7 research outputs found

    A Survey of Scheduling in 5G URLLC and Outlook for Emerging 6G Systems

    Get PDF
    Future wireless communication is expected to be a paradigm shift from three basic service requirements of 5th Generation (5G) including enhanced Mobile Broadband (eMBB), Ultra Reliable and Low Latency communication (URLLC) and the massive Machine Type Communication (mMTC). Integration of the three heterogeneous services into a single system is a challenging task. The integration includes several design issues including scheduling network resources with various services. Specially, scheduling the URLLC packets with eMBB and mMTC packets need more attention as it is a promising service of 5G and beyond systems. It needs to meet stringent Quality of Service (QoS) requirements and is used in time-critical applications. Thus through understanding of packet scheduling issues in existing system and potential future challenges is necessary. This paper surveys the potential works that addresses the packet scheduling algorithms for 5G and beyond systems in recent years. It provides state of the art review covering three main perspectives such as decentralised, centralised and joint scheduling techniques. The conventional decentralised algorithms are discussed first followed by the centralised algorithms with specific focus on single and multi-connected network perspective. Joint scheduling algorithms are also discussed in details. In order to provide an in-depth understanding of the key scheduling approaches, the performances of some prominent scheduling algorithms are evaluated and analysed. This paper also provides an insight into the potential challenges and future research directions from the scheduling perspective

    Delay-Optimal and Energy-Efficient Communications with Markovian Arrivals

    No full text
    In this paper, delay-optimal and energy-efficient communication is studied for a single link under Markov random arrivals. We present the optimal tradeoff between delay and power over Additive White Gaussian Noise (AWGN) channels and extend the optimal tradeoff for block fading channels. Under time-correlated traffic arrivals, we develop a cross-layer solution that jointly considers the arrival rate, the queue length, and the channel state in order to minimize the average delay subject to a power constraint. For this purpose, we formulate the average delay and power problem as a Constrained Markov Decision Process (CMDP). Based on steady-state analysis for the CMDP, a Linear Programming (LP) problem is formulated to obtain the optimal delay-power tradeoff. We further show the optimal transmission strategy using a Lagrangian relaxation technique. Specifically, the optimal adaptive transmission is shown to have a threshold type of structure, where the thresholds on the queue length are presented for different transmission rates under the given arrival rates and channel states. By exploiting the result, we develop a threshold-based algorithm to efficiently obtain the optimal delay-power tradeoff. We show how a trajectory-sampling version of the proposed algorithm can be developed without the prior need of arrival statistics
    corecore