typically at 0.01. The fact
that the DCM learning rule is capable of good performances, even when choosing
very small waiting times T , clearly points out that it is able to work even in very
noisy contexts. However, as long as we consider smaller waiting times, the learning
rate needs to be reduced as well. Moreover, because the updates of the network
parameters are purely local, they can be entirely performed in parallel.

We provide a pseudo-code of the above described learning schedule during the
training phase in Algo. (C.1).

Fig. C.1 Pseudo-code of the learning protocol described in the main text. The synaptic
couplings are updated according to the DCM learning rule. In the pseudo-code, si ∈ {−1,1}.

C.4.2 The retrieval phase

In order to check if a pattern ξξξ
µ has been effectively stored by the network during

the training phase, we initialize the state of the network to a noisy version of ξξξ
µ .

Denoting with χ the level of noise according to which the original pattern ξξξ
µ has

been corrupted, we can say that the pattern has been successfully stored by the
network if, initializing the state of the network close to ξξξ

µ with a noisy level of
χ , and then let it to evolve for 50 steps of Glauber dynamics, the evolution of the
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network ends up in the attractor state ξξξ
µ the 90% of times, over 100 restarts of the

network dynamics.

To verify if the network dynamics has actually reached a fixed point, after 50
steps of Glauber dynamics, we measure the overlap between the pattern ξξξ

µ and the
final configuration of the network. If this overlap is greater than 0.99, then we say
that ξξξ

µ has been actually stored by the network.

C.4.3 Detection of spurious attractors

As already pointed out in the main text, one of the main drawbacks of the Hebbian
learning is its tendency of generating spurious attractors. In order to detect them, we
exploit the following strategy. First of all, we chose a value of the storage load α far
from the critical capacity of both Hebbian learning and the DCM learning rule, thus
allowing both of them to properly work. Then, we randomly initialize the state of
the network. After 200 steps of Glauber dynamics, we check if the reached state of
the network shows an overlap ≥ 0.95 with one of the patterns that we want to store.
If this is not the case, we simulate the dynamics for another number of time steps
and then we check if it has reached a stationary state. If this happens, then we add
one spurious attractor to the counter.

This method provides only a numerical estimate of the number of spurious
attractors, however, it reveals to be already sufficient for pointing out the discrepancy
between the DCM learning rule and the Hebbian learning rule, as shown in Fig.
(4.7).

C.4.4 On-line learning

In the on-line learning regime, instead of repeatedly showing a set of patterns for
a given number of epochs, we present to the network only one pattern at a time,
until it is successfully stored by the network. Then we switch to the next pattern.
This procedure goes on until we reach a stationary condition, where the number of
stored patterns stays constant, meaning that the most recently showed pattern has
actually replaced one of the previously stored ones. This condition is reached at the
palimpsest capacity.
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To reach an extensive palimpsest capacity, we need to closely tune all the parame-
ters of the simulation, such that the learning process slows down and the presentation
of the new patterns does not consistently affect the already stored ones. In particular,
we need to be careful especially in the last time window, where there is no more the
driving signal from the external field. In this phase, the dynamics of the network
can actually move very far away from the basin of attraction of the pattern that we
are trying to store. When this is the case, it can further converge towards the basins
of the already stored ones, thus causing, most of the time, their loss. We tried to
remove the last time window from the training phase, but this only weakly improved
the palimpsest capacity.

Moreover, in the sparse neuronal model, namely si ∈ {0,1}, we are not able to
reach an extensive palimpsest capacity, unless we modify the DCM learning rule, by
taking into account the adaptive thresholds inhibitory scheme (see Eq. (Eq. (C.22))).
This may be thus related to the choice of the thresholds. Indeed, it seems that we
need to shift the thresholds such that we can get wider basins of attraction. This
problem does not arise in the non on-line learning regime, because cycling over all
the patterns many times, makes the threshold to set on values that are consistent with
all the patterns.

We choose the following values for the parameters in the on-line regime: η =

0.01, λmax = 4, ∆λ = 1 and T = 10. According to this parameters, the number of
times needed to the network for storing a new pattern is around 1000. Due to the
increase of the average strength of the synaptic couplings, as the learning phase goes
on, this number gets larger and larger as new patterns stabilize. We can overcome
this problem by introducing a regularization effect on the synaptic couplings.

C.4.5 RBMs on MNIST

In this section, we provide the detail concerning the simulations we performed for
testing the performance of the DCM learning rule, when a set of hidden neuronal
states is added to the network. In particular, we consider the specific architecture
of RBMs. In our simulation, we choose as input patterns the ones in the MNIST
data set. They represent a set of 7× 104 grayscale images of handwritten digits,
encoded in an array of 28×28 pixels and grouped in 10 different classes, each one
representing a number from 0 to 9. We exploited 6×104 of these images for training
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the network and 1×104 for testing its generalization performances on classification
tasks.

The MNIST images are characterized by an average number of turned on pixels
of f̄ξ = 0.13066, where each pixel ξ

µ

i takes values within [0,1]. To test the DCM
plasticity rule on different learning tasks, we have thus constructed a stochastic
neural network made of |V |= 784+10 visible units, and |H|= 1000 hidden units,
in order to enhance the representational power of the network. We add an extra layer
of 10 units, for the implementation of classification tasks.

We applied our new learning protocol by cycling 2 times over the whole training
set, basically performing two different experiments:

• strong external fields. We tested the performances of the DCM rule in presence
of very strong biasing signals, such that the learning problem can be considered
as equivalent to the optimization problem of an on-line version of the log-
pseudo-likelihood. In this case we set λ max = 50 and then we suddenly drop
the intensity of the external field to zero;

• weak external fields. In this experiment, we applied the DCM learning rule
on a more biological setting, where the initial strength of the external field
is set to λ max = 3 and then gradually decreased to zero of an amount of
∆λ = 3/2. We fix the desired activity level of the visible neurons to the
average number of turned on pixels in the MNIST images, while we set the
one of the hidden neurons at fh = 0.2. We choose the soft winner-takes-all
mechanism as inhibitory scheme. Given that, we simulate the training phase,
with a number T = 15 steps of Glauber dynamics. Notice that, the level of
the noise, affecting the dynamics and codified by β , needs to be properly
chosen, since thanks to that we can break the possible arising symmetries
among hidden units.

Features Extraction

As pointed out in the main text, hidden neuronal states are usually employed in order
to increase the representational power of neuronal networks. Indeed, they are left
free to catch not trivial correlations in the structure of the training data. Hidden units
are thus often identified as features detectors of the input patterns. Indeed, each
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hidden unit experiences a field exerted by all the surrounding neurons. This field,
usually known as the receptive field, in the specific case of RBMs, is given by:

hi = ∑
j ̸=i

Wi jsv
j, (C.34)

with i ∈ H and j ∈V . During the training phase, the receptive fields specialized
in encoding specific features of the pattern, so that they set above threshold whenever
those features are observed in the input pattern, thus exciting the corresponding
hidden unit. In this way the RBM is able to construct an internal representation of
the incoming stimulus, by encoding it in the synaptic couplings.

The receptive fields can be organized into a matrix of dimensions 28× 28
grayscale pixels and then normalized to binary pixels {0,1}.

In the main text, we have shown some of the receptive fields or features, extracted
by an RBM when trained according to the DCM learning rule. Among them, we can
find very noisy features, that however, do not affect the performances of the network,
being them unable to exceed the value set by the activation threshold.

Generation of new samples: Gibbs Sampling

Once an RBM has been trained to build an internal representation of the input
data, it can be exploited to generate new data samples, distributed according to
the same statistics of the input data. We have thus tested the DCM learning rule
on this further task in the following way. In the training phase, we first clamp
the initial configuration of the visible neurons into one of the input patterns, by
applying an external field of intensity λ = 50 and letting the dynamics of the network
to evolve, under the presence of such a strong biasing signal. After 30 steps of
Glauber dynamics, we remove the external field on the 784 visible neurons, while
still keeping a supervised signal on the 10 output units. This signal induces the
network to produce samples that are distributed according to the same statistics of
the corresponding input pattern. Then, we let the dynamics to evolve, according to
Gibbs chains, and we look if the stationary distribution reached by the network is
close to the statistics of the input pattern. When this is the case, a new sample of the
input data is generated.
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Classification task

In order to test the classification performance of an RBM when trained through the
DCM learning rule, we present to the network the input stimulus, by clamping the
initial configuration of the visible neurons to a given input pattern. We then look if
the resulting distribution of the output units is peaked on the label corresponding
to the input. As usual, we have tested the performance of the learning rule on
two different experiments: the first one where the time-delayed correlations are
computed through the TAP approach, thus looking at the output unit with the highest
magnetization, and the other one where they are instead directly estimated from the
network dynamics.


