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ABSTRACT

Mobile data tra� has experiened unpreedented growth reently and is predited

to grow even further over the oming years. As one of the main driving fores behind

this growth, wireless transmission of multimedia ontent has signi�antly inreased

in volume and is expeted to be the dominant tra� in data ommuniations. Suh

wireless multimedia tra� requires ertain quality-of-servie (QoS) guarantees.

With these motivations, in the �rst part of the thesis, throughput and energy

e�ieny in fading hannels are studied in the presene of randomly arriving data

and statistial queueing onstraints. In partiular, Markovian arrival models inlud-

ing disrete-time Markov, Markov �uid, and Markov-modulated Poisson soures are

onsidered, and maximum average arrival rates in the presene of statistial queueing

onstraints are haraterized. Furthermore, energy e�ieny is analyzed by deter-

mining the minimum energy per bit and wideband slope in the low signal-to-noise

ratio (SNR) regime.

Following this analysis, energy-e�ient power adaptation poliies in fading han-

nels are studied when data arrivals are modeled as Markovian proesses and statistial

QoS onstraints are imposed. After formulating energy e�ieny (EE) as maximum

throughput normalized by the total power onsumption, optimal power ontrol poli-

ies that maximize EE are obtained for di�erent soure models.

Next, throughput and energy e�ieny of seure wireless transmission of delay

sensitive data generated by random soures are investigated. A fading broadast

model in whih the transmitter sends on�dential and ommon messages to two re-



eivers is onsidered. It is assumed that the ommon and on�dential data, generated

from Markovian soures, is stored in bu�ers prior to transmission, and the transmitter

operates under onstraints on bu�er/delay violation probability. Under suh statisti-

al QoS onstraints, the throughput is determined. In partiular, serey apaity is

used to desribe the servie rate of bu�ers ontaining on�dential messages. More-

over, energy e�ieny is studied in the low signal-to-noise (SNR) regime.

In the �nal part of the thesis, throughput and energy e�ieny are addressed on-

sidering the multiuser hannel models. Five di�erent hannel models, namely, multi-

ple aess, broadast, interferene, relay and ognitive radio hannels, are onsidered.

In partiular, throughput regions of multiple-aess fading hannels are harater-

ized when multiple users, experiening random data arrivals, transmit to a ommon

reeiver under statistial QoS onstraints. Throughput regions of fading broadast

hannels with random data arrivals in the presene of QoS requirements are studied

when power ontrol is employed at the transmitter. It is assumed that superposition

oding with power ontrol is performed at the transmitter with interferene anel-

lation at the reeivers. Optimal power ontrol poliies that maximize the weighted

ombination of the average arrival rates are investigated in the two-user ase. Energy

e�ieny in two-user fading interferene hannels is studied when the transmitters

are operating subjet to QoS onstraints. Spei�ally, energy e�ieny is hara-

terized by determining the orresponding minimum energy per bit requirements and

wideband slope regions. Furthermore, transmission over a half-duplex relay hannel

with serey and QoS onstraints is studied. Serey throughput is derived for the

half duplex two-hop fading relay system operating in the presene of an eavesdrop-

per. Fundamental limits on the energy e�ieny of ognitive radio transmissions are

analyzed in the presene of statistial quality of servie (QoS) onstraints. Minimum

energy per bit and wideband slope expressions are obtained in order to identify the

performane limits in terms of energy e�ieny.
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CHAPTER 1

INTRODUCTION

M OBILE data traffic has experienced unprecedented growth recently and is pre-

dicted to grow even further over the coming years. For instance, it is projected

that global mobile data traffic will increase 7-fold between2016 and 2021, reaching 48.3

exabytes per month by 2021 [5]. As one of the main driving forces behind this growth,

wireless transmission of multimedia content has significantly increased in volume and is

expected to be the dominant traffic in data communications. Indeed, mobile video traffic

already accounted for 60 percent of the total mobile data traffic in 2016 and is predicted to

become more than three-fourths of the world’s mobile data traffic by 2021 [5].

This exponential growth in the flow of mobile data and multimedia content has signif-

icant implications on wireless networks. For one, wirelessmultimedia traffic requires cer-

tain quality-of-service (QoS) guarantees. For instance, in voice over IP (VoIP), multimedia

streaming, interactive video, and online gaming applications, constraints on delay, packet

loss, or buffer overflow probabilities need to be imposed so that acceptable performance

and quality levels can be met for the end-users. Another consequence is heterogeneity

in network traffic. Wireless networks now carry heterogeneous traffic in diverse environ-

ments, and successful design of networks, efficient use of resources, and effective QoS

provisioning for multimedia communications critically depend on the appropriate choice
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of source traffic models. For instance, while voice traffic can be accurately modeled as an

ON/OFF process with fixed-rate data arrivals in the ON state,data traffic can be bursty and

video traffic, which exhibits correlations, can be modeled statistically using autoregressive,

Markovian, or Markov-modulated processes [4].

Finally, it is important to note that this increased traffic together with the given QoS re-

quirements need to be supported by wireless systems equipped with only limited bandwidth

and power resources. Especially, due to limited energy available for mobile units and rising

energy costs and environmental concerns, energy efficiencyin wireless communications is

a key concern (see e.g., [2] and [33]). Therefore, it is crucial to identify the fundamen-

tal performance limits (e.g., in terms of maximum achievable throughput and minimum

energy per bit) in order to determine how to most effectivelyutilize the scarce resources.

With this motivation, in this thesis we investigate the throughput and energy efficiency of

wireless systems when data arrivals are in general random, and QoS constraints in the form

of limitations on the asymptotic buffer overflow probabilities are imposed.

1.1 Literature Review

1.1.1 Wireless Throughput and Energy Efficiency under Statisti-

cal Queueing Constraints

Satisfying QoS requirements is critical for most communication networks, and how to sat-

isfy QoS constraints for various source traffic models has been one of the key considerations

in the networking literature. In particular, besides conventional queueing theory, network

calculus has been introduced by Cruz in early 1990s as a theory to address the delay and

other deterministic service guarantees in networks by dealing with queueing systems [34]

– [36]. Subsequently, Chang in [6] developed the stochasticversion of the network calcu-

lus. More specifically, the theory of effective bandwidth ofa time-varying source has been

formulated to identify the minimum amount of transmission rate that is needed to satisfy
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the statistical QoS requirements (see also [7] – [38]). Thistheory is based on the logarith-

mic moment generating function of the arrival process and isrelated to the large deviation

principle. Moreover, statistical QoS constraints are imposed as limitations on buffer/delay

violation probabilities. Effective bandwidths of varioussource models have been investi-

gated extensively in the literature. For instance, Elwalidand Mitra studied the effective

bandwidth of Markovian traffic sources (including Markov-modulated fluid and Markov-

modulated Poisson sources) in [11] under constraints on thebuffer overflow probability. It

is shown that effective bandwidth is given by the maximum eigenvalue of a matrix derived

from source parameters and service requirements. In [12], effective bandwidth formula-

tions were provided for multi-class Markov fluids as well as memoryless (Poisson) and

discrete-time Markov sources. In [39], the authors studiedthe effective bandwidths of gen-

eral stationary sources and derived a first order approximation of the effective bandwidth

in terms of the mean arrival rate and index of dispersion.

In wireless communications, the instantaneous channel capacity varies randomly de-

pending on the channel conditions. Hence, in addition to thesource characteristics, trans-

mission rates for reliable communication are also time-varying. In such cases, randomly

time-varying servers can be considered in the queueing system model. Indeed, motivated by

the wireless channel, Stolyar in [40], Venkataramanan and Lin in [41], and Sadiq and de Ve-

ciana in [42] employed tools from the theory of large deviations and investigated scheduling

rules (e.g., MaxWeight, Exponential, and Radial Sum-Rate Monotonic scheduling) while

controlling the large deviations of queues. Following another method, the time-varying

channel capacity can be incorporated into the theory of effective bandwidth by regarding

the channel service process as a time-varying source with negative rate and using the source

multiplexing rule ([9, Example 9.2.2]). Using a similar approach, as a dual concept to ef-

fective bandwidth, Wu and Negi defined in [10] the effective capacity, which describes the

maximum constant arrival rate that a given time-varying service process can support while

satisfying the statistical QoS requirements. Indeed, workin [10] revitalized the consid-
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eration of statistical queueing constraints in the contextof wireless communications, and

the effective capacity of wireless transmissions has been investigated intensively in various

settings (see e.g., [43]–[21]). For instance, Tang and Zhang in [44] considered the effective

capacity when both the receiver and transmitter know the instantaneous channel gains, and

derived the optimal power policy that maximizes the system throughput under QoS con-

straints. Liuet al. in [27] considered fixed-rate transmission schemes and analyzed the

effective capacity and related resource requirements for Markov wireless channel models

and Markov fluid sources. In [47] and [48], effective capacity of cognitive radio channels

was studied. In [49], multi-antenna communication in the presence of queueing limitations

was investigated. Soretet al. in [51] addressed correlated Rayleigh fading channels and

studied the effective capacity under different adaptive rate policies. In this study, perfor-

mance in the presence of probabilistic delay constraints and variable rate sources was also

analyzed by considering a Gaussian autoregressive source model.

Energy efficiency in the presence of statistical QoS constraints has also been addressed

recently. For instance, the fundamental limits of energy efficiency in the low signal-to-

noise ratio (SNR) regime in fading channels were determinedunder QoS constraints in

[18]. Musavian and Le-Ngoc in [19] incorporated the circuitpower consumption into their

analysis of energy efficiency. Ruet al. in [20] investigated the minimum energy per bit

and wideband slope in a hybrid cellular system. Liu in [21] considered the optimal power

control to achieve the maximum energy efficiency. Helmy and Musavian in [22] consid-

ered a multichannel scenario in which they obtained the optimal power allocation for each

channel to achieve the maximum global energy efficiency. Authors in [23] studied the

energy-efficient design in downlink OFDMA systems. In a recent study in [26], the au-

thors analyzed energy-efficient resource allocation strategies in MIMO-OFDM systems in

the presence of random arrivals and statistical QoS requirements. In particular, they char-

acterized the optimal energy-efficient queue-length basedresource allocation policy that

minimizes the total power consumption while satisfying theQoS requirements. Further-
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more, in [28]–[30], power control policies were examined under QoS constraints.

1.1.2 Secure Transmission over Wireless Fading Channels

Addressing security considerations is essential in wireless communication networks due

to the ease in eavesdropping of wireless transmissions. With this motivation, information-

theoretic security has been extensively investigated. Forinstance, in [68] and [69] wiretap

channels with fading have been studied whereas authors in [70] and [71] incorporated the

multiple antenna settings to wiretap channels. Furthermore, the energy efficiency of se-

cure and reliable communication schemes have been addressed in several recent studies.

The work in [72] addressed secure communication in the low signal-to-noise ratio (SNR)

regime and identified the minimum energyper secret bitand the wideband slope (which

are two key performance metrics in the low SNR regime [57]). Motivated similarly by en-

ergy efficiency requirements, Comaniciu and Poor in [73] investigated the security-energy

tradeoff from an information theoretic perspective. Zhanget al. in [74] studied three-node

MIMO wiretap channels in order to design an energy efficient precoder. Nget al. in [75]

considered secure OFDMA systems and addressed the energy efficient resource allocation

problem. Kalantariet al. in [76] investigated the power control in wiretap interference

channels where users either work together or act as selfish nodes. Similar to our motiva-

tion, Chen and Lei in [77] took energy efficiency, security and QoS guarantees into account

jointly and worked on maximizing the secrecy energy efficiency while having constraints

on delay. In [78] and [79], Zhuet al. investigated the cross layer scheduling of OFDMA

networks with both open and private data transmissions. In [80], two medium-access pro-

tocols were proposed and the mean service rate, the source’sdata queue and the secret

keys queue was analyzed. Shafie and Al-Dhahir [81] proposed anetwork scheme that con-

sists of a source node and a destination in the presence of buffer aided relay node and an

eavesdropper, while taking the data burstiness of source and energy recycling process at the

relay into account. In [82], secure and stable throughput region is investigated by employ-
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ing beamforming based cooperative jamming that depends on the channel side information

available at the transmitter. In [83], authors assumed thatonly the distribution of eaves-

dropper is known at the transmitter and studied the problem that maximizes the long-term

data admission rate while having constraints on the secrecyoutage and stability of the data

queue. Khalilet al. in [84] derived upper and lower bounds on the secrecy capacity of the

flat fading channel with limitations on delay. For more details regarding the advances in

this rich field of physical-layer security in wireless communications, we refer to surveys

and overviews provided in [85]–[91].

1.1.3 Throughput and Energy Efficiency in Multiuser Channels

Multiple-access channel (MAC) model, in which multiple users share a communication

medium to send their messages to a common receiver, is one of the main building blocks

of multiple-user communication scenarios, modeling, for instance, uplink in cellular and

satellite communications and wireless LANs. It is well-known that Gaussian MAC capacity

region is achieved by having simultaneous transmissions from the users (i.e., superposition

coding) with successive cancelation decoding at the receiver [58]. Similar transmission and

reception strategies are optimal in multiple-access fading channels as well [59]. In [60],

effective capacity framework was employed to study the throughput regions of multiple-

access fading channel subject to statistical queueing constraints under the assumption that

arrival rates to all users are constant.

Broadcast channel (BC) model, in which we have one sender transmitting to multiple

receivers, is one of the main building blocks of multiuser wireless networks. For instance,

downlink in cellular, broadcasting, and satellite communication systems is modeled as a

broadcast channel. Due to the importance and common usage ofthese channel models,

they have been extensively studied from an information theoretic perspective in order to

design and analyze efficient transmission strategies (see e.g., [58] and [93] and references

therein). For instance, Li and Goldsmith in [94] characterized the ergodic capacity region
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of fading broadcast channels and determined the optimal resource allocation policies. They

showed that the capacity region, which is achieved by superposition coding and successive

decoding whose order is determined by the effective noise levels, is convex. As noted

before, providing QoS guarantees has become a very important consideration in wireless

networks due to the fact that mobile multimedia data traffic (consisting of e.g. voice over

IP, streaming and interactive video) has surged in recent years with the widespread use of

social networking tools, video-sharing sites, and online gaming applications. With this mo-

tivation, in [95] authors have studied the throughput regions of fading broadcast channels

in the presence of QoS constraints. However, only constant-rate arrivals were addressed in

[95].

Due to the broadcast nature of wireless transmissions, interference is a common form

of distortion experienced in especially densely-deployedwireless networks. Interference

channel models explicitly take into account this type of distortion and have been exten-

sively studied from an information-theoretic perspective(see e.g., [96], [97], and references

therein).

Secure communication of confidential messages is a key concern in wireless networks

due to the broadcast nature of wireless transmissions. Recently, information-theoretic

physical-layer security for wireless communications has drawn considerable attention. In

particular, based on the seminal work in [65], secrecy capacity of wireless links have been

extensively studied. In [65], Wyner addressed the securityproblem in a wiretap channel

by using information theoretic methods. In this model, the wiretapper receives a noisier

version of the signal received at the intended user. Thus, the secrecy capacity is defined as

the supremum of the achievable communication rates from thetransmitter to the intended

receiver while keeping the eavesdropper ignorant of the message. Recently, studies have

also been conducted on cooperation for secrecy [98]. For instance, in [99] and [100], the

authors considered decode-and-forward (DF) strategies inrelay networks.

Energy and bandwidth are two critical resources in wirelesscommunications. Due to
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unprecedented growth in mobile applications and wireless networks and the fact that much

of the prime radio spectrum has already been allocated for specific applications, the scarcity

in the spectrum has become a serious concern. On the other hand, recent measurements

have shown that the licensed spectrum is considerably underutilized across many time and

frequency slots. This has led to much interest in dynamic spectrum access strategies and

cognitive radio systems [101] which can more effectively harness the available bandwidth

by, for instance, utilizing the spectrum holes.

1.2 Main Contributions

In Chapter 3, throughput and energy efficiency in fading channels are studied in the pres-

ence of randomly arriving data and statistical queueing constraints. In particular, we

consider Markovian arrival models including discrete-time Markov, Markov fluid, and

Markov-modulated Poisson sources. Employing the effective bandwidth of time-varying

sources and effective capacity of time-varying wireless transmissions, maximum average

arrival rates in the presence of statistical queueing constraints are characterized. For the

two-state (ON/OFF) source models, throughput is determined in closed-form as a function

of the source statistics, channel characteristics, and quality of service (QoS) constraints.

Throughput is further studied in certain asymptotic regimes. Furthermore, we analyze en-

ergy efficiency by determining the minimum energy per bit andwideband slope in the low

signal-to-noise ratio (SNR) regime. Overall, the impact ofsource characteristics, QoS re-

quirements, and channel fading correlations on the throughput and energy efficiency of

wireless systems is identified.

We note that the studies on the effective capacity of wireless channels have primar-

ily concentrated on constant arrival rates in the analysis of the throughput and energy

efficiency. Departing from this approach, we in this chapterexplicitly take into account

the randomness and burstiness of the source traffic. In particular, we address Markovian
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source models including discrete-time Markov, Markov fluid, and Markov modulated Pois-

son sources, and conduct a performance analysis. More specifically, our contributions can

be listed as follows:

• A framework with which source randomness can be incorporated in the throughput

analysis of wireless transmissions is provided.

• For two-state (ON/OFF) source models, closed-form expressions are obtained for the

maximum average arrival rate in terms of the source statistics, effective capacity of

wireless transmissions, and the QoS exponentθ, which quantifies how strict the QoS

constraints are.

• Throughput is characterized in the low-θ and high-SNR regimes.

• An energy efficiency analysis is conducted and minimum energy per bit and wide-

band slope expressions are determined for both constant andrandom arrival models.

• Via both analytical and numerical results, the impact of source randomness, fading

correlations, and queueing constraints on the wireless throughput and energy effi-

ciency is identified.

• Throughput of multiple-input multiple-output (MIMO) wireless communication chan-

nels is studied an energy efficiency analysis is conducted under statistical queueing

constraints.

In Chapter 4, we again explicitly model the information flowsstochastically using

Markovian models and study energy-efficient wireless transmission strategies in the pres-

ence of statistical QoS constraints imposed on buffer overflow probabilities. In particular,

we identify energy-efficient power control policies in fading channels for different source

arrival models. We further investigate the tradeoff between throughput and energy effi-

ciency (EE).
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The studies on energy efficiency and power control conductedwith effective capacity

formulations have mainly centered around the assumption that sources have constant ar-

rival rates. In this chapter, we take into account the stochastic nature of information flows

and investigate the effect of the randomness and burstinessof the source traffic on the

energy-efficient design of wireless systems. Specifically,we consider Markovian source

models (namely discrete-time Markov, Markov fluid, and bothdiscrete and fluid Markov

modulated Poisson processes (MMPP)) and determine the optimal energy-efficient power

allocation policies. The contributions of this chapter canbe further detailed as follows:

• Considering two-state (ON/OFF) source models, throughputexpressions are pro-

vided and subsequently energy efficiency metric is identified for discrete-time Markov,

Markov fluid, and MMPP arrival models. Overall, an analytical framework is pro-

vided to study the energy efficiency of wireless transmissions in the presence of ran-

dom data arrivals and statistical queueing constraints.

• After taking both the circuit and transmission power into account, optimal power

allocation policies that maximize the energy efficiency aredetermined for different

source models.

• Power control policies that maximize the throughput under either energy efficiency

or power constraints are also obtained.

• In addition to single-channel systems, power allocation and control strategies that

maximize the throughput in multichannel systems under energy efficiency constraints

are determined.

• Via both analytical and numerical results, the impact of source randomness, channel

fading, queueing constraints, and power control strategies on the energy efficiency is

identified. Tradeoff between energy efficiency and throughput is explored.
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In Chapter 5, we study the secure communication of delay-sensitive data traffic gen-

erated by Markovian sources (e.g., discrete-time Markov, Markov fluid, discrete-time and

continuous-time Markov modulated Poisson sources) and investigate the fundamental per-

formance limits of secure throughput and energy efficiency under statistical buffer/delay

violation constraints. In particular, we can list the contributions of this chapter as follows:

• Considering two-state (ON/OFF) Markovian source models, throughput expressions

for common and confidential messages in terms of source statistics, effective capacity

of wireless transmissions of common and confidential messages, and QoS exponent

θ are provided.

• Energy efficiency metrics, namely the minimum energy per bitand wideband slope,

are identified for discrete-time Markov, Markov fluid, and Markov-modulated Pois-

son arrival models again in terms of important system, channel, and source parame-

ters.

• The effect of source randomness, channel correlation, secrecy requirements, buffer/delay

QoS constraints on the performance metrics are identified for both common and con-

fidential messages from both analytical characterizationsand numerical results.

• Throughput and energy efficiency metrics are obtained when the transmitter knows

the channel statistics but not the realizations of the channel fading, and therefore

sends the confidential data at a fixed rate.

In Chapter 6, we assume that the time-varying channel conditions are not known at the

transmitter and consequently, transmission rate is fixed. Fixed-rate transmission over the

Rayleigh fading channel is modeled as an ON-OFF Markov fluid process. Under these

modeling assumptions, our main contributions are the introduction of a general framework

for performance analysis in the low-power regime, determination of closed-form expres-

sions for the minimum energy per bit and wideband slope, and characterization of the im-

pact of source and channel parameters and queueing constraints on the energy efficiency.



12

In Chapter 7, we conduct throughput and energy efficiency analysis for multiuser sce-

narios under QoS constraints. More specifically, we have thefollowing contributions.

• In Section 7.1, we investigate the throughput regions of multiple-access fading chan-

nels when the users experience random arrivals and operate in the presence of quality-

of-service (QoS) constraints. Consideration of QoS guarantees is motivated by the

recent exponential growth of wireless transmissions of multimedia content. In this

study, a more general scenario is considered in which users experience random Markov

arrivals. In particular, we combine the theory of effectivebandwidth of time-varying

random arrivals and the theory of effective capacity of time-varying wireless trans-

missions in order to characterize the throughput regions inmultiple-access fading

channels.

• In Section 7.2, we characterize the throughput regions in fading broadcast chan-

nels when superposition coding with successive decoding isemployed together with

power control. We further propose an optimal power control algorithm. We deter-

mine the throughput region and sum-throughput for the two-user case and compare

different strategies including time division multiplexing with power control and su-

perposition coding without power adaptation.

• In Section 7.3, we investigate the energy efficiency in interference channels when

users operate under QoS limitations. More specifically, we consider three strategies

for communication in the two-user case, which are time division with power con-

trol, treating interference as noise, and simultaneous decoding. As metrics of energy

efficiency, we determine the corresponding minimum energy per bit and wideband

slope regions for these strategies. We compare the performances in the presence of

different levels of interference and different QoS constraints.

• In Section 7.4, we consider a two-hop wireless channel setting in which the relay

node, employing the DF strategy, helps the communication between the source and
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destination. We assume that the wireless communication is half-duplex and hence

the relay can not transmit and receive simultaneously. We adopt the energy per bit

as the metric of energy efficiency. We impose constraints on the buffer overflow

probabilities. We study secure cooperative communications under QoS constraints

and investigate the energy efficiency by determining the minimum energy per bit.

• In Section 7.5, we address the efficient use of both bandwidthand energy resources

by investigating the energy efficiency of cognitive radio systems. Motivated by the

recent rapid growth in mobile multimedia applications which may exhibit bursty traf-

fic and require certain QoS guarantees for acceptable performance levels at the end-

users, we consider a setting in which data arrivals are modeled as a two-state Markov

process and statistical buffer constraints are imposed at the cognitive transmitter.
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CHAPTER 2

PRELIMINARIES ON STATISTICAL

QUEUING CONSTRAINTS

2.1 Queueing Constraints

We assume that the data to be transmitted is generated from random sources and is first

stored in a buffer before transmission. Statistical constraints are imposed on the queue

length. In particular, we assume that the buffer violation/overflow probability satisfies

lim
q→∞

log Pr{Q ≥ q}
q

= −θ (2.1)

whereQ denotes the stationary queue length, andθ is the decay rate of the tail distribution

of the queue length. The above limiting formula implies thatfor largeq, we have

Pr{Q ≥ q} ≈ e−θq. (2.2)
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Indeed, a closer approximation is [10]

Pr{Q ≥ q} ≈ ςe−θq (2.3)

whereς = Pr{Q > 0} is the probability of non-empty buffer1. From (2.3), we notice that,

for a sufficiently large threshold, the buffer overflow probability should decay exponentially

with rate controlled by the QoS exponentθ. Note that asθ increases, stricter queueing or

QoS constraints are imposed, while looser queueing constraints are implied by smaller

values ofθ. Conversely, for a given buffer thresholdq and overflow probability limitǫ =

Pr{Q ≥ q}, the desired value ofθ can be determined as

θ =
1

q
loge

ς

ǫ
. (2.4)

In the given setting, the delay violation probability is also characterized to decay expo-

nentially and is approximated by [52]

Pr{D ≥ d} ≈ ςe−θa
∗(θ)d (2.5)

whereD is the queueing delay in the buffer at steady state,d is the delay threshold, and

a∗(θ) is the effective bandwidth of the arrival process, described below.

Next, we introduce the notions of effective bandwidth and effective capacity which

we subsequently employ to formulate the wireless throughput in fading channels in the

presence of random arrivals and statistical queueing constraints.

Effective Bandwidth

Effective bandwidth characterizes the minimum constant transmission (or service) rate re-

quired to support the given random data arrival process while the buffer overflow proba-

1Probability of non-empty buffer can be approximated from the ratio of average arrival rate to average
service rate [22].
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bility is limited or more explicitly the statistical queueing constraint described by (2.1) is

satisfied. Let{a(k), k = 1, 2, . . .} be a sequence of nonnegative random variables, describ-

ing the random arrival rates. Let also the time-accumulatedarrival process be denoted by

A(t) =
∑t

k=1 a(k). Then, the effective bandwidth is given by the asymptotic logarithmic

moment generating function ofA(t) [6], i.e.,

a∗(θ) = lim
t→∞

1

θt
logE

{

eθA(t)
}

. (2.6)

In Section 2.2, we describe the effective bandwidth of different source arrival models

in detail.

Effective Capacity

Effective capacity, as a dual concept to effective bandwidth, identifies the maximum con-

stant arrival rate that can be supported by a given time-varying service process while sat-

isfying (2.1). Let{ν[k], k = 1, 2, . . .} denote the discrete-time stationary and ergodic

stochastic service process andS[t] ,
∑t

k=1 ν[k] be the time-accumulated service process.

Then, the effective capacity is given by [10]

CE(SNR, θ) = − lim
t→∞

1

θt
loge E

{

e−θS[t]
}

. (2.7)

Note that we have assumed that the fading coefficients{hi} change independently from

one block ofm symbols to another. Under this assumption, effective capacity simplifies to

CE(SNR, θ) = −1

θ
loge E

{

e−θν
}

(2.8)

whereν is the instantaneous service (or equivalently transmission) rate in one block. If the

channel input sequence{xi} is an independent and identically distributed (i.i.d.) sequence

of Gaussian random variables with zero mean and varianceE , then the service rate can be
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written as

ν =

m
∑

i=1

log2(1 + SNRzi) (2.9)

where we have definedzi = |hi|2. Hence, the effective capacity in the units of bits/block is

CE(SNR, θ) = −1

θ
loge E

{

e−θ
∑m

i=1 log2(1+SNRzi)
}

. (2.10)

Remark 1. In the special case of independent channel coefficients in each block and

Rayleigh fading, we can express the effective capacity in closed-form as

CE(SNR, θ)= −m
θ
loge

[

SNR
− θ

loge2 e
1

SNRΓ

(

1− θ

loge2
,
1

SNR

)]

(2.11)

= m log2(SNR)− m

θSNR
− m

θ
loge Γ

(

1− θ

loge2
,
1

SNR

)

(2.12)

whereΓ(s, w) =
∫∞

w
τ s−1e−τdτ is the upper incomplete gamma function.

2.2 Effective Bandwidths of Different Source Models

Discrete-Time Markov Sources

In this subsection, we consider discrete-time Markov source models. Assume that the

transition probability matrix of then-state irreducible and aperiodic Markov source process

is denoted byJ, andλi is the arrival rate in statei. Moreover,Λ = diag {λ1, λ2, . . . , λn} is

the diagonal matrix of arrival rates. Then, the effective bandwidth of this discrete Markov

source is given by [9]

a(θ) =
1

θ
loge

[

sp
(

eθΛJ
)]

(2.13)
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where sp(·) is the spectral radius of the input matrix. Note that the stationary distribution

π can be found from the solution of

π1 = 1,

πJ = π (2.14)

whereπ = [π1, π2, . . . , πn] and1 = [1, . . . , 1]T .

In order to unveil the key relationships and tradeoffs, we consider a particularly simple

two-state model. We assume that data arrival is either in theON or OFF state in each

block duration ofm symbols. When the state is ON,λ bits arrive (i.e., the arrival rate isλ

bits/block), while there are no arrivals in the OFF state. For this two-state model, the state

transition probability matrix is given as

J =







p11 p12

p21 p22






. (2.15)

Given the above transition matrixJ, the effective bandwidth for this ON-OFF Markov

model can be derived as [9]

a∗(θ, λ) =
1

θ
loge

(

p11+p22eλθ+
√

(p11+p22eλθ)2−4(p11+p22−1)eλθ

2

)

(2.16)

wherep11 denotes the probability of staying in the OFF state from one block to another.

Similarly, p22 denotes the probability of staying in the ON state. The probabilities of tran-

sitioning from one state to a different one are therefore denoted byp21 = 1 − p22 and

p12 = 1 − p11. For these transition probabilities, we can easily see thatthe probability of

the ON state in the steady state is

PON =
1− p11

2− p11 − p22
. (2.17)
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Therefore, the average arrival rate is

ravg = λPON = λ
1− p11

2− p11 − p22
(2.18)

which is equal to the average departure rate when the queue isin steady state [8].

Markov Fluid Sources

In this subsection, we address Markov fluid sources where thesource arrival process is

modeled as a continuous-time Markov chain. Assume thatG is the irreducible tran-

sition rate matrix of the Markov chain,λi is the arrival rate in theith state, andΛ =

diag {λ1, λ2, . . . , λn}. Then, the effective bandwidth of this source is given by [11], [12]

a∗(θ) = µ

(

Λ+
1

θ
G

)

(2.19)

whereµ(·) denotes the maximum real eigenvalue of the input matrix. We also note that the

stationary distributionπ of the continuous-time Markov chain can be found by solving

π1 = 1,

πG = 0 (2.20)

whereπ = [π1, π2, . . . , πn], 0 = [0, . . . , 0]T and1 = [1, . . . , 1]T .

In order to derive closed-form expressions in our analysis,we again consider two states

(ON/OFF). When there is no arrival, the state is OFF. When thestate is ON, the arrival rate

is λ bits/block. The transition rate matrix for a two-state Markov fluid is in the form of

G =







−α α

β −β






, (2.21)

whereα is the transition rate from OFF state to ON state whereasβ is the transition rate
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from ON state to OFF state. Using (2.19), we can express the effective bandwidth as

a∗(θ) =
1

2θ

[

θλ− (α+ β) +
√

(θλ− (α+ β))2 + 4αθλ
]

. (2.22)

The probability of ON state,π2, is required to define the average rate. Inserting the gener-

ator matrixG in (2.21) into (2.20), we obtain the ON state probability as

π2 = PON =
α

α + β
. (2.23)

Therefore, the average arrival rate of the two-state Markovfluid process is

ravg = λPON = λ
α

α + β
. (2.24)

Continuous-Time Markov Modulated Poisson Sources

In this subsection, we assume that the data arrival to the buffer is a Poisson process whose

intensity is controlled by a continuous-time Markov chain.For instance, the intensity of the

Poisson arrival process isλi in the ith state of the Markov chain. Therefore, the source ar-

rival is modeled as a Markov-modulated Poisson process (MMPP). Assuming that theG is

the irreducible transition rate matrix of the Markov chain andΛ = diag {λ1, λ2, . . . , λn} is

the diagonal matrix of the intensities of the Poisson arrivals in different states, the effective

bandwidth is given by [11], [12]

a∗(θ) =
1

θ
µ
((

eθ − 1
)

Λ+G
)

. (2.25)

As in previous sections, we consider a two-state (ON/OFF) model in which there are

no arrivals in the OFF state (i.e., the intensity is0) and the intensity of the Poisson arrival

process isλ bits/block in the ON state. Assuming the same generator matrix G as in (2.21),



23

we can express the effective bandwidth as

a∗(θ) =
1

2θ

[(

eθ − 1
)

λ− (α+ β)
]

+
1

2θ

√

[

(eθ − 1)λ− (α + β)
]2

+ 4α (eθ − 1) λ.

(2.26)

Note that the average arrival rate in bits/block is again given by

ravg = λPON = λ
α

α + β
. (2.27)

We further note that if the transition rateβ = 0, then we havePON = 1. In this case,

MMPP model specializes to a pure Poisson source with intensity λ bits/block, and the

effective bandwidth of this source is given by

a∗(θ) =
1

θ

(

eθ − 1
)

λ. (2.28)

Discrete-Time Markov Modulated Poisson Sources

In this source model, the data arrival to the buffer is a Poisson process whose intensity

is controlled by a discrete-time Markov chain. Again, the intensity of the Poisson arrival

process isλi in the ith state of the Markov chain and the source arrival is modeled asa

Markov-modulated Poisson process (MMPP). Assume that the transition probability matrix

of then-state irreducible and aperiodic Markov source process is denoted byJ and and

Λ = diag {λ1, λ2, . . . , λn} is the diagonal matrix of the intensities of the Poisson arrivals

in different states, the effective bandwidth is given by [11], [12]

a(θ) =
1

θ
loge

[

sp
(

e(e
θ−1)ΛJ

)]

(2.29)

We again consider a two-state model in which the intensity ofthe Poisson arrival process is

λ and0 in the ON and OFF states of the Markov chain, respectively. Therefore, the source
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arrival is modeled as a Markov-modulated Poisson process (MMPP). Assuming that the

matrix J in (2.15) is the transition probability matrix of the Markovchain, the effective

bandwidth is given by [6].

a(θ) =
1

θ
loge

(

p11 + p22e
λ(eθ−1)

2
+

√

(p11 + p22e
λ(eθ−1))2− 4(p11 + p22 − 1)eλ(e

θ−1)

2

)

(2.30)
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CHAPTER 3

WIRELESS THROUGHPUT AND

ENERGY EFFICIENCY WITH RANDOM

ARRIVALS AND STATISTICAL

QUEUEING CONSTRAINTS

3.1 Throughput with Markovian Source Models

In this section, we formulate the throughput of wireless fading channels when the data

arrivals are random and statistical queueing constraints are imposed. More specifically, we

consider Markovian arrival models introduced in Section 2.2, namely discrete-time Markov

sources, Markov fluids and Markov-modulated Poisson arrivals. The states in these Markov

processes are differentiated by the corresponding arrivalrates in these states, e.g., the arrival

rate in theith state isλi. If the stationary distribution of the Markov process is denoted by
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π, the average arrival rate in ann-state Markov source model simply becomes

ravg =

n
∑

i=1

πiλi (3.1)

which is equal to the average departure rate when the queue isin steady state [8].

We seek to determine the throughput by identifying the maximum average arrival rate

that can be supported by the fading channel described in Section 3.1.1 while satisfying the

statistical QoS limitations given in the form in (2.1). As shown in [8, Theorem 2.1], (2.1) is

satisfied, i.e., buffer violation probability decays exponentially fast with rate controlled by

the QoS exponentθ, if the effective bandwidth of the arrival process is equal to the effective

capacity of the service process, i.e.,

a∗(θ) = CE(SNR, θ). (3.2)

Hence by solving (3.2), we can determine the maximum averagearrival rater∗avg(SNR, θ).

By specifying the effective bandwidth of different source models and incorporating the

effective capacity of time-varying wireless transmissions in (2.10), the maximum average

arrival rate can be determined for generaln-state Markovian source models. Indeed, several

n-state source models are addressed in Section 3.2. However,in our analysis in this section,

to illustrate the impact of the arrival and system parameters in a lucid setting, we concen-

trate on the two-state (ON-OFF) arrival models and provide closed-form expressions for

the maximum average arrival rates in terms of the source parameters and the effective ca-

pacity of the wireless transmissions. We also identify the characteristics of the throughput

in the low-θ and high-SNR regimes. We note that the analysis throughout this section is

applicable to any arbitrary fading correlation within eachfading block, with the exception

of high-SNR characterizations which are obtained under theassumption of i.i.d. fading.
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Fig. 3.1: System Model.

3.1.1 Channel Model

As depicted in Fig. 3.1, we consider a point-to-point link with a single transmitter and

single receiver. In this system, the data generated by the source is initially stored in a

buffer at the transmitter before it is transmitted over a wireless channel. We consider a

flat-fading channel between the transmitter and receiver, and assume a block-fading model

with a block duration ofm symbols. Hence, fading varies independently from one blockto

another. On the other hand, we further assume that in each block duration ofm symbols,

fading can be arbitrarily correlated. The channel input-output relation within each block

can be expressed as

yi = hixi + ni for i = 1, 2, . . . , m (3.3)

wherexi andyi are the channel input and output, respectively. The averageenergy of the

input isE , i.e.,

E{|xi|2} = E . (3.4)

ni denotes the zero-mean, circularly-symmetric, complex Gaussian noise with variance

E{|ni|2} = N0. Hence, the signal-to-noise ratio is

SNR=
E{|x|2}
E{|n|2} =

E
N0

. (3.5)
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Above in (3.3),hi denotes the fading coefficient. Fading coefficients are assumed to be

identically distributed, and the fading distribution can be arbitrary with finite variance.

While the ensuing analysis is applicable to a general class of fading distributions, we

use a Gauss-Markov fading model in the numerical results andassume that the Gaus-

sian fading coefficients in each block ofm symbols follow the correlation patternhi =

ρhi−1+wi wherewi is an independent, zero-mean Gaussian random variable withvariance

E{|wi|2} = (1−ρ2)σ2
h, ρ ∈ [0, 1], andσ2

h is the common variance of the fading coefficients

{hi}. Note that whenρ = 1, we have full correlation, whereasρ = 0 models the case of

independent fading.

3.1.2 Discrete-Time Markov Sources

In this section, we consider two-state (ON/OFF) discrete Markov sources described in Sec-

tion 2.2, and initially characterize the maximum average arrival rater∗avg that can be sup-

ported by the fading channel while satisfying the statistical QoS limitations given in the

form in (2.1).

Theorem 3.1.1.For the two-state (ON/OFF) discrete Markov source, the maximum aver-

age arrival rate (in bits/block) as a function of the QoS exponentθ, effective capacity of the

fading channelCE(SNR, θ), and the state transition probabilities is expressed as

r∗avg(SNR, θ) =
PON

θ
loge

(

e2θCE(SNR,θ) − p11e
θCE(SNR,θ)

1− p11 − p22 + p22eθCE(SNR,θ)

)

. (3.6)

Proof: See Appendix A.1.

Note thatr∗avg above is formulated in terms of the effective capacity,CE, of wireless

transmissions. In Fig. 3.2, we plot the the maximum average arrival rate as a function of

the effective capacity for different source characteristics whenθ = 1. It is easy to verify

that whenPON = 1−p11
2−p11−p22

= 1 or equivalentlyp22 = 1, (3.6) simplifies tor∗avg(SNR, θ) =

CE(SNR, θ). Hence, when the source is always ON and therefore the arrivals are at a constant
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Fig. 3.2: Maximum average arrival rater∗avg vs. effective capacityCE(SNR) for different
source statistics. No fading correlation, i.e.,ρ = 0. θ = 1.

rate, maximum average arrival rate is equal to the effectivecapacity, as also observed in

Fig. 3.2. On the other hand, we notice in this figure that asPON diminishes and the source

becomes more bursty, throughput diminishes as well and smaller average arrival rates are

supported for given effective capacity.

As also indicated in the above discussion and seen in (3.6),r∗avg(SNR, θ) is in general a

function of the state transition probabilities of the Markov arrival process in the presence

of buffer constraints. On the other hand, as shown in the following result, this dependence

disappears if no buffer constraints are imposed, i.e., whenθ = 0.

Theorem 3.1.2.As the statistical queueing constraints are relaxed by letting the QoS ex-

ponentθ approach zero, the maximum average arrival rate converges to

lim
θ→0

r∗avg(SNR, θ) =
m
∑

i=1

E {log2(1 + SNRzi)} bits/block. (3.7)
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Moreover, the first derivative ofr∗avg with respect toθ at θ = 0 is

∂r∗avg(SNR, θ)

∂θ

∣

∣

∣

∣

θ=0

=− 1

2

m
∑

i,j=1

cov{log2(1+ SNRzi), log2(1+ SNRzj)}

− η

2

(

m
∑

i=1

E {log2(1 + SNRzi)}
)2

(3.8)

where we defineη as

η =
(1− p22)(p11 + p22)

(1− p11)(2− p11 − p22)
. (3.9)

Proof: See Appendix A.2.

We see from (3.7) that if no statistical buffer constraints are imposed i.e., ifθ = 0,

then the maximum average arrival rate is equal to the Shannoncapacity of the block-fading

channel, and therefore is independent of the statistical characteristics of the discrete Markov

arrival model. Moreover, the dependence of the maximum arrival rate in this regime on

the channel statistics is only through the marginal distributions of the fading coefficients.

Hence, channel correlation in each fading block does not play any role. However, this

radically changes whenθ > 0. For instance, we notice from (3.8) that even with a small

increase inθ, r∗avg starts varying with the source and channel statistics, as exemplified by

the dependence of the first derivative onη and the covariance function.

Having discussed the low-θ regime above, we next provide a characterization ofr∗avg(SNR, θ)

at high SNR values for i.i.d. Rayleigh fading.

Theorem 3.1.3.Assume that the channel fading coefficients are i.i.d. in each block and

fading powerz = |h|2 is exponentially distributed with unit mean (i.e., Rayleigh fading is

experienced). Then, we have

1

m
r∗avg(SNR, θ) =























PON
θ log2 e

log2 SNR+O(1) if θ > 1
log2 e

PON log2 SNR+O(1) if 0 < θ < 1
log2 e

log2 SNR+O(1) if θ = 0

(3.10)
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asSNR→ ∞.

Proof: See Appendix A.3.

Note that the high-SNR slope is defined as [55]

S∞ = lim
SNR→∞

1
m
r∗avg(SNR, θ)

log2 SNR
. (3.11)

Theorem 3.1.3 shows that the high-SNR slope of the maximum arrival rate for the two-state

discrete Markov source that can be supported in the i.i.d Rayleigh fading channel is

S∞ =























PON
θ log2 e

if θ > 1
log2 e

PON if 0 < θ < 1
log2 e

1 if θ = 0

. (3.12)

It is interesting to observe from Theorem 3.1.2 that when no buffer constraints are imposed

i.e., whenθ = 0, the high-SNR slope isS∞ = 1, again independent of the source statistics.

On the other hand, whenθ > 0, S∞ becomes proportional to the ON probability and is

now less than one unless the arrival rate is constant. Furthermore, forθ values greater than

1
log2 e

, S∞ starts decreasing with increasingθ. Hence, the result in Theorem 3.1.3 quantifies

the performance degradation experienced at high SNR levelsdue to source randomness and

statistical buffer constraints.

Let us further simplify the source model and setp11 = 1 − s andp22 = s. The source

is now described by the single parameters. Notice that with this choice we havePON = s

and hences becomes a measure of the burstiness of the source. The smaller thes, the less

frequently the data arrives and the more bursty the source becomes. At the other extreme,

if s = 1, source is ON all the time and we have constant arrival rate. Furthermore, with the

above choice ofp11 andp22, the expression for the maximum average arrival rate simplifies
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to

r∗avg(SNR, θ) =
s

θ
loge

(

eθCE(SNR,θ) − (1− s)

s

)

, (3.13)

which can readily be seen to be a diminishing function ass decreases. Therefore, source

burstiness generally hurts the throughput if we keep all other variables fixed.

We can further observe this in Fig. 3.3, where we plot the maximum average arrival rate

(or equivalently the throughput) as a function of SNR for different values ofs and the QoS

exponentθ. Numerical analysis verifies that as the source becomes morebursty with lower

values ofs, throughput diminishes. Conversely, throughput is maximized whens = 1 i.e.,

when we have constant arrival rates. It is also interesting to notice from (3.13) that the

arrival rate in the ON state, which is given byλ∗ =
r∗avg(SNR,θ)

s
, increases ass diminishes.

Hence, smallers implies that data arrives less frequently but with bursts ofincreased rates.

We also observe in Fig. 3.3 that the throughput reduction dueto burstiness is more severe

at high SNRs. This is indeed a consequence of the fact that high-SNR slope gets smaller

asPON = s decreases, as discussed above. Finally, we see in Fig. 3.3 that performance

degradation is experienced asθ increases and hence stricter buffer constraints are imposed.

In Fig. 3.4, we plot the SNR levels required to support a givenaverage arrival rate

as a function of the ON-state probability for different values of the QoS exponentθ. We

observe that asPON decreases and hence the source becomes more bursty, required SNR

level increases in general. Interestingly, a sharper increase is experienced under stricter

buffer constraints (e.g., whenθ = 0.5 rather thanθ = 0.1), indicating higher power/energy

costs in these cases.

The low-θ regime is investigated in Fig. 3.5 where we plot the maximum average arrival

rater∗avg vs. QoS exponentθ for differentPON values. We setSNR= 1. We notice that all

three curves converge to the same throughput valuer∗avg(0) asθ → 0, confirming the result
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in (3.7). Hence, source characteristics do not affect the throughput if no queuing constraints

are imposed. Asθ increases, throughput diminishes and the reduction inr∗avg is more severe

for more bursty sources (e.g., whenPON = 0.4). We notice that, as predicted by (3.8), this

is already reflected by the different slopes ofr∗avg in the vicinity of θ = 0. Hence, overall

the system for more bursty sources becomes more cautious andsupports smaller average

arrival rates in order to avoid buffer overflows.

In Fig. 3.6, we again plot the throughput as a functionθ but for different values ofρ,

which quantifies the correlation between fading coefficients in each fading block. We fix

SNR = 1 and setPON = 0.5. Similar to burstiness, fading correlation does not have any

effect on the throughput whenθ = 0. Whenθ > 0, higher correlation (i.e., largerρ) results

in lower supported throughput under the same QoS constraints.

Finally, we have conducted simulations to further verify the theoretical analysis and re-

sults. In particular, in the simulations, for fixed QoS exponentθ, SNR, and state transition

probabilitiesp11 andp22 of the ON/OFF discrete Markov source, we initially determine

the maximum average arrival rate from (3.6) and the corresponding maximum arrival rate

in the ON state. Then, using the given statistical characterizations and the maximum ar-
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Fig. 3.6: Maximum average arrival rater∗avg vs. QoS exponentθ for different fading
correlations.PON = 0.5.

rival rate, we generate random Markov arrivals and assume that the arriving data is initially

stored in the buffer before being transmitted. Transmission rates are simulated by gener-

ating realizations of i.i.d. Gaussian fading coefficients.Throughout this process, we track

the queue evolution and the buffer state (i.e., the queue length) as the Markov arrivals oc-

cur (and hence more data gets stored) and transmissions at varying rates according to the

generated fading coefficients are performed, clearing somedata off the buffer. In Figs. 3.7

and 3.8, we plot the simulated buffer overflow probabilityPr{Q ≥ q} and delay violation

probabilityPr{D > d}, respectively, as functions of the corresponding thresholds, follow-

ing 107 runs of the simulation. We notice that while the theoreticalanalysis makes use

of results from the theory of large deviations and is generally applicable for large thresh-

olds, the simulation results are interestingly in excellent agreement with the theoretical

predictions even at small values of the thresholds. For instance, we note from (2.3) that

loge Pr{Q ≥ q} ≈ loge ς − θq and hence is expected to decay linearly inq with slope

θ. We indeed observe this linear decay in Fig. 3.7 (where the overflow probabilities are

plotted in logarithmic scale) for even small to moderate values ofq. Moreover, the slopes

of the simulated curves, denoted byθsim, are very close to the originally selected value of
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θ. Similar conclusions apply to Fig. 3.8 as well. In this figure, delay violation probabilities

are determined by keeping track of the delay experienced by the data stored in the buffer

until transmission. We again notice that the logarithm of the delay violation probability

decays linearly with thresholdd (or equivalently the delay violation probability diminishes

exponentially withd). Note that the slope of the linear decay is predicted from (2.5) to be

θa∗(θ) wherea∗(θ) is the effective bandwidth of the source. Again, the slope ofthe simu-

lated curves are almost the same as this theoretical slope value, as indicated in the legend

on the figure.

3.1.3 Markov Fluid Sources

In this section, we consider Markov fluid sources. In the following, we go through similar

steps as in the previous subsection and initially determinethe maximum average arrival

rates of ON/OFF Markov fluid sources that can be supported by the wireless channel as a

function of the source transition rates and the effective capacity of wireless transmissions.

Subsequently, we give characterizations of the maximum average arrival rates in the low-θ

and high-SNR regimes.
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Theorem 3.1.4.For the two-state (ON/OFF) Markov fluid source, the maximum average

arrival rate is given as

r∗avg(SNR, θ) = PON
θCE(SNR, θ) + α + β

θCE(SNR, θ) + α
CE(SNR, θ). (3.14)

Proof: See Appendix A.4.

Note that maximum average arrival rate generally depends onthe transition rate matrix

of the Markov fluid source. At the same time, similar to the discrete case, when there are no

QoS constraints, source characteristics do not have any impact on the throughput. However,

this changes drastically whenθ > 0 even if θ is vanishingly small. These properties are

demonstrated analytically in the result below.

Theorem 3.1.5.As the statistical queueing constraints are relaxed by letting the QoS ex-

ponentθ approach zero, we have

lim
θ→0

r∗avg(SNR, θ) =
m
∑

i=1

E {log2(1 + SNRzi)} bits/block, (3.15)
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and

∂r∗avg(SNR, θ)

∂θ

∣

∣

∣

∣

θ=0

=− 1

2

m
∑

i,j=1

cov{log2(1+ SNRzi), log2(1+ SNRzj)}

− ζ

2

(

m
∑

i=1

E {log2(1 + SNRzi)}
)2

(3.16)

whereζ is defined as

ζ =
2β

α(α + β)
. (3.17)

Proof: See Appendix A.5.

We note that whenθ > 0, r∗avg depends on the source and channel statistics. In (3.16),

we observe the dependence of even the first derivative on channel correlations and source

statistics via the covariance function and the parameterζ , respectively.

Next we present a high-SNR characterization of the throughput for Rayleigh fading.

Theorem 3.1.6.Assume that the channel fading coefficients are i.i.d. in each block and

fading powerz = |h|2 is exponentially distributed with unit mean (i.e., Rayleigh fading is

experienced). Then, we have

1

m
r∗avg(SNR, θ) =























PON
θ log2 e

log2 SNR+O(1) if θ > 1
log2 e

PON log2 SNR+O(1) if 0 < θ < 1
log2 e

log2 SNR+O(1) if θ = 0

(3.18)

asSNR→ ∞.

The proof of Theorem 3.1.6 is omitted due to its similarity tothe proof of Theorem

3.1.3 in Appendix A.3. Similar conclusions as in Section 2.2immediately apply.

Note that the throughput expression in (3.14) suggests thatfor sufficiently high SNR
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Fig. 3.9: Maximum average arrival rater∗avg vs. signal-to-noise ratioSNR for different
values ofθ and source statistics. No fading correlation, i.e.,ρ = 0.

levels leading toθCE(SNR, θ) ≫ α + β, we have

r∗avg(SNR, θ) ≈ PONCE(SNR, θ). (3.19)

Hence, at high SNRs, the maximum average arrival rate depends on the source statistics

only through the ON probability. This is noted in the high-SNR behavior in (3.18) as well.

In Fig. 3.9, we plotr∗avg vs. SNR curves for differentα, β, andθ values. We immediately

observe that throughput diminishes with increasingθ and decreasingPON. In Fig. 3.10, we

analyze the effect ofravg, PON, andα + β on the required SNR levels. For Markov fluid

sources, ON state probability is not the sole indicator of burstiness. Having lowα and

β values also indicates that source is more bursty as the transition between ON and OFF

states becomes less frequent. Hence, OFF state can be more persistent. Whenα andβ are

large, state transitions occur more rapidly, leading to lower required SNR levels. Again, we

notice that the burstiness is harmful for the system.

In Fig. 3.11, we plot the maximum average arrival rater∗avg as a function ofθ for

different values ofα andβ. Notice that by keepingα = β, the ON probabilityPON is
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Fig. 3.10: Required SNR vs. ON probability,PON, for a given average arrival rate.θ = 0.5.
No fading correlation, i.e.,ρ = 0.

fixed at 0.5, while average durations of ON and OFF states varyas the values ofα = β

change. For example, higherα andβ values lead to shorter periods for ON and OFF states

on average. As an outcome of this fact, we observe in the figurethat higher throughput is

achieved with sources having higherα + β.

3.1.4 Continuous-Time Markov Modulated Poisson Sources

Now, we address two-state (ON/OFF) MMPP sources. Similarlyas for the previous source

models, we determine the maximum average arrival rate of theMMPP source, which can

be supported by the fading channel in the presence of QoS constraints, and investigate the

throughput in the low-θ and high-SNR regimes. The results can be immediately specialized

to pure Poisson sources by settingβ = 0.

Theorem 3.1.7.For the two-state (ON/OFF) MMPP source model, the maximum average

arrival rate is

r∗avg(SNR, θ) = PON
θ [θCE(SNR, θ) + α + β]

(eθ−1) [θCE(SNR, θ) + α]
CE(SNR, θ). (3.20)
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Fig. 3.11: Maximum average arrival rater∗avg vs. QoS exponentθ for different values ofα
andβ. PON = 0.5, ρ = 0, andSNR= 0 dB.

Proof: See Appendix A.6.

It is interesting to observe that the throughput with the MMPP source is almost identical

to that with the Markov fluid source model, save only for the multiplicative factor θ
eθ−1

in

(3.20). Note that θ
eθ−1

< 1 for θ > 0 and diminishes exponentially fast with increasing

θ. Hence, the throughput is generally smaller with MMPP sources and decreases fast with

θ. This can be attributed to the much more randomness/burstiness we experience with an

MMPP source with respect to the previous Markov models. Notethat the arrival rate in the

ON state, rather than being a constant as in the previous cases, is determined by a Poisson

process. Hence, the presence of the termθ
eθ−1

is due to this Poisson property. Indeed,

if we have a pure Poisson source, the maximum average arrivalrate isr∗avg(SNR, θ) =

θ
(eθ−1)

CE(SNR, θ) obtained by settingβ = 0. The cost of this additional randomness is

reflected in the following results as well.

Theorem 3.1.8.As the statistical queueing constraints are relaxed by letting the QoS ex-
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ponentθ approach zero, we have

lim
θ→0

r∗avg(SNR, θ) =

m
∑

i=1

E {log2(1 + SNRzi)} bits/block, (3.21)

and

∂r∗avg(SNR, θ)

∂θ

∣

∣

∣

∣

θ=0

=− 1

2

m
∑

i,j=1

cov{log2(1+ SNRzi), log2(1+ SNRzj)}

− ζ

2

(

m
∑

i=1

E {log2(1 + SNRzi)}
)2

− 1

2

m
∑

i=1

E {log2(1 + SNRzi)}

(3.22)

where

ζ =
2β

α(α + β)
. (3.23)

Proof: See Appendix A.7.

When the system is free of QoS limitations, the maximum average arrival rate for the

MMPP source again turns out to be equal to the Shannon capacity. However, the throughput

has a steeper decline in the low-θ regime due to the third term on the right-hand side of

(3.22).

Theorem 3.1.9.Assume that the channel fading coefficients are i.i.d. in each block and

fading powerz = |h|2 is exponentially distributed with unit mean (i.e., Rayleigh fading is

experienced). Then, we have

1

m
r∗avg(SNR, θ)=























PON

(eθ−1) log2e
log2SNR+O(1) if θ> 1

log2 e

θ
eθ−1

PON log2 SNR+O(1) if 0< θ< 1
log2 e

log2 SNR+O(1) if θ= 0

(3.24)

asSNR→ ∞.

Since the ratio between the MMPP throughput and Markov fluid throughput always
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Fig. 3.12: Maximum average arrival rater∗avg vs. signal-to-noise ratioSNR for different
values ofθ and different source statistics. No fading correlation, i.e.,ρ = 0.

stays at θ
eθ−1

, we can immediately obtain the above high-SNR characterization, using the

formulations in (3.18).

In the numerical results, we have similar conclusions as in the Markov fluid case. The

primary difference is the reduced throughput for givenθ, which, for instance, is readily

seen when we compare Figs. 3.9 and 3.12, where we have throughput vs. SNR curves

for Markov fluid and MMPP sources, respectively. In Fig. 3.13, we display the maximum

average arrival rater∗avg as a function ofθ. We setα + β = 100 andSNR = 1, and vary

α andβ and hence the ON probability. We note that asPON decreases, the performance

degrades faster with increasingθ, as indicated by the steeper slopes.

3.1.5 Discrete-Time Markov Modulated Poisson Process

In order to determine the maximum average arrival rate in terms ofCE(θ), we insert the

effective bandwidth expression in (2.30) into (3.2) and obtain

(

p11+ p22e
r(eθ−1) − 2eθCE

)2

= (p11+ p22e
r(eθ−1))2− 4(p11+ p22 − 1)er(e

θ−1). (3.25)
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Fig. 3.13: Maximum average arrival rater∗avg vs. QoS exponentθ for different source
statistics.ρ = 0.

After solving the above equation forr, we obtain the maximum average arrival rate as

r∗avg(θ)=
PON

(eθ − 1)

[

loge

(

e2θCE(θ) − p11e
θCE(θ)

(1−p11−p22)+p22eθCE(θ)

)]

. (3.26)

Having formulated the maximum average arrival rates in terms of the effective capacity

and source statistics, we next identify the optimal power control policies, maximizing the

energy efficiency. In order to have convex optimization problems below, we need to show

that throughputr∗avg(θ) is concave in SNR= E{µ(θ, z)}. In [18, Lemma 1], it is proven

that effective capacity is a concave function of SNR. In [11], it is shown that effective

bandwidth of the source is strictly monotonically increasing and is also convex in source

arrival rates. Therefore, inverse function of the effective bandwidtha∗−1 (CE(θ)) exists

and is a nondecreasing concave function of the effective capacity, which is concave in SNR.

Using the composition properties of concave functions [31], we immediately conclude that

the maximum average arrival rate

r∗avg(θ) = PON a
∗−1 (CE(θ)) (3.27)
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is also a concave function of SNR.

3.1.6 Comparative View of Source Models and Performance Lev-

els

In our analysis, we have considered discrete-time Markov, Markov fluid, and MMPP arrival

models. All models possess the Markovian property in the sense that the evolution of

the Markov chains and hence the state transitions satisfy the Markov condition and are

described by the transition probability matrix in the case of discrete-time models and by the

transition rate matrix in the case of fluid (or equivalently continuous-time) models. Also,

state holding times are geometrically distributed in discrete-time models and exponentially

distributed in continuous-time models, and hence exhibit the memoryless property.

At the same time, there are distinct differences between different source models. For

instance, transitions between states occur in discrete time steps in discrete-time Markov

models while the Markov chain can spend a continuous amount of time in any state in

Markov fluid models (i.e., the length of time spent in any state is a continuous random

variable or more explicitly holding times are exponentially distributed as also noted above).

MMPP models are further differentiated. In the discrete-time Markov and Markov fluid

models, arrival rates are assumed to be constant in any givenstate. On the other hand,

when the arrivals are modeled as MMPP, arrival rate is Poisson distributed in each state

with a different intensity. Hence, MMPP sources exhibit a higher level of variation in this

sense and can be regarded as a more bursty source.

We also remark that ON/OFF discrete-time Markov and Markov fluid source models

can be easily specialized to the source with a constant arrival rate by letting ON state

probabilityPON = 1. On the other hand, whenPON = 1 in the ON/OFF MMPP source, we

have a pure Poisson arrival source.

Finally, we note that although there is a certain degree of similarity in the analysis of

discrete-time Markov and Markov fluid models and their throughput performances (e.g.,
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high-SNR characterizations are the same in Theorems 3.1.3 and 3.1.6), the set of results

for one model do not immediately follow from those for the other model as seen in the

throughput formulations in (3.6) and (3.14) and the definitions ofη andζ in (3.9) and (3.17),

respectively. However, there is a clear distinction when MMPP sources are considered. As

also discussed in Section 3.1.4, higher level of burstinessof MMPP sources penalizes the

performance, and lower throughput levels are achieved in general with these sources.

3.2 Energy Efficiency Analysis

In this section, we conduct a low-SNR analysis and investigate the energy efficiency in

fading channels when data arrivals are random and statistical queueing constraints are im-

posed. We first identify the energy efficiency metrics. Subsequently, we consider different

source arrival models and provide closed-form expressionsfor the energy efficiency metrics

when the arrival rate is constant or follows a two-state Markovian model. We also numer-

ically analyze specificn-state Markovian sources. Similarly as in the previous section,

arbitrary fading correlation within each fading block is considered in the analysis.

3.2.1 Energy Efficiency Metrics

Before defining the energy efficiency metrics, we briefly describe the concavity of the max-

imum average arrival rate as a function of SNR in the two-state (ON/OFF) arrival models

(or if the arrival rates in ann-state model can be expressed as multiples of a certain sin-

gle rate). In [18, Lemma 1], it was proven that effective capacity is a concave function

of SNR. Elwalid and Mitra [11] showed that the effective bandwidth of a source is mono-

tonically increasing when any arrival rateλi increases and is convex in the arrival rates

{λ1, λ2, . . . , λN}. In the ON/OFF arrival models, we have a single arrival rateλ. Since ef-

fective bandwidth is a monotonically increasing and convexfunction ofλ, the inverse func-

tion of the effective bandwidtha∗−1 exists and is a nondecreasing concave function. More
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specifically, the maximum arrival rate can be expressed asλ∗(SNR, θ) = a∗−1 (CE(SNR, θ)),

which is a nondecreasing concave function of the effective capacity, which is concave in

SNR. Using the composition properties of concave functions[31], we realize that the max-

imum arrival rate is concave in SNR. Thus, the maximum average arrival rater∗avg(SNR, θ)

is also concave in SNR.

In our analysis, following the approach in [57], we study theminimum energy per bit

and the wideband slope, which is defined as the slope of the spectral efficiency curve at

zero spectral efficiency, as the performance metrics of energy efficiency. While minimum

bit energy is a performance measure in the limit asSNR → 0 (due to the concavity of the

throughput), wideband slope has emerged as a tool that enables us to analyze the energy

efficiency at low but nonzeroSNR levels. In our setup, we define energy per bit as

Eb
N0

=
SNR

r∗avg(SNR, θ)/m
(3.28)

where the normalization withm is due to our assumption thatr∗avg is in the units of bits per

m symbols (or equivalently per block).

The minimum energy per bitEb

N0 min
under QoS constraints can be obtained from

Eb
N0 min

= lim
SNR→0

SNR

r∗avg(SNR, θ)/m
=

1

ṙ∗avg(0)/m
. (3.29)

At Eb

N0 min
, the slopeS0 of the throughput versusEb/N0 (in dB) curve is defined as [57]

S0 = lim
Eb
N0

↓
Eb
N0 min

r∗avg(SNR, θ)/m

10 log10
Eb

N0
− 10 log10

Eb

N0 min

10 log10 2. (3.30)

The wideband slope can also be found from

S0 = −
2
(

ṙ∗avg(0)/m
)2

r̈∗avg(0)/m
loge 2 (3.31)
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whereṙ∗avg(0) andr̈∗avg(0) are the first and second derivatives, respectively, of the function

r∗avg(0) with respect to SNR at zero SNR.Eb

N0 min
andS0 essentially provide a linear approx-

imation of the throughput curve at low SNR levels.

3.2.2 Energy Efficiency with Constant Arrival Rate

In this section, we assume that the source arrival rate is fixed. Hence, we investigate

the energy efficiency in the absence of source randomness andexamine the impact of

fading correlation and queueing constraints. As discussedin the previous section, effec-

tive capacity,CE(SNR, θ), characterizes the maximum constant arrival rate in the pres-

ence of QoS constraints described by the QoS exponentθ. Hence, we in this case have

r∗avg(SNR, θ) = CE(SNR, θ). In the following result, we provide the minimum bit energy

and wideband slope expressions under these assumptions.

Theorem 3.2.1.Assume that the source arrival rate is constant. Then, the minimum energy

per bit and wideband slope expressions as a function of the QoS exponentθ are given,

respectively, by

Eb
N0 min

=
loge 2

E {z} (3.32)

and

S0 =
2(E {z})2

θ
m loge 2

∑m
i,j=1 cov{zi, zj}+ E {z2} (3.33)

where cov(zi, zj) = E{zizj} − E{zi}E{zj} is the covariance ofzi andzj .

Proof: See Appendix A.8.

Remark 2. As can be seen in (3.32), the minimum energy per bit, which is achieved in the

asymptotic regime in which SNR vanishes, does not depend on the QoS exponentθ, hence
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is not affected by the presence of the buffer limitations. Indeed, this is the fundamental

limit in Gaussian channels [57]. Wideband slopeS0, on the other hand, depends on the

QoS constraints via the QoS exponentθ. It can be easily seen that higher the value ofθ,

the stricter the QoS constraints are and the smaller the value of the wideband slope is,

indicating the increased energy requirements. Furthermore, it can be readily verified that

wideband slope decreases with increased fading correlation. Or conversely, variations in

the channel conditions are favorable for improved energy efficiency.

In Fig. 3.14, we plot the normalized maximum average arrivalrate 1
m
r∗avg as a func-

tion of the energy per bitEb

N0
for different correlation factorsρ whenθ = 1 andE{z} =

E{|h|2} = σ2
h = 1. As predicted by Theorem 3.2.1, all curves converge to the same mini-

mum energy per bit ofEb

N0 min
= loge 2

E{z} = loge 2 = −1.59 dB asSNR and hencer∗avg vanish.

On the other hand, wideband slopes are different for different values ofρ. As discussed

above, asρ and hence correlation diminishes from 1 to 0, slopes increase progressively. It

is also interesting to note that in the absence of QoS constraints, i.e., whenθ = 0, such a

distinction disappears. The wideband slope becomesS0 =
2(E{z})2

E{z2} , which clearly does not

depend on the fading correlation.

3.2.3 Energy Efficiency with Discrete-Time Markov Sources

Starting with this subsection, we incorporate random arrivals into our energy efficiency

analysis and determine how source randomness affects the performance.

ON-OFF Discrete-Time Markov Sources

We assume that data arrival is either in the ON or OFF state in each block duration ofm

symbols. As we have previously stated, in the ON state,λ bits arrive (i.e., the arrival rate

is λ bits/block) while there are no arrivals in the OFF state. Below, we provide our results

on energy efficiency.
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Fig. 3.14: Normalized maximum average arrival rate1
m
r∗avg vs. energy per bitEb

N0
for

different fading correlations.θ = 1,m = 10.

Theorem 3.2.2.Assume that the source arrival rate is random and follows thedescribed

discrete-time ON-OFF Markov model. Then, the minimum energy per bit and wideband

slope expressions as a function of the QoS exponentθ are given, respectively, by

Eb
N0 min

=
loge 2

E {z} (3.34)

and

S0 =
2(E {z})2

η θm
loge 2

(E {z})2 + θ
m loge 2

∑m
i,j=1 cov{zi, zj}+ E {z2} (3.35)

whereη is defined in(3.9).

Proof: See Appendix A.9.

Interestingly,Eb

N0 min
again turns out to be a very robust quantity. Regardless of the buffer

constraints, channel correlations, and randomness of the arrivals, the minimum received

energy per bit isEb

N0 min
= loge 2 = −1.59 dB whenE{z} = 1. On the other hand, the

impact of random arrivals on the wideband slope is perspicuous in (3.35). When compared
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to (3.33), we immediately notice that having random arrivals leads to the introduction of the

termη θm
loge 2

(E {z})2 in the denominator of (3.35). Notice that whenp22 = 1 andp11 = 0,

we havePON = 1, meaning that we have a constant arrival rate. In this case,η = 0

and indeed (3.35) specializes to (3.33). More generally, wehaveη ≥ 0 for all p11, p22 ∈

[0, 1]. Therefore, random arrivals potentially decreases the wideband slope and increases

the energy requirements.

This is more clearly seen again in the special case in whichp11 = 1 − s andp22 = s.

Now, we haveη = p11
p22

= 1−s
s

and the wideband slope is

S0 =
2(E {z})2

1−s
s

θm
loge 2

(E {z})2 + θ
m loge 2

∑m
i,j=1 cov{zi, zj}+ E {z2} . (3.36)

As PON = s decreases, the wideband slope decreases as well. Therefore, the source be-

coming more bursty leads to increased energy per bit. This isillustrated in Fig. 3.15 where

maximum average arrival rate vs. energy per bit is plotted and the same channel fading and

correlation model as in Fig. 3.14 is used. In this figure, we assumeθ = 1 andρ = 0.75.

As predicted, the minimum bit energies are all the same. However, we have diminishing

slopes with decreasingPON. Note that for a fixed average arrival rate, asPON gets smaller,

source becomes more bursty. Data arrives less frequently but with a higher rate. This in

turn increases energy per bit as implied by smaller widebandslopes.

Discrete-Time Markov Sources with n States

In this model, we assume that there aren − 1 sources, each having its own ON and OFF

states. In the ON state, a source sends data to the buffer at the rate ofλ bits/block. Oth-

erwise, it is in OFF state in which no data is generated. In this set-up, depending on how

many sources are active (i.e., are in ON state), data arrivals to the buffer can be regarded as

a discrete-time Markov process withn states. In theith state of this model,(i− 1) sources

are active. For simplicity, we assume that the probability of each source being active in a
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Fig. 3.15: Maximum average arrival rate1
m
r∗avg vs. energy per bitEb

N0
for different values

of PON = s whenρ = 0.75, θ = 1, andm = 10.

given block iss, independent of the previous states and of the other sources. Then, the state

probabilities will be given by

πi =

(

n− 1

i− 1

)

si−1(1− s)n−i for i = 1, 2, . . . , n. (3.37)

Note that the system is essentially memoryless because eachstate is independent of the

previous state. Hence, transition probability matrix becomes

J =



















π1 π2 · · · πn

π1 π2 · · · πn
...

...
...

...

π1 π2 · · · πn



















. (3.38)

Using (3.37) we can write the average rate expression as

ravg =
n
∑

i=1

(

n− 1

i− 1

)

qi−1(1− q)n−i(i− 1)λ = (n− 1)qλ. (3.39)
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Fig. 3.16: Maximum average arrival rate1
m
r∗avg vs. energy per bitEb

N0
for different values of

s when channel blocks are uncorrelated andθ = 1. Number of states for the arrival process
is n = 10.

For this case, we do not have closed-form expressions. However, we can easily obtain

the effective bandwidth and maximum average arrival rate numerically. In particular, by

numerically solving (3.2) and using (3.39), we can determine the maximum average arrival

rater∗avg as a function of SNR. In Fig. 3.16, we display the maximum average arrival rate

as a function of energy per bit. Similarly as in the simple ON/OFF model, we observe that

when source burstiness is decreased by increasings, energy efficiency improves.

To have a better understanding of the effect of the QoS constraints, average arrival rate

curves in Fig. 3.17 are obtained for differentθ values. We first notice that QoS exponentθ

does not have any effect on the minimum energy per bit becauseall curves merge at−1.59

dB which is again the minimum energy per bit for allθ values. However, energy efficiency

degrades with stricter QoS conditions as increasingθ reduces the wideband slope.

Finally, for comparison purposes, we depict the throughputas a function of SNR in

Fig. 3.18 for different source characteristics andθ values. The trends in the throughput vs.

SNR curves for the consideredn-state discrete Markov source are observed to be similar

to those in Fig. 3.3 plotted for the ON-OFF discrete Markov source. For instance, again
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Fig. 3.17: Maximum average arrival rate1
m
r∗avg vs. energy per bitEb

N0
for differentθ values

when channel blocks are uncorrelated ands = 0.5. Number of states for arrival process is
n = 10.

increased source burstiness (i.e., lower values of s) and stricter queueing constraints (i.e.,

higherθ values) result in the degradation of the throughput for bothtwo-state (ON/OFF)

andn-state source models.

3.2.4 Energy Efficiency with Markov Fluid Sources

ON-OFF Markov Fluid Model

Now, we consider Markov fluid sources with two states, namelyOFF state with no arrivals

and ON state in which the arrival rate isλ. The generating matrix is defined in (2.21).

Minimum energy per bit and wideband slope are derived in the following result.

Theorem 3.2.3.Assume that the source arrival is modeled by a two-state (ON-OFF)

continuous-time Markov chain. Then, the minimum energy perbit and wideband slope

expressions as a function of the QoS exponentθ are given, respectively, by

Eb
N0 min

=
loge 2

E {z} (3.40)
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Fig. 3.18: Maximum average arrival rater∗avg vs. signal-to-noise ratioSNR when channel
blocks are uncorrelated. Number of states of the arrival process isn = 10.

and

S0 =
2(E {z})2

ζ θm
loge 2

(E {z})2 + θ
m loge 2

∑m
i,j=1 cov{zi, zj}+ E {z2} (3.41)

whereζ = 2β
α(α+β)

as defined in(3.17).

Proof: See Appendix A.10.

Similarly as before, QoS constraints and source randomnessdo not affect the minimum

energy per bit. On the other hand, it is seen in (3.41) that theimpact of source arrival

characteristics on the wideband slope is via the state transition ratesα andβ. For instance,

larger theα value, the higher the wideband slope is. This is due to the fact that asα, which

is the transition rate from OFF state to ON state, increases,the system is more likely to be

in the ON state. Contrarily, wideband slope diminishes withincreasingβ. This is expected

as well since largerβ leads to higher OFF-state probabilities. The effect ofα andβ is

illustrated in Fig. 3.19, where maximum average arrival rate vs. energy per bit is plotted.

In this figure, we setθ = 1 andρ = 0.75. As predicted, the same minimum energy per bit

is achieved for different values ofα andβ, while wideband slope increases with increasing
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Fig. 3.19: Maximum average arrival rate1
m
r∗avg vs. energy per bitEb

N0
whenρ = 0.75,

θ = 1, andm = 10.

α or decreasingβ.

n-State Markov Fluid Birth-Death Process

In this subsection, we consider a birth-death process for the Markov fluid source. We

assume that there aren states and the arrival rate in theith state is(i−1)λ for i = 1, . . . , n.

The generating matrix for the birth-death process is in the form of

G =

































−α α 0 · · · · · · 0

β −(α + β) α 0 · · · 0

0
. . .

...
...

. . . 0

0 · · · 0 β −(α + β) α

0 · · · · · · 0 −β β

































. (3.42)

Hence, the transition rate from statei to statei + 1 is α whereas the transition rate from

statei to statei − 1 is β. The effective bandwidth of this source, which does not havea

simple closed-form expression, can be found from (2.19). Inorder to conduct an energy
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efficiency analysis, average arrival rate needs to be identified as well. Using (2.20) and

(3.42), we can easily determine that the stationary distribution as

πi =

(

α
β

)i−1

−
(

α
β

)i

1−
(

α
β

)n for i = 1, 2, . . . , n (3.43)

whenα
β
6= 1,α 6= 0 andβ 6= 0. If any of these inequalities is not satisfied, state probabilities

can be obtained by limiting functions.

Now, under the assumptions thatα 6= β and the arrival rate in statei is λi = (i −

1)λ(SNR), the average arrival rate is given by

ravg =
ξ(1− nξn−1 + (n− 1)ξn)

(1− ξ)(1− ξn)
λ(SNR) (3.44)

whereξ = α
β
.

Remark 3. Note that(3.44)specializes to(2.24) if n = 2. Whenξ → ∞, the probability

of thenth state approaches1, and the arrival rate will be(n − 1)λ(SNR) at steady state.

On the other hand, forξ = 0, the state of the source is stuck at the first state in which the

arrival rate is zero.

Numerically, we can obtain the effective bandwidth of then-state birth-death Markov

fluid process using (2.19). Subsequently, solving (3.2) andincorporating (3.44), we can

determine the maximum average arrival rater∗avg(SNR), which we further employ for char-

acterizing the energy efficiency. The results of this numerical analysis are displayed in the

following figures. In Fig. 3.20, we demonstrate the effect ofα on the energy efficiency.

In particular, whenβ is kept fixed, increasingα improves the energy efficiency as in the

two-state case. We illustrate the effect of QoS constraintsin Fig. 3.21. Similar conclusions

as before readily apply. QoS exponentθ does not alter the minimum bit energy, which is

−1.59 dB again, but the wideband slope is reduced with increasingθ.
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Fig. 3.20: Maximum average arrival rate1
m
r∗avg vs. energy per bitEb

N0
when channel blocks

are uncorrelated.θ = 1, β = 100 and the number of states of the arrival process isn = 10.
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Fig. 3.21: Maximum average arrival rater∗avg vs. energy per bitEb
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when channel blocks

are uncorrelated andα = β = 50. Number of states of the arrival model is10.
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3.2.5 Energy Efficiency with Markov-Modulated Poisson Process

ON-OFF Markov-Modulated Poisson Process

Again, we initially address the two-state model in which there are no arrivals in the OFF

state and the intensity of the Poisson arrival process isλ in the ON state. The generating

matrixG is the same as in (2.21).

Theorem 3.2.4. Assume that the source arrival is modeled by a two-state (ON/OFF)

Markov modulated Poisson process. Then, the minimum energyper bit and wideband slope

expressions as a function of the QoS exponentθ are given, respectively, by

Eb
N0 min

=
eθ − 1

θ

loge 2

E {z} (3.45)

and

S0 =
2θ
eθ−1

(E {z})2
ζ θm
loge 2

(E {z})2 + θ
m loge 2

∑m
i,j=1 cov{zi, zj}+ E {z2} (3.46)

whereζ = 2β
α(α+β)

as defined in(3.17).

Proof: See Appendix A.11.

Remark 4. It is interesting to observe that, unlike the previous arrival models, minimum

energy per bit in the case of MMPP source depends on the QoS exponentθ. More specifi-

cally, minimum energy per bit increases with(eθ − 1)/θ which is an increasing monotonic

function ofθ and always greater than one forθ > 0. On the other hand, asθ → 0,

(eθ − 1)/θ → 1. Therefore,Eb

N0 min
≥ loge 2

E{z} with equality only if no QoS constraints are

imposed (i.e., whenθ = 0). Furthermore, in addition to its significant impact on the min-

imum energy per bit, increasingθ leads to much quicker reduction in the wideband slope

due to the presence of the termθ
eθ−1

in (3.46). Hence, overall, energy costs grow very fast

asθ increases. This is again because of the additional randomness arising from Poisson
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Fig. 3.22: Maximum average arrival rate1
m
r∗avg vs. energy per bitEb

N0
whenρ = 0.75,

θ = 1, andm = 10.

arrivals in the ON state.

Remark 5. From (3.46), we note that the effect of the state transition ratesα andβ on

the energy efficiency is the same as in the Markov fluid source model. Increasingα or

decreasingβ improves the energy efficiency of the system because the burstiness of the

data arrivals is reduced and the buffer overflows can be avoided at lower energy costs.

We plot the maximum average arrival rate vs. energy per bit inFig. 3.22. We setE{z}

= 1 andθ = 1 for which the minimum energy per bit is0.76 dB. The increase in bit energy

with respect to−1.59 dB is due to10 log10((e
θ − 1)/θ) = 10 log10(e− 1) for θ = 1. From

the figure, we can again infer that adjustingα or β to increase the ON state probability

makes the system more energy efficient due to the increase in the wideband slope.

n-State Markov-Modulated Poisson Process

Finally, we consider ann-state MMPP process and assume that the intensity of the Poisson

arrivals in theith state is(i − 1)λ. For the Markov transitions between states, we con-

sider the birth-death process and adopt the transition ratematrixG from (3.42). We solve
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Fig. 3.23: Maximum average arrival rate1
m
r∗avg vs. energy per bitEb

N0
when channel blocks

are uncorrelated.θ = 1, β = 100 and the number of Markov states for the arrival process
is n = 10.

for the maximum intensityλ∗(SNR, θ) by incorporating (2.25) into (3.2). Then, using the

expression in (3.44), we obtainr∗avg(SNR, θ).

In Figs. 3.23 and 3.24, we depict the maximum average arrivalrate as a function of

the energy per bit with uncorrelated channel coefficients being assumed in each block. In

Fig. 3.23, we setn = 10, θ = 1 andβ = 100, and demonstrate howα influences the

energy efficiency of system. The observation has similarities with other Markovian sources

regarding the source burstiness. Interestingly, the minimum energy per bit is again0.76 dB

as in the two-state case, leading to the conclusion that the number of states does not alter

Eb

N0 min
in this case. The degradation in energy efficiency due to increasedθ is shown in Fig.

3.24. As described in the two-state case, higher values ofθ (i.e., stricter QoS constraints)

result in higherEb

N0 min
and smaller wideband slope. Therefore, even for relativelysmall

increases inθ, we can have large gaps between curves, indicating significantly high energy

costs.
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Fig. 3.24: Maximum average arrival rate1
m
r∗avg vs. energy per bitEb

N0
when channel blocks

are uncorrelated andα = β = 50. Number of Markov states for the arrival process is
n = 10.

3.3 Energy Efficiency in Multiple-Antenna Channels

3.3.1 Channel Model

We consider a flat-fading MIMO channel model between the transmitter and receiver. We

assume that transmitter and receiver hasnT andnR antennas, respectively. The channel

input-output relation can be expressed as

y = Hx+ n. (3.47)

Note that,x denotes thenT×1-dimensional channel input vector, andy denotes thenR×1-

dimensional channel output vector. Input average energy isE{‖x‖2} = E . n denotes the

zero-mean, circularly-symmetric, complex Gaussian noisewith dimensionnR × 1. The

covariance matrix of noise is given asE{nn†} = N0I, whereI is the identity matrix.
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Hence, the signal-to-noise ratio is

SNR=
E{‖x‖2}
E{‖n‖2} =

E
nRN0

. (3.48)

Furthermore, we define the normalized input covariance matrix as

Kx =
E{xx†}

E . (3.49)

with trace tr(Kx) = 1.

Finally,H denotes thenR×nT–dimensional random channel matrix whose components

are the fading coefficients of the channels between the corresponding transmitting and re-

ceiving antennas. We assume that the components ofH have arbitrary distributions with

finite variances unless specified otherwise. Additionally,we assume block-fading scenario

in which the realization of matrixH remains fixed over a block and changes independently

from one block to another.

3.3.2 Effective Capacity of Wireless Transmissions with MIMO

Channels

For the MIMO fading Gaussian channel with channel perfectlyknown at the transmitter

and receiver, the maximum instantaneous service rate with given input covariance matrix

Kx is the instantaneous channel capacity, which is expressed as

R = log2(I+ nRSNRHKxH
†). (3.50)

With uniform power allocation across transmit antennas, the input covariance matrix is

Kx =
1
nT

I. Hence, we have the effective capacity expression as

CE(SNR, θ) = −1

θ
loge E

{

exp

(

−θ log2 det(I+
nR
nT

SNRHH†)

)}

. (3.51)
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If the input covariance matrix is optimized, then the effective capacity is given by

CE(SNR, θ) = − 1

θnR
loge E

{

exp

(

−θ max
Kx�0

log2 det(I+ nRSNRHKxH
†)

)}

. (3.52)

3.3.3 Energy Efficiency of MIMO Channels with Discrete Markov

Sources

In this section, we consider discrete Markov sources and first characterize the energy effi-

ciency metrics for uniform power allocation. Due to space limitations, we omit the proofs.

Theorem 3.3.1.With uniform power allocation, i.e., when the input covariance matrix is

Kx =
1
nT

I, the minimum energy per bit and wideband slope are given by

Eb
N0 min

=
nT loge 2

nRE {tr (H†H)} (3.53)

S0 =
2E2

{

tr (H†H)
}

θη
loge 2

E2 {tr (H†H)}+ θ
loge 2

var(tr (H†H)) + E {tr ((H†H)2)}
(3.54)

where tr(·) denotes the trace of a matrix and

η =
(1− p22)(p11 + p22)

(1− p11)(2− p11 − p22)
. (3.55)

Remark 6. WhenH has independent zero mean unit variance complex Gaussian random

entries, we have [8]

E
{

tr (H†H)
}

= nRnT

E
{

tr 2(H†H)
}

= nRnT (nRnT + 1)

E
{

tr
(

(H†H)2
)}

= nRnT (nR + nT ).

(3.56)
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Inserting these into(3.53)and (3.54), we obtain

Eb
N0 min

=
loge 2

n2
R

, (3.57)

S0 =
2

θη
loge 2

+ θ
loge 2

1
nRnT

+ nR+nT

nRnT

. (3.58)

Above, the minimum energy per bit depends only on the number of receive antennas.

This dependence is somewhat expected as having more receiveantennas leads to higher re-

ceived power and the performance improves. Interestingly,source randomness and queue-

ing constraints do not have any impact onEb

N0 min
, which is achieved asSNR vanishes. On

the other hand, these play an important role at non-zeroSNRvalues as seen in (3.58). More

specifically, wideband slope depends on the source randomness/burstiness throughη, which

is a function of the source transition probabilities. Hence, η can be regarded as a measure

of source burstiness in the low-SNR regime. For instance, if the source is always ON (i.e.,

p11 = 0 andp22 = 1), then data arrives at a constant rate and there is essentially no source

burstiness. In such a case, we indeed haveη = 0. Hence, the first term in the denominator

of (3.58) vanishes. Otherwise, the presence of this nonnegative term lowers the wideband

slope, which lets us conclude that random arrivals in general hurt the energy efficiency.

In (3.58), queueing constraints are reflected via the QoS exponentθ. In particular, we

notice that higher values ofθ, which imply stricter queueing constraints, result in smaller

slopes, again deteriorating the energy efficiency. Anotherobservation is that the decrease

in S0 due to having random arrivals (i.e., havingη > 0) is proportional toθ as seen from

the presence of the termθη
loge 2

. Hence, source burstiness is more detrimental under stricter

queueing limitations. Finally, we note from the termθ
loge 2

1
nRnT

that having multiple anten-

nas partially offsets the reduction inS0 due to stricter queueing constraints.

Next, we provide similar characterizations when the transmission power is optimally

allocated across different antennas in the low-SNR regime.

Theorem 3.3.2.With optimal power allocation, the minimum energy per bit and wideband
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slope are given by

Eb
N0 min

=
loge 2

nRE {λmax(H†H)} , (3.59)

S0 =
2

θη
loge 2

+ θ
loge 2

(κ(σmax(H))− 1) + 1
l
κ(σmax(H))

, (3.60)

wherel is the multiplicity ofλmax(E
{

H†H
}

), andκ(σmax(H)) is the kurtosis of the maxi-

mum singular value of the matrixH and is defined as [53]

κ(σmax(H)) =
E
{

λ2max(H
†H)

}

E2 {λmax(H†H)} . (3.61)

Remark 7. Regarding the effect of source randomness and queueing constraints, we have

identical observations as in the case of uniform power allocation. Here, the major differ-

ence is thatEb

N0 min
andS0 are achieved by transmitting in the maximal-eigenvalue eigenspace

ofH†H.

In the numerical results, we assume uniform power allocation and therefore set the input

covariance matrix asKx = 1/nT I. We consider a fading model in which the components of

H are independent and identically distributed Gaussian random variables with zero mean

and unit variance. In the figures, we plot maximum average arrival rate vs. energy per

bit curves in the low-SNR regime to depictEb

N0 min
andS0 and how they are affected by the

number of antennas, QoS exponentθ, and source burstiness.

In Fig. 3.25, we plotr∗avg vs. Eb

N0
for different number of receive antennasnR and differ-

ent ON-state probabilitiesPON. We setnT = 5. Verifying the analytical characterizations,

we observe thatEb

N0 min
diminishes and the curves shift to the left asnR increases. For the

same number of antennas, as the source becomes more bursty (i.e.,PON decreases from

0.5 to 0.2), wideband slope becomes smaller whileEb

N0 min
stays fixed. In Fig. 3.26, we set

nR = 5 and varynT andPON. As expected,Eb

N0 min
remains the same while the wideband
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Fig. 3.25: Maximum average arrival rater∗avg vs. energy per bitEb
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whenθ = 0.1 and

nT = 5.
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slope diminishes with decreasingPON andnT . Hence, beyondEb

N0 min
, energy costs grow

with more bursty sources, and some of this degradation can beovercome by increasing the

number of transmit antennas. In Figs. 3.25 and 3.26, we have kept the QoS exponent fixed

at θ = 0.1. In Fig. 3.27, we setPON = 0.2 and analyze the impact of varyingθ, nT , and

nR on the energy efficiency. We notice that asθ increases from 0.1 to 0.5 and hence the

queueing constraints become stricter, wideband slopes decrease significantly for the same

set of antennas, so much so that all curves withθ = 0.5 are below those withθ = 0.1 for

Eb

N0
> −8 dB regardless of the number of transmit and receive antennas.

3.3.4 Energy Efficiency of MIMO Channels with Markov Fluid

Sources

In this section, we conduct a similar analysis for Markov fluid sources and obtain the fol-

lowing results.

Theorem 3.3.3.When the input covariance matrix isKx =
1
nT

I, the minimum energy per
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bit and wideband slope are given by

Eb
N0 min

=
nT loge 2

nRE {tr (H†H)} . (3.62)

S0 =
2E2

{

tr (H†H)
}

θζ
loge 2

E2 {tr (H†H)}+ θ
loge 2

var(tr (H†H)) + E {tr ((H†H)2)}
. (3.63)

Remark 8. WhenH has independent zero mean unit variance complex Gaussian random

entries, we have

Eb
N0 min

=
loge 2

n2
R

, (3.64)

S0 =
2

θζ
loge 2

+ θ
loge 2

1
nRnT

+ nR+nT

nRnT

. (3.65)

Theorem 3.3.4.With optimal power allocation, the minimum energy per bit and wideband

slope are given by

Eb
N0 min

=
loge 2

nRE {λmax(H†H)} , (3.66)

S0 =
2

θζ
loge 2

+ θ
loge 2

(κ(σmax(H))− 1) + 1
l
κ(σmax(H))

, (3.67)

wherel is again the multiplicity ofλmax(E
{

H†H
}

), κ(σmax(H)) is as defined in(3.61).

Remark 9. Regarding the impact of the parametersnT , nR, andθ, we have similar ob-

servations as for the discrete-Markov source. On the other hand, source characteristics

appear in the formulations via the parameterζ = 2β
α(α+β)

, which essentially quantifies the

source burstiness. Note thatα is the transition rate from OFF to ON state whereasβ is

the transition rate from ON to OFF state. Note further that whenα = 1 andβ = 0 and

thereforePON = 1 and data arrival rate is constant, we haveζ = 0.

Fig. 3.28 examines the effect ofnR and source characteristics on the energy efficiency.
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For all plots, we havePON = α
α+β

= 0.5. We notice that lower transition ratesα andβ

result in smaller wideband slopes, indicating higher energy costs. Note that low values of

α andβ imply longer ON and OFF durations on average. Hence, OFF state can be more

persistent. As before, we observe that more receive antennas lead to smaller values of the

minimum energy per bit.

In Fig. 3.29, we varynT , α, andβ while keepingPON andnR fixed. Minimum energy

per bit is the same for all scenarios while wideband slope is reduced for smaller values of

nT , α, andβ.
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CHAPTER 4

ENERGY-EFFICIENT POWER CONTROL

IN FADING CHANNELS WITH

MARKOVIAN SOURCES AND QOS

CONSTRAINTS

4.1 Channel Model

We consider a flat-fading channel between the transmitter and receiver. The channel input-

output relation can be expressed as

yi = hixi + ni for i = 1, 2, . . . (4.1)

wherexi andyi are the channel input and output, respectively, andhi denotes the channel

fading coefficient. We assume that the transmitter, equipped with perfect channel side

information (CSI), performs power control. Hence, the transmit powerP(θ, zi), where

zi = |hi|2 andθ is a QoS parameter described in the following section, varies with QoS
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requirements and fading. Fading coefficients are assumed tobe identically distributed, and

the fading distribution can be arbitrary with finite variance. We consider a block-fading

model and assume that the realizations of the fading coefficients stay fixed for a block

of symbols and change independently for the next block. Finally, {ni} is a sequence of

independent, zero-mean, circularly-symmetric, complex Gaussian noise components with

varianceE{|ni|2} = N0.

4.2 Energy-Efficient Power Control

In this chapter, we employ rate per unit energy (in bits/joule) as the performance metric of

energy efficiency. In our setup, we define energy efficiency (EE) as

EE=
r∗avg(θ)

(

1
ǫ
E{P(θ, z)} +Pc

)

/N0B
=

r∗avg(θ)
(

1
ǫ
E{µ(θ, z)}+ µc

) (4.2)

wherePc is the circuit power andǫ is the efficiency of the power amplifier, andµc =

Pc/N0B. Normalization with the noise powerN0B in the denominator above is performed

in order to express EE in terms of the instantaneous SNRµ(θ, z), and to perform optimiza-

tion overµ(θ, z) and have simplifications in the expressions. Furthermore, to be used in

subsequent formulations, we define function g(θ) as

g(θ) = E
{

[1 + µ(θ, z)z]−̺
}

(4.3)

where again̺ = θTB log2 e.

After formulating the energy efficiency, we can express the optimally energy-efficient
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power control problem as1

max
µ(θ,z)

r∗avg(θ)
(

1
ǫ
E{µ(θ, z)} + µc

) . (4.4)

Next, we will address special cases of this optimization problem by considering specific

arrival models and incorporating the corresponding average arrival rate expressions.

4.2.1 Discrete Markov Source

In this section, we consider ON-OFF discrete Markov arrivalmodels and determine the

optimal power adaptation strategy that maximizes the energy efficiency. After inserting the

maximum average arrival rate expression in (3.6) into the optimization problem in (4.4)

and simplifying the expressions by eliminating the constant terms, we can formulate the

optimal power allocation problem as

µ∗(θ, z) = arg max
µ(θ,z)

loge

(

1−p11g(θ)
(1−p11−p22)g2(θ)+p22g(θ)

)

1
ǫ
E {µ(θ, z)} + µc

(4.5)

where the functiong(·) is defined in (4.3). Note that any function that can be expressed

as the ratio of a convex function over a concave one is quasiconvex [31, Example 3.38]

and the negative of a quasiconvex function is quasiconcave.Hence, the objective function

in (4.5), being a concave function divided by an affine function of power allocation, is

a quasiconcave function of the instantaneous SNRµ(θ, z). By introducing an additional

1Since the theory of effective bandwidth and effective capacity makes use of tools from large deviations
and characterizes the performance in the large-queue-length regime, we consider a saturated buffer in our
analysis, and the optimal power control policies are obtained under the assumption that there is always data
to transmit from the buffer.
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variableψ = 1

E{ 1
ǫ
µ(θ,z)}+µc , the problem can be transformed into

min
µ(θ,z)≥0

− ψ loge

(

1− p11g(θ)
(1− p11 − p22)g2(θ) + p22g(θ)

)

(4.6)

subject to ψ

(

1

ǫ
E {µ(θ, z)}+ µc

)

= 1. (4.7)

The problem in (4.6) is a convex optimization problem. Therefore, we can use the convex

optimization tools and determine the sufficient and necessary Karush-Kuhn-Tucker (KKT)

conditions. By denoting the Lagrange multiplier byλ, we form the Lagrangian as

L(µ(θ, z), ψ, λ)=−ψ loge

(

1− p11g(θ)
(1−p11−p22)g2(θ)+ p22g(θ)

)

+ λ

[

ψ(
1

ǫ
E {µ(θ, z)} + µc)− 1

]

. (4.8)

Now, the KKT conditions are given in (4.9)–(4.11)

ψ

(

1

ǫ
E {µ(θ, z)} + µc

)

= 1, (4.9)

− ψ̺z [1 + µ(θ, z)z]−̺−1

(

(1− p11)(1− p22)

(1− p11g(θ))((1− p11 − p22)g(θ) + p22)
+

1

g(θ)

)

+
λψ

ǫ
= 0,

(4.10)

− loge

(

1− p11g(θ)
(1− p11 − p22)g2(θ) + p22g(θ)

)

+ λ

(

1

ǫ
E {µ(θ, z)}+ µc

)

= 0. (4.11)

Note that (4.9) is due to the constraint in (4.7). (4.10) and (4.11) are obtained by taking

the derivative of the Lagrangian in (4.8) with respect toµ(θ, z) andψ, respectively. After

simplifying (4.10), we obtain

z[1+ µ(θ, z)z]−̺−1=
λ/(̺ǫ)

(1−p11)(1−p22)
(1−p11g(θ))((1−p11−p22)g(θ)+p22)

+ 1
g(θ)

. (4.12)



75

By solving (4.12) forµ(θ, z), the optimal power allocation is found as

µ∗(θ, z) =

[

1

ν
1

1+̺ z
̺

1+̺

− 1

z

]+

(4.13)

where

ν=
λ/(̺ǫ)

(1−p11)(1−p22)
(1−p11g(θ))((1−p11−p22)g(θ)+p22)

+ 1
g(θ)

(4.14)

and[c]+= max (c, 0). We notice thatµ∗(θ, z) = 0 whenz ≤ ν. Hence,ν can be regarded as

the fading gain threshold for transmission. When we consider the special case of constant-

rate arrivals (i.e., when we havePON = 1), the above equation forν specializes to the

corresponding one in [19]. Note that the expression forν in (4.14) depends on the Lagrange

multiplier λ (and henceν can also be considered as a scaled Lagrange multiplier). By

combining (4.11) with (4.14), we obtain (4.15).

− 1
(1−p11)(1−p22)

(1−p11g(θ))((1−p11−p22)g(θ)+p22)
+ 1

g(θ)

loge

(

1− p11g(θ)
(1−p11−p22)g2(θ)+p22g(θ)

)

+ν̺ǫ

(

1

ǫ
E{µ(θ, z)}+µc

)

=0 (4.15)

Equation (4.15), which does not depend onλ, can be used to determineν by incor-

porating the source statistics2 and computingE {µ(θ, z)} and g(θ). For instance, in the

case of Rayleigh fading, the fading power is exponentially distributed with density func-

tion fz(z) = e−z, and by using the expression forµ(θ, z) in (4.13), these key expectations

2It is interesting to note that the optimal power controlµ∗(θ, z) depends on the source statistics (e.g.,
transition probabilitiesp11 andp22) only throughν.
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can be determined in closed-form as follows:

E {µ(θ, z)} =

∫ ∞

ν

[

1

ν
1

1+̺ z
̺

1+̺

− 1

z

]

e−zdz

=

(

1

ν

)
1

1+̺
∫ ∞

ν

z−
̺

1+̺ e−zdz −
∫ ∞

ν

e−z

z
dz

=

(

1

ν

)
1

1+̺

Γ

(

1

1 + ̺
, ν

)

+ Ei(−ν), (4.16)

g(θ) = E
{

[1 + µ(θ, z)z]−̺
}

=

∫ ∞

ν

(z

ν

)− ̺
1+̺

e−zdz +

∫ ν

0

e−zdz

= ν
̺

1+̺ Γ

(

1

1 + ̺
, ν

)

+ 1− e−ν . (4.17)

Above,Γ(s, w) =
∫∞

w
τ s−1e−τdτ is the upper incomplete gamma function and Ei(w) =

−
∫∞

−w
e−τ

τ
dτ is the exponential integral. Whenp11 = 1−s, p22 = s, we have a memoryless

discrete source and power allocation problem becomes

min
µ(θ,z)≥0

− ψ loge

(

1
g(θ) − (1− s)

s

)

(4.18)

subject toψ(
1

ǫ
E {µ(θ, z)}+ µc) = 1. (4.19)

Thus, Lagrangian function transforms into

L(µ(θ, z), ψ, λ) = −ψ loge

(

1
g(θ) − (1− s)

s

)

+ λ

[

ψ(
1

ǫ
E {µ(θ, z)}+ µc)− 1

]

. (4.20)
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Now, the KKT conditions become

ψ

(

1

ǫ
E {µ(θ, z)}+ µc

)

= 1, (4.21)

ψ
−̺z [1 + µ(θ, z)z]−̺−1

g(θ)− (1− s) (g(θ))2
+
λψ

ǫ
= 0, (4.22)

− loge

(

1
g(θ) − (1− s)

s

)

+ λ

(

1

ǫ
E {µ(θ, z)}+ µc

)

= 0. (4.23)

Power allocation policy formula is still as in (4.13) but nowν is determined from

−
[

g(θ)−(1− s)(g(θ))2
]

loge

(

1
g(θ) − (1− s)

s

)

+ ν∗̺ǫ

(

1

ǫ
E {µ(θ, z)}+ µc

)

= 0.

(4.24)

Next, we provide numerical results for the general case of discrete Markov source with

memory. For the numerical analysis, we set the values of the parameters asPc = 1,N0 = 1,

̺ = 1, ǫ = 1. In Fig. 4.1, we plot energy efficiency (EE) vs. maximum average arrival

rater∗avg with varying source parameters. Note that whenp22 = 1 andp11 = 0 (and hence

PON = 1), we have a source with constant arrival rate. Indeed, the best performance is

achieved in this case and maximal EE value (or equivalently the peak of the EE curve) is

the largest. We further notice in the figure that initially the maximal EE values diminish and

are achieved at a lower value ofr∗avg whenp22 and consequentlyPON decrease and therefore

the source burstiness increases. However, interestingly whenp22 is diminished from 0.5 to

0.2, maximal EE value slightly increases even thoughPON is smaller whenp22 = 0.2. This

is due to the fact thatPON is not the only criterion to indicate the burstiness of the system.

In fact, as we have shown in [24], a measure of burstiness at low SNRs is (1−p22)(p11+p22)
(1−p11)(2−p11−p22)

whose greater values imply a more bursty source. Indeed, this expression assumes a larger

value whenp22 = 0.5. On the other hand, as SNR increases and higher average arrival

rates are supported,PON becomes a more relevant indicator of burstiness and the source

with p22 = 0.2 starts leading to lower EE values, following a crossover between the two
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Fig. 4.1: Energy efficiency EE vs. maximum average arrival rater∗avg when̺ = 1, Pc = 1,
N0 = 1, ǫ = 1.

curves.

In Fig. 4.2, we plot the optimal power control policy that maximizes the energy effi-

ciency as a function of the instantaneous fading power values,z. We note in all cases that

no power is allocated for transmission ifz is below a threshold (i.e.,ν). Power level initially

increases asz increases above the threshold and then starts diminishing asz further grows.

Hence, power control is essentially a combination of waterfilling policy (for low values of

z) and channel inversion policy (for large values ofz). We also observe that more power is

consumed (and consequently average power consumption is larger) for a less bursty source

at the maximal EE point.

In Fig. 4.3, we plot the EE vs.r∗avg curves for different values of the circuit power

Pc. We readily notice that asPc diminishes, a higher level of EE is achieved at a lower

value ofr∗avg. Indeed, if circuit power is not taken into account (i.e., ifwe setPc = 0),

then maximum EE is achieved asymptotically asr∗avg and hence SNR approach zero [24].

Hence, circuit power has significant impact on the performance.

In Fig. 4.4, we plot the maximum EE as a function of the QoS exponentθ for discrete

Markov sources with different source statistics. We note inall cases that EE diminishes

with increasingθ. Hence, more stringent buffer/delay constraints is detrimental to EE.
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Also, similarly as before, the highest levels of EE are attained when the arrival rate is

constant (i.e., whenp22 = 1 andp11 = 0.), and the EE diminishes as the sources become

more bursty.

Finally, in Figs. 4.5 and 4.6, we display simulation results3. In particular, in Fig.

4.5, we have the buffer overflow probabilitiesPr{Q ≥ q} plotted as a function of the

buffer thresholdq with both optimal power control and no power control (i.e., with fixed

transmission power). Note that we plot the buffer overflow probabilities in logarithmic

scale. Note further from the approximation in (2.3) for large q that

log Pr{Q ≥ q} ≈ −θq + log ς. (4.25)

Hence, the logarithm of the overflow probability is expectedto decay linearly inθ for large

q. Indeed, we observe this linear decay already even for rather small values ofq. Moreover,

3We conduct the simulations as follows. We initially fix the value of the QoS exponentθ (e.g.,θ =
2, 1, or 0.5 in the figure) to provide a certain level of statistical QoS guarantee. Then, using the theoretical
results from our analysis, we determine the EE-maximizing optimal power control and the value ofr∗avg at
which EE is maximized. Subsequently, we generate random arrivals according to the discrete Markov process
with average rater∗avg. We simulate the service process by generating random channel fading and using the
optimal power control. Then, we have kept track of the bufferstate among the arrivals and departures, and
evaluated the frequency of exceeding a given thresholdq to determine the values of overflow probabilities.
Considering the samer∗avg and the same average power and hence the same EE level, we haverepeated the
simulations with no power control.
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the simulations show excellent agreement with the theoretical analysis. Solid curves are for

the case with optimal power control. We note that the simulated curves lead to simulatedθ

values of2.006, 1.001, and0.496 as indicated in the figure when we setθ = 2, 1, and0.5,

respectively, at the beginning of the simulations. Hence, the buffer overflow probabilities

decay exponentially at the predicted rates even for very small values of q. In Fig. 4.5,

the dashed curves next to the solid ones are the corresponding overflow probabilities at

the samer∗avg and EE levels but when no power control is employed. We immediately

recognize that we have smaller values ofθ in such cases (i.e.,θ = 1.754, 0.843 and0.345

as opposed to havingθ = 2.006, 1.001 and0.496, respectively, in the power control cases)

meaning that for the same thresholdq, the buffer overflow probabilities are higher when

transmission power is fixed. Hence, the same EE can be attained but at the cost of having

more frequent buffer overflows. Conversely, we can also say that for the same overflow

probability, a higher EE is achieved when power control is adopted. These observations

further demonstrate the benefits of power control in practical settings.

In Fig. 4.6, we plot the delay violation probabilityPr{D ≥ d} in logarithmic scale as a

function of the delay thresholdd again from the simulations. Note from the approximation

in (2.5) that

log Pr{D ≥ d} ≈ −θa∗(θ)d+ log ς. (4.26)

Hence, the logarithm of the delay violation probability is expected to decrease linearly

in d with slope−θa∗(θ) wherea∗(θ) is the effective bandwidth of the arrival process.

We essentially have similar observations as in Fig. 4.5. Specifically, we again have ex-

cellent agreements with theory (e.g., the theoretical values in the power control cases

are θa∗(θ) = 0.3927, 0.6944, and 1.2022 while the corresponding simulated values are

θa∗(θ) = 0.3923, 0.6865, and1.1510, respectively), and having no power control increases

the frequency of delay violations at a given delay threshold.
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ψ

(

1

ǫ
E {µ(θ, z)}+ µc

)

= 1, (4.31)

− ψ̺z [1 + µ(θ, z)z]−̺−1

(

αβ

g(θ) (α− loge g(θ))2
+

1

g(θ)

)

+
λψ

ǫ
= 0, (4.32)

α + β − loge g(θ)
α− loge g(θ)

loge g(θ) + λ

(

1

ǫ
E {µ(θ, z)}+ µc

)

= 0. (4.33)

4.2.2 Markov Fluid Source

Now, we consider the optimal power control with Markov fluid sources. By using the

maximum average arrival rate expression in (3.14) in the objective function, eliminating

the constantPON, and using the definition of g(θ) in (4.3), we can recast the optimal power

control problem in (4.4) as

µ∗(θ, z) = arg max
µ(θ,z)

−α+β−loge g(θ)
α−loge g(θ) loge g(θ)
1
ǫ
E {µ(θ, z)}+ µc

. (4.27)

Again, by introducing the additional variableψ = 1

E{ 1
ǫ
µ(θ,z)}+µc , the problem can be trans-

formed into

min
µ(θ,z)≥0

ψ
α+ β − loge g(θ)
α− loge g(θ)

loge g(θ) (4.28)

subject to ψ

(

1

ǫ
E {µ(θ, z)}+ µc

)

= 1. (4.29)

By employing convex optimization tools, we can determine the sufficient and necessary

KKT conditions. First, the Lagrangian function is given as

L(µ(θ, z), ψ, λ) =ψ
α+ β − loge g(θ)
α− loge g(θ)

loge g(θ)

+ λ

[

ψ(
1

ǫ
E {µ(θ, z)}+ µc)− 1

]

. (4.30)

The KKT conditions are given in (4.31)–(4.33) at the top of the next page. Similarly as for
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the discrete Markov source, (4.31) is due to the constraint in (4.29). (4.32) and (4.33) are

obtained by taking the derivative of the Lagrangian in (4.30) with respect toµ(θ, z) andψ,

respectively. After simplifying (4.32), we obtain

z [1+ µ(θ, z)z]−̺−1=
λ/(̺ǫ)
αβ

g(θ)(α−loge g(θ))2
+ 1

g(θ)

. (4.34)

Due to similarities between (4.12) and (4.34), the optimal power control function is ob-

tained to be in the same form as for discrete Markov sources and is given by

µ(θ, z) =

[

1

ν
1

1+̺ z
̺

1+̺

− 1

z

]+

(4.35)

but now with

ν=
λ/(̺ǫ)
αβ

g(θ)(α−loge g(θ))2
+ 1

g(θ)

. (4.36)

Now, we can combine (4.33) with (4.36) to obtain

g(θ)
αβ

(α−loge g(θ))2
+ 1

α + β − loge g(θ)
α− loge g(θ)

loge g(θ)

+ ν∗̺ǫ

(

1

ǫ
E {µ(θ, z)}+ µc

)

= 0, (4.37)

which can further be used to numerically evaluateν.

In Fig. 4.7, we plot the EE vs. maximum average arrival rater∗avg curve for different

Markov fluid sources. As expected, the source withβ = 0, being the constant arrival

source, has the best performance in terms of energy efficiency. As α reduces, the source

becomes more bursty and the performance degrades.

In Fig. 4.8, we again plot the EE vs.r∗avg curves for a Markov fluid source with transition

ratesα = 2 andβ = 8, considering the optimal power control, suboptimal water-filling

power control, and constant-power transmissions. As expected, optimal power control
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leads to the maximum EE and outperforms the other two schemesuniformly over the entire

range. Water-filling power control results in the second-highest EE level. At the same time,

it is interesting to observe that transmission with constant power starts performing better

than that with the water-filling policy asr∗avg increases. This observation highlights the

importance of identifying the optimal power control since water-filling takes into account

neither source randomness nor QoS constraints.

4.2.3 Markov-Modulated Poisson Processes

The throughput expressions for discrete-time and continuous-time Markov-modulated Pois-

son sources have similarities to those for discrete-time Markov and Markov fluid sources,

respectively. Particularly, (5.13) is obtained by scaling(3.6) with θ
eθ−1

. The same observa-

tion holds regarding the comparison between (3.14) and (3.20). These scaling differences

do not alter the optimal power control problem. Therefore, the optimal power control poli-

cies for the discrete-time and continuous-time MMPP sources are the same as for the cases

of discrete and fluid Markov sources, respectively.

4.3 Optimal Power Control with EE Constraints

As noticed in the previous section, when the primary goal is the maximization of the energy

efficiency, small throughput values can be attained especially if the source is bursty. On the

other hand, in certain wireless systems, the goal is to maximize the throughput while being

cognizant of the energy efficiency requirements. Motivatedby such systems, we in this

section assume that there is a minimum energy efficiency constraint on the system and we

seek to find the optimal power allocation scheme to maximize the throughput. The optimal
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power allocation problem is formulated as

max
µ(θ,z)≥0

r∗avg(θ) (4.38)

subject to
r∗avg(θ)

1
ǫ
E {µ(θ, z)}+ µc

≥ ζmin(θ) (4.39)

where EEmin represents the minimum required EE level. This optimization problem also

enables us to characterize the tradeoff between the throughput and energy efficiency.

Note that the constraint can also be expressed as

−r∗avg(θ) + EEmin(θ)

[

1

ǫ
E {µ(θ, z)}+ µc

]

≤ 0. (4.40)

Again, we first demonstrate that the power allocation problem is convex and hence we

can use convex optimization tools to solve the problem. As discussed at the end of Section

5.2, the objective functionr∗avg(θ) in (4.38) is a concave function ofµ(θ, z). It can be easily

seen that the constraint in (4.40) is a convex function ofµ(θ, z) as it is the summation of a

negative concave function and an affine function. Hence, theLagrangian can be expressed

as

L(µ(θ, z), λ) = r∗avg(θ, z)−λ
{

−r∗avg(θ, z) + EEmin(θ)

[

1

ǫ
E {µ(θ, z)}+ µc

]}

. (4.41)

4.3.1 Discrete Markov Source

The Lagrangian for discrete Markov source is simplified to

L(µ(θ, z), λ) = (1+λ)
PON

θ
loge

(

1− p11g(θ)
(1−p11−p22)g2(θ)+p22g(θ)

)

λEEmin(θ)

[

1

ǫ
E {µ(θ, z)}+µc

]

.

(4.42)
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After taking the first derivative, we obtain (4.43)

(1+λ)
PON

θ
̺z [1+µ(θ, z)z]−̺−1

(

(1− p11)(1 − p22)

(1−p11g(θ))((1−p11−p22)g(θ)+p22)
+

1

g(θ)

)

−λEEmin(θ)
1

ǫ
= 0.

(4.43)

(4.43) can further be expressed as

z [1 + µ(θ, z)z]−̺−1 = ν, (4.44)

where we defineν as

ν=
λθEEmin(θ)

̺ǫ(1 + λ)PON

(

(1−p11)(1−p22)
(1−p11g(θ))((1−p11−p22)g(θ)+p22)

+ 1
g(θ)

) . (4.45)

Using (4.44), we can derive the power allocation formula as

µ(θ, z) =

[

1

ν
1

1+̺ z
̺

1+̺

− 1

z

]+

. (4.46)

We see that the power control formula for rate maximization under EE constraints is similar

to that for maximizing EE. The key distinction lies in the formulation forν in (4.45) which

is different from (4.14).

In Fig. 4.9, we address the tradeoff between throughput and energy efficiency by

solving the power control problem and determining the maximum throughput level under

different energy efficiency constraints. More specifically, we plot the percentage gain in

throughput by backing off from the maximal energy efficiencypoint, which is represented

by the100% EE gain4. The figure shows us that decreasing the energy efficiency leads

to significant improvement in throughput. For instance,20% reduction from the maximal

4Therefore, we can formulate EE gain percentage asEE
EEmax

× 100% whereEEmax is the maximum

energy efficiency. Similarly, throughput gain percentage is defined as
r∗avg

r∗avg,EEmax

× 100% wherer∗avg,EEmax

is the average arrival rate at the maximum EE point.
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Fig. 4.9: Throughputr∗avg gain % vs. EE gain %.θ = 1. (Discrete Markov Source)

energy efficiency point results in50 to 90% gain in throughput depending on the source

characteristics. Even1% decrease in energy efficiency generates about10% gain on the

throughput. We also note that the largest gain is realized inthe case of constant arrival rate,

and increasing burstiness reduces the throughput gain.

4.3.2 Markov Fluid Source

For Markov fluid source, Lagrangian function is given by

L(µ(θ, z), λ) = (1 + λ)
PON

θ

α + β − loge g(θ)
α− loge g(θ)

loge g(θ)− λEEmin(θ)

[

1

ǫ
E {µ(θ, z)}+ µc

]

,

(4.47)

and the optimal power control policy has the same form as in (4.46) withν defined as

ν=
λθEEmin(θ)

̺ǫ(1 + λ)PON

(

αβ

g(θ)(α−loge g(θ))2
+ 1

g(θ)

) . (4.48)

In Fig. 4.10, we again demonstrate the tradeoff between energy efficiency and through-

put when the source is modeled as a Markov fluid. We immediately observe that havingx a
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Fig. 4.10: Throughputr∗avg gain % vs. EE gain %.θ = 1. (Markov Fluid Source)

small reduction in the energy efficiency results in substantial gain in the throughput. On the

other hand, the percentage of the gain decreases as the burstiness of the source increases

(i.e. by decreasingα while β is fixed).

4.3.3 Markov Modulated Poisson Processes

The LagrangianL(µ(θ, z), λ) and the scaled Lagrange multiplierν for the discrete-time

and continuous-time Markov-modulated Poisson sources canbe immediately obtained by

replacingθ with (eθ−1) in the corresponding expressions for discrete Markov and Markov

fluid sources, respectively.

4.4 Optimal Power Control with Average Power Con-

straints

In this section, we consider a setting in which throughput maximization is the sole concern

of the wireless system, and we study the optimal power control strategy that maximizes the
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throughput under an average power constraint. The optimization problem is formulated as

max
P(θ,z)≥0

r∗avg(θ, z) (4.49)

subject to
1

ǫ
E {P(θ, z)}+Pc ≤ P̄. (4.50)

Note that the optimization problems studied in previous sections have no explicit average

power constraints. However, implicitly average power constraints are imposed through

the energy efficiency requirements due to the fact that energy efficiency eventually starts

diminishing with increasing average transmit power level.However, explicit average power

constraints can be addressed without much difficulty as we demonstrate in this section.

The optimization problem in this section is again convex. Normalizing all the terms in

the constraint in (4.50) with the noise powerN0B and denoting the averageSNR = P̄

N0B
,

the Lagrangian function can be written as

L(µ(θ, z), λ) = r∗avg(θ, z)− λ

{

1

ǫ
E {µ(θ, z)}+ µc − SNR

}

. (4.51)

In the following analysis, we obtain the power allocation function for different source

models using a similar approach as in previous sections. Specifically, we initially evaluate

the first derivative of the Lagrangian function with respectto µ(θ, z) and make it equal to

0. For all sources, the optimal power control is in the same form as in (4.46) with different

ν expressions which we describe below for each source.

The first derivative of the Lagrangian for the discrete Markov source is obtained in

(4.52) at the top of the next page.

PON

θ
̺z [1 + µ(θ, z)z]−̺−1

(

(1− p11)(1− p22)

(1− p11g(θ))((1− p11 − p22)g(θ) + p22)
+

1

g(θ)

)

− λ

ǫ
= 0

(4.52)
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Fig. 4.11: Maximum average arrival rater∗avg vs. average power̄P whenθ = 1. (Discrete
Markov Source)

Using (4.52),ν is derived as

ν=
λθ

̺ǫPON

(

(1−p11)(1−p22)
(1−p11g(θ))((1−p11−p22)g(θ)+p22)

+ 1
g(θ)

) . (4.53)

We plot the throughput vs. average power curve in Fig. 4.11 where we take into account

different discrete Markov sources. As noted before, the best performance is realized for

the case of constant arrival rates (i.e., whenp22 = 1 andp11 = 0), and the throughput

degrades with increased burstiness. Comparing the performances with source models with

parametersp22 = 0.5, p11 = 0.8 andp22 = 0.2, p11 = 0.8, we observe that ON probability,

PON, becomes a dominant factor on performance as average power increases. Source with

smallerPON (i.e., the one with transition probabilitiesp22 = 0.2, p11 = 0.8) has lower

performance. On the other hand, when the average power is relatively low, this source

outperforms the one with parametersp22 = 0.5, p11 = 0.8 since the metric (1−p22)(p11+p22)
(1−p11)(2−p11−p22)

is a more critical burstiness factor at low SNR values (as also discussed in Section 4.2.1) .

Indeed, in this case, the transition probabilitiesp22 = 0.5, p11 = 0.8 result in a larger value

for (1−p22)(p11+p22)
(1−p11)(2−p11−p22)

indicating a more bursty source in the low-SNR regime.

For the Markov fluid case, we obtain (4.54) given on the next page as the first derivative
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Fluid Source)

of the Lagrangian with respect toµ(θ, z).

PON

θ
̺z [1 + µ(θ, z)z]−̺−1

(

αβ

g(θ) (α− loge g(θ))2
+

1

g(θ)

)

− λ

ǫ
= 0. (4.54)

The parameterν that we use in power allocation formula is given by

ν=
λθ

̺ǫPON

(

αβ

g(θ)(α−loge g(θ))2
+ 1

g(θ)

) . (4.55)

For Markov fluid source we demonstrate the throughput as a function of average power

in Fig. 4.12. Similarly as before, burstiness hurts the performance.

For discrete-time and continuous-time MMPP, the first derivatives of the Lagrangian

functions with respect toµ(θ, z) are given, respectively, by (4.52) and (4.54) withPON
θ

replaced by PON

(eθ−1)
, and with the corresponding threshold parametersν given, respectively,

by (4.53) and (4.55) whenλθ is replaced byλ
(

eθ − 1
)

.
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4.5 Optimal Power Control in Multichannel Systems

In this section, motivated by the fact that multicarrier channels employing orthogonal fre-

quency division multiplexing (OFDM) can be regarded as multichannel systems, we ex-

tend our power control analysis to multichannel communication links. In a multichannel

scenario (e.g., in multicarrier models), assuming that there areK subchannels each with

bandwidthB
K

, the instantaneous service rate becomes

R(z) =
K
∑

k=1

B

K
log2 (1 + µk(z)zk) . (4.56)

Above, we defineµk(z) =
Pk(θ,z)

N0
B
K

, wherePk(θ, z) is the instantaneous transmission power

in the kth subchannel, andz = [z1, . . . , zK ], wherezk = |hk|2 is the magnitude-square

of the fading coefficient in thekth subchannel. Under the block-fading assumption, the

effective capacity withK subchannels can be expressed as

CE(θ) = −1

θ
loge E

{

e−θTR(z)
}

= −1

θ
loge E

{

K
∏

k=1

e−θTB
1
K

log2(1+µk(z)zk)

}

= −1

θ
loge E

{

K
∏

k=1

(1 + µk(z)zk)
− η

K

}

. (4.57)

In order to keep the analysis concise in this section, we onlyconsider the problem

of finding the optimal power allocation scheme that maximizes the throughput under a

minimum energy efficiency constraint for discrete Markov and Markov fluid sources. The

optimal power allocation problem can be expressed as the following convex optimization

problem:
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max
µ(θ,z)≥0

r∗avg(θ, z) (4.58)

subject to
r∗avg(θ, z)

1
ǫ

∑K
k=1 E {µk(θ, z)}+ µc

≥ EEmin(θ) (4.59)

where we defineµ(θ, z) = [µ1(θ, z), . . . , µK(θ, z)], µk(θ, z) =
Pk(θ,z)

N0
B
K

andµc = Pc

N0
B
K

. ζmin

is the minimum required energy efficiency level.

We can further rewrite the constraint as

−r∗avg(θ, z) + EEmin(θ)

[

1

ǫ

K
∑

k=1

E {µk(θ, z)}+ µc

]

≤ 0. (4.60)

Now, the Lagrangian becomes

L(µ(θ, z), λ) = r∗avg(θ, z)

−λ
{

−r∗avg(θ, z)+EEmin(θ)

[

1

ǫ

K
∑

k=1

E {µk(θ, z)}+µc
]}

−
K
∑

k=1

λkµk(θ, z). (4.61)

To determine the optimal power control policy, we have to consider the solution of

∂L(µ(θ, z), λ)
∂µ(θ, z)

= 0. (4.62)

If we haveµi(θ, z) > 0 for i ∈ N0 = {1, . . . , K}, complementary slackness dictates

that the corresponding Lagrangian multiplierλi is zero [31]. In the rest of the analysis we

exploit this property.

4.5.1 Discrete Markov Source

First, let us define
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L(µ(θ, z), λ) =(1 + λ)
PON

θ
loge

(

1− p11g(θ)
(1− p11 − p22)g2(θ) + p22g(θ)

)

− λEEmin(θ)

[

1

ǫ

K
∑

k=1

E {µk(z)}+ µc

]

−
K
∑

k=1

λkµk(z). (4.64)

(1+λ)
PON

θ

̺zk
K

[1+µk(z)zk]
− ̺

K
−1
∏

i 6=k

[1+µi(z)zi]
− ̺

K

×
(

(1− p11)(1− p22)

(1− p11g(θ))((1− p11 − p22)g(θ) + p22)
+

1

g(θ)

)

− λEEmin(θ)
1

ǫ
= 0 (4.65)

g(θ, z) = E

{

K
∏

k=1

[1+µk(z)zk]
− ̺

K

}

(4.63)

where̺ = θTB log2 e. The Lagrangian for the discrete Markov source is expressedin

(4.64) on the next page.

Initially, we assume that we utilize all of the subchannels for transmission. Then, we

can immediately state thatλi = 0 for all i and derive the optimality equations as in (4.65)

on the next page by calculating the derivatives with respectto µi for i ∈ N0.

We simplify (4.65) as

ν = zk [1+µk(z)zk]
− ̺

K
−1
∏

i 6=k

[1+µi(z)zi]
− ̺

K , k ∈ N0 (4.66)

whereν is a scaled Lagrangian multiplier

ν=
λKEEmin(θ) loge2

ǫ(1 + λ)PONTB
(

(1−p11)(1−p22)
(1−p11g(θ))((1−p11−p22)g(θ)+p22)

+ 1
g(θ)

) . (4.67)

By solving equations in (4.66), the optimal power allocation can be written as

µk(θ, z) =
1

ν
1

1+̺
∏

i∈N0
z

̺
K(1+̺)

i

− 1

zk
, k ∈ N0. (4.68)
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Now we defineN1 as

N1 =







k ∈ N0

∣

∣

∣

∣

∣

∣

1

ν
1

1+̺
∏

i∈N0
z

̺
K(1+̺)

i

− 1

zk
> 0







(4.69)

If N1 = N0 holds, then (4.68) is the optimal solution, otherwise we need to apply a recur-

sive strategy which we describe as an algorithm in Table 1.

Algorithm 1 The optimal power control algorithm that maximizes throughput given a min-
imum EE constraint

1: GivenN1 computeN1 = |N1|;
2: Initialize k = 1;
3: while Nk 6= Nk−1 do

4: Nk+1 =

{

n ∈ Nk

∣

∣

∣

∣

∣

1

ν
K

K+Nk̺
∏

i∈Nk
z

̺
K+Nk̺

i

− 1
zn
> 0

}

;

5: Nk+1 = |Nk+1|;
6: k = k + 1;
7: end while
8: DefineN ∗ = Nk andK∗ = |Nk|;

9: µn(θ, z) =

{ 1

ν
K

K+K∗̺
∏

i∈N∗ z

̺
K+K∗̺
i

− 1
zk

for n ∈ N ∗;

0 otherwise.

Remark 10. In the algorithm, basically, we first employ the formula in(4.68)for the power

allocation. Then, if all power levels are above zero, we stopthe algorithm. Otherwise, for

subchannels with power levels less than zero, we do not allocate any power and we cease

using these subchannels in the algorithm.

Fig. 4.13 depicts the energy efficiency as a function of the maximum average arrival

rate (or equivalently throughput) with varying source characteristics and the number of

subchannels. The random arrivals are modeled as a discrete Markov process. When we

have a higher ON probability or more subchannels, the systemhas better performance in

terms of energy efficiency as the maximum EE point is the highest out of all scenarios when

PON = 1 andK = 4. The source burstiness is in general an important factor in the presence

of QoS constraints because increasing burstiness by decreasing the ON probability makes
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Fig. 4.15: Energy efficiency EE vs. maximum average arrival rater∗avg whenN0 = 1,
K = 4.

the system more susceptible to buffer overflows. To avoid higher buffer overflow proba-

bilities, the system supports smaller throughput with the same energy budget. As noted

above, having more subchannels improves the energy efficiency. Essentially, when we use

a single channel, the random variations in the wireless channel, which can be detrimental

in the presence of buffer overflow constraints, have a more significant impact.

In Fig. 4.14, we analyze the tradeoff between throughput andenergy efficiency. Sim-

ilarly as in Fig. 4.9, we describe the maximum EE point (i.e.,the peak of the bell-shaped

EE curves in Fig. 4.13) as100% on thex-axis and decrease the energy efficiency while

computing the gain in the throughput. This figure shows how much throughput can be

improved by sacrificing from the maximum energy efficiency. The observation from Fig.

4.14 is that throughput improvement for less bursty sourcesis higher. Also, with smaller

number of subchannels, we observe a larger improvement.

In Fig. 4.15 where we again depict the energy efficiency as a function of the through-

put, we investigate how the system performs under differentlevels of burstiness and QoS

requirements. We notice that burstiness does not depend onPON only. Although systems

with p11 = p22 = 0.2 and p11 = p22 = 0.8 have the samePON = 0.5, they perform
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differently. Sources with higher transition probabilities from one state to a different state

(i.e., higherp12 andp21) exhibit reduced burstiness, and hence we have better performance

with the source havingp11 = p22 = 0.2. Additionally, more stringent QoS constraints (i.e.

higher values ofθ) clearly reduce the energy efficiency of the system no matterwhat the

source characteristics are.

4.5.2 Markov Fluid Source

The Lagrangian function of the Markov fluid source is given by

L(µ(θ, z), λ) = (1+λ)
PON

θ

α+β−logeg(θ)
α− loge g(θ)

logeg(θ)−λEEmin(θ)

[

1

ǫ

K
∑

k=1

E {µk(θ, z)}+µc
]

−
K
∑

k=1

λkµk(θ, z). (4.70)

Again, we initially assume that we utilize all subchannels for transmission. Then, we can

immediately state thatλi = 0 for all i and derive the following optimality equation in (4.71)

by calculating the derivatives with respect toµi for i ∈ N0:

(1+λ)
PON

θ

̺zk
K

[1+µk(z)zk]
− ̺

K
−1
∏

i 6=k

[1+µi(z)zi]
− ̺

K

(

αβ

g(θ) (α− loge g(θ))2
+

1

g(θ)

)

−λEEmin(θ)
1

ǫ
= 0. (4.71)

We can simplify (4.71) as

ν = zk [1+µk(z)zk]
− ̺

K
−1
∏

i 6=k

[1+µi(z)zi]
− ̺

K , k ∈ N0 (4.72)

whereν is defined as

ν=
λKEEmin(θ) loge2

ǫ(1 + λ)PONTB
(

αβ

g(θ)(α−loge g(θ))2
+ 1

g(θ)

) . (4.73)
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Fig. 4.16: Energy efficiency EE vs. maximum average arrival rater∗avg whenN0 = 1,
̺ = 1.

Note that, the formulation ofν in (4.72) is exactly the same as in (4.66). Thus, the optimal

power control for the case with the Markov fluid source follows from (4.68) and algorithm

from Table 1.

In Fig. 4.16, we plot the energy efficiency vs. maximum average arrival rate curves

for Markov fluid arrivals. We immediately observe that having more subchannels again

improves the performance in terms of energy efficiency. Also, the maximum energy effi-

ciency is achieved at a larger throughput level whenPON or K (number of subchannels)

increases. Additionally, we notice that at high SNR levels (equivalently for larger∗avg val-

ues), increased burstiness can offset improvements due to the increased number of subchan-

nels, as evidenced by the crossover between the dashed curve(for which α = 10, β = 0

and hence the arrival rate is constant, andK = 1 ) and dot-dashed curve (for which

α = 5, β = 5, K = 4).

For Markov fluid sources, we analyze the energy efficiency andthroughput tradeoff in

Fig. 4.17. From Fig. 4.16, we observe the steep loss in energyefficiency for more bursty

sources. This observation is further reflected in Fig. 4.17 as the throughput gain is lower

for more bursty sources when we have the same percentage of sacrifice from the energy
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Fig. 4.17: Throughputr∗avg gain % vs. EE gain % whenN0 = 1, ̺ = 1.

efficiency. Overall, we also note that instead of working at the optimal energy efficiency

point, if we reduce the energy efficiency by about20%, we can obtain gains, reaching up

to almost twice the throughput levels.

Finally, in Fig. 4.18 we plot the energy efficiency curves with varying number of sub-

channels and QoS constraints for the Markov fluid source. Again, our previous observa-

tions are verified as increasing the number of subchannelsK or decreasing the value of

QoS exponentθ enhances the energy efficiency.
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CHAPTER 5

SECURE TRANSMISSION OF

DELAY-SENSITIVE DATA OVER

WIRELESS FADING CHANNELS

5.1 Channel Model

As depicted in Figure 5.1, we consider a fading broadcast channel in which a transmitter

sends common and confidential messages to two receivers. Messages are stored in buffers

before being transmitted. Specifically, confidential messages intended for receiver 1 and

receiver 2 are kept in buffers labeled 1 and 2, respectively,as shown in Fig. 5.1, and

common messages are stored in buffer 0. Since delay-sensitive data traffic is considered,

Fig. 5.1: Two-receiver broadcast channel model.
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statistical queueing constraints are imposed in order to limit buffer overflows and delay

violations. We assume flat-fading between the transmitter and receivers. The channel

input-output relation can be expressed as

yj = hjx+ nj for j = 1, 2 (5.1)

wherex is the channel input andyj is the output at thej th receiver forj ∈ {1, 2}. Input

signal includes both confidential and common messages. Average transmitted signal energy

isE{|x|2} = E . Moreover, in (5.1),hi denotes the fading coefficient in the channel between

the transmitter and receiverj. Finally, nj denotes the zero-mean, circularly-symmetric,

complex Gaussian background noise at receiverj with varianceE{|nj |2} = N0. Hence,

the input signal-to-noise ratio(SNR) is

SNR=
E{|x|2}
E{|nj |2}

=
E
N0

j = 1, 2. (5.2)

While fading coefficients can have arbitrary distributionswith finite energies, we assume

that block-fading is experienced. Hence, the realizationsof the fading coefficients stay

fixed for a block of symbols and change independently for the next block.

5.1.1 Instantaneous Secrecy Capacity of Confidential Messages

and Capacity of Common Message Transmissions

In this section, we describe the secrecy capacity in detail in a general case in which the

transmitter sends both common and confidential messages1 to two receivers, and, with that,

we identify the service rates of our queueing model. Confidential and common messages

are sent simultaneously and it is assumed that common message is decoded at the receiver

in the presence of the interference from the confidential message transmission. Confidential

1Here, we consider standard information-theoretic arguments regarding the definition of messages and
how they are encoded and transmitted over fading channels (see e.g., [67], [68]).
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messages of two receivers are sent necessarily using time-division duplexing depending on

the channel strengths. More specifically, confidential message is only sent to the receiver

with the higher received SNR.

Secrecy capacity quantifies the maximum achievable rates ofsecure communication.

For instance, it is well-known that the secrecy capacity of confidential message transmis-

sion with the signal-to-noise ratio denoted by SNR in the presence of an eavesdropper is

given by

R(SNR) = [log2(1 + SNRzm)− log2(1 + SNRze)]
+ . (5.3)

Note that the above formula of secrecy capacity is a generic one withzm andze denoting

the magnitude squares of the fading coefficients of channelsof the intended user and eaves-

dropper, respectively. When the transmitter sends separate confidential messages to each

user as we have assumed and described in Section 5.1, the unintended user can be regarded

as an eavesdropper.

Having two confidential messages and one common message to send, transmitter allo-

cates its power for the transmission of these messages. We assume that when confidential

message intended for receiveri is being sent,δi portion of the power is used for confiden-

tial message transmission while(1− δi) portion of the power is used for common message

transmission. Additionally, we define the regions for time-division duplexing of confiden-

tial messages as

Γ1 =
{

(z1, z2) ∈ R
2+ : z1 ≥ z2

}

,

Γ2 =
{

(z1, z2) ∈ R
2+ : z1 < z2

}

.

For instance, when we have(z1, z2) ∈ Γ1, only confidential message intended for receiver

1 is transmitted along with the common message2. As previously stated, the common mes-

2We note that the event ofz1 = z2 occurs with zero probability if the fading powersz1 andz2 have
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sage is decoded in the presence of interference from confidential message transmissions.

Both users can decode the common message when it is sent at a rate they both can decode,

implying that the common message is sent at the minimum rate that both channels can

support. Hence, the instantaneous transmission rate of thecommon message becomes

R0(SNR) = log2

(

1 +
(1− δ1)SNRz2
1 + δ1SNRz2

)

1 {Γ1}+ log2

(

1 +
(1− δ2)SNRz1
1 + δ2SNRz1

)

1 {Γ2} .

(5.4)

After subtracting the common message from the received signal, the receiver with the better

channel can decode its confidential message without any interference from the common

message. Therefore, we can express the instantaneous transmission rate of confidential

messages intended for receivers 1 and 2, respectively, as

R1(SNR) = log2

(

1 + δ1SNRz1
1 + δ1SNRz2

)

1 {Γ1} (5.5)

R2(SNR) = log2

(

1 + δ2SNRz2
1 + δ2SNRz1

)

1 {Γ2} (5.6)

where1{·} denotes the indicator function3.

continuous distributions, as frequently assumed in the statistical modeling of the wireless fading channel
in the literature. However, in the case of discrete fading distributions, this event is in general a non-zero
probability event. In such a case, the secrecy capacity is zero, and hence no confidential message transmission
can be performed. All the power can be allocated to the transmission of the common message by setting
δ1 = 0.

3The secrecy rate expressions in (5.5) and (5.6) are derived from the generic expression in (5.3) For
instance, in (5.5),z1 andz2 correspond tozm andze, respectively, and the signal-to-noise ratio isδ1SNR.
Additionally, the indicator function essentially represents the operation[·]+, ensuring that the secrecy rate is
zero ifz1 < z2.
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5.2 Throughput of Secure Transmissions with Random

Data Arrivals Under QoS Constraints

In this section, we investigate the throughput of the transmission of confidential and com-

mon messages, considering different random source types introduced in Section 2.2. In

order to highlight the impact of random arrivals, we also address the case of a source with

a constant arrival rate. For each source type, we characterize the maximumaveragear-

rival rate as the maximum throughput. Thus, we determine thethroughput by deriving the

maximum average arrival rate in terms of SNR for both constant-rate arrivals and the four

Markovian arrival models.

We note that our initial analysis considers perfect channelside information (CSI) at

the transmitter. Hence, we assume that the transmitter knows the realizations ofz1 andz2.

This is an accurate assumption, for instance, in a cellular scenario in which the base sta-

tion knows the channel conditions and the users are not malicious but still the confidential

messages are to be kept private from the unintended user. We address the case of no CSI

subsequently in Section 5.4.

Constant-Rate Source

Throughput in the case of constant-rate arrival is given by the effective capacity. For each

message, the effective capacity is given by

CEi(SNR, θi) = − 1

θi
loge E{e−θiRi(SNR)} for i = 0, 1, 2. (5.7)

Note that fori = 1 and2, we have the maximum constant arrival rates of the confidential

messages at the transmitter, which are intended for receivers 1 and 2, respectively. Fori =

0, we have the maximum constant arrival rate of the common message at the transmitter.

Note further that the QoS constraintθi of different messages can in general be different.
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We also define the function gi(SNR) as

gi(SNR) = E

{

e−θiRi(SNR)
}

= e−θiCEi(SNR,θi). (5.8)

Note that with this definition, we have

CEi(SNR, θi) = − 1

θi
loge gi(SNR). (5.9)

As it will be seen in subsequent subsections, maximum average arrival rates for random

sources can also be concisely expressed using the function gi(SNR).

Discrete Markov Source

In this case, we assume that (confidential and/or common) message arrivals to the buffers

at the transmitter are according to a discrete-time Markov chain. In the case of ON-OFF

discrete Markov source, introducing effective bandwidth expression in (2.16) into (3.2),

and solving forr, we can obtain the maximum arrival rater∗(SNR, θ) and then express the

maximum average arrival rate as a function of the effective capacityCE as

r∗avgi(SNR, θi)=
PON

θi
loge

(

e2θiCEi(SNR,θi)−p11eθiCEi(SNR,θi)

1−p11−p22+p22eθiCEi(SNR,θi)

)

=
PON

θi
loge

(

1− p11gi(SNR)

(1−p11−p22)g2
i (SNR)+p22gi(SNR)

)

(5.10)

for i = 0, 1, 2, where gi(SNR) is defined in (A.59).

Note that the probability of the ON state is given byPON = 1−p11
2−p11−p22

. If we use the

assumptionp11 = 1 − s andp22 = s (and hencePON = s), the expression for average

arrival rate can be simplified further as

r∗avgi(SNR, θi) =
s

θi
loge

(

eθiCEi(SNR,θi) − (1− s)

s

)

. (5.11)
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Fig. 5.2: Maximum average arrival rate of the confidential message of the first userr∗avg,1

vs. average signal-to-noise ratioSNRwhenθ1 = 1 andδ1 = 0.5.

It can be easily verified thatr∗avgi is a monotonic function ofs, i.e., ass (and hence ON-

state probabilityPON = s) increases, the maximum average arrival rate increases. Wesee

this effect in Fig. 5.2 where we plot the relationship between maximum average arrival rate

of the confidential message of the first user vs. averageSNRcurves for different values ofs

and correlation coefficientρ. We consider a Rayleigh fading environment and assume that

the fading powersz1 andz2 are exponentially distributed with unit means, i.e.,E{z1} =

E{z2} = 1, and correlation coefficientρ = cov(z1,z2)√
var(z1)var(z1)

. Numerical evaluation verifies

that ass increases, maximum average arrival rate increases for given SNR andρ. Hence,

as the source becomes less bursty, throughput improves. Also, the correlation between the

channels of the legitimate user and eavesdropper has an impact on the throughput. Higher

correlation values lead to diminished secrecy capacity, which results in smaller throughput

values.

We have also performed buffer simulations to further verifyour theoretical analysis.

Initially, we set the values of the QoS exponentθi, SNR, source state transition probabilities

p11 andp22 of the ON/OFF discrete Markov source, and determined the maximum average

arrival rate the system can support using the theoretical characterizations in this section.
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tial and common messages whenθ1 = 0.5, θ2 = 2, θ0 = 1 , δ1 = δ2 = 0.7, p11 = p22 = 0.8
and SNR =1.

We also calculated the corresponding maximum data arrival rateri in the ON state. Then,

we initiated the simulation by generating the random data arrivals according to the Markov

source model, and generating the Gaussian fading coefficients for the service rates. In this

process, we have kept track of the buffer length over107 runs. We have compared the

simulated buffer lengths with different thresholds to determine how frequently a threshold

is exceeded and identify the overflow probabilities. In Fig.5.3, we plot the buffer overflow

probability (in logarithmic scale) vs. buffer thresholdq. We obtain excellent results from

these simulations. Specifically, we determined the simulated QoS exponent valuesθsim

from the slopes of the buffer overflow probability curves in the figure4. The simulated

θsim values were obtained as2.0171, 0.9433, 0.5018 when the corresponding theoreticalθ

values were2, 1, 0.5, respectively. Hence, if we originally setθ = 2 and design the system

accordingly, the buffer overflow probability decays with QoS exponentθsim = 2.0171,

matching the prediction very well.

4Note from (2.3) that the overflow probability is expected to behave in logarithmic scale aslog Pr{Q ≥
q} ≈ −θq + log ς . Hence, the slope of the logarithmic overflow probability vs. buffer thresholdq curve is
proportional to−θ.
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Fig. 5.4: Maximum average arrival rate of the confidential message of the second user
r∗avg,2 vs. average signal-to-noise ratioSNRwhenθ2 = 1, ρ = 0.05 andδ2 = 0.5.

Markov Fluid Source

Similarly as in the case of discrete Markov source, for the ON-OFF Markov fluid source,

incorporating (2.22) into (3.2), we determine the maximum average arrival rate as

r∗avgi(SNR, θi) = PON
θiCEi(SNR, θi) + α+ β

θiCEi(SNR, θi) + α
CEi(SNR, θi)

= −PON

θi

α + β − loge gi(SNR)

α− loge gi(SNR)
loge gi(SNR) (5.12)

for i = 0, 1, 2. Note that the probability of ON state is given asPON = α
α+β

.

In Fig. 5.4, we plot the maximum average arrival rate of the confidential message of the

second user as a function of averageSNRwhile considering different channels and Markov

fluid sources. Specifically, we assume different pairs of thesource state transition ratesα

andβ and different expected channel gainsE{z2} = γ. As in Fig. 5.2, we still assume

thatz1 andz2 are exponentially distributed, andE{z1} = 1. It is observed that increasing

α and decreasingβ simultaneously increase the ON-state probabilityPON and reduce the

burstiness of the source, and as a result, throughput increases. Furthermore, better channel

conditions for the legitimate user lead to improved throughput due to increase in secrecy
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capacity.

Discrete-Time Markov Modulated Poisson Source

In order to express the maximum average arrival rate in termsof CE, we again insert the

effective bandwidth expression in (2.30) into (3.2) and obtain

r∗avgi(SNR, θi)=
PON

(eθi − 1)
loge

(

1− p11gi(SNR)

(1−p11−p22)g2i (SNR)+p22gi(SNR)

)

. (5.13)

Continuous-Time Markov Modulated Poisson Source

We find the following maximum average arrival rater∗avg by incorporating (2.26) into (3.2):

r∗avgi(SNR, θi) = − PON

(eθi − 1)

α + β − loge gi(SNR)

α− loge gi(SNR)
loge gi(SNR). (5.14)

5.3 Energy Efficiency Of Secure Transmissions with Ran-

dom Data Arrivals Under QoS Constraints

In this section, we investigate the energy efficiency of the transmission of confidential and

common messages for various source types discussed previously. Using the throughput

formulas we have obtained, we analyze the energy efficiency and derive closed-form ex-

pressions of the minimum energy per bit and wideband slope.

5.3.1 Minimum Energy per Bit

The minimum energy per bit in (3.29) characterizes the minimum energy needed to send

one bit reliably over the wireless fading channel under statistical queueing constraints.

Lower minimum energy per bit levels indicate higher energy efficiency. First, we formulate
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the minimum energy per bit for the confidential messages as

Eb
N0 min,i

= lim
SNR→0

δi Pr(Γi)SNR

r∗avgi(SNR, θi)
=
δi Pr(Γi)

ṙ∗avgi(0)
(5.15)

for i = 1, 2. Similarly for the common message, the minimum energy per bit becomes

Eb
N0 min,0

= lim
SNR→0

[(1− δ1) Pr(Γ1) + (1− δ2) Pr(Γ2)]SNR

r∗avg0(SNR, θ0)

=
(1− δ1) Pr(Γ1) + (1− δ2) Pr(Γ2)

ṙ∗avg0(0)
. (5.16)

Below, we initially characterize the minimum energy per bitfor the case of constant-rate

arrivals, and subsequently show that the same minimum energy per bit levels are achieved

when discrete-time Markov and Markov ON-OFF sources are considered.

Proposition 5.3.1. When the data arrival rate is constant, the minimum energy per bit

expressions for the confidential message transmissions to receivers 1 and 2 under QoS

constraints are given, respectively, by

Eb
N0 min,1

=
Pr(Γ1) loge 2

EΓ1{z1 − z2}
(5.17)

Eb
N0 min,2

=
Pr(Γ2) loge 2

EΓ2 {z2 − z1}
, (5.18)

and the minimum energy per bit for the common message transmission under QoS con-

straints is given by

Eb
N0 min,0

=
[(1− δ1) Pr(Γ1) + (1− δ2) Pr(Γ2)] loge 2

(1− δ1)EΓ1{z2}+ (1− δ2)EΓ2{z1}
(5.19)

wherePr(Γ1) = Pr(z1 < z2), Pr(Γ2) = Pr(z1 < z2), andδi is the fraction of the power

used for the transmission of the confidential message to receiver i. Moreover,EΓ1 denotes
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the expectation in regionΓ1 whileEΓ2 is similarly defined in the complement regionΓ2.

Proof: See Appendix A.12.

When z1 and z2 are independent and exponentially distributed withE{z1} = 1 and

E{z2} = γ, we havePr(Γ1) = 1
γ+1

andPr(Γ2) = γ
γ+1

, and we can get closed-form

expressions for the minimum energy per bit formulations as follows:

Eb
N0 min,1

= loge 2,
Eb
N0 min,2

=
loge 2

γ
(5.20)

Eb
N0 min,0

=
γ + 1

γ
loge 2. (5.21)

Interestingly, for both ON-OFF discrete-time Markov and Markov fluid sources, mini-

mum energy per bit expressions are the same as those attainedin the presence of constant-

rate sources.

Proposition 5.3.2.When data arrivals are modeled as ON-OFF discrete-time Markov or

Markov fluid processes, the minimum energy per bit expressions for confidential and com-

mon message transmissions under QoS constraints remains the same as those for the con-

stant arrival rate model and hence are given by(5.17), (5.18), and(5.19), respectively.

Proof: See Appendix A.13.

Heretofore, we have seen that the minimum bit energy expressions do not depend on

either the queueing constraints or the source randomness. More specifically, minimum

bit energy of confidential/common message transmissions are the same regardless of the

value of the QoS exponentθ and whether data arrives at a constant rate or according to

an ON-OFF Markov process. However, this is not the case when we consider more bursty

Markov-modulated Poisson arrivals, as shown in the result below.

Proposition 5.3.3. When the source arrivals are modeled as ON-OFF discrete-time or

continuous-time MMPPs, the minimum energy per bit expressions for confidential and com-
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mon message transmissions under QoS constraints are given,respectively, by

Eb
N0 min,1

=
(eθ1 − 1) Pr(Γ1) loge 2

θ1EΓ1{z1 − z2}
(5.22)

Eb
N0 min,2

=
(eθ2 − 1) Pr(Γ2) loge 2

θ2EΓ2 {z2 − z1}
(5.23)

Eb
N0 min,0

=
(eθ0− 1)[(1− δ1) Pr(Γ1) + (1− δ2) Pr(Γ2)] loge 2

θ0 [(1− δ1)EΓ1{z2}+ (1− δ2)EΓ2{z1}]
. (5.24)

Proof: See Appendix A.14.

For MMPP sources, minimum energy per bit now depends on the QoS exponent through

the termeθ−1
θ

. Sincee
θ−1
θ

> 1 for θ > 0 and increases with increasingθ, a higher energy

per bit is required for MMPP sources (compared to constant-rate and ON-OFF Markov

sources) and energy cost grows as the QoS constraints becomemore stringent. Interest-

ingly, energy per bit expressions still do not depend on the specific parameters of the ran-

dom arrival model (such as transition probabilities/ratesof the Markov chain and intensity

of the Poisson arrivals).

As also noted before, Proposition 5.3.2 shows that the minimum energy per bit for

discrete-time Markov and Markov fluid sources are the same asfor the constant-rate source.

The primary intuitive reasoning behind this result is that the minimum energy per bit is an

asymptotic performance metric achieved asSNR→ 0, and the impact of source burstiness

significantly diminishes at these asymptotically lowSNR levels for discrete-time Markov

and Markov fluid sources. Specifically, asSNR diminishes, the fixed arrival rate (in the

ON-state of the Markov models) that can be supported by the wireless channel decreases

as well, resulting in less and less impact on buffer overflowsand delay violations.

On the other hand, if the arrival process is MMPP, the intensity of the Poisson process

is reduced with decreasingSNR. However, the arrival process is still a Poisson process but
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with a smaller intensity, meaning that there is still a probability, however small, for the

instantaneous arrival rate in the ON state to be large since the arrival rate depends on the

realization of a Poisson distributed random variable. Hence, MMPP source is more bursty

in the low-SNR regime than discrete-time Markov and Markov fluid sources, and this is

reflected in the larger minimum energy per bit values as shownin the results of Proposition

5.3.3.

5.3.2 Wideband Slope

Minimum energy per bitEb

N0 min
is the ultimate performance limit of energy-efficient opera-

tion. At the same time, it is an asymptotic performance metric achieved in the limit asSNR

vanishes. In this subsection, we complement theEb

N0 min
−analysis by characterizing the wide-

band slope of confidential and common message transmissionsfor different source models.

Unlike the minimum energy per bit, wideband slope is distinct for each source and depends

on the source statistics. In this subsection, we also provide numerical results to demonstrate

the effectiveness of the linear approximation of the throughput in the low-SNR regime in

terms ofEb

N0 min
and wideband slopeS0, and to identify the impact of secrecy requirements,

source randomness, QoS constraints, and channel correlation on energy efficiency.

Constant-Rate Sources

Proposition 5.3.4.For constant-rate arrivals, the wideband slope expressions for common

and confidential message transmissions under QoS constraint are given by

S0,i=
2
(

E

{

ḟi(0)
})2

θi
loge2

var
(

ḟi(0)
)

− E

{

f̈i(0)
} (5.25)

for i = 0, 1, 2 where we have definedfi(SNR) = Ri(SNR) loge 2 with Ri(SNR) being the

instantaneous rate of confidential or common message given in (5.4)–(5.6), and the first
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and second derivatives offi(SNR) at SNR= 0 are given by

ḟ1(0) = δ1 (z1 − z2)1{z1≥z2} ,

ḟ2(0) = δ2 (z2 − z1)1{z1<z2} ,

ḟ0(0) = (1− δ1)z21{z1≥z2}+ (1− δ2)z11{z1<z2} ,

f̈1(0) = −δ21
[

z21 − z22
]

1{z1≥z2} ,

f̈2(0) = −δ22
[

z22 − z21
]

1{z1<z2} ,

f̈0(0) = −(1 − δ21)z
2
21{z1≥z2} − (1− δ22)z

2
11{z1<z2} . (5.26)

Proof: See Appendix A.15.

Above,S0,0 is the wideband slope for common message transmission whileS0,1 and

S0,2 denote the wideband slope of confidential message transmissions to receivers 1 and 2,

respectively.

For independent and exponentially distributedz1 andz2 with E{z1} = 1 andE{z2} =

γ, the wideband slope expressions simplify to

S0,1=
2

θ1
loge2

(1 + 2γ) + 4γ + 2
(5.27)

S0,2=
2

θ2
loge2

(

1 + 2
γ

)

+ 4
γ
+ 2

. (5.28)

If we further assume thatδ1 = δ2 = δ, then the wideband slope for common message

becomes

S0,0=
2

θ0
loge2

+ 1−δ2

(1−δ)2

. (5.29)
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Discrete-Time Markov Sources

Next, we consider ON-OFF discrete-time Markov sources withtransition probabilities de-

noted bypij for i, j ∈ {1, 2}.

Proposition 5.3.5.The wideband slope expressions for confidential and common message

transmissions under QoS constraint are given by

S0,i=
2
(

E

{

ḟi(0)
})2

η θi
loge2

(

E

{

ḟi(0)
})2

+ θi
loge2

var
(

ḟi(0)
)

− E

{

f̈i(0)
}

(5.30)

for i = 0, 1, 2, whereḟi(0) and f̈i(0) are given in (5.26). Additionally,η previously is

defined in(3.9)asη = (1−p22)(p11+p22)
(1−p11)(2−p11−p22)

.

Proof: See Appendix A.16

Again, for independent and exponentially distributedz1 andz2 with E{z1} = 1 and

E{z2} = γ, the wideband slope expressions are given as

S0,1=
2

θ1η
loge2

+ θ1
loge2

(1 + 2γ) + 4γ + 2
, (5.31)

S0,2=
2

θ2η
loge2

+ θ2
loge2

(

1 + 2
γ

)

+ 4
γ
+ 2

. (5.32)

If we further assume thatδ1 = δ2 = δ, then the wideband slope for common message

becomes

S0,0=
2

θ0η
loge2

+ θ0
loge2

+ 1−δ2

(1−δ)2

. (5.33)

When compared with the corresponding wideband slope expressions in (5.27)–(5.29) for

the constant-rate source, we notice that wideband slope formulas above in (5.31)–(5.33)

for the discrete Markov source differ only due to the presence of the term θη
loge 2

, which

reflects essentially the source randomness with the parameterη. This additional term leads
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to smaller wideband slopes, indicating the detrimental impact of source randomness on

energy efficiency. Note also that whenp11 = 0 andp22 = 1, discrete Markov essentially

becomes a constant-rate source and we haveη = 0.

In Fig. 5.5, the maximum average arrival rate of the confidential message for the first

user vs. energy per bit is plotted. We consider an ON-OFF discrete Markov source with

p11 = 1 − s andp22 = s (and hencePON = s). We assumeθ = 1 andδ1 = 0.5. The

channel power gainsz1 andz2 are exponentially distributed withE{z1} = 1, E{z2} = γ

and correlation coefficientρ = 0.05. As predicted, the minimum energy per bit does

not depend on source burstiness or the second user channel statistics, i.e.,γ. There is

a slight increase in the minimum energy per bit values achieved in the cases of secrecy

as compared to no secrecy. The main reason for this is the correlation in the channel

conditions of the two users. Without any correlation, the minimum energy per bit becomes

equal to−1.59 dB. As a result of similar minimum energy per bit values, wideband slope

becomes a critical performance indicator in the low-SNR regime. We notice that wideband

slope diminishes when secrecy requirements are imposed andalso when source burstiness

increases with diminishing ON-state probabilityPON = s. We also observe that, as the

second user (or equivalently eavesdropper) channel conditions improve, i.e., asγ increases,



121

0 1 2 3 4 5 6 7

E
b
/N

0
 (dB)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

r av
g,

0

s=0.3, γ=1
s=0.3, γ=2
s=0.7, γ=1
s=0.7, γ=2

Fig. 5.6: Maximum average arrival rate of common messager∗avg0 vs. energy per bitEb

N0
in

dB whenθ0 = 1, ρ = 0.05 andδ1 = δ2 = 0.5.

we have smaller wideband slopes.

We illustrate the maximum average arrival rate of the commonmessage vs. energy per

bit in Fig. 5.6, assuming the parameter settingθ = 1, ρ = 0.05 andδ1 = δ2 = 0.5. We again

verify that source characteristics do not play a role in the value of the minimum energy per

bit. Better channel conditions for the second user improve the overall energy efficiency

of the transmission of the common message by improving the minimum energy per bit.

We also notice that wideband slope is the same when we alter the channel conditions.

However, source burstiness has a negative impact on the wideband slope, thus, on the

energy efficiency as well.

Markov Fluid Sources

In the following, we characterize the wideband slope in the case of ON-OFF Markov fluid

arrivals with transition ratesα andβ.

Proposition 5.3.6.The wideband slope expressions for confidential and common message
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transmissions under QoS constraint are given by

S0,i=
2
(

E

{

ḟi(0)
})2

ζ θi
loge2

(

E

{

ḟi(0)
})2

+ θi
loge2

var
(

ḟi(0)
)

+ E

{

f̈i(0)
}

(5.34)

for i = 0, 1, 2, whereḟi(0) and f̈i(0) are defined in(5.26). Note further thatζ is defined in

(3.17)asζ = 2β
α(α+β)

.

Proof: See Appendix A.17.

Similarly as for the previous arrival models, we can simplify the wideband expressions

for the confidential message transmissions to the followingwhen we have independent and

exponentially distributedz1 andz2 with E{z1} = 1 andE{z2} = γ:

S0,1=
2

θ1ζ
loge2

+ θ1
loge2

(1 + 2γ) + 4γ + 2
, (5.35)

S0,2=
2

θ2ζ
loge2

+ θ2
loge2

(

1 + 2
γ

)

+ 4
γ
+ 2

. (5.36)

If we further assume thatδ1 = δ2 = δ, then the wideband slope for common message

becomes

S0,0=
2

θ0ζ
loge2

+ θ0
loge2

+ 1−δ2

(1−δ)2

. (5.37)

The common theme in the above expressions and the ones corresponding to other source

types (i.e., expressions in (5.27)–(5.29) and (5.31)–(5.33)) is that wideband slope expres-

sions depend on three critical factors: QoS exponentθ, source burstiness parameter (ζ in the

case of Markov fluid source andη in the case discrete Markov source, which both become

zero when the arrival rate is constant), and channel statistics throughE{z2} = γ. For in-

stance, wideband slopes diminish asθ increases and more stringent buffer/delay constraints

are imposed.
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We depict, in Fig. 5.7, the maximum average arrival rate of the confidential message

for the first user vs. energy per bit for Markov fluid sources with different values ofα and

β. We assumeθ = 1, γ = 1 andδ1 = 0.5. In the case of no secrecy, the minimum energy

per bit is equal to−1.59 dB and it remains unchanged under different source characteris-

tics. With secrecy, source burstiness again does not impactthe minimum energy per bit.

However, as channel correlation increases, the energy efficiency degrades due to higher

minimum energy per bit. Additionally, the source characteristics have significant impact

on the wideband slope e.g., wideband slope decreases as source becomes more bursty (i.e.,

as we change the state transition rates fromα = 9 andβ = 1 to α = 1 andβ = 9).

MMPP Sources

Next, we address ON-OFF MMPP sources.

Proposition 5.3.7.When the source is modeled as discrete-time MMPP the wideband slope

expressions for confidential and common message transmissions under QoS constraint are
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given by

S0,i=

2θi
eθi−1

(

E

{

ḟi(0)
})2

η θi
loge2

(

E

{

ḟi(0)
})2

+ θi
loge2

var
(

ḟi(0)
)

+ E

{

f̈i(0)
}
. (5.38)

for i = 0, 1, 2 whereḟi(0) and f̈i(0) are defined in(5.26)andη is defined in(3.9).

When the source is modeled as continuous-time MMPP the wideband slope expressions

for confidential and common message transmissions under QoSconstraint are given by

S0,i=

2θi
eθi−1

(

E

{

ḟi(0)
})2

ζ θi
loge2

(

E

{

ḟi(0)
})2

+ θi
loge2

var
(

ḟi(0)
)

+ E

{

f̈i(0)
}

(5.39)

for i = 0, 1, 2 whereζ is defined in(3.17).

We omit the proof as it is rather straightforward due to the relationship between the

throughputs of the Markov and MMPP sources.

In Fig. 5.8, we illustrate the maximum average arrival rate of the common message

vs. energy per bit when the source is ON-OFF discrete-time MMPP. We setρ = 0.8,

γ = 1, p11 = 0.1 andp22 = 0.9, and study the impact of different values ofθ0 andδi.
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For the MMPP source, the minimum energy per bit depends on theQoS exponentθ0 and it

decreases asθ0 diminishes, indicating less stringent queueing constraints. Power allocation

has no impact on the minimum energy per bit. However, with more power allocated to the

common message, the wideband slope becomes higher.

5.4 Throughput and Energy Efficiency with no Chan-

nel Knowledge at the Transmitter

In this section, we depart from the perfect transmitter CSI assumption of the previous sec-

tions and consider a scenario in which the transmitter has noCSI. Specifically, we assume

that the transmitter does not know the realizations of the channel fading coefficients, which

is relevant in cases in which the eavesdropper is passive andmalicious. This also represents

a worst-case scenario due to the fact that even the legitimate channel is not known. Treating

the eavesdropper as malicious, we address a special case of the previously treated system

model. In particular, we do not consider common message transmission and assume that

the transmitter just intends to send confidential messages to receiver 1 while keeping them

private from receiver 2 (which is regarded as the eavesdropper).

Not knowing the realizations of the channel fading coefficientsh1 andh2, the transmit-

ter sends the data at the fixed rate ofλ bits/s/Hz. As before, instantaneous secrecy capac-

ity R(SNR) = [log2(1 + SNRz1)− log2(1 + γSNRz2)]
+ quantifies the maximum achievable

rates of secure communication wherezi = |hi|2. Hence, ifλ ≤ R(SNR), then reliable

and secure communication is attained and therefore the transmitted message is decoded

correctly while eavesdropper is being kept ignorant of the message. If, on the other hand,

λ > R(SNR), secrecy outage occurs. Under these assumptions, the wireless link can be

modeled as a two-state discrete-time Markov chain. Specifically, the channel is assumed to

be in the ON state ifλ ≤ R(SNR), while the channel is in the OFF state whenλ > R(SNR).
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The steady-state probability for the ON state can be easily obtained as

P{Γ}= P{R(SNR) >λ}= P

{

z1 > 2λγz2 +
2λ − 1

SNR

}

(5.40)

=

∫ ∞

0

∫ ∞

2λγz2+
2λ−1
SNR

p(z1, z2)dz1dz2 (5.41)

where we defineΓ = {(z1, z2) ∈ R
+ : λ < R(SNR)}.

5.4.1 Effective Capacity with no Channel Knowledge at the Trans-

mitter

In [9, Chap. 7, Example 7.2.7], it is shown for Markov modulated processes that

Λ(θ)

θ
=

1

θ
loge E{ρ

(

φ(θ)M
)

}. (5.42)

Above,M is the transition matrix of the underlying Markov process, andφ(θ) is a diagonal

matrix whose components are the moment generating functions of the processes in the

Markov states. We assume that the fading coefficients{hi} change independently from

one block to another. Under this assumption, the effective capacity can be obtained as

CE(SNR, θ)=
Λ(−θ)
−θ = −1

θ
loge

[

1−P{Γ}
(

1− e−θλ
)]

(5.43)

whereP{Γ} is the channel ON-state probability given in (5.41).

5.4.2 Energy Efficiency with Discrete Markov Sources

First, we consider ON-OFF discrete Markov sources. We also assume that channel fading

powersz1 andz2 are independent exponentially distributed with means 1 andγ, respec-

tively. In the following result, we characterize the considered energy efficiency metrics

under these assumptions.
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Proposition 5.4.1.The minimum energy per bit and wideband slope achieved with fixed-

rate secure transmissions in the presence of an eavesdropper with ON-OFF discrete Markov

data arrivals and statistical QoS constraints are given by

Eb
N0 min

= e(γ + 1) loge 2, (5.44)

S0=
1

θ(η−1)
2 loge 2

+ θe(γ+1)
2 loge 2

+ eγ + e(γ+1)
2

, (5.45)

respectively, withη defined in(3.9).

Proof: See Appendix A.18.

As in the perfect CSI case, the minimum energy per bit in (5.44) does not depend on the

QoS exponentθ and source statistics while the wideband slope in (5.45) depends on both.

Specifically, wideband slope decreases with stricter QoS limitations (i.e., with increasing

θ) and increased source burstiness (i.e., with largerη).

It is also interesting to compare the minimum energy per bit expressions achieved with

perfect CSI and no CSI. Recall from (5.20) that with perfect CSI, the minimum energy

per bit for the confidential message transmission to receiver 1 assuming exponentially dis-

tributed fading powers withE{z1} = 1 andE{z2} = γ is

Eb
N0 min

= loge 2. (5.46)

Comparing this with (5.44), we immediately identify the additional energy cost per bit of

not having channel knowledge at the transmitter as[e(γ + 1)− 1] loge 2. Hence, the char-

acterization in Proposition 5.4.1 nicely quantifies the energy cost of not having transmitter

CSI in secure wireless transmissions.

Following the same methodology as described in the discussion of Fig. 5.3, we have

again performed simulations in the case of no transmitter CSI. In Fig. 5.9, we plot the

buffer overflow probability vs. buffer thresholdq. We again have very good agreement
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with theoretical predictions. In particular, the simulated θsim values were obtained as

1.9306, 1.0657, 0.5109 when the corresponding theoreticalθ values were2, 1, 0.5, respec-

tively.

As also noted above, Proposition 5.4.1 shows that while the minimum energy per bit

does not depend on the source statistics and QoS exponentθ, the wideband slope depends

on both and decreases as burstiness parameterη increases. We see these clearly in Fig. 5.10,

where we plot the maximum average arrival rate vs. energy perbit for discrete Markov

sources with varying statistics. As predicted, the minimumenergy per bit stays the same

at 5.76 dB, which is more than 7 dB larger than the minimum energy per bit of −1.59

dB achieved in the case of perfect CSI. We also observe that source with smallerp11 and

greaterp22 (while keepingp11 + p22 = 1) has a smallerη value and correspondingly larger

wideband slope. Hence, lower source burstiness benefits theenergy efficiency.

5.4.3 Energy Efficiency with Markov Fluid Sources

In this section, we consider ON-OFF Markov fluid sources and similarly as in the previous

section identify the energy efficiency metrics.
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Proposition 5.4.2.The minimum energy per bit and wideband slope achieved with fixed-

rate secure transmissions in the presence of an eavesdropper with ON-OFF Markov fluid

data arrivals and statistical QoS constraints are given by

Eb
N0 min

= e(γ + 1) loge 2, (5.47)

S0=
1

θ(ζ−1)
2 loge 2

+ θe(γ+1)
2 loge 2

+ eγ + e(γ+1)
2

, (5.48)

respectively, whereζ is defined in(3.17)

Proof: See Appendix A.19.
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CHAPTER 6

ENERGY EFFICIENCY OF FIXED-RATE

TRANSMISSIONS WITH MARKOV

ARRIVALS UNDER QUEUEING

CONSTRAINTS

6.1 Channel Model and Fixed-Rate Transmissions

We consider a flat-fading channel between the transmitter and receiver. The channel input-

output relation can be expressed as

y(t) = h(t)x(t) + n(t) (6.1)

wherex(t) andy(t) are the complex-valued (i.e., low-pass equivalent) input and output sig-

nals, respectively, andn(t) denotes the zero-mean, circularly-symmetric, complex Gaus-

sian noise. The signal-to-noise ratio is defined asSNR= P
N0B

, whereP denotes the power

of the input signal,N0/2 is the power spectral density of the noise andB is the channel
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bandwidth. Above in (6.1),h(t) denotes the multiplicative fading component representing

the attenuation and phase shift experienced in the channel.We consider a Rayleigh fad-

ing channel and assume thath(t) is a zero-mean complex Gaussian process. Therefore,

z(t) = |h(t)|2 has an exponential distribution.

Not knowing the channel conditions, the transmitter sends the data at the fixed rate of

R bits/s/Hz. If the wireless channel changes slowly and henceh(t) stays almost a constant

over a coding block, the instantaneous channel capacity of the fading Gaussian channel can

be formulated in bits/sec/Hz as

C(t) = log2

(

1 +
P

N0B
z(t)

)

= log2 (1 + SNRz(t)) . (6.2)

Then, we assume that ifR < C(t), reliable communication is attained and hence the

transmitted message is decoded correctly. If, on the other hand,R ≥ C(t), outage occurs

and retransmission is needed. Under these assumptions, we,following the approach in

[27], model the wireless link as a two-state continuous-time Markov chain. The channel is

assumed to be in the ON state ifR < C(t) or equivalentlyz(t) > ζ , whereζ = 2R−1
SNR. The

channel is in the OFF state whenz(t) ≤ ζ . We denote transition rates from ON to OFF

state asλ and from OFF to ON state asµ. Now, the transition rate matrix can be expressed

as Q =







−λ λ

µ −µ






.

These transition rates need to be consistent with the properties of the channel. The

stationary probabilities are easily obtained asλ
λ+µ

for the ON state and asµ
λ+µ

for the OFF

state. Without loss of generality, we assume thatz(t) has unit variance. Then, we can write

Pr {z(t) > ζ} =

∫ ∞

ζ

e−z dz = e−ζ =
λ

λ+ µ
, (6.3)

Pr {z(t) ≤ ζ} =

∫ ζ

0

e−z dz = 1− e−ζ =
µ

λ+ µ
. (6.4)

Hence, we haveλ = κe−ζ andµ = κ(1 − e−ζ) whereκ = λ + µ can be seen as the
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exponential decay rate of the memory of the underlying Rayleigh channel as discussed in

[27] and can be determined from the channel statistics.

6.2 Energy Efficiency of Fixed-Rate Transmission of ON-

OFF Markov Sources

6.2.1 Markov Fluid Sources

For the two-state Markov fluid source, the average arrival rate is

ravg = PON r =
α

α + β
r (6.5)

wherePON= α/(α+ β) is obtained from the equations in (2.20) and the generating matrix

in (2.21). In the Markov fluid model, maximum arrival rate that can be supported by fixed-

rate transmissions in the presence of buffer constraints can be obtained by solving (3.2)

and the maximumaveragearrival rater∗avg(SNR, θ) can be determined from (6.5). In the

following result, we characterize this maximum average arrival rate in the low-SNR regime

and find the minimum energy per bit requirement and the wideband slope.

Theorem 6.2.1.Assume that the source arrivals and fixed-rate transmissions over the

Rayleigh-fading channel are both modeled as ON-OFF continuous-time Markov processes.

The decay rate of the memory of the Rayleigh channel is denoted byκ. Then, the minimum

energy per bit and wideband slope expressions as a function of the channel and source

parameters and the QoS exponentθ are given, respectively, by

Eb
N0 min

= e loge 2 = 2.7512 dB, and (6.6)

S0 =
1

θ
loge 2

[

e−1
κ

+ β
α(α+β)

]

+ e
2

. (6.7)
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Proof: We first consider the condition in (3.2) and express it for Markov fluid transmis-

sion and source models as

θr−(α+β)+
√

(θr−(α+β))2+4αθr

2θ
=

θR+(λ+µ)−
√

(θR+(λ+µ))2−4λθR

2θ
. (6.8)

Note that the equality in (6.8) enables us to determine the maximum arrival rate,r∗, in the

Markov fluid source model and the corresponding optimal fixedtransmission rateR∗ for

the given channel parameters (e.g., the transition ratesλ andµ) and the imposed queueing

constraints specified by the QoS exponentθ. Note further that as seen in (3.29) and (3.31),

we have to determine the first and second derivatives ofr∗ with respect toSNRat SNR= 0

in order to identify the minimum energy per bit and wideband slope. In (6.8), we have

dependence onSNR throughλ andµ. It is important to also note that optimum arrival and

transmission ratesr∗ andR∗ in general depend onSNRas well.

Initially, we consider an arbitrary fixed-rate transmission strategyR(SNR) for any given

SNR. After multiplying both sides of (6.8) with2θ and taking the derivative with respect

to SNR, we obtain the equation in (6.9), given at the top of the next page, where we have

definedg(SNR) = e−
2R−1
SNR .

θṙ(SNR) +
(θr(SNR)−(α+ β))θṙ(SNR) + 2αθṙ(SNR)
√

(θr(SNR)− (α+ β))2 + 4αθr(SNR)
=

θṘ(SNR) +
(θR(SNR) +κ)θṘ(SNR)− 2κg(SNR)θṘ(SNR)− 2κġ(SNR)θR(SNR)

√

(θR(SNR) + κ)2 − 4κg(SNR)θR(SNR)
(6.9)

Next, we letSNR→ 0. Noting that the arrival rater(0) = 0 and transmission rateR(0) = 0

at SNR= 0 and we haveg(0) = 2−Ṙ(0), the equality in (6.9) simplifies to

ṙavg(0) = ṙ(0)
α

α+ β
= Ṙ(0)2−Ṙ(0). (6.10)

Assume thatR(SNR) has the following second-order expansion atSNR= 0:

R(SNR) = aSNR+ bSNR2 + o(SNR) (6.11)
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for some constantsa andb. Then, plugging the result in (6.10) into the formula of minimum

energy per bit, we immediately obtain

Eb
N0 min

=
2a

a
, (6.12)

which characterizes the minimum energy per bit for a given transmission rate witḣR(0) =

a. The smallest value ofEb

N0 min
can be obtained by optimizing over the choice ofa. It can

be easily seen thata∗ = 1/ loge 2 is the optimized value which we use in (6.12) in order

to obtain the minimum energy per bit expression given in (6.6). As another equivalent

approach, note that this optimala∗ = 1/ loge 2 indeed maximizeṡR(0)2−Ṙ(0) = a2−a =

a
2a

. Since maximizingr(SNR, θ, R) = ṙ(0)SNR+ o(SNR) in the low-SNR regime up to first

order is equivalent to maximizinġr(0), we readily conclude thaṫR∗(0) = a∗ = 1/ loge 2.

Hence, from (6.10), we havėr∗avg(0) = a∗ 2−a
∗

. Plugging thisṙ∗avg(0) into (3.29), we again

obtain the desired result in (6.6).

In order to determine the wideband slope, we first take the second derivative of both

sides of (6.8) with respect toSNRand evaluate them atSNR= 0. With further simplification

we can easily derive the second derivative of the maximum average arrival rate with respect

to SNRat SNR= 0 as in (6.13).

r̈avg(0) =θ(Ṙ(0))
2

[

2

κ

(

2−2Ṙ(0) − 2−Ṙ(0)
)

− 2β

α(α+ β)
2−2Ṙ(0)

]

+ 2−Ṙ(0)
[

2R̈(0)
(

1− Ṙ(0) loge 2
)

− (Ṙ(0))3(loge 2)
2
]

. (6.13)

When we use the optimal̇R∗(0) = a∗ = 1/ loge 2 value, we notice thaẗr∗avg(0) does not

depend onb = R̈(0)/2.

Finally, inserting (6.10) and (6.13) into (3.31) and usinga∗ = 1/ loge 2, we obtain the

wideband slope expression in (6.7). �

Remark 11. Note that the minimum energy per bit in (6.6) does not depend on the QoS ex-
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ponentθ and hence does not get affected by the presence of the buffer constraints. However,

when compared with the ultimate limit ofEb

N0 min
= loge 2 = −1.59 dB achieved when the

transmission rate is given by the Shannon capacity, we notice that fixed-rate transmissions

incur a certain cost and the minimum energy per bit has significantly increased to2.7512

dB.

Remark 12. The wideband slope expression in (6.7) depends on the QoS exponentθ, chan-

nel memoryκ, and the Markov source characteristics through the transition ratesα andβ.

In particular, we see that asθ increases (i.e., more strict buffer constraints are imposed),

or κ decreases meaning that channel memory decays more slowly, we have smaller wide-

band slopes, resulting in smaller average arrival rates at the same energy per bit level or

equivalently higher energy per bit to support the same arrival rate. Hence, stricter queue-

ing constraints and/or more correlated channel adversely affect the energy efficiency in

the low-SNRregime. Furthermore, increasing source burstiness, for instance by decreasing

α and increasingβ while keepingα + β constant, also lowers the wideband slope and

degrades the energy efficiency. Note that smallerα with α + β constant means that the

stationary distribution of the ON state,PON, is smaller. Hence, data arrivals occur in less

frequent bursts.

Remark 13. It is interesting to note that in the absence of buffer constraints, i.e., whenθ =

0, wideband slope expression becomesS0 = 2/e = 0.7358. Hence, we have no dependence

on channel memory and source characteristics. We also notice that the wideband slope is

smaller compared toS0 = 1 achieved in Rayleigh fading channels when Shannon capacity

is considered [57]. Hence, the cost of fixed-rate transmissions is reflected in the wideband

slope as well.

In Figure 6.1, we plot the maximum average arrival rater∗avg as a function of the energy

per bit Eb

N0
whenθ = 1, 10. For givenθ, different curves are obtained for different values of

κ, α, andβ whileα + β is fixed. Note that the special case in whichβ = 0 corresponds to
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Fig. 6.1: Maximum average arrival rater∗avg vs. energy per bitEb

N0
whenθ = 1, 10.

constant arrival rate. Confirming our discussions above, weobserve that, regardless of the

buffer constraints and source characteristics, all curvesapproach the same minimum energy

per bit level of2.7512 dB. However, smallerκ and hence more slowly decaying channel

memory, lowerα and largerβ and hence more bursty source, and largerθ and hence stricter

buffer constraints, all lower the wideband slope and hence result in degradations in the

energy efficiency.

6.2.2 Discrete-Time Markov Sources

Finally, we note that we provide above a general framework for energy-efficiency anal-

ysis in the low power regime with time-varying sources. While we primarily apply this

framework to Markov fluid sources, other source models can beanalyzed by following

a similar approach. For instance, for a discrete-time Markov ON-OFF source for which

the state transition probability matrix isJ =







p11 p12

p21 p22






, the effective bandwidth is given

by a(θ, r) = 1
θ
loge

(

p11+p22erθ+
√

(p11+p22erθ)2−4(p11+p22−1)erθ

2

)

. Using the techniques of the

proof of Theorem 6.2.1, we readily have the following characterization for the discrete-time

Markov source model with the same transmission and channel assumptions.
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Theorem 6.2.2.Assume now that the source arrival follows the discrete-time ON-OFF

model described above. Then, the minimum energy per bit and wideband slope expressions

as a function of the channel and source parameters and the QoSexponentθ are given,

respectively, by

Eb
N0 min

= e loge 2 = 2.7512 dB, and

S0 =
1

θ
loge 2

[

e−1
κ

+ ( ˜̟−1)
2

]

+ e
2

where we have defined̟̃ = ̟
(

1
PON

)2
and

̟ =
p222+2(1−p11)
2(2−p11−p22)

− [p22(p11+p22)−2(p11+p22−1)]2

2(2−p11−p22)3
.

Based on Theorem 6.2.2, similar conclusions as in the Markovfluid source model can

immediately be drawn for the discrete-time Markov source aswell.
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CHAPTER 7

ANALYSIS OF MULTIUSER CHANNELS

WITH MARKOV ARRRIVALS UNDER

QOS CONSTRAINTS

7.1 Throughput Regions of Multiple-Access Fading Chan-

nels with Markov Arrivals and QoS Constraints

7.1.1 Channel Model

We consider a multiple-access fading channel in whichM users transmit to a common

receiver. We assume that each user experiences Markov data arrivals. Randomly arriving

data is initially buffered at each user before transmissionover the multiple-access channel.

For each random source traffic, certain statistical QoS constraints are imposed at each user

in order to limit the buffer violation probability.

In the considered multiple-access channel, each link experiences flat-fading and the

channel input-output relation can be expressed as
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y =

M
∑

i=1

hixi + n (7.1)

wherexi is the channel input of theith user andy is the output at the receiver. Av-

erage transmitted signal energy of theith user isE{|xi|2} = Ei. Moreover,n denotes

the zero-mean, circularly-symmetric, complex Gaussian background noise at the receiver

with varianceE{|n|2} = N0. Hence, the signal-to-noise ratio (SNR) of theith user is

SNRi =
E{|xi|2}
E{|n|2}

= Ei
N0

for i = 1, ...,M. Finally, in (7.1),hi denotes the fading coefficient in

the channel between the useri and the receiver. While fading coefficients can have arbi-

trary distributions with finite energies, we assume that block-fading is experienced. Hence,

the realizations of the fading coefficients stay fixed for a block of symbols and change

independently for the next block.

7.1.2 MAC Throughput Region

In this section, we initially describe our throughput metric as the maximum average ar-

rival rate that can be supported in a setting in which arrivals are modeled as ON-OFF

Markov processes, service rates are given by the instantaneous channel capacities, and

buffer overflow probabilities are limited as described in Section 2.1. In particular, we for-

mulate the maximum average arrival rates by using both effective bandwidth and effective

capacity formulas. We subsequently consider three different strategies for communication

in multiple-access fading channels, namely time-divisionwith power control, superposi-

tion coding with fixed decoding order, and superposition coding with variable decoding

order. Each scheme leads to different service rates at different users and results in different

throughput regions.

TDMA

Time division is a simple strategy in which the users send their signals in non-overlapping

intervals. Hence, interference is avoided in this case at the cost of reduced transmission



140

rates. Useri transmitsτi fraction of the time with energyEi/τi. Therefore, instantaneous

service rates in bits/channel use are

Ri(SNRi) = τi log2

(

1 +
SNRizi
τi

)

for i = 1, ...,M (7.2)

where againzi = |hi|2. With these service rates, the effective capacity expressions of the

users become

CEi(SNRi) = − 1

θi
loge E

{

e
−

θiτi
loge 2

loge

(

1+
SNRizi

τi

)

}

. (7.3)

Superposition Coding with Fixed Decoding Order (SC-FDO)

In this strategy, transmitters simultaneously send the data and the receiver decodes the

received sum-signal in a fixed-order denoted byπk (for k = 1, . . . ,M !) duringτk fraction

of the time. Note that signals ofM users can be decoded inM ! different orders. Note

also that the time fractions{τk} satisfyτk ≥ 0 and
∑M !

k=1 τk = 1. The throughput region

is characterized by varying the values of{τk}. In τk fraction of the time, instantaneous

service rate of useri in bits/channel use is given by

Rπk(i) = log2

(

1+
SNRizi

1+
∑

πk(j)>πk(i)
SNRjzj

)

. (7.4)

Note from the above rate expression that userj with πk(j) > πk(i) is decoded later than

useri when decoding orderπk is employed and hence useri sees userj’s signal as interfer-

ence. Through successive interference cancelation, the signals of the previously-decoded

users do not interfere. Accordingly, the effective capacity expression is given by

CEi(SNRi) = − 1

θi
loge E

{

e−θi
∑M!

m=1 τmRπm(i)

}

. (7.5)
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Superposition Coding with Variable Decoding Order (SC-VDO)

In this method, users again transmit simultaneously. However, differently from the previous

scheme in which the decoding is fixed in each fraction of time,we now consider varying

the decoding order depending on the channel states or more specifically channel fading

magnitude-squaresz = [z1, ..., zM ] ∈ R
M
+ . Assume that the space of fading powersR

M
+ is

partitioned intoM ! regions denoted by{Γk}M !
k=1. If z ∈ Γk, the decoding orderπk is used

at the receiver. For a given partition, the effective capacity expression of theith user can

now be expressed as

CEi(SNRi) = − 1

θi
loge E

{

e−θi
∑M!

k=1Rπk(i)
1{z∈Γk}

}

(7.6)

where1{·} is the indicator function, andRπk(i) is given in (7.4). Since determining the op-

timal partition of the fading state space is in general a difficult task, we consider suboptimal

strategies in order to demonstrate the possible improvements of adopting variable decoding

order. In particular, one strategy is

λπ(1)
SNRπ(1)zπ(1)

≤ λπ(2)
SNRπ(2)zπ(2)

≤ ... ≤ λπ(M)

SNRπ(M)zπ(M)

(7.7)

whose performance was shown in [60] to be close to that of the optimal one, which max-

imizes the weighted sum-throughput in the special case of two users and constant arrival

rates.

7.1.3 Numerical Results

While the analysis above is general, we in this section provide numerical results considering

the case of two users, i.e.,M = 2, and assuming a symmetric setting in whichSNR1 =

SNR2 = SNR and θ1 = θ2 = θ. The channel fading magnitude-squaresz1 and z2 are

exponentially distributed with arbitrary correlationρ. Also, for discrete Markov sources,
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Fig. 7.1: Throughput regions for discrete Markov sources when θ = 1, SNR = 10 and
ρ = 0.

we setp11 = 1 − q andp22 = q. In all figures, we plot the regions of average arrival rates

(or equivalently the throughput regions) achieved by TDMA,SC-FDO and SC-VDO.

In Figure 7.1, we plot the throughput regions forp22 = q = 0.5 andq = 0.3 when

the arrivals are modeled as a discrete Markov process and we haveθ = 1, SNR = 10, and

ρ = 0. For these parameter values, we notice that the SC-VDO usingthe strategy in (7.7)

provides the largest throughput region, demonstrating thebenefits of variable-decoding

order. Interestingly, sum-rate achieved by TDMA exceeds that of SC-FDO. In this figure,

we also observe the impact of burstiness on rate regions. When p22 = q, which is the

probability for ON state, has a lower value, data arrivals ofgiven rater occur less frequently

and hence the source is more bursty. It is clearly seen that increased source burstiness

reduces the throughput regions of all strategies in a similar fashion.

In Figs. 7.2 and 7.3, we plot the throughput regions again considering discrete Markov

arrivals. In Fig. 7.2, we observe that increasingθ from 0.1 to 1 (or equivalently imposing

more stringent QoS constraints) reduces the throughput regions. We also notice that while

TDMA results in the smallest throughput region for less strict QoS constraints (i.e., when

θ = 0.1), TDMA sum rate exceeds that of SC-FDO whenθ is increased to1. Hence, buffer

constraints have significant impact on the performance of different communication strate-
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Fig. 7.2: Throughput regions for discrete Markov sources whenq = 0.5, SNR = 10 and
ρ = 0.

gies. In Fig. 7.3, we see that increasing SNR expectedly improves the throughput regions.

Surprisingly, TDMA sum-rate becomes the largest at SNR= 30, which is in stark contrast

to the results in the absence of buffer constraints in which TDMA is always suboptimal

with respect to superposition transmissions.

In Fig. 7.4, we consider Markov fluid arrivals. Fading correlation isρ = 0.1. We

demonstrate the effect of different values of the transition ratesα andβ on the throughput

region. Havingα small andβ large (withα+β fixed) results in a smaller probability for the

ON state, representing a more bursty source. Again, as in Fig. 7.1, we note that increased

burstiness hurts the throughput.

7.2 Power Control in Fading Broadcast Channels with

Random Arrivals and QoS Constraints

7.2.1 Channel Model

We consider a fading broadcast channel model with one commontransmitter andM re-

ceivers or users as depicted in Figure 7.5. The transmitter experiencesM data flows gener-
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Fig. 7.3: Throughput regions for discrete Markov sources when q = 0.5, θ = 0.7 and
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ated by Markovian sources. Each flow is intended for a different user and is buffered before

transmission in a separate queue. In the fading broadcast channel, the channel input-output

relation between the transmitter and theith user can be expressed as

yi = hix+ ni for i = 1, ...,M (7.8)

wherex is the transmitted signal andyi is the received signal at theith receiver. The trans-

mitter operates under an average power constraint ofP . Hence, the average transmitted

signal energy isE{|x|2} = P
B

= E whereB denotes the system bandwidth and it is as-

sumed that the symbol rate isB complex symbols/s. Moreover,ni denotes the zero-mean,

circularly-symmetric, complex Gaussian background noiseat theith receiver with variance

E{|ni|2} = N0i. Hence, the signal-to-noise ratio (SNR), defined with respect to the noise

level of the first receiver, is

SNR=
E{|x|2}
E{|n|2} =

P

BN01
=

E
N0

(7.9)

where weN01 = N0.
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Fig. 7.5: Fading broadcast channel with random arrivals.

Furthermore, in (7.8),hi denotes the fading coefficient in the channel between the trans-

mitter and receiveri. While fading coefficients can have arbitrary distributions with finite

energies, we assume that block-fading is experienced. Hence, the realizations of the fading

coefficients stay fixed for a block of symbols and change independently for the next block.

Finally, we assume that power control is employed at the transmitter. Hence, the in-

stantaneous power transmitted to each user is a function of the current fading statez =

(z1, . . . , zM ) wherezi = |hi|2 denotes the fading power. We can express the instantaneous

transmit power to useri asPi(z) and denote the instantaneous transmitted SNR level to
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useri as

µi(z) =
Pi(z)
BN0i

. (7.10)

Now, the average power constraint at the transmitter becomes

E

{

M
∑

i=1

γiµi

}

= SNR (7.11)

whereγi =
N0i

N01
.

7.2.2 Throughput Regions of Fading Broadcast Channels with Power

Control

In this section, we first identify the transmission rates in fading broadcast channels achieved

with superposition coding and successive interference cancellation, and determine the through-

put regions by formulating the maximum average arrival rates that can be supported in the

broadcast channel. Subsequently, we address the optimal power control for the two-user

case, describe the Lagrangian optimality conditions, and provide an optimization algo-

rithm.

Transmission Rates with Superposition Coding and Effective Capacity

In order to find the throughput region, we first determine the effective capacities of the

transmissions to users in the broadcast channel. The instantaneous service rate to useri

achieved by superposition coding at the transmitter and successive interference cancelation

at the receiver is given by [94] [93]

Ri = log2

(

1 +
µi(z)zi

1+
∑M

k=1 µk(z)
γkzi
γi

1{γi/zi > γkzk}

)

(7.12)
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where1{·} is the indicator function. Now, using (2.8) we can express the effective capacity

of the transmission to theith user as

CE(θi) = − 1

θi
loge E

{

e−θiRi
}

i = 1, ...,M. (7.13)

Maximum Average Arrival Rates under QoS Constraints

In this section, we formulate the maximum average arrival rates of Markovian sources

that can be supported by transmissions over the fading broadcast channel under statistical

queueing constraints. Specifically, we consider two-stateMarkov arrival models in which

the arrival rates arer and0 in the ON and OFF states, respectively. Stationary distribution

of ON state is denoted asPON. Therefore, the average arrival rate of useri is simply

ravgi = P i
ONri. (7.14)

Next, we seek to determine the maximum average arrival rater∗avgi that can be supported

while satisfying the statistical QoS limitations given in the form in (2.1). As shown in

[8, Theorem 2.1], if the effective bandwidth of the arrival process is equal to the effective

capacity of the service process, i.e.,

ai(θi, ri) = CEi(θi), (7.15)

then, (2.1) is satisfied, i.e., buffer violation probability decays exponentially fast with rate

controlled by the QoS exponentθi. Hence, the solution of (7.15) provides the maximum ar-

rival rater∗i (θi) of the data flow intended for useri, which can be supported in the broadcast

channel for the given QoS exponentθi. Then, the maximum average arrival rate is

r∗avgi(θi) = r∗i (θi)P
i
ON. (7.16)
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We adopt this maximum arrival rate as our throughput metric since average arrival rate is

equal to the average departure rate when the queue is in steady state [8]. We first show that

the throughput is concave in eachµi. In [18, Lemma 1], it is stated that effective capacity

is a concave function ofµ whereµ = {µ1, µ2, . . . , µM} represents the vector composed of

the power allocation policies. Reference [11] shows that effective bandwidth of the source

is strictly monotonically increasing and is also convex in source arrival rates. Therefore,

the inverse function of the effective bandwidtha∗−1 (CE(θ)) is a nondecreasing concave

function of the effective capacity, which is concave inµ. Using the concavity properties

of the composition of functions [31], we realize that the maximum average arrival rate

r∗avg(θ) = PON a
∗−1 (CE(θ)) is concave.

With this concavity property, we present the optimal power control problem as the fol-

lowing convex optimization problem in which the weighted sum of average arrival rates is

maximized over all power allocation policiesµ satisfying the average sum power constraint

at the transmitter:

max

M
∑

i=1

λir
∗
avgi(θi), (7.17)

subject toE

{

M
∑

i=1

γiµi

}

= SNR (7.18)

where{λi} are the weights satisfying
∑M

i=1 λi = 1.

Optimal Power Control in the Two-User Case

For the broadcast channel with two users, there are two different decoding orders. Ac-

cording to the rate expression in (7.12), the user with the better channel can decode the

information of the other user and cancel the interference. Given the ratio of the noise

powers asγ = N02

N01
, we define two regions for the decoding orders. When the channel

conditions are such thatz ∈ Γ = {z : γz1 > z2}, first user can decode and eliminate the

message intended for the second user. Whenz ∈ Γc = {z : γz1 < z2}, first user decodes
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its message in the presence of the interference from the signal intended for the second user.

Hence the instantaneous service rates of both users are given by

R1 =











log2(1 + µ1(z)z1) z ∈ Γ

log2(1 +
µ1(z)z1

1+γµ2(z)z1
) z ∈ Γc

, (7.19)

R2 =











log2(1 +
µ2(z)z2

1+µ1(z)z2/γ
) z ∈ Γ

log2(1 + µ2(z)z2) z ∈ Γc
. (7.20)

For the case of two users, the Lagrangian of the convex optimization problem in (7.17)-

(7.18) is given by

L(µ1, µ2, κ)= λ1r
∗
avg1(θ1)+λ2r

∗
avg2(θ2)− κ(E {µ1+γµ2} − SNR) (7.21)

whereκ is the Lagrange multiplier.

Next, we determine the optimality conditions. By taking thederivative of the La-

grangian with respect toµ1 andµ2 in regionsΓ andΓc, we obtain the optimality conditions

given in (7.22)–(7.25), where̺i =
θi

loge 2
.

λ1
ψ1 loge 2

(1 + µ1z1)
−̺1−1 z1

− λ2
ψ2 loge 2

(

1 +
µ2(z)z2

1 + µ1(z)z2/γ

)−η2−1
µ2z2

2/γ

(1 + µ1(z)z2/γ)2
− κ = 0 ∀z ∈ Z (7.22)

λ2
ψ2 loge 2

(

1 +
µ2(z)z2

1 + µ1(z)z2/γ

)−̺2−1
z2

1 + µ1(z)z2/γ
− γκ = 0 ∀z ∈ Z (7.23)

λ1
ψ1 loge 2

(

1 +
µ1z1

1 + µ2z1γ

)−̺1−1
z1

1 + µ2z1γ
− κ = 0 ∀z ∈ Zc (7.24)
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− λ1
ψ1 loge 2

(

1 +
µ1z1

1 + µ2z1γ

)−̺1−1
µ1z1

2γ

(1 + µ2z1γ)2

+
λ2

ψ2 loge 2
(1 + µ2(z)z2)

−̺2−1 z2 − γκ = 0 ∀z ∈ Zc (7.25)

These are the conditions that need to be satisfied by the optimal power control policy. In

these optimality conditions,ψ1 andψ2 vary according to the source type and characteristics.

Assuminggi(θi) = E
{

e−θiRi
}

, expressions forψi for different arrival models (including

the Markov arrivals) are given by the following:

• Constant Arrival:

ψi = gi(θi). (7.26)

• Discrete Memoryless Source:pi22 = qi andpi11 = 1− qi.

ψi =
gi(θi)−(1−qi)[gi(θi)]2

qi
(7.27)

• Discrete Markov Source:

ψi =
1/PONi

1
gi(θi)−pi11[gi(θi)]

2 +
1−pi11−p

i
22

(1−pi11−p
i
22)gi(θi)+p

i
22

. (7.28)

• Markov Fluid Source:

ψi =
gi(θi) [loge(gi(θi))− α]2/PONi

[loge(gi(θi))− α] [loge(gi(θi))− α− β]− β
. (7.29)

Now, for some special cases, we can obtain the following relationships for the optimal

power control policies utilizing the optimality conditions. Whenz ∈ Γ, using (7.23), we
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obtain the optimal power control policy for the second user as

µ2 =







1

ν
1

̺2+1

2

(

z2
1+µ1z2/γ

)

̺2
̺2+1

− 1 + µ1z2/γ

z2







+

(7.30)

whereν2 = γκψ2 loge 2
λ2

and [c]+= max (c, 0). Hence,µ2 = 0 whenµ1 > γ
(

1
ν2

− 1
z2

)

. From

(7.22), we can deriveµ1 whenµ2 = 0 as

µ1 =





1

ν
1

̺1+1

1 z1
̺1

̺1+1

− 1

z1





+

(7.31)

whereν1 = κψ1 loge 2
λ1

. If µ2 6= 0, then the(µ1, µ2) pair can be found by solving (7.22) and (7.23).

Therefore,µ1 is the positive solution to the equation below

z1
ν1

(1 + µ1z1)
−̺1−1 −

(

z2
ν2(1 + µ1z2/γ)

)
1

̺2+1

= 0. (7.32)

Similar method can be applied to power control policies whenz ∈ Γc. Therefore, by

simplifying the equations in (7.24) and (7.25) we obtain

z2
ν2
(1 + µ2z2)

−̺2−1 −
(

z1
ν2(1 + µ2z1γ)

)
1

̺1+1

= 0. (7.33)

As we do not have any closed-form expressions for the optimalpower control policies

in general, we resort to numerical computations to find optimal strategies. We propose the

algorithm in Table 1 to determine the optimal power control policies. This algorithm is

similar to that in [95] (in which only constant-rate arrivals are addressed) with the major

difference that we employ more general formulations forψ1 andψ2 in order to take into

account the random arrivals and Markov properties. Essentially, in this algorithm there

are two loops which we search for theψ1, ψ2 (outer loop) andκ (inner loop). First we

initialize these values, and until we satisfy the average power constraint, we updateκ.
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Fig. 7.6: Maximum average arrival rate regions(r∗avg1, r
∗
avg2) of the two users whenθ = 2, SNR=

0.1, γ = 1 and source has discrete Markov property whenPON = 0.5.

After satisfying average power constraint, we update theψ1 andψ2 values and return to

inner loop again to find the fitting value ofκ. We continue the algorithm until the change

in ψ1 andψ2 values is small and below a threshold.

In the application of the algorithm, we have the used subgradient method for updating

ψ1, ψ2 andκ in order to have convergence. Gaussian quadrature methods are employed in

the computation of the integrals.

7.2.3 Numerical Results and Discussion

For the numerical analysis, we assume thatz1 andz2 are independent exponential random

variables with unit mean. Also, we assumeγ = 1, SNR = 0.1 andθ = 2 unless stated

otherwise. Discrete Markov sources are considered in Figs.7.6 and 7.7, and Markov fluid

sources are addressed in Figs. 7.8 and 7.9.

Furthermore, we consider three different strategies, namely superposition coding with

optimal power control (SC with PC), time-division multiplexing with power control (TDM

with PC), and superposition coding without power control (SC without PC). SC with PC is

the case we have concentrated and described in the chapter. In the relatively simple strategy
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Algorithm 2 The optimal power control algorithm that maximizes the weighted sum of
throughput expressions

1: Givenλ1, λ2, Initializeψ1, ψ2;
2: Initialize κ
3: Determineν1 =

κψ1 loge 2
λ1

, ν2 =
γκψ2 loge 2

λ2
;

4: if γz1 > z2 then
5: if z1 > ν1 then

6: µ1 =

[

1

ν
1

̺1+1
1 z1

̺1
̺1+1

− 1
z1

]+

;

7: if µ1 > γ( 1
ν2

− 1
z2
) or z2 < ν2 then

8: µ2 = 0;
9: else

10: if (7.32) returns positive solutionthen
11: Computeµ1, µ2 from (7.22) and (7.23);
12: end if
13: end if
14: else

15: µ1 = 0, µ2 =

[

1

ν
1

̺2+1
2 z2

̺2
̺2+1

− 1
z2

]+

;

16: end if
17: else
18: if z2 > ν2 then

19: µ2 =

[

1

ν
1

̺2+1
2 z2

̺2
̺2+1

− 1
z2

]+

;

20: if µ2 >
1
γ
( 1
ν1

− 1
z1
) or z1 < ν1 then

21: µ1 = 0;
22: else
23: if (7.33) returns positive solutionthen
24: Computeµ1, µ2 from (7.24) and (7.25);
25: end if
26: end if
27: else

28: µ2 = 0, µ1 =

[

1

ν
1

̺1+1
1 z1

̺1
̺1+1

− 1
z1

]+

;

29: end if
30: end if
31: if µ1 andµ2 do not satisfy the average power constraintthen
32: Updateκ and return to Step3;
33: end if
34: Updateψ1 andψ2 usingµ1 andµ2;
35: if new values ofψ1 andψ2 do not agree with the previous valuesthen
36: Return to Step3;
37: end if
38: Declareµ1 andµ2 as the optimal power allocation policies.
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of TDM with PC, transmitter sends the data to one user at a timeusing time-sharing and

employ the optimal power control policies for the single-user case given by

µi =





1

ν
1

̺i+1

i zi
̺i

̺i+1

− 1

zi





+

for i = 1, 2. (7.34)

In SC without PC, transmitter sends the data to both users simultaneously but no power

adaptation is considered. Hence, transmission occurs at fixed power levels.

In Fig. 7.6 we plot the throughput region (or equivalently the region of maximum

arrival rates) in the two-users case for two different ON-state probabilities. WhenPON = 1,

source arrival rate is constant. On the other hand, discreteMarkov arrivals are experienced

whenPON = 0.5. SC with PC provides the largest throughput region out of allthree

strategies. Each point on the boundary of this region is obtained by varying the weights

{λ} in the optimization problem in (7.17) and obtaining the optimal power control policy

for each case. TDM with PC leads to the second largest throughput region. However,

transmission with constant power gives a much smaller rate region for the same parameters,

demonstrating the effectiveness of power control. In this figure, we also observe the impact

of the source burstiness. We see that when the source becomesbursty withPON = 0.5, the

rate region shrinks for all strategies compared to the case of constant arrivals, i.e., when

PON = 1.

For the same six scenarios, we plot the sum rate as a function ofSNR in Fig. 7.7. Sim-

ilar conclusions as in the previous figure apply. However, asSNR increases, we notice that

the gap in performance between SC with PC and TDM with PC diminishes. Hence, TDM

becomes an effective strategy at low SNR levels. Moreover, for low SNR values, transmis-

sion with constant power affects the performance more significantly than having a bursty

source.

In Fig. 7.8, we plot the throughput region when the data arrivals to the transmitter

are from Markov fluid sources. Burstiness in Markov fluid sources can be described by
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0.1, γ = 1 and source has Markov fluid property.
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the ON-state probabilityPON and the parameters of the generating matrix,α andβ, which

describe the rate of change between states. When these parameters have higher values,

states fluctuate more frequently. In the figure, we use two different source models with the

samePON = 0.5. Whenαi + βi = 100, rate regions are larger. In this case, switching

between ON and OFF states happens relatively fast. Hence, long-duration data flows to

the buffers are often avoided. For sources withαi + βi = 2, ON-state can persist with

higher probability because probability of switching from one state to another is small. This

can lead to large bursts of data, which is detrimental in the presence of buffer constraints.

Hence, we see that the rate region shrinks. Similarly as in Fig. 7.6, we observe that SC

with PC provides the largest rate region while SC without PC gives the worst rate region.

In Fig. 7.9, we use the same scenarios as in Fig. 7.8, but we plot the sum rate vs.

SNR curves. Again, we can immediately draw similar conclusions. Clearly, decreasing the

values ofα andβ hurts the system by reducing the throughput. The SC without PC strategy

leads to the smallest sum-throughput out of all strategies.However, asSNR increases, the

performance gap between TDMA with PC and SC without PC tends to diminish.
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Fig. 7.10: The system model.

7.3 Energy Efficiency in Fading Interference Channels

under QoS Constraints

7.3.1 Channel Model

As depicted in Figure 7.10, we consider a two-user flat-fading interference channel model

in which each transmitter, operating under buffer constraints, sends information to its in-

tended receiver while causing interference to the other through the cross-links. In this

interference channel, the input-output relationships canbe expressed as

y1 = h11x1 + h21x2 + n1

y2 = h12x1 + h22x2 + n2

(7.35)

wherexi is the channel input from theith transmitter andyj is the received signal at thej th

receiver, fori, j ∈ {1, 2}. Average transmitted signal energy isE{|xi|2} = Ei. Moreover,

ni denotes the zero-mean, circularly-symmetric, complex Gaussian noise with variance

E{|ni|2} = N0. Hence, theith transmitter’s signal-to-noise ratio (SNR) is

SNRi =
E{|xi|2}
E{|ni|2}

=
Ei
N0

i = 1, 2. (7.36)

We denote the ratio of the SNRs of first and second users asγ = SNR2

SNR1
.
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Finally, in (7.35),hij denotes the random fading coefficient of the channel betweenthe

ith transmitter andj th receiver, andzij = |hij|2 is the magnitude-square of the fading co-

efficient. While fading coefficients can have arbitrary distributions with finite energies, we

assume that block-fading is experienced. Hence, the realizations of the fading coefficients

stay fixed for a block of symbols and change independently forthe next block.

7.3.2 Energy Efficiency in Fading Interference Channels

In this section, we consider three different strategies forcommunication over interference

channels, namely time-division with power control, treating interference as noise, and si-

multaneous decoding. We investigate the energy efficiency of these schemes by determin-

ing the corresponding minimum energy per bit and wideband slope expressions.

Time Division with Power Control

Time division is a simple strategy in which the transmitterssend their signals in non-

overlapping intervals. Hence, interference is avoided in this case at the cost of reduced

transmission rates. In the two-user model, transmitter 1 sends the dataα fraction of the time

with energyE1/α. Consequently, the remaining(1−α) fraction of the time is dedicated to

transmitter 2. The following result provides a characterization of the energy efficiency in

the low-SNR regime.

Proposition 7.3.1.For time division with power control, the minimum energy perbit and

wideband slope expressions of both pairs of users as a function of the fading statistics and

the QoS exponentθ are given, respectively, by

Eb
N0 min,1

=
loge 2

E {z11}
and

Eb
N0 min,2

=
loge 2

E {z22}
, (7.37)
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S0,1 =
2(E {z11})2

θ1
loge 2

var(z11) +
1
α
E {z211}

and (7.38)

S0,2 =
2(E {z22})2

θ2
loge 2

var(z22) + 1
(1−α)E {z222}

. (7.39)

whereα is the fraction of time allocated to transmitter 1, and var(x) denotes the variance

of the random variablex.

Proof: When time division is employed for transmission, the instantaneous service rates

of the two transmitters in bits/channel use are

R1 = α log2

(

1 +
SNR1z11
α

)

, and (7.40)

R2 = (1− α) log2

(

1 +
SNR1z22
1− α

)

, (7.41)

respectively. With these service rates, the effective capacity expressions, i.e., the arrival

rates that can be supported by the two transmitters, become

CE1(SNR1) = − 1

θ1
loge E

{

e
−

θ1α

loge 2
loge

(

1+
SNR1z11

α

)

}

, (7.42)

CE2(SNR2) = − 1

θ2
loge E

{

e
−

θ2(1−α)
loge 2

loge

(

1+
SNR2z22

1−α

)

}

. (7.43)

Now, the first and second derivatives of the effective capacities atSNR1 = 0 andSNR2 = 0,

respectively, are

ĊE1(0) =
E {z11}
loge 2

andĊE2(0) =
E {z22}
loge 2

(7.44)

C̈E1(0) = −
[

θ1
(loge 2)

2
var(z11) +

1

α loge 2
E
{

z211
}

]

(7.45)
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C̈E2(0) = −
[

θ2
(loge 2)

2
var(z22) +

1

(1− α) loge 2
E
{

z222
}

]

. (7.46)

Inserting the expressions in (7.44), (7.45), and (7.46) into 3.29 and 3.31, we obtain the

minimum bit energy and wideband slope expressions. �

Remark 14. It is seen that the minimum bit energies are functions of onlythe mean of the

fading magnitude-squares of the direct links and are independent of the QoS exponentθ

and time-sharing parameterα, which generally affect the wideband slopes. For instance,

the wideband slopes diminish with increasingly more strictQoS constraints or equivalently

larger values of the QoS exponentθ.

Treating Interference as Noise

In this strategy, transmitters simultaneously send the data and the receivers regard the in-

terference as noise.

Proposition 7.3.2. If interference is treated as noise, the minimum energy per bit and

wideband slope expressions as a function of the fading statisics and the QoS exponentθ

are given, respectively, by

Eb
N0 min,1

=
loge 2

E {z11}
and

Eb
N0 min,2

=
loge 2

E {z22}
, (7.47)

S0,1 =
2(E {z11})2

θ1
loge 2

var(z11) + E {z211 + 2γz11z21}
and (7.48)

S0,2 =
2(E {z22})2

θ2
loge 2

var(z22) + E

{

z222 +
2
γ
z22z12

} (7.49)

whereγ = SNR2
SNR1

is the ratio that is kept fixed as bothSNR1 andSNR2 approach zero.
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Proof: In this case, the maximum instantaneous service rates in bits/channel use are

R1 = log2

(

1 +
SNR1z11

1 + SNR2z21

)

, and (7.50)

R2 = log2

(

1 +
SNR2z22

1 + SNR1z12

)

. (7.51)

Accordingly, the effective capacity expressions are givenby

CE1(SNR1) = − 1

θ1
loge E

{

e
−

θ1
loge 2

loge

(

1+
SNR1z11

1+SNR2z21

)

}

(7.52)

CE2(SNR2) = − 1

θ2
loge E

{

e
−

θ2
loge 2

loge

(

1+
SNR2z22

1+SNR1z12

)

}

. (7.53)

First and second derivatives of the effective capacities atSNR1 = 0 andSNR2 = 0, respec-

tively, can easily be determined as

ĊE1(0) =
E {z11}
loge 2

andĊE2(0) =
E {z22}
loge 2

(7.54)

C̈E1(0) = −
[

θ1
(loge 2)

2
var(z11) +

1

loge 2
E
{

z211 + 2γz11z21
}

]

(7.55)

C̈E2(0) = −
[

θ2
(loge 2)

2
var(z22) +

1

loge 2
E

{

z222 +
2

γ
z22z12

}]

. (7.56)

Inserting the above derivative expressions into 3.29 and 3.31, we obtain the desired result.

�

Remark 15. We immediately notice that the minimum bit energy expressions are the same

as in time division strategy. Hence, asymptotically as SNRsvanish, similar energy effi-

ciency performances are achieved by both methods. On the other hand, wideband slopes
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are evidently different, leading to the conclusion that different levels of energy efficiency

can be attained when SNRs are small but nonzero. Note also that we now expectedly have

wideband slopes depending on the interference strength throughz12 andz21.

Simultaneous Decoding

Final method we consider is simultaneous decoding. In this scheme, transmitters again

send the information simultaneously but as a key differencefrom the previous subsection,

receivers attempt to decode both messages. Therefore, computational complexity of de-

coding is higher at the receivers.

Before presenting the result, we first define the region:

Γ = {z11, z21, z12, z22 ≥ 0 : z11 + γz21 < z12 + γz22} . (7.57)

Proposition 7.3.3.For simultaneous decoding, the minimum energy per bit and wideband

slope expressions as a function of the fading statistics andthe QoS exponentθ are given,

respectively, by

Eb
N0 min,i

=
loge 2

E {ġi(0)}
for i = 1, 2 and (7.58)

S0,i =
2(E {ġi(0)})2

θi
loge 2

var(ġi(0)) + E {g̈i(0)}
for i = 1, 2 (7.59)

where

ġ1(0) =











α1z11 + (1− α1) [(z11 + γz21 − γz22)]
+ if Z ∈ Γ

α2z11 + (1− α2)z12 if Z ∈ Γc
(7.60)
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ġ2(0) =











(1− α1)z22 + α1z21 if Z ∈ Γ

(1− α2)z22 + α2

[

(z22 +
z12
γ − z11

γ )
]+

if Z ∈ Γc
(7.61)

g̈1(0) =











α1z
2
11 + (1− α1)

[

(z11 + γz21)
2 − (γz22)

2
]+

if Z ∈ Γ

α2z
2
11 + (1− α2)

[

(z12 + γz22)
2 − (γz22)

2
]

if Z ∈ Γc
(7.62)

g̈2(0) =











(1− α1)(z22)
2 + α1

[

(z21 +
z11
γ )2 − (z11γ )2

]

if Z ∈ Γ

(1− α2)(z22)
2 + α2

[

(z12γ + z22)
2 − (z11γ )2

]+
if Z ∈ Γc

. (7.63)

Above,α1 ∈ [0, 1] andα2 ∈ [0, 1] are time-sharing parameters between different oper-

ating points on the achievable instantaneous rate region ofsimultaneous decoding, andZ

represents the collection{z11, z21, z12, z22}.

Proof: To derive the effective capacity formulas, we first need to identify the instan-

taneous service rates achieved with simultaneous decoding. For given channel gains, the

instantaneous rate region achieved with simultaneous decoding is [96]

R1 < log2(1 + SNR1z11)

R2 < log2(1 + SNR2z22)

R1 +R2 < min {log2(1 + SNR1z11 + SNR2z21) ,

log2(1 + SNR1z12 + SNR2z22)} .

(7.64)

Therefore, transmission rates have different regions depending on which term is the mini-

mum in the sum rate constraint in (7.64) or equivalently whetherZ = {z11, z21, z12, z22} is

in regionΓ or not. Transmission rates on the boundary of this region canbe characterized

as in (7.65) and (7.66) on the next page. In these expressions, α1 ∈ [0, 1] andα2 ∈ [0, 1]

are the time sharing parameters (for whenZ ∈ Γ andZ ∈ Γc, respectively) between differ-

ent operating points on the boundary of the achievable rate region. Using these maximum
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If Z ∈ Γ →







R1 = α1 log2(1 + SNR1z11) + (1− α1)
[

log2

(

1+SNR1z11+SNR2z21
1+SNR2z22

)]+

R2 = α1 log2

(

1 + SNR2z21
1+SNR1z11

)

+ (1− α1) log2(1 + SNR2z22)







(7.65)

If Z ∈ Γc →







R1 = α2 log2(1 + SNR1z11) + (1− α2) log2

(

1 + SNR1z12
1+SNR2z22

)

R2 = α2

[

log2

(

1+SNR2z22+SNR1z12
1+SNR1z11

)]+

+ (1− α2) log2(1 + SNR2z22)







(7.66)

service rate expressions, effective capacity formulas canbe written as

CEi(SNRi) = − 1

θi
loge E

{

e−θiRi
}

for i = 1, 2. (7.67)

We definegi(SNRi) = Ri loge 2. First and second derivative of the effective capacity at

SNR1 = 0 andSNR2 = 0, respectively, are given by

ĊEi(0) =E

{

ġi(0)

loge 2

}

for i = 1, 2 (7.68)

C̈Ei(0) =− E

{

θi

(

ġi(0)

loge 2

)2

+
g̈i(0)

loge 2

}

for i = 1, 2 (7.69)

where the derivativeṡgi(0) and g̈i(0) are defined in the Proposition. Similarly as before,

inserting these derivative expressions into 3.29 and 3.31,we have the result. �

Remark 16. We note that the minimum bit energy expressions are different from those

achieved with time division and treating interference as noise. The comparison of minimum

bit energies of different strategies is provided through numerical results in the next section.

In general, we observe that improved energy efficiency is experienced in strong interference

channels when simultaneous decoding methods are employed at the receivers.
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7.3.3 Numerical Results and Discussion

In this section, we provide numerical results obtained through Monte Carlo simulations. We

set the SNR ratio asγ = 1 and assume that the QoS exponents are equal, i.e.,θ1 = θ2. All

channel coefficients are assumed to be independent. Moreover, channel fading coefficients

of the direct links are identically distributed. Fading coefficients of the cross links are also

pairwise identically distributed.

Time Division with Power Control vs Treating Interference as Noise

We first compare the energy efficiencies of time division multiplexing and treating inter-

ference as noise. Since both achieve the same minimum energyper bit, we investigate

the wideband slope regions in Figs. 7.11 and 7.12. In these figures, we assume that

E{z211} = E{z222} = 2 andE{z11} = E{z22} = 1. In Fig. 7.11, we haveθ1 = θ2 = 1. In

this figure, curved line represents the slope region of time division multiplexing. Rectangu-

lar regions are the slope regions of treating interference as noise. For strong, medium, and

weak interference scenarios, we setE{z11z21} = E{z22z12} equal to 4, 2, and 1, respec-

tively. In the figure, we notice that the slope region of treating interference as noise grows

expectedly as the interference weakens, and this strategy can attain points outside the slope

region of time division multiplexing when the interferenceis weak. Hence, both users can

achieve relatively high wideband slopes and operate more energy efficiently.

The effect of buffer constraints is demonstrated in Fig. 7.12. In Figs. 7.12(a) and

7.12(b), strong interference is considered, and hence treating interference as noise performs

worse. In Fig. 7.12(a), we haveθ1 = θ2 = 0.1, which is increased to 10 in Fig. 7.12(b).

Hence, in the latter case, we have more strict QoS limitations. In such a scenario, we notice

in Fig. 7.12(b) that both slope regions become smaller and also approach each other. Hence,

under strict QoS constraints, energy efficiency degrades, and time division and treating

interference as noise start providing comparable performances. Similar observations are

noted in Figs. 7.12(c) and 7.12(d), in which weak interference is considered.
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Fig. 7.11:S0,1 vs.S0,2 for different interference levels for time division with power control
(curved line) and treating interference as noise (rectangular regions).θ1 = θ2 = 1.

Energy Efficiency of Simultaneous Decoding

Finally, we address the energy efficiency of simultaneous decoding. Our focus is the min-

imum energy per bit, which is possibly different from those attained by time division and

treating interference as noise. In Figs. 7.13 and 7.14, we plot the minimum energy per bit

achieved by transmitter 1 as a function of the time sharing parametersα1 andα2. The flat

planes represent the bit energy levels achieved by time division multiplexing and treating

interference as noise. In Fig. 7.13, in which weak interference is considered, we observe

that simultaneous decoding requires higher minimum bit energies and is therefore not fa-

vorable. On the other hand, we note in Fig. 7.14, where interference is strong, that simul-

taneous decoding can lead to significant gains in minimum energy per bit requirements.
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Fig. 7.12:S0,1 vs. S0,2 for different QoS exponents and different interference levels. for
time division with power control (curved line) and treatinginterference as noise (rectangu-
lar regions).

7.4 Energy Efficiency in Fading Relay Channels under

Secrecy and QoS Constraints

7.4.1 Channel Model

Fig. 7.15 depicts the two-hop communication link we consider in this section. In this

model, destinationD gets information from sourceSwith the help of an intermediate relay

nodeR, while the eavesdropperE listens both transmissions. Due to half-duplex commu-

nication, eavesdropper listens either the source or relay at any given time.
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Fig. 7.13: Minimum energy per bit achieved by transmitter 1 vs. time-sharing parameters
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Fig. 7.15: Channel Model



169

When the source is transmitting, the channel input-output relationships are given as

yr = h11xs + nr, (7.70)

ye1 = h12xs + ne1. (7.71)

Above,xs denotes the input signal from the source.yr is the received signal at the relay and

ye1 is the received signal at the eavesdropper.h11 andh12 denote the fading coefficients in

the channels between the source and relay and the source and eavesdropper, respectively.

nr andne1 represent the zero-mean, circularly-symmetric, complex Gaussian noise samples

with variancesE{|nr|2} = N0 andE{|ne1|2} = N0e.

We consider DF relaying. Therefore, the relay decodes the message based on the re-

ceived signalyr and re-encodes and forwards it to the destination in the subsequent time

interval. The input-output relationships are now given as

yd = h21xr + nd, (7.72)

ye2 = h22xr + ne2. (7.73)

Above,xr denotes the re-encoded input signal from the relay.yd is the received signal at

the destination andye2 is the received signal at the eavesdropper.h11 andh12 denote the

fading coefficients in the corresponding channels. Similarly as above,nd andne2 are again

the zero-mean, circularly-symmetric, complex Gaussian noise components with variances

E{|nd|2} = N0 andE{|ne2|2} = N0e. We assume that the average energies of the trans-

mitted signals areE{|xs|2} = E{|xr|2} = E . Hence, the signal-to-noise ratio between

legitimate users is defined as

SNR=
E{|xs|2}
E{|nr|2}

=
E{|xr|2}
E{|nd|2}

=
E
N0

. (7.74)

Due to possibly different noise power levels at the legitimate users and eavesdropper, the
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signal-to-noise ratio at the eavesdropper is defined asSNRe =
N0

N0e
SNR. For simplicity, we

denoteγ = N0

N0e
.

7.4.2 Preliminaries

Effective Capacity

In the half-duplex system,τ1 = τ ∈ (0, 1) portion of the time source transmits, while

τ2 = 1 − τ portion of the time relay transmits. Therefore, the effective capacities of the

source and relay are given by

RE(SNR, θi) = − 1

θi
loge E{e−θiτiλi} for i = 1, 2. (7.75)

If the channel input sequence is an independent and identically distributed (i.i.d.) se-

quence of Gaussian random variables with zero mean and varianceE , then the instanta-

neous service rate is

λi = log2(1 + SNRzi1) for i = 1, 2. (7.76)

On the other hand, in the presence of an eavesdropper, the instantaneous secrecy rate is

the service process (with which secrecy can be achieved) andis given by

λi = [log2(1 + SNRzi1)− log2(1 + γSNRzi2)]
+ for i = 1, 2. (7.77)

Remark 17. We assume thatS – RandR – D links are secured individually by transmitting

at the rates given in (7.77). Note that as shown in [103], via independent randomization at

the source and relay, securing each hop from the eavesdropper guarantees secrecy of the

overall communication from the source to destination.
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Energy Efficiency Metrics

In this section, we employ energy per bit as the performance metric of energy efficiency.

In our setup, we define energy per bit as

Eb
N0

=
2E/N0

RE(θ1, θ2, SNR)
=

2SNR

RE(θ1, θ2, SNR)
(7.78)

whereRE(θ1, θ2, SNR) is the throughput of a half-duplex relay channel. Note that we have

2E in the numerator since we take into account the energy consumption by both the source

transmitter and relay transmitter. In [102], the throughput of the half-duplex fading relay

channel under statistical buffer constraints is characterized as follows:

Case Iθ1 ≥ θ2 : RE(θ1, θ2, SNR) = − 1

θ1
loge E

{

e−θ1τ̃λ1
}

, (7.79)

Case II θ1 < θ2 : RE(θ1, θ2, SNR) = − 1

θ1
loge E

{

e−θ1τ̂λ1
}

, (7.80)

whereτ̃ = min {τ0, τ ∗} andτ̂ = min {τ0, τ ′}. τ0 is given by

τ0 =
E {λ2(SNR)}

E {λ1(SNR)}+ E {λ2(SNR)} . (7.81)

τ ∗ is the solution of the equality

− 1

θ1
loge E

{

e−θ1τ
∗λ1
}

= − 1

θ2
loge E

{

e−θ2(1−τ
∗)λ2
}

. (7.82)

τ ′ is the solution of the equality

− 1

θ1
loge E

{

e−θ1τ
′λ1
}

= − 1

θ1

(

loge E
{

e−θ2(1−τ
′)λ2
}

+ loge E
{

e(θ2−θ1)τ
′λ1
})

. (7.83)

In our analysis, we study the minimum energy per bitEb

N0 min
under QoS constraints,
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which can be obtained from [57]

Eb
N0 min

= lim
SNR→0

2SNR

RE(θ1, θ2, SNR)
=

2

ṘE(θ1, θ2, SNR)
. (7.84)

7.4.3 Energy Efficiency Of Two-Hop Wireless Communication

In this section, we analyze the energy efficiency of a two-hopwireless system using the

minimum energy per bit. We first consider the case in which no secrecy constraints are

imposed. Subsequently, we address the scenario in which information needs to be kept

confidential from an eavesdropper.

No Secrecy Constraints

In this case, the system is a simple two-hop wireless channeland the instantaneous trans-

mission rate for both source and relay is given by (7.76). Next, we determine the minimum

energy per bit for this scenario.

Theorem 7.4.1.Assume thatSNRis the same for bothS – RandR – D links. With block

fading assumption, the minimum energy per bit is given by

Eb
N0 min

=
2 (E {z11}+ E {z21}) loge 2

E {z11}E {z21}
. (7.85)

Proof: Since we have two different throughput expressions according toθ1 andθ2 val-

ues, we determine the minimum energy per bit for bothCase IandCase II.

Whenθ1 ≥ θ2 the throughput expression is given in (7.79). We take the derivative of

the throughput expression with respect toSNR, which is given by

ṘE(θ1, θ2, SNR) =
E

{

e−θ1τ̃λ1(SNR)
[

˙̃τλ1(SNR) + τ̃ λ̇1(SNR)
]}

E {e−θ1τ̃λ1(SNR)} . (7.86)

Note that, ˙̃τ is the first derivative of the time sharing parameter in termsof SNR. When
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SNR→ 0, (7.86) can be simplified to

ṘE(θ1, θ2, 0) = τ̃ (0)E
{

λ̇1(0)
}

. (7.87)

Sinceτ̃ = min {τ0, τ ∗}, we need to determineτ0(SNR) andτ ∗(SNR) asSNR → 0. We can

easily see that

τ0(0) = lim
SNR→0

E {λ2(SNR)}
E {λ1(SNR)}+ E {λ2(SNR)} (7.88)

= lim
SNR→0

E

{

λ̇2(SNR)
}

E

{

λ̇1(SNR)
}

+ E

{

λ̇2(SNR)
} (7.89)

=
E {z21}

E {z11}+ E {z21}
, (7.90)

where (7.89) follows by the application of the L’Hopital’s rule. In order to findτ ∗(0) we

can use the first order approximations of the expressions on both sides of equality in (7.82).

Thus, we obtain the equality below

τ ∗(0)E {z11} = (1− τ ∗(0))E {z21} , (7.91)

from which we find thatτ ∗(0) = τ0(0). We use this result in (7.87), and obtain the first

derivative as

ṘE(θ1, θ2, 0) =
E {z21}

E {z11}+ E {z21}
E {z1} log2 e. (7.92)

Inserting (7.92) into (7.84), we obtain the minimum energy per bit expression in (7.85).

When θ1 < θ2 and SNR → 0, we have a similar first derivative expression for the

throughput as in (7.87):

ṘE(θ1, θ2, 0) = τ̂ (0)E
{

λ̇1(0)
}

. (7.93)

We know that̂τ = min {τ ′, τ0}. By using the first order approximations of the both sides of

the equality in (7.83), we can determineτ ′(0). More specifically, in the limit asSNR→ 0,
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this equality becomes

τ ′(0)E {z11} =
θ2
θ1

(1− τ ′(0))E {z21} −
θ2 − θ1
θ1

τ ′(0)E {z11} , (7.94)

from which we conclude thatτ ′(0) = τ0(0). Therefore, for both cases, first derivative of

the throughput and hence minimum energy per bit are the same. �

Secrecy Constraints

In this case, information needs to be kept confidential. The eavesdropper listens the com-

munication over bothS – R andR – D links. For this case, the minimum energy per bit

expression is determined in the following result.

Theorem 7.4.2.Assume thatSNRis the same for bothS – Rand R – D links. Further

assume that SNR of the eavesdropper isSNRe = γSNR. With block fading assumption, the

minimum energy per bit is given by

Eb
N0 min

=
2
(

E
{

[z11 − γz12]
+}+ E

{

[z21 − γz22]
+}) loge 2

E
{

[z11 − γz12]
+}

E
{

[z21 − γz22]
+} . (7.95)

Proof: We first note that the expressions in (7.87) and (7.93) are applicable in the pres-

ence of secrecy constraints as well. Hence, although the instantaneous rates have changed,

we can easily determine thatτ̃ andτ̂ are still equal toτ0 at zeroSNR. Therefore, considering

(7.89) with the rate expression in (7.77), we obtain

τ̃(0) = τ̂ (0) =
E
{

[z21 − γz22]
+}

E
{

[z11 − γz12]
+}+ E

{

[z21 − γz22]
+} . (7.96)

Combining (7.96) with (7.87) and (7.93) and inserting them into (7.84), we obtain the

minimum energy per bit expression given in Theorem 7.4.2.
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Fig. 7.16: Locations of source (S), eavesdropper (E), relay(R) and destination (D).

7.4.4 Numerical Results and Discussions

In this section, we provide numerical results in which we investigate, in addition to the

minimum energy per bit, throughput vs. energy per bit and distance curves. In the numer-

ical computations, we assume for ease of exposition that thenodes are linearly aligned as

in Fig. 7.16. SNR level is the same in all channels (i.e.,γ = 1). d denotes the distance be-

tween the source and destination,d0 is the distance between the source and relay, andde is

the distance between the source and eavesdropper. Without loss of generality, we setd = 1.

While the analysis is applicable any fading distribution, we consider Rayleigh fading links.

In this setting, by selecting the path-loss exponent as 4, the magnitude squares of the fading

coefficients, which are exponentially distributed, have the following mean values:

• S – R link: E {z11} = 1/d40,

• S – E link: E {z12} = 1/d4e,

• R – D link: E {z21} = 1/(d− d0)
4,

• R – E link: E {z22} = 1/(d0 − de)
4.

Fig. 7.17 plots the maximum arrival rates as a function of energy per bit when there is

no eavesdropper present. We assume that the relay is locatedin the middle of the source

and destination, meaning thatd0 = 0.5d. Our objective in this figure is to compare the

impact of different values of QoS exponents (while assumingθ1 = θ2). As expected, the

minimum energy per bit, which we have seen to be independent of θ in Theorems 7.4.1
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Fig. 7.17: Maximum arrival rateRE(θ1, θ2) vs. energy per bitEb/N0 without eavesdrop-
per.

and 7.4.2, is not altered at different values of QoS exponents. For this case, the minimum

energy per bit is computed as−7.61 dB and we can see all curves intersects at−7.61 dB

when SNR is zero. We also observe thatθ increases and buffer constraints become more

stringent, the requiredEb/N0 increases and hence energy efficiency degrades for any given

nonzero arrival rateRE .

Fig. 7.18 depicts the maximum arrival rates that can be supported while keeping the

data secret from an eavesdropper. We assume that eavesdropper is located between source

and relay at a distance ofde = 0.3d. The relay is again in the middle, i.e.,d0 = 0.5d.

We also assume that channels betweenR – D andR – E to be independent. Therefore,

the correlation coefficient between the fading coefficient of the relay to destination link

and that of the relay to eavesdropper link isρ2 = 0. On the other hand, we assume that

S – R andS – E links can possibly have correlated channel coefficients. Each curve in

Fig. 7.18 is plotted for a different value ofρ1, which denotes the correlation coefficient of

the fading coefficients of source to relay and source to eavesdropper links. We observe

that the minimum energy per bit varies with the correlation coefficient. In particular, when

the correlation coefficient increases, the energy requirement for the same throughput in-



177

6 8 10 12 14 16 18
0

0.005

0.01

0.015

0.02

0.025

E
b
/N

0
(dB)

R
E
(θ

1, θ
2)

 

 
ρ

1
=0

ρ
1
=0.25

ρ
1
=0.5

ρ
1
=0.75

Fig. 7.18: Maximum arrival rateRE(θ1, θ2) vs. energy per bitEb/N0 in the presence of an
eavesdropper whenθ1 = 0.1, θ2 = 0.01.

creases. Thus, correlation hurts the energy efficiency. Thereason behind this phenomenon

is that secrecy rates diminish as correlation increases. Indeed, the secrecy rate is zero if

the channels are fully correlated, in which case no amount ofenergy is sufficient for se-

cure transmission of the arriving data. Moreover, comparison between Figs. 7.17 and 7.18

reveals the significant energy costs of secrecy. Note that QoS exponent does not have any

effect on the minimum energy per bit. Thus, despite having different QoS constraints in

these two figures, the penalty of secrecy on the energy efficiency is clear by just comparing

the minimum energy per bit values.

Indeed, we can easily compute the minimum energy per bit formula in (7.95) when

γ = 1 and there is no correlation. First, we need to compute the expectations in the

formula.

Lemma 7.4.3.Assume thatw1 andw2 are uncorrelated exponential random variables with

meansµ1 andµ2 respectively. We can easily obtain

E
{

[w1 − w2]
+} =

µ2
1

µ1 + µ2
. (7.97)
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When we use the formulation (7.97) in (7.95), the minimum energy per bit becomes

Eb
N0 min

= 2

(

d40 +
d80
d4e

+ (d− d0)
4 +

(d− d0)
8

(d0 − de)4

)

loge 2. (7.98)

When we insert the distance values we use in Fig. 7.18, we obtain the minimum energy per

bit as6.26 dB, verifying the observation in this figure in the case of no correlation.

It is expected that the locations of the nodes are critical for the arrival rates that the

system can support. To investigate the impact of locations,we plot the throughput vs. relay

location curves in Figs. 7.19 and 7.20. We analyze the effectof different SNR values on

the throughput and best location for the relay in Fig. 7.19. QoS exponents are chosen as

θ1 = θ2 = 0.1 and there is no correlation between the channels. As expected, SNR affects

the throughput positively. However, we have diminishing returns as SNR increases since

eavesdropper shares the same SNR with the relay. Interestingly, the location that gives the

highest throughput changes with the SNR as well. When SNR is reduced, the optimal relay

location is closer to the source.

The effect of the QoS exponents is addressed in Fig. 7.20. We keep the constraint on

the relay buffer (i.e., the relay QoS exponent) fixed while changing the constraint on the
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source buffer. We also assume thatSNR = 1 and no correlation exists between any pair

of channels. It is immediate to see that stricter buffer constraints (i.e., higher values of

θ1) reduce the throughput. The important inference is that when the buffer constraints get

stricter, the optimal location of the relay at which the throughput is maximized again gets

closer to the source. Hence, low SNR and highθ levels have similar impact on the system.

Notice that relay in this case becomes closer to the eavesdropper as well, which tends to

adversely affect the security of theR – D link. But, this is preferred as theS – R link

becomes the bottleneck.

Finally, in Fig. 7.21, we plot the minimum energy per bit as a function ofd0 for different

values ofde. Clearly, if the eavesdropper approaches the source or the destination, the

minimum energy per bit increases. We further observe that the optimal location of the

relay at which the lowest minimum energy per bit is attained changes in the same direction

as that of the eavesdropper location. For instance, as the eavesdropper approaches the

source, so does the relay. This is again due to theS – R link becoming the bottleneck.
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7.5 Energy Efficiency in Cognitive Radio Channels with

Markov Arrivals

7.5.1 Channel Sensing

Secondary users are assumed to operate over blocks ofm symbols. In each block, channel

sensing is performed over the initial duration ofn symbols to determine the primary users’

activity (i.e., whether the channel is idle or busy). We assume that the primary users’

activity remains unchanged over one block duration. However, activity between the blocks

is modeled as a Markov chain with two states, denoted byB and I, corresponding to

“busy" and “idle" channels, respectively. In stateB, channel is occupied by the primary

users whereas stateI indicates no primary user activity in the channel. In the Markov chain,

Pi,j represents the transition probability from statei to statej wherei, j ∈ {I, B}. Note

that
∑

j Pi,j = 1 and the probabilitiesPB,I andPI,B are denoted bys andq, respectively.
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As in [48], we formulate channel sensing as a binary hypothesis-testing problem:

H0 : yi = ni i = 1, 2, . . . , n

H1 : yi = wi + ni i = 1, 2, . . . , n
(7.99)

where hypothesesH0 andH1 describe the absence and presence of primary users, respec-

tively. Above,ni represents the circularly symmetric, zero-mean, complex background

Gaussian noise samples with varianceE{|ni|2} = N0 andwi denotes the primary users’

faded sum signal at the secondary receiver, which is independent and identically dis-

tributed according to circularly symmetric, zero-mean, complex Gaussian with variance

E{|wi|2} = σ2
w. We assume that secondary users employ energy detector which compares

the total energy gathered in the sensing duration with a thresholdλ, i.e., we have

T (y) =
1

n

n
∑

i=1

|yi|2 ≷H1
H0

λ. (7.100)

The test statisticT (y) above followsχ2 distribution with2n degrees of freedom. Under

this statistical assumption, the false alarm and detectionprobabilities can be expressed in

terms of the regularized Gamma functionP (a, x) [62, eq. 6.5.1] as follows:

Pf = Pr{T (y) > λ|H0} = Pr(Ĥ1|H0) = 1− P

(

nλ

N0
, n

)

,

Pd = Pr{T (y) > λ|H1} = Pr(Ĥ1|H1) = 1− P

(

nλ

N0 + σ2
s

, n

)

.

Above,P (a, x) = γ(a,x)
Γ(a)

, whereγ(a, x) is the lower incomplete Gamma function [62, eq.

6.5.2], andΓ(a) is the Gamma function [62, eq. 6.1.1]. Additionally,Ĥ1 andĤ0 denote

the busy and idle sensing decisions, respectively.
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7.5.2 Cognitive Radio Channel Model

Following channel sensing, data transmission is initiatedover a flat-fading channel in the

remaining block duration of(m − n) symbols. The transmission power levels are chosen

depending on the sensing decision. More specifically, the average power isP 1 in the case

of channel being detected as busy, and it isP 2 in the case of channel being detected as idle.

In general, we haveP 1 ≤ P 2 in order to control the interference on the primary users.

We consider a block-fading channel model in which the fadingcoefficients remain con-

stant over each block ofm symbols. Under these assumptions, the complex channel input-

output relation can be described as

y =















hx+ n underH0

hx+ n+w underH1

(7.101)

whereh denotes the circularly-symmetric, complex fading coefficient with finite variance,

i.e.,E{|h|2} <∞. Additionally,x andy are the complex channel input and output vectors

with length(m − n), respectively, andw andn again denote the primary users’ received

faded signal and background Gaussian noise, respectively.

As a result of different channel sensing decisions and the channel’s true state, we have

four possible scenarios, together with corresponding signal-to-noise ratio expressions and

the instantaneous channel capacities listed in the following:

• Scenario I: Busy channel is sensed as busy (Correct-detection)

SNR1 =
P 1

N0+σ2w
andC1 = (m− n) log(1 + SNR1z).

• Scenario II: Busy channel is sensed as idle (Miss-detection)

SNR2 =
P 2

N0+σ2w
andC2 = (m− n) log(1 + SNR2z).

• Scenario III: Idle channel is sensed as busy (False-alarm)

SNR3 =
P 1

N0
andC3 = (m− n) log(1 + SNR3z).
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• Scenario IV: Idle channel is sensed as idle (Correct-detection)

SNR4 =
P 2

N0
andC4 = (m− n) log(1 + SNR4z).

Above, we have definedz = |h|2 and expressed the instantaneous channel capacities. Ac-

tual transmission rates will depend on the sensing decisionsĤ0 andĤ1. More specifically,

underĤ1 (i.e., in scenarios 1 and 3), the transmission rate is

R1(SNR1, z) = (m− n) log(1 + SNR1z). (7.102)

On the other hand, under̂H0 (i.e., in scenarios 2 and 4), the secondary users send data at

the rate

R2(SNR4, z) = (m− n) log(1 + SNR4z). (7.103)

7.5.3 Effective Capacity of Cognitive Radio Channels

In this section, we formulate the effective capacity which characterizes the maximum con-

stant arrival rates that can be supported in the presence of buffer constraints through cogni-

tive radio transmissions. Before deriving the effective capacity expression for the cognitive

radio channel, we initially construct a state transition model. In scenario 1, transmission

rateR1(SNR1, z) equals the channel capacity and in scenario 3 (in which we have false

alarm),R1(SNR1, z) is less than the channel capacity due to the fact that secondary users

actually do not experience interference from the primary users, i.e.,SNR1 < SNR3. Hence,

in both scenarios, the channel is in the ON state where reliable transmission is achieved. In

scenario 2 (in which we have miss detection), transmission rateR2(SNR4, z) is greater than

the channel capacity due to interference caused by the primary users, i.e.,SNR4 > SNR2.

Thus, the channel is in the OFF state and reliable communication is not attained due to

errors. Therefore, the transmission rate is effectively zero and retransmissions are required.

Finally, in scenario 4,R2(SNR4, z) is equal to the channel capacity and therefore the chan-
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nel is again in the ON state. As a result, we have four states intotal in the state transition

model for the cognitive radio channel as depicted in Fig. 7.22.

Fig. 7.22:The state-transition model for the cognitive radio channelwith four states.

Next, we determine the transition probabilities from statei to statej, denoted bypij

in the figure. Note that the channel is actually busy in the first two states and we see that

the transition probabilities from these states to the first state are equal. The channel is

actually idle in the last two states and their transition probabilities are the same. Hence, the

transition probabilities can be grouped into two with respect to the channel’s true state, i.e.,

being busy or idle. With this observation, the transition probabilities between each state

can be derived as

pi1 = (1− s)Pd pk1 = qPd,

pi2 = (1− s)(1− Pd) pk2 = q(1− Pd),

pi3 = sPf pk3 = (1− q)Pf ,

pi4 = s(1− Pf) pk4 = (1− q)(1− Pf)

(7.104)

for i = 1, 2 andk = 3, 4. Above,Pd andPf denote the detection and false-alarm proba-

bilities, respectively, in channel sensing, ands andq are the transition probabilities in the

two-state Markov chain for primary user activity. The4 × 4 state transition matrix is de-

noted byG where[G]ij = pij . Note thatG has a rank of2 due to having only two linearly
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independent row vectors.

The effective capacity, which identifies the maximum constant arrival rate that a given

service process can support in order to guarantee statistical QoS constraint given in (2.1),

is formulated as [6] [10]

CE(θ) = − lim
t→∞

1

θt
loge E{e−θS[t]} , −Λ(−θ)

θ
, (7.105)

whereS[t] ,
∑t

j=1Ri[j] is the time-accumulated service process andRi[j] is the discrete-

time stationary and ergodic service process. Gartner-Ellis (GE) limit of the service process

is defined byΛ(θi) = limt→∞
1
t
loge E{eθiS[t]}. In [9, Chap. 7, Example 7.2.7], it is shown

for Markov modulated processes that

Λ(θ)

θ
=

1

θ
loge E{ρ

(

φ(θ)G
)

} (7.106)

Above,G is the transition matrix of the underlying Markov process, andφ(θ) = diag(φ1(θ), . . . , φ4(θ))

is a diagonal matrix whose components are the moment generating functions of the pro-

cesses with 4 states. In our case, we have

φ(θ)= diag
{

eθR1(SNR1), 1, eθR1(SNR1), eθR2(SNR4)
}

.

Since the rank ofφ(θ)G is 2, spectral radiusρ
(

φ(θ)G
)

is given by the maximum root of the

characteristic polynomial of the matrixφ(θ)G. Hence, we can derive the effective capacity

expression of the cognitive radio channel as in (7.107) on the next page by combining

(7.105), (7.106).

CE(θ) =− 1

θm
loge E

{

1

2

[

φ1(θ)pi1 + φ2(θ)pi2 + φ3(θ)pk3 + φ4(θ)pk4

]

+
1

2

√

[

φ1(θ)pi1 + φ2(θ)pi2 − φ3(θ)pk3 − φ4(θ)pk4

]2
+ 4(φ1(θ)pk1 + φ2(θ)pk2)(φ5(θ)pi3 + φ4(θ)pi4)

}

(7.107)
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7.5.4 Energy Efficiency Metrics

We have defined the average signal-to-noise ratio as

SNRavg =
P avg

N0
=

Pr{Ĥ1}P 1 + Pr{Ĥ0}P 2

N0
(7.108)

=
γ(sPd + qPf) + s(1− Pd) + q(1− Pf)

s+ q

P 2

N0
(7.109)

= ϕ
P 2

N0

(7.110)

where we have definedϕ =
γ(qPd+sPf )+s(1−Pf )+q(1−Pd)

s+q
and P 1

P 2
= γ. Furthermore, we de-

noteξ = σ2w
N0

. With the help of these definitions, we can determine from (3.2) the maximum

arrival rater∗(SNRavg, θ) that can be supported in the cognitive radio channel for given

SNRavg, QoS exponentθ. Then, the maximum average arrival rate is

r∗avg(SNRavg, θ) = r∗(SNRavg, θ)PON. (7.111)

In this section, we employ energy per bit as the performance metric of energy efficiency.

In our setup, we define energy per bit as

Eb
N0

=
SNRavg

r∗avg(SNRavg, θ)/m
. (7.112)

In our analysis, following the approach in [57], we study theminimum energy per bit

and the wideband slope, which is defined as the slope of the spectral efficiency curve at zero

spectral efficiency. While the minimum bit energy is a performance measure in the limit as

SNRavg → 0, wideband slope has emerged as a tool that enables us to analyze the energy

efficiency at low but nonzeroSNRavg levels. The minimum energy per bitEb

N0 min
under QoS
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constraints can be obtained from [57]

Eb
N0 min

= lim
SNRavg→0

SNRavg

r∗avg(SNRavg, θ)/m
=

1

ṙ∗avg(0, θ)/m
. (7.113)

At Eb

N0 min
, the slopeS0 of the spectral efficiency versusEb/N0 (in dB) curve is defined as

[57]

S0 = lim
Eb
N0

↓
Eb
N0 min

r∗avg(SNRavg, θ)/m

10 log10
Eb

N0
− 10 log10

Eb

N0 min

10 log10 2. (7.114)

Considering the expression for normalized effective capacity, the wideband slope can be

found from

S0 = −
2
(

ṙ∗avg(0)/m
)2

r̈∗avg(0)/m
loge 2 (7.115)

where ṙ∗avg(0) and r̈∗avg(0) are the first and second derivatives, respectively, ofr∗avg with

respect toSNRavg at zeroSNRavg.
Eb

N0 min
andS0 provide a linear approximation of the spectral

efficiency curve at low spectral efficiencies.

7.5.5 Energy Efficiency in Cognitive Radio Channels with Markov

Arrivals

Having formulated the effective bandwidth of two-state Markov arrivals and effective ca-

pacity of the cognitive radio channel and having introducedthe energy efficiency metrics,

we now derive the minimum energy per bit and wideband slope inour setting.

Theorem 7.5.1.Assume that the source arrival rate is random and follows thedescribed

ON-OFF model with the state transition matrixJ given in (2.15), and the cognitive radio

channel is characterized by the state transition matrixG. Then, the minimum energy per

bit as a function of the sensing performance, channel conditions, and QoS exponentθ is
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given by

Eb
N0 min

=
ϕ loge 2

m−n
m

1
s+q

(

(qPd + sPf)
γ

1+ξ
+ s(1− Pf)

)

E {z}
(7.116)

whereϕ =
γ(qPd+sPf )+s(1−Pf )+q(1−Pd)

s+q
as defined before. Moreover, if we sets + q = 1, the

wideband slope is given by(7.117)on the next page.

S0 =
2(s̃ γ

1+ξ
+s(1−Pf ))

2
(E{z})2

( ˜̟−2) θm
loge 2(s̃

γ
1+ξ

+s(1−Pf ))
2
(E{z})2+ θm

loge 2

(

s̃( γ
1+ξ )

2
+s(1−Pf )

)

E{z2}+ m
m−n

(

s̃( γ
1+ξ )

2
+s(1−Pf )

)

E{z2}

(7.117)

In (7.117), we have defined̃s = [(1− s)Pd + sPf ], ˜̟ = ̟
(

1
PON

)2
, and

̟ =
α2
22 + 2(1− α11)

2(2− α11 − α22)
− [α22(α11 + α22)− 2(α11 + α22 − 1)]2

2(2− α11 − α22)3
. (7.118)

Proof: We sets+ q = 1. We first simplify the relationship in (3.2) to

α11 + α22e
rθ +

√

(α11 + α22erθ)2 − 4(α11 + α22 − 1)erθ

2

=
1

E {s̃e−θR1(SNR1) + s(1− Pf )e−θR2(SNR4) + (1− s)(1− Pd)}
. (7.119)

We denote the right hand side of (7.119) as1
g(SNRavg)

. Taking the derivative of both sides of

(7.119) with respect toSNRavg, we obtain

ṙ(SNRavg)

[

θα22e
rθ

2
+

(α11 + α22e
rθ)θα22 − 2(α11 + α22 − 1)θerθ

2
√

(α11 + α22erθ)2 − 4(α11 + α22 − 1)erθ

]

= − ġ(SNRavg)

(g(SNRavg))2
. (7.120)

Next, we letSNRavg → 0. Then, we haveg(0) = 1 and the first derivative ofg(SNRavg) at
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SNRavg = 0 becomes

ġ(0) = −θ(m− n)

ϕ loge 2

(

s̃
γ

1 + ξ
+ s(1− Pf)

)

E {z} . (7.121)

Since the arrival rater → 0 whenSNRavg → 0, the equality in (7.120) becomes

ṙ(0)θ

[

α22

2
+

(α11 + α22)α22 − 2(α11 + α22 − 1)

2(2− α11 − α22)

]

= − ġ(0)

(g(0))2
=
θ(m− n)

ϕ loge 2

(

s̃
γ

1 + ξ
+ s(1− Pf)

)

E {z} , (7.122)

from which we can obtain an expression forṙ(0) and derive

ṙ∗avg(0) = ṙ(0)
1− α11

2− α11 − α22

(7.123)

=
(m− n)

ϕ loge 2

(

s̃
γ

1 + ξ
+ s(1− Pf )

)

E {z} . (7.124)

Plugging in the result in (7.124) into (3.29), we immediately obtain (7.116).

In order to determine the wideband slope, we first take the second derivative of both

sides of (7.119) with respect toSNRavg and evaluate them atSNRavg = 0 as

r̈(0)θ
1− α11

2− α11 − α22
+ (ṙ(0))2θ2η =

2(ġ(0))2 − g̈(0)g(0)

(g(0))3

= 2(ġ(0))2 − g̈(0) (7.125)

where (7.125) follows from the fact thatg(0) = 1, andη is defined in (3.9). Using the above

equality and the expression forṙ(0) obtained from the equality in (7.122), we can easily

derive the second derivative of the maximum average arrivalrate with respect toSNRavg at

SNRavg = 0 as

r̈∗avg(0) =
(2− η̃)(ġ(0))2 − g̈(0)

θ
. (7.126)
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whereη̃ = η
(

1
PON

)2
andg̈(0) is given by

g̈(0)=
1

ϕ2

[

(

θ(m−n)
loge 2

)2

+
θ(m−n)
loge 2

](

s̃

(

γ

1+ ξ

)2

+ s(1− Pf )

)

E
{

z2
}

.

Finally, inserting (7.124) and (7.126) into (3.31), the wideband slope expression in (3.35)

is readily obtained. �

Remark 18. Minimum energy per bit does not depend on the QoS exponentθ or the bursti-

ness of the source. Interestingly, burstiness of the primary user activity, signal power of

the primary user, reliability of channel sensing have an impact on the minimum energy per

bit. Increasings or q when the other parameter is kept fixed results in increased minimum

energy per bit. However, whens + q = 1, increasings (i.e., increasing the probability of

idle channel) improves the energy efficiency of the secondary user. As expected, higher in-

terference from the primary user decreases the energy efficiency as it decreases the channel

capacity for the secondary user when the primary user is active. Additionally, the minimum

energy per bit formula depends on the sensing performance via detection and false alarm

probabilitiesPd andPf whose impact is analyzed through numerical results below.

Remark 19. Although the QoS exponentθ does not have any effect on the minimum energy

per bit, it introduces a penalty on the energy efficiency by reducing the wideband slope.

The burstiness of the source also degrades the energy efficiency by increasing the value of

η and again diminishing the wideband slope. Similarly as in [54], the effect of the source

burstiness vanishes in the absence of QoS requirements.

Next, we present numerical results in which we assume Rayleigh fading. Therefore,

fading magnitude-squarez = |h|2 has an exponential distribution withE{z} = 1. Fur-

thermore, the noise power and the power of the primary users’received faded signal are

assumed to beN0 = 0.01 andσ2
w = 0.01, respectively, (i.e.,ξ = σ2

w/N0 = 1).

In Fig. 7.23, we plot the maximum average arrival rate vs. energy per bit, Eb

N0
, and

investigate the effect of source burstiness on the energy efficiency of cognitive radio trans-
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Fig. 7.23: Maximum average arrival rater∗avg/m vs. energy per bitEb

N0
with different source

burstiness whenθ = 1.

missions under QoS constraints. The transition probabilities in the Markov chain of pri-

mary user activity are set tos = 0.9 andq = 0.1. Each block has a duration ofm = 100

symbols and a duration ofn = 20 symbols is used for channel sensing. The threshold of

the energy detector is chosen asλ = 0.014. With these values ofn andλ, the detection and

false-alarm probabilities becomePd = 0.9235 andPf = 0.0478. We observe in the figure

that as the probability of the ON state of data arrivals diminishes and hence source bursti-

ness increases, wideband slope is decreased, reducing the energy efficiency of the system.

In Fig. 7.24, we plot the minimum energy per bit,Eb

N0 min
, as a function of the sensing

durationn (while λ = 0.014) for different values of the transition probabilitiess and

q in the Markov chain of primary user activity. In the lower subfigure, we provide the

corresponding detection and false alarm probabilities again as a function ofn. We see

that when the primary user activity decreases and as a resultthe probability of channel

being idle increases, smallestEb

N0 min
is attained at a lower value ofn. Indeed, when the

channel idle probability isPr{H0} = s
s+q

= 0.9, the smallest value ofEb

N0min
is achieved

whenn = 2. However, it is important to note that for this very short sensing duration,
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the detection probability is small as well, which can lead tosignificant interference on the

primary user.
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Fig. 7.24:Minimum energy per bit andPd-Pf vs sensing durationn.

Finally, in Fig. 7.25, we plot the minimum energy per bit,Eb

N0 min
, and detection and

false-alarm probabilities,Pd-Pf , as a function of the sensing thresholdλ (while n = 20).

We notice that for smallλ, we have frequent false alarms and therefore sensing reliability

is low, leading to high values ofEb

N0 min
. Increasing the threshold initially improves the

sensing reliability and lowers theEb

N0min
. On the other hand, increasing the threshold beyond

its optimum value at whichEb

N0min
is minimized, starts degrading sensing reliability by
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reducing the detection probability and results in higherEb

N0 min
values.
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Fig. 7.25:Minimum energy per bit andPd-Pf vs sensing thresholdλ.



194

CHAPTER 8

FUTURE RESEARCH DIRECTIONS

8.1 QoS-Driven Energy-Efficient Power Control in Cog-

nitive Radio Channels with Markov Arrivals

In Section 7.5.3, we analyzed the energy efficiency in cognitive radio channels with dis-

crete Markov arrivals under QoS constraints. This work can be extended by addressing

all of the source arrival models studied in this thesis. Another promising approach is to

design optimal power control algorithms for cognitive userby taking the circuit power into

account. This problem can focus on maximizing the throughput or energy efficiency of

cognitive users in the presence of one or more of the following constraints:

• Maximum average and/or peak power constraint

• Maximum average and/or peak interference constraint

• Constraint on sensing duration

• Constraint on false alarm probability or detection probability

• Constraint on energy efficiency
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8.2 Throughput and Optimal Resource Allocation in

the Finite Blocklength Regime under QoS Constraints

In this thesis, one of the main assumptions has been that the coding blocklength is suf-

ficiently long for the transmission rates to be accurately approximated by the Shannon

capacity and data transmission is reliable. An interestingfuture research direction is to

utilize recent characterizations in the literature and consider the finite blocklength coding

regime, in which the data transmission is no longer arbitrarily reliable. Especially when

the blocklength is short, the error probability (due to noise) becomes significant even if

the rate is selected below the Shannon limit. By formulatingthe effective capacity in the

FBL regime, we can express the throughput, analyze the impact of random arrivals on the

performance, and design optimal resource allocation schemes.
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APPENDIX A

APPENDIX

A.1 Proof of Theorem 3.1.1:

Using the effective bandwidth formulation in (2.16), we canexpress (3.2) in the following

equivalent form:

1

θ
loge

(

p11+p22eλθ+
√

(p11+p22eλθ)2−4(p11+p22−1)eλθ

2

)

= CE. (A.1)

Then, we rewrite the above equality as

p11+p22e
λθ+

√

(p11+ p22eλθ)2− 4(p11+ p22 −1)eλθ= 2eθCE , (A.2)

from which, after moving the first two terms on the left-hand side to the right-hand side

and taking the square of both sides, we obtain

(p11+ p22e
λθ)2− 4(p11+ p22−1)eλθ =

(

2eθCE − p11−p22eλθ
)2
. (A.3)
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Now, by simply exchanging the second term on the left-hand side with the term on the

right-hand side, we have

(p11+ p22e
λθ)2−

(

2eθCE − p11−p22eλθ
)2
= 4(p11+ p22−1)eλθ, (A.4)

(

2p11+ 2p22e
λθ− 2eθCE

)

2eθCE = 4(p11+ p22 − 1)eλθ. (A.5)

After further rearrangements, we have

(p11 + p22 − 1− p22e
θCE)eλθ = p11e

θCE − e2θCE . (A.6)

Solving the equation forλ, we get

λ∗(SNR, θ) =
1

θ
loge

(

e2θCE(SNR,θ) − p11e
θCE(SNR,θ)

1− p11 − p22 + p22eθCE(SNR,θ)

)

(A.7)

which provides the maximum arrival rate in the ON state. We can now express the maxi-

mum arrival rate asr∗(SNR, θ) = PONλ
∗(SNR, θ) and obtain the expression in (3.6). �

A.2 Proof of Theorem 3.1.2:

Let us define

ψ(θ) = e−θCE(SNR,θ) = E

{

e
−

θ
loge 2

∑m
i=1 loge(1+SNRzi)

}

. (A.8)
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The following properties ofψ can be verified easily:

ψ(0) =1, (A.9)

ψ̇(θ) =E

{

−
m
∑

i=1

log2(1 + SNRzi)e
−θ

∑m
i=1 log2(1+SNRzi)

}

, (A.10)

ψ̈(θ) =E







(

m
∑

i=1

log2(1 + SNRzi)

)2

e−θ
∑m

i=1 log2(1+SNRzi)







, (A.11)

and

ψ̇(0) =− E

{

m
∑

i=1

log2(1 + SNRzi)

}

, (A.12)

ψ̈(0) =E







(

m
∑

i=1

log2(1 + SNRzi)

)2






(A.13)

whereψ̇ andψ̈ denote the first and second derivatives ofψ with respect toθ, respectively.

Additionally, we definer∗avg(SNR, θ) as

r∗avg(SNR, θ) =
f1(θ)

θ
. (A.14)

Therefore, by applying L’Hopital’s rule and lettingθ → 0, maximum average arrival rate

and its slope can be easily found as

lim
θ→0

r∗avg(SNR, θ)= ḟ1(0), (A.15)

∂r∗avg(SNR, θ)

∂θ

∣

∣

∣

∣

θ=0

=
f̈1(0)

2
. (A.16)

Now, replacinge−θCE(SNR,θ) with ψ(θ) in the expression ofr∗avg(SNR, θ) in (3.6), we can

expressf1(θ) as

f1(θ)=PON
[

loge(1−p11ψ(θ))−loge
(

(1−p11−p22)ψ2(θ)+p22ψ(θ)
)]

. (A.17)
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f̈1(0) = PON
d

dθ

[

−p11ψ̇(0)
1−p11ψ(0)

− (1−p11−p22)ψ̇(0)
(1−p11−p22)ψ(0)+p22

− ψ̇(0)

ψ(0)

]
∣

∣

∣

∣

∣

θ=0

(A.21)

=PON

{[ −p11
1−p11

− 1−p11−p22
1−p11

−1

]

ψ̈(0)+

[

− p211
(1−p11)2

+
(1−p11−p22)2
(1−p11)2

+1

]

(

ψ̇(0)
)2
}

(A.22)

=− ψ̈(0) + (1− η)
(

ψ̇(0)
)2

(A.23)

=− E







(

m
∑

i=1

log2(1 + SNRzi)

)2






+ (1− η)

[

E

{

m
∑

i=1

log2(1 + SNRzi)

}]2

(A.24)

Therefore, we derivėf1(θ) whenθ → 0 as

ḟ1(0) = PON

[

−p11ψ̇(0)
1−p11ψ(0)

− (1−p11−p22)ψ̇(0)
(1−p11−p22)ψ(0)+p22

− ψ̇(0)

ψ(0)

]

(A.18)

= PON

[ −p11
1−p11

− 1−p11−p22
1−p11

− 1

]

ψ̇(0) (A.19)

= E

{

m
∑

i=1

log2(1 + SNRzi)

}

. (A.20)

Note that (A.18) follows by taking the first derivative of theexpression in (A.17) with

respect toθ, and (A.19) is obtained using the property thatψ(0) = 1. Finally, (A.20) and

hence the result in (3.7) immediately follow from (2.17), (A.12) and (A.15).

Next, we determine the slope of the throughput in (3.8) as theQoS exponentθ ap-

proaches zero. For this, we only need to derive the second derivative expression̈f1(0),

which is done at the top of the next page. (A.21), (A.22) and (A.23) follow from straight-

forward algebraic steps. Inserting (A.12) and (A.13) into (A.23), we obtain (A.24). Finally,

the result in (3.8) follows by combining (A.24) and (A.16). �
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A.3 Proof of Theorem 3.1.3:

In the analysis of the high-SNR slope of the effective capacity, it has been shown in [49]

that

−1

θ
loge E

{

e−θ log2(1+SNRz)
}

=











1
θ log2 e

log2 SNR+O(1) if θ > 1
log2 e

log2 SNR+O(1) if 0 < θ < 1
log2 e

(A.25)

wherez is exponentially distributed with unit mean. If we assume that fading in each block

is i.i.d., then the effective capacity expression in (2.10)becomes

CE(SNR, θ) = −1

θ
loge E

{

e−θ
∑m

i=1 log(1+SNRzi)
}

(A.26)

= −1

θ
loge

(

m
∏

i=1

E
{

e−θ log(1+SNRzi)
}

)

(A.27)

= −m
θ
loge E

{

e−θ log(1+SNRz)
}

. (A.28)

Furthermore, the maximum average arrival rate in (3.6) can be expressed as

r∗avg(SNR, θ)

=
PON

θ
loge

(

e2θCE(SNR,θ)
(

1− p11e
−θCE(SNR,θ)

)

eθCE(SNR,θ) ((1− p11 − p22) e−θCE(SNR,θ) + p22)

)

(A.29)

=
PON

θ
loge

(

eθCE(SNR,θ)
(

1− p11e
−θCE(SNR,θ)

)

(1− p11 − p22) e−θCE(SNR,θ) + p22

)

(A.30)

=
PON

θ

(

loge e
θCE(SNR,θ) + loge

(

1− p11e
−θCE(SNR,θ)

)

− loge
(

(1− p11 − p22) e
−θCE(SNR,θ) + p22

)

)

(A.31)

=
PON

θ
loge e

θCE(SNR,θ) +O(1) (A.32)

= PONCE(SNR, θ) +O(1) (A.33)
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where (A.30) and (A.31) follow from straightforward algebraic operations and (A.32) is

due to the fact thatCE(SNR, θ) increases without bound asSNR increases and hence the

terme−θCE(SNR,θ) vanishes asymptotically in the formulations.

Finally, combining (A.25), (A.28), and (A.33), we immediately obtain the desired result

in (3.10) for the cases in whichθ > 0. Whenθ = 0, the result follows from (3.7) in

Theorem 3.1.2. �

A.4 Proof of Theorem 3.1.4:

Using (2.22), we can rewrite (3.2) as

(θλ− (α + β)− 2θCE)
2= (θλ− (α + β))2 + 4αθλ (A.34)

which can further be simplified to

−2θCE(2θλ− 2(α+ β)− 2θCE) = 4αθλ. (A.35)

Next, solving forλ, we obtain

λ∗(SNR, θ) =
θCE(SNR, θ) + α + β

θCE(SNR, θ) + α
CE(SNR, θ). (A.36)

Finally, using the expression in (2.24), we derive the maximum average arrival rate given

in (3.14). �
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ḟ2(0) = lim
θ→0

−PON











− ψ̇(θ)
ψ(θ)

α− loge ψ(θ)
−

(α+ β − loge ψ(θ))
(

− ψ̇(θ)
ψ(θ)

)

(α− loge ψ(θ))
2



 loge ψ(θ)

+
α + β − loge ψ(θ)

α− loge ψ(θ)

ψ̇(θ)

ψ(θ)

}

(A.38)

= lim
θ→0

−PON

[

1 +
αβ

(α− loge ψ(θ))
2

]

ψ̇(θ)

ψ(θ)
(A.39)

=− PON
α + β

α
ψ̇(0) (A.40)

=E

{

m
∑

i=1

log2(1 + SNRzi)

}

(A.41)

A.5 Proof of Theorem 3.1.5:

Similar as in the Proof of Theorem 3.1.2 in Appendix A.2, we define r∗avg(SNR, θ) = f2(θ)
θ

with

f2(θ) = −PON
α+ β − loge ψ(θ)

α− loge ψ(θ)
loge ψ(θ). (A.37)

Now, we have (A.15) and (A.16) hold withf1 replaced withf2. The remainder of the proof

requires only the determination of the first and second derivatives off2(θ) at θ = 0. The

first derivativeḟ2(0) is given at the top of the next page in (A.38)-(A.41). Note that (A.38)

and (A.39) follow from straightforward algebraic steps, and (A.40) is obtained by noting

the property thatψ(0) = 1. Finally, (A.41) and hence the result in (3.15) immediately

follow from (2.23), (A.12) and (A.15).

Next, we obtain the slope expression in (3.16) in the limit asthe QoS exponentθ ap-

proaches zero. For this, we characterize the second derivative expression̈f2(0) on the next

page in (A.42)–(A.45) . (A.42), (A.43) are readily obtainedand (A.44) is determined by

noting thatψ(0) = 1. We incorporate (A.12) and (A.13) into (A.44) to obtain (A.45). The

result in (3.16) follows by combining (A.45) and (A.16) (with f1 replaced withf2). �
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f̈2(0) = lim
θ→0

−PON
d

dθ

{

[

1 +
αβ

(α− loge ψ(θ))
2

]

ψ̇(θ)

ψ(θ)

}

(A.42)

= lim
θ→0

−PON







−2αβ
(

− ψ̇(θ)
ψ(θ)

)

(α− logeψ(θ))
3

(

ψ̇(θ)

ψ(θ)

)

+

[

1+
αβ

(α−logeψ(θ))
2

]





ψ̈(θ)

ψ(θ)
−
(

ψ̇(θ)

ψ(θ)

)2










(A.43)

= −ψ̈(0) + (1− 2β

α(α + β)
)
(

ψ̇(0)
)2

(A.44)

= −E







(

m
∑

i=1

log2(1 + SNRzi)

)2






+ (1− 2β

α(α + β)
)

[

E

{

m
∑

i=1

log2(1 + SNRzi)

}]2

(A.45)

A.6 Proof of Theorem 3.1.7:

We find the maximum average arrival rater∗avg(SNR, θ) by incorporating (2.26) into (3.2)

and expressing (3.2) as

(

(eθ − 1)λ− (α + β)− 2θCE
)2

=
(

(eθ − 1)λ− (α + β)
)2

+ 4α(eθ − 1)λ. (A.46)

Similarly as in the proof of Theorem 3.1.4, we can simplify the above equality and solve

for the maximum Poisson arrival intensity in the ON state to obtain

λ∗(SNR, θ) =
θ [θCE(SNR, θ) + α + β]

(eθ−1) [θCE(SNR, θ) + α]
CE(SNR, θ). (A.47)

With this characterization, the maximum average arrival rate is readily obtained from

(2.27). �
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A.7 Proof of Theorem 3.1.8:

Employingf2(θ) defined in (A.37), we can express the maximum average arrivalrate as

r∗avg(SNR, θ)=
f2(θ)

eθ − 1
. (A.48)

Then, the throughput in the limit asθ approaches zero is given by

lim
θ→0

r∗avg(SNR, θ)= lim
θ→0

ḟ2(θ)

eθ
= ḟ2(0). (A.49)

Inserting the result from (A.41) into (A.49), we obtain (3.21). Next, we determine the slope

of the throughput whenθ approaches zero:

∂r∗avg(SNR, θ)

∂θ

∣

∣

∣

∣

θ=0

= lim
θ→0

ḟ2(θ)

eθ − 1
− eθf2(θ)

(eθ − 1)2
(A.50)

= lim
θ→0

(

eθ − 1
)

ḟ2(θ)− eθf2(θ)

(eθ − 1)2
(A.51)

= lim
θ→0

(

eθ − 1
)

f̈2(θ)− eθf2(θ)

2 (eθ − 1) eθ
(A.52)

=
f̈2(0)

2
− 1

2
lim
θ→0

f2(θ)

eθ − 1
(A.53)

=
f̈2(0)

2
− ḟ2(0)

2
. (A.54)

(A.50) follows by taking the derivative of the expression in(A.48) with respect toθ. (A.51)

is obtained by simplifying (A.50). We apply L’Hopital’s rule on (A.51) to get (A.52) and

further simplify it in (A.53). Finally, we obtain (A.54), which we used to derive (3.22) by

inserting (A.41) and (A.45) into (A.54).
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A.8 Proof of Theorem 3.2.1:

When the arrival rate is fixed, the following equality holds:

r∗avg(SNR, θ) = CE(SNR, θ). (A.55)

Therefore, in formulas (3.29), (3.31), we can useĊE(0) and C̈E(0) instead ofṙ∗avg(0)/m

and r̈∗avg(0)/m respectively, where we have definedCE(SNR, θ) = CE(SNR, θ)/m as the

normalized effective capacity. Minimum energy per bit and wideband slope becomes

Eb
N0 min

=
1

ĊE(0)
, (A.56)

and

S0 = −2(ĊE(0))
2

C̈E(0)
loge 2. (A.57)

Thus, we only need to obtain the first and second derivatives of CE(SNR, θ) with respect to

SNR at SNR = 0 to determine the minimum energy per bit and wideband slope. We first

express the effective capacity given in (2.10) as

CE(SNR) = − 1

θm
loge g(SNR) (A.58)

where we have defined

g(SNR) = E

{

e
−

θ
loge 2

∑m
i=1 loge(1+SNRzi)

}

. (A.59)
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Now, the first and second derivatives ofCE(SNR) with respect to SNR are easily seen to be

given by

ĊE(SNR) = − 1

θm

ġ(SNR)

g(SNR)
, and (A.60)

C̈E(SNR) = − 1

θm

g̈(SNR)g(SNR)− [ġ(SNR)]2

[g(SNR)]2
, (A.61)

whereġ andg̈ denote the first and second derivatives of the function g with respect toSNR

and can be expressed as

ġ(SNR)= − θ

loge 2
E

{

m
∑

i=1

zi
1 + SNRzi

e
− θ

m loge 2

∑m
i=1 loge(1+SNRzi)

}

(A.62)

and

g̈(SNR)

=
θ

loge2
E

{(

m
∑

i=1

z2i
(1+SNRzi)2

+
θ

loge2

m
∑

i,j=1

zizj
(1+SNRzi)(1+SNRzj)

)

× e
−

θ
loge2

∑m
i=1 loge(1+SNRzi)

}

. (A.63)

Then, atSNR= 0, we have

ĊE(0) =

∑m
i=1 E {zi}
m loge 2

=
E{z}
loge 2

(A.64)

and

C̈E(0) = −
θ
∑m

i=1

∑m
j=1 cov{zi, zj}+ loge2

∑m
i=1E {z2i }

m(loge 2)
2

= −
θ
∑m

i,j=1

∑m
j=1 cov{zi, zj}+m loge2E {z2}

m(loge 2)
2

(A.65)
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where we have used the facts that
∑m

i=1 E {zi} = mE{z} and
∑m

i=1 E {z2i } = mE{z2}

due to our assumption that the fading coefficients and therefore{zi}’s are identically dis-

tributed.

Plugging the expressions in (A.64) and (A.65) into those in (A.56) and (A.57), we

readily obtain the minimum energy per bit and wideband slopeexpressions in (3.32) and

(3.33). �

A.9 Proof of Theorem 7.5.1:

To show the result, we need to obtain the first and second derivatives ofr∗avg(SNR). We first

express the maximum average arrival rate in (3.6) as

r∗avg(SNR, θ) =
PON

θ

[

loge(1− p11g(SNR))− loge(g(SNR))

− loge
(

(1− p11 − p22)g(SNR) + p22
)

]

(A.66)

where we have used the definition thateθCE(SNR,θ) = 1
g(SNR) with g(SNR) defined in (A.59).

Taking the first derivative with respect toSNR, we obtain

ṙ∗avg(SNR, θ) =
PON

θ

[

−p11ġ(SNR)

1− p11g(SNR)
− ġ(SNR)

g(SNR)
− (1− p11 − p22)ġ(SNR)

(1− p11 − p22)g(SNR) + p22

]

.

(A.67)

Next, we letSNR→ 0. Since the arrival rateλ → 0 whenSNR→ 0, the equality in (A.67)

becomes

ṙ∗avg(0, θ) =
ġ(0)
θ
PON

[

− p11
1− p11

− 1− 1− p11 − p22
1− p11

]

(A.68)

= − ġ(0)
θ

=
1

loge 2

m
∑

i=1

E {zi} =
mE{z}
loge 2

(A.69)
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wherePON = 1−p11
2−p11−p22

. Plugging the result in (A.69) into (3.29), we immediately obtain

(7.116).

In order to find the wideband slope, we first determine the second derivative of the

maximum average arrival rate with respect toSNR and then evaluate it atSNR = 0 as

follows:

r̈∗avg(0, θ) =
g̈(0)
θ
PON

[

− p11
1− p11

− 1− (1− p11 − p22)

1− p11

]

+
[ġ(0)]2

θ
PON

[

− p211
(1− p11)2

+ 1+
(1− p11 − p22)

2

(1− p11)2

]

=− g̈(0)
θ

+ (1− η)
[ġ(0)]2

θ
. (A.70)

(A.70) follows from the fact thatg(0) = 1, andη is defined in (3.9). Finally, inserting

(A.69) and (A.70) into (3.31), the wideband slope expression in (3.35) is readily obtained.

�

A.10 Proof of Theorem 3.3.3:

We differentiate the maximum average arrival rate expression in (3.14) with respect to SNR

and obtain

ṙ∗avg(SNR, θ) = PON

{

2θĊE(SNR)CE(SNR) + (α + β)ĊE(SNR)

θCE(SNR) + α

− [θC2
E(SNR) + (α + β)CE(SNR)] θĊE(SNR)

(θCE(SNR) + α)2

}

. (A.71)

As SNR→ 0, we can easily derive

ṙ∗avg(0, θ) = PON
α + β

α
ĊE(0) = ĊE(0) =

mE{z}
loge 2

(A.72)
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where we use the facts thatCE(0) = 0 andPON = α
α+β

. Plugging the result in (A.72) into

(3.29), we immediately obtain (6.6).

In order to determine the wideband slope, we additionally take the second derivative of

the maximum average arrival rate with respect toSNRand evaluate it atSNR= 0 as

r̈∗avg(0, θ) = C̈E(0)−
2θβ

α(α+ β)

(

ĊE(0)
)2

. (A.73)

Now, inserting the results in (A.72) and (A.73) into (3.31) and using the formulations in

(A.64) and (A.65), we obtain (3.41). �

A.11 Proof of Theorem 3.2.4:

The proof is rather straightforward after realizing thatr∗avg(SNR, θ) of the MMPP source

given in (3.20) is equal to the maximum average arrival rate of the Markov fluid source in

(3.14) scaled with θ
eθ−1

. Therefore, making use of the results in (A.72) and (A.73), we can

immediately express the first and second derivatives ofr∗avg(SNR, θ) at SNR= 0 as

ṙ∗avg(0, θ) =
θĊE(0)

(eθ− 1)
=

θmE{z}
(eθ− 1) loge 2

, (A.74)

r̈∗avg(0, θ) =
θ

(eθ− 1)

[

C̈E(0)−
2θβ

α(α+ β)

(

ĊE(0)
)2
]

. (A.75)

Then, the expressions in (3.45) and (3.46) are obtained by plugging (A.74) and (A.75) into

(3.29) and (3.31).

�
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A.12 Proof of Proposition 5.3.1

First, we define minimum energy per bit for the confidential messages as

Eb
N0 min,i

=
δi Pr(Γi)

ṙ∗avgi(0)
(A.76)

wherei = 1, 2. Similarly for the common message, the minimum energy per bit becomes

Eb
N0 min,0

=
(1− δ1) Pr(Γ1) + (1− δ2) Pr(Γ2)

ṙ∗avg0(0)
. (A.77)

As the arrival rate is constant, we can use effective capacity as the throughput formula.

Therefore, we can exchangeṙ∗avg(0) with ĊE(0) in the minimum energy per bit equation.

For the proofs, we primarily focus on the g(SNR) function that is defined in (A.59).

Now, the first derivative ofCE(SNR) with respect to SNR is easily seen to be given by

ĊEi(SNR) = − 1

θi

ġi(SNR)

gi(SNR)
(A.78)

whereġi(SNR) denote the first derivative of the function gi(SNR) with respect toSNR. It

can be readily seen that gi(0) = 1. If we usefi(SNR) as the instantaneous service rate in

nats (i.e.Ri(SNR) = fi(SNR) loge 2), then we have the relation

ġi(0) = − θi
loge 2

E

{

ḟi(0)
}

(A.79)

where the first derivative expressionsḟi(0) for i = 0, 1, 2 are given by

ḟ1(0) = δ1 (z1 − z2) 1{z1≥z2} ,

ḟ2(0) = δ2 (z2 − z1) 1{z1<z2} ,

ḟ0(0) = (1− δ1)z21{z1≥z2}+ (1− δ2)z11{z1<z2} . (A.80)



211

By insertingḟi(0) formulations above to (A.79), and thenġi(0) to (A.78) consecutively, we

obtain the minimum energy per bit expressions for confidential and common messages in

(5.17) - (5.19) using (A.76) and (A.77).

A.13 Proof of Proposition 5.3.2

First, we prove the result for the discrete Markov source. Weneed to obtain the first deriva-

tive of r∗avg,i(SNR). Let us rewrite the maximum average arrival rate in (3.6) as

r∗avg,i(SNR, θi)=
PON

θi

[

loge(1− p11gi(SNR))− loge(gi(SNR))

− loge
(

(1− p11 − p22)gi(SNR)+p22
)

]

(A.81)

where gi(SNR) is defined in (A.59). Taking the first derivative with respectto SNR, we

obtain

ṙ∗avg,i(SNR, θi) =
PON

θi

[

−p11ġi(SNR)

1− p11gi(SNR)
− ġi(SNR)

gi(SNR)

− (1− p11 − p22)ġi(SNR)

(1− p11 − p22)gi(SNR) + p22

]

. (A.82)

When we letSNR→ 0, the first derivative expression becomes

ṙ∗avg,i(0)=
ġi(0)
θi

PON

[

− p11
1−p11

−1− 1−p11−p22
1− p11

]

=
ḟi(0)

loge 2
(A.83)

wherePON = 1−p11
2−p11−p22

. Note that g(0) = 1. Plugging the result in (A.80) and (A.93) into

(A.76) and (A.77), we immediately obtain (5.17) - (5.19).

Now, we show the proof for the Markov fluid source. We evaluatethe derivative of

r∗avg,i(SNR) in (3.14) with respect toSNRand obtain (A.84) given at the top of the next page.

When we letSNR→ 0, the first derivative expression simplifies to
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ṙ∗avg,i(SNR, θi) = −PON

θi

{

loge gi(SNR) d
dSNR

[

α+ β − loge gi(SNR)

α− loge gi(SNR)

]

+
α+ β − loge gi(SNR)

α− loge gi(SNR)

ġi(SNR)

gi(SNR)

}

(A.84)

ṙ∗avg,i(0) = −PON

θi

α+ β

α
ġi(0) =

ḟi(0)

loge 2
(A.85)

wherePON = α
α+β

. Note that g(0) = 1. Plugging the result in (A.80) and (A.85) into

(A.76) and (A.77), we immediately obtain (5.17) - (5.19).

A.14 Proof of Proposition 5.3.3

The proof is straightforward as we note that the maximum average arrival rater∗avg,i(SNR)

of discrete-time MMPP source in (5.13) is the scaled versionof that of the discrete Markov

source in (3.6). The scaling factor isθi
eθi−1

. The same assertion can be made for the rela-

tionship between the maximum average arrival rates of continuous-time MMPP in (A.47)

and Markov fluid source in (3.14). Therefore, the minimum energy per bit expressions for

discrete-time and continuous-time MMPP sources can be obtained by scaling the formula-

tions in (5.17)-(5.19) withe
θ
i−1

θi
.

A.15 Proof of Proposition 5.3.4

Let us recall that the wideband slope is given by

S0 = −
2
(

ṙ∗avg(0)
)2

r̈∗avg(0)
loge 2. (A.86)

When the arrival rate is constant, we can exchanger∗avg,i(SNR) with CEi(SNR). For the

wideband slope, in addition to the first derivative of the throughput, we also need to obtain

the second derivative of the throughput. Second derivatives of the effective capacity at
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SNR= 0 can be computed as

C̈Ei(SNR) = − 1

θi

[

g̈i(SNR)

gi(SNR)
−
(

ġi(SNR)

gi(SNR)

)2
]

. (A.87)

To simplify this equation, we derive the second derivative of gi(SNR) at SNR= 0 as

g̈i(0) = − θi
loge 2

E

{

f̈i(0)
}

+

(

θi
loge 2

E

{

f̈i(0)
}

)2

, (A.88)

where the second derivative expressionsf̈i(0) for i = 0, 1, 2 are given by

f̈1(0) = −δ21
[

z21 − z22
]

1{z1≥z2} ,

f̈2(0) = −δ22
[

z22 − z21
]

1{z1<z2} ,

f̈0(0) = −(1 − δ21)z
2
21{z1≥z2} − (1− δ22)z

2
11{z1<z2} . (A.89)

We insertḟi(0) in (A.80) andf̈i(0) in (A.89) ontoġi(0) in (A.79) andg̈i(0) in (A.88)

in order to obtain first and second derivative expressions ofthe effective capacity. By

incorporating the (A.78) and (A.87) on (A.86) we obtain wideband slope expression in

(5.39).

A.16 Proof of Proposition 5.3.5

In order to find the wideband slope, we need to determine the second derivative of the

maximum average arrival rate with respect toSNR. As SNR → 0 the second derivative
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expression is given by

r̈∗avg,i(0, θi)

=
g̈i(0)
θi

PON

[

− p11
1− p11

− 1− (1− p11 − p22)

1− p11

]

+
[ġi(0)]

2

θi
PON

[

− p211
(1−p11)2

+1+
(1−p11−p22)2
(1− p11)2

]

=− g̈i(0)
θi

+ (1− η)
[ġi(0)]

2

θi
(A.90)

whereη is defined in (3.9). The fact thatgi(0) = 1 is taken into account in (A.90). Finally,

inserting (A.69) and (A.90) into (A.86), the wideband slopeexpression in (5.30) is readily

obtained.

A.17 Proof of Proposition 5.3.6

In order to find the wideband slope, we need to determine the second derivative of the

maximum average arrival rate with respect toSNR. WhenSNR → 0, the second derivative

expression is given by

r̈∗avg,i(0, θi) =− PON

θi

{

2β

α2
ġi(0) +

α + β

α
(g̈i(0)− ġi(0))

}

=− g̈i(0)
θi

+ (1− ζ)
[ġi(0)]

2

θi
(A.91)

whereζ is defined in (3.17) and we again use the fact that gi(0) = 1. Finally, inserting

(A.85) and (A.91) into (A.86), we obtain the wideband slope expression in (5.34).
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A.18 Proof of Proposition 5.4.1

First, we define g(SNR) = 1−P{Γ1}
(

1− e−θλ
)

. For the ON-OFF discrete Markov source

the maximum average arrival rate can be rewritten as

r∗avg(SNR) =
PON

θ
loge

(

1− p11g(SNR)

(1−p11−p22)g2(SNR)+p22g(SNR)

)

. (A.92)

In order to find the minimum energy per bit and wideband slope,we need to determine

the first and second derivatives of the maximum average arrival rate with respect toSNR.

Initially, we take the first derivative of maximum average arrival rate and letSNR → 0 as

follows:

ṙ∗avg(0) =− ġ(0)
θ
. (A.93)

For this, we also need to characterize the first derivative ofg(SNR). We start with the Taylor

series expansion of the fixed rateλ in the low-SNR regime:

λ =
a

loge 2
SNR+

b

loge 2
SNR2 + o(SNR2). (A.94)

Now, the first derivative of g(SNR) is given by

ġ(SNR) = − ∂

∂SNR
P{Γ1}

(

1− e−θλ
)

+P{Γ1}
∂e−θλ

∂SNR
. (A.95)

As SNR→ 0, we haveλ→ 0. Therefore atSNR= 0, we have

ġ(0) = lim
SNR→0

P{Γ1}(−θ)e−θλ
∂λ

∂SNR
. (A.96)

To proceed we need to obtain the probability expressionP{Γ1}. For independent and
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exponentially distributedz1 andz2 with unit mean, we can obtain

P{Γ} =

∫ ∞

0

e−z2
∫ ∞

2λγz2+
2λ−1
SNR

e−z1dz1dz2 (A.97)

= e−
2λ−1
SNR

1

2λγ + 1
. (A.98)

Now, we can simplify the expression in (A.96) as

ġ(0) = − e−a

γ + 1
θ

a

loge 2
, (A.99)

and inserting this expression into (3.29), we obtain the minimum energy per bit as

Eb
N0 min

= − θ

ġ(0)
=

(γ + 1) loge 2

ae−a
. (A.100)

Finally, we want to determine the smallest possible minimumenergy per bit expression. It

can be easily seen that the smallest value for the minimum energy per bit is obtained when

a = 1, leading to the minimum energy per bit expression in (5.44).

In order to find the wideband slope, we first determine the second derivative of the

maximum average arrival rate with respect toSNR and then evaluate it atSNR = 0 as

follows:

r̈∗avg(0) = − g̈(0)
θ

+ (1− η)
[ġ(0)]2

θ
. (A.101)

Note that,η is defined in (3.9). The first derivative of g(SNR) atSNR= 0 is given by (A.96),

and the second derivative is
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g̈(0) = lim
SNR→0

2
∂P{Γ1}
∂SNR

∂e−θλ

∂SNR
+P{Γ1}

∂e−θλ

∂SNR2
(A.102)

=
e−a

γ + 1

θ

loge 2

[

a3 +
2a2γ

γ + 1
+

θa2

loge 2
+ 2b(a− 1)

]

. (A.103)

The wideband slope expression can be determined inserting the first and second deriva-

tive expressions in (A.93) and (A.101) into (3.31):

S0 =
2 (ġ(0))2

θ2

g̈(0)
θ

+ η−1
θ

(ġ(0))2
loge 2 (A.104)

=
1

θ(η−1)
2 loge 2

+ θ
loge 2e

−a + a+1
e−a + 2b(a−1)

a2e−a

. (A.105)

Since the wideband slope is defined as the slope at the minimumenergy per bit, we set

a = 1. Note that with this choice, parameterb vanishes as2b(a−1) → 0 in (A.105). Thus,

we obtain the formulation in (5.45).

A.19 Proof of Proposition 5.4.2

The maximum average arrival rate of Markov fluid source can berewritten as

r∗avg(SNR)=−PON

θ

[

1+
β

α−loge(g(SNR))

]

loge(g(SNR)). (A.106)

By taking the first derivative of the expression in (A.106) and letting SNR → 0, we

obtain the following:

ṙ∗avg(0) = −PON

θ

[

1 +
β

α

]

ġ(0) = − ġ(0)
θ
. (A.107)

By combining (A.107) with (A.99) asa → 1, and inserting into (3.29), we obtain the

minimum energy per bit given in (5.47).
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Now, we take the second derivative of the maximum average arrival rate with respect to

SNRand then evaluate it asSNR→ 0

r̈∗avg(0)=− PON

θ

[(

2β

α2
− 1− β

α

)

(ġ(0))2+

(

1+
β

α

)

g̈(0)

]

(A.108)

=− g̈(0)
θ

+ (1− ζ)
[ġ(0)]2

θ
. (A.109)

Note that,ζ is defined in (3.17). We derive the wideband slope expressionby using

(A.107), (A.109) and (3.31). Again, since the wideband slope is defined at the minimum

energy per bit, we seta = 1 and obtain the formulation in (5.48).
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Oct. 1975

[66] I. Csiszár and J. Körner, “Broadcast channels with confidential messages,"IEEE

Trans. Inform. Theory, vol. 3, pp.339âĂŞ348, May 1978.
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