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ABSTRACT
Battery lifetime is a key impediment to long-lasting low
power sensor nodes. Energy or power harvesting mitigates
the dependency on battery power, by converting ambient en-
ergy into electrical energy. This energy can then be used by
the device for data collection and transmission. This paper
proposes and analyses a queueing model to assess perfor-
mance of such an energy harvesting sensor node. Account-
ing for energy harvesting, data collection and data transmis-
sion opportunities, the sensor node is modelled as a paired
queueing system. The system has two queues, one represent-
ing accumulated energy and the other being the data queue.
By means of some numerical examples, we investigate the
energy-information trade-off.

1. INTRODUCTION
The problem of battery replacement and disposal is a key
impediment to ubiquitous use of wireless sensors networks.
Sensor networks are formed by a collection of intercommu-
nicating sensor nodes, collecting spatially distributed data
(temperature, humidity, movement, noise, . . . ). Sensors net-
works can be used in a large range of applications, including
military, environmental, home and health applications [1].
Despite vast improvements on power consumption and on-
going developments in power management, the lifetime of
wireless sensors is largely determined by the energy of on-
board batteries [13]. To overcome dependency on batteries,
current research effort focusses on wireless devices that ex-
tract the necessary energy from their environment [7]. Possi-
ble power sources include electromagnetic radiation, thermal
energy as well as mechanical energy [8].

The specific dynamics of energy harvesting has also drawn
the attention of the modelling community. Sensors being au-
tonomous in deciding which information will be transmitted
as well as when to transmit, various authors propose game
theoretic models; see e.g. [11] for power control games in
wireless networks. Accounting for energy harvesting, Tsuo
et al [15] consider a Bayesian game where each node knows

its local energy state. An evolutionary hawk and dove game
with harvesting nodes transmitting either at high or low
power is studied in [2, 5]. Specifically focussing solar power,
optimal energy management for a sensor node that uses a
sleep and wakeup strategy for energy conservation is studied
by a bargaining game in [12].

Neither of these game-theoretic models assume that acquired
data can be temporarily stored at the sensor node. To study
data buffering at the sensor node, queueing theoretic mod-
elling applies. [14] is a recent contribution on such a queue-
ing theoretic approach. These authors analytically study
stochastic stability of an energy harvesting node with data
buffering and rely on simulation to assess its performance.
Also the present contribution investigates a queueing model
for a harvesting sensor node. In particular, we assess the
performance of an energy harvesting sensor node account-
ing for uncertainty in data acquisition, in energy harvesting
and in transmission opportunities. To this end, we investi-
gate a queueing system with two queues: one queue repre-
sents the data buffer and one queue represents the available
energy. Maximising versatility of the model at hand while
keeping the analysis numerically tractable, we model data
acquisition, energy harvesting and transmission by means of
Markovian arrival processes; an “arrival” representing some
acquired data, some harvested energy and a transmission
opportunity (an encounter with another node or a base sta-
tion) respectively.

Such two-buffer queueing problems are sometimes termed
paired queues — pairing refers to the coupling between the
queues, service is only possible if both queues are non-empty
— and have been studied in various contexts including leaky-
bucket access control [16, 17], kitting processes [4] in assem-
bly and decoupling buffers in production systems [3].

Leaky-bucket access control in asynchronous transfer mode,
introduces a virtual buffer (a bucket) at sender nodes. The
virtual buffer is filled with tokens according to some well be-
haved process. For every transmission, a token is taken from
the bucket and transmission is only allowed if there are to-
kens present. Hence, the data buffer and leaky bucket consti-
tute a paired queueing system. Kitting is a particular strat-
egy for supplying materials to an assembly line. Instead of
delivering parts in containers of equal parts, kitting collects
the necessary parts for a given end product into a specific
container, called a kit, prior to arriving at an assembly unit.
As kits can only be completed if all parts are present, the
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Figure 1: Stochastic model of energy harvesting for
low power sensor nodes.

part buffers and the kitting operation constitutes a paired
queueing system. Finally, decoupling buffers are used to
reduce lead times in production systems by buffering semi-
finished products at some point in the production process.
When there is demand, semi-finished products are taken out
of the decoupling buffer and finished according to the de-
mand. Again, paired queueing applies as the second pro-
duction stage only starts if there are semi-finished products
and demand.

Finally, paired queues have also been studied in a more ab-
stract setting. Considering a system with two paired queues,
Harrison shows that it is necessary to impose a restriction
on the size of the buffer to ensure stability in the operations
of a kitting process [6]. Similar observations where made by
Latouche [9] who studied the difference of the queue lengths
in such a paired queueing system.

The remainder of this paper is organised as follows. The
paired queueing model under investigation and the nota-
tionally conventions are introduced in the next section. In
section 3, the system is analysed as a quasi-birth-and-death
process (QBD). Also, the numerical solution methodology
is discussed and relevant performance measures are deter-
mined. To illustrate our approach, section 4 considers some
numerical examples. Finally, conclusions are drawn in sec-
tion 5.

2. MODEL DESCRIPTION
The energy harvesting sensor node is modelled as a queueing
system with two queues, as depicted in figure 1. The energy
queue has finite capacity Ce and stores energy extracted
from the environment. The data queue keeps track of not
yet transmitted data packets and has infinite capacity.

The amount of stored energy is discretised for modelling
convenience. We make abstraction of the specifics of energy
harvesting apart from the assumption that there is a contin-
uous chance to come by some ‘chunks’ of energy. Therefore,
we assume that energy arrives in accordance with a Marko-
vian arrival process with state space KE . Let Ω0

E and Ω1
E

denote the generator matrices of this arrival process, gov-
erning the state transitions when there are no arrivals and
when there is an arrival, respectively. Analogously, the sen-
sor picks up data in accordance with a Markovian arrival
process with state space KA: whenever it picks up data,
there is an arrival in the data queue. Let Ω0

A and Ω1
A denote

the generator matrices of this arrival process, governing the
state transitions when there are no arrivals and when there
is an arrival, respectively.

Data can only be transmitted during transmission opportu-
nities. Moreover, the two queues are paired, meaning that
data can only be transmitted if the energy buffer is non-
empty. Whenever a transmission occurs, a data packet de-
parts but the level of the energy buffer may or may not
decrease (this assumption allows for modelling the dynam-
ics of the battery with fewer states). The arrivals of trans-
mission opportunities being exogenous to the state of the
sensor node, the departure process is a marked Markov pro-
cess with state space KD. The generator matrices Ω0

D, Ω1
D

and Ω2
D govern the state transitions of the departure process

without transmission opportunities, with a transmission op-
portunity that leads to a decrease of the energy buffer and
with a transmission opportunity that does not lead to such
a decrease. Note that for the matrices Ω0

E , Ω0
A and Ω0

D,
diagonal elements are assumed to be zero.

3. ANALYSIS

Modulating Markov chain. For ease of modelling, we first
consider the Markov chain with state space K = KE×KA×
KD that jointly describes the (marked) state changes of en-
ergy, arrival and departure processes. In the remainder, let
IE , IA and ID denote identity matrices with size |KE |, |KA|
and |KD|, respectively. Note that the symbol ⊗ denotes the
Kronecker’s product.

• The matrix A governs the transitions, when there are
neither arrivals nor departures:

A = Ω0
E ⊗ IA ⊗ ID + IE ⊗ Ω0

A ⊗ ID + IE ⊗ IA ⊗ Ω0
D .

• The matrix BE governs the transitions when there is
an arrival in the energy buffer:

BE = Ω1
E ⊗ IA ⊗ ID .

• The matrix BA governs the transitions when there is
an arrival in the data buffer:

BA = IE ⊗ Ω1
A ⊗ ID .

• The matrices C1 and C2 govern the transitions when
there is an arrival that drains the energy buffer and
that does not drain this buffer, respectively:

C1 = IE ⊗ IA ⊗ Ω1
D , C2 = IE ⊗ IA ⊗ Ω2

D .

Remark 1. The matrices A till C2 above are defined in
terms of the characteristics of the different arrival processes.
In the remainder, all results will be expressed in terms of the
matrices as defined above. Hence, these results remain valid
in the case that the different arrival processes are intercorre-
lated as well. In that case there is a single marked Markov
process, with marks for data arrivals, energy arrivals and
transmission opportunities.

Quasi-birth-death process. Having defined these transi-
tion matrices, we now focus on the queueing model at hand.
To be more precise, the energy harvesting sensor node sys-
tem is a continuous-time Markov chain with infinite state



spaceN×{1, 2, . . . , Ce}×K, K = {0, 1, . . . ,K}. At any time,
the state of the system is described by the triplet [n,m, i],
n being the number of data packets available, m being the
energy level and i being the state of the modulating chain.

The studied Markov process is a homogeneous quasi-birth-
and-death process (QBD), see [10]. In the present setting,
the level or block-row index, indicates the data packets avail-
able while the phase, i.e. the index within a block element,
indicates both the energy level and the state of the Marko-
vian environment. The one-step transitions are restricted
to states in the same level (from state (n, ∗, ∗) to state
(n, ∗, ∗)) or in two adjacent levels (from state (n, ∗, ∗) to
state (n+ 1, ∗, ∗) or state (n− 1, ∗, ∗)).

We then find that the generator matrix of the Markov chain
has the following block matrix representation,

Q =


B0 A2 0 0 · · ·
A0 A1 A2 0 · · ·
0 A0 A1 A2 · · ·
0 0 A0 A1 · · ·
...

...
...

...
. . .

 . (1)

The blocks are given by,

B0 =


D BE 0 · · · 0
0 D BE · · · 0
0 0 D · · · 0
...

...
...

. . .
...

0 0 0 · · · D

 (2)

A2 =


BA 0 0 · · · 0
0 BA 0 · · · 0
0 0 BA · · · 0
...

...
...

. . .
...

0 0 0 · · · BA

 (3)

A0 =


0 0 · · · 0 0

C1 C2 · · · 0 0
0 C1 · · · 0 0
...

...
. . .

...
...

0 0 · · · C1 C2

 (4)

A1 =


D BE 0 · · · 0
0 D BE · · · 0
0 0 D · · · 0
...

...
...

. . .
...

0 0 0 · · · D

 . (5)

with D = A − ∂A − ∂C1 − ∂C2 − ∂BA − ∂BE and D =
D + C1 + C2, where the notation ∂X represents a diagonal
matrix with diagonal elements equal to the row sums of X.

Numerical solution. Having defined the different blocks
of the QBD process, we now focus on its solution. Recall

that the state of the Markov chain was described by the
triplet [n,m, i]; n is the size of the data buffer, m is the
size of the energy buffer and i is the state of the mod-
ulating chain. Let π(n,m, i) be the steady state proba-
bility to be in state [n,m, i]. A well-known method for
finding the stationary distribution of QBD processes is the
matrix-geometric method. Using the vector notation πk =
(π(k, 0, 0), π(k, 0, 1), . . . , π(k, Ce,K)), the probability vectors
can be expressed as,

πk = π0R
k. (6)

where the so-called rate matrix R is the minimal non-negative
solution of the non-linear matrix equation

R2A0 + RA1 +A2 = 0 .

We compute the rate matrix by implementing the efficient
iterative algorithm of [10], chapter 8.

Performance measures. Once the steady state probabili-
ties have been determined numerically, we can calculate a
number of interesting performance measures for the harvest-
ing energy sensor node. For ease of notation, we introduce
the marginal probability mass functions of the energy and
the data queue content: π(e)(m) =

∑
i∈K

∑∞
n=0 π(n,m, i)

and π(d)(n) =
∑

i∈K
∑Ce

m=0 π(n,m, i).

Note that as the data queue is infinite, the throughput of
the sensor node system η equals the data arrival rate λd. In
addition, we have the following performance measures.

• The mean energy queue and the mean data queue:
EQe and EQd respectively,

EQe =

Ce∑
m

π(e)(m)m, EQd =

∞∑
n

π(d)(n)n .

• The variance of the energy queue and the data queue:
VarQe and VarQd respectively,

VarQe =

Ce∑
m

π(e)(m)m2 − (EQe)2 ,

VarQd =

∞∑
n

π(d)(n)n2 − (EQd)2 .

• The mean delay L (calculated based on Little’s theo-
rem) is the average amount of time between the arrival
of a data packet its transmission:

L =
EQd

λd

• As the energy queue has finite capacity, energy har-
vesting may be blocked. This happens when energy is
captured but the queue is full. Hence, blocking cor-
responds to the loss probability in the energy queue.
The loss probability is most easily expressed in terms
of the throughput. We have,

be =
λe − η
λe

=
λe − λd

λe
.
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Figure 2: There is a trade-off between the mean
amount of stored energy and stored data and be-
tween the delay.

4. NUMERICAL RESULTS
We now illustrate our approach by means of some numerical
examples.

Poisson arrivals and exponential data transmission op-
portunities. As a first example, the difference between the
mean energy queue and the mean data queue versus the ca-
pacity Ce is depicted in figure 2(a). We assume that energy
units and data units arrive according to a Poisson process
with parameter λe = 0.6 and λd = 0.6, respectively. The
probability to use one unit of energy for data transmission
p equals 0.8 and the data transmission opportunities are ex-
ponentially distributed with service rate µ equal to 1. As
the figure shows, the buffer capacity of 4 results on aver-
age in no data and energy in the buffer. Under and above
the level, energy and data are on average backlogged, re-
spectively. Obviously, there is on average more amount of
energy and less buffer of data as the capacity increases.

Figure 2(b) represents the trade-off between the maximum
probability to have a delay higher or equal to 10 (left side)
and the mean amount of stored energy (right side). Note
that we calculated the delay distribution by using the one-
sided Chebyshev’s inequality. Under the same parameter as-
sumptions of figure 2(a), the maximum probability to have a
delay higher or equal to 10 decreases and the mean amount
of stored energy increases as the energy capacity increases
for each service rate. Indeed, if more buffer capacity is avail-
able, it will be used — the energy queue increases such that
there is on average less time required to transmit one data
unit. Furthermore, we observe a slightly decrease of the
amount of energy as the service rate µ increases. Indeed,
the more data is transmitted per time unit, the higher the
mean amount of energy used to transmit data. Finally, the
maximum probability to have a delay equal or higher than
10 decreases as the service rate increases, as expected.

Markovian arrival process for energy. We also quantity
the impact of irregular capture of energy. To this end we
compare both buffers with Poisson arrivals to correspond-
ing system with interrupted Poisson arrivals for the energy
and Poisson arrivals for the data. The arrival interruptions
account for inefficiency in the energy harvesting process.

The interrupted Poisson process considered here is a two-
state Markovian process. In the active state, generated en-
ergy arrive in accordance with a Poisson process with rate
λe whereas no new energy arrive in the inactive state. Let
α and β denote the rate from the active to the inactive
state and vice versa, respectively. We then use the following
parameters to characterise the interrupted Poisson process
(IPP),

σ =
β

α+ β
, κ =

1

α
+

1

β
, λ∗e = λeσ .

Note that σ is the fraction of time that the interrupted Pois-
son process is active, the absolute time parameter κ is the
average duration of an active and an inactive period, and λ∗e
is the arrival load of energy.

Figure 3 shows the mean number of stored data packets ver-
sus the arrival load of energy with buffer capacity Ce equal
to 5 and 10 for Poisson arrivals as well as for interrupted
Poisson arrivals of energy. The probability to use one unit
of energy for data transmission equals 0.8 and transmission
times are exponentially distributed with service rate µ equal
to 1. In addition, we set σ = 0.8 and κ = 10 for the inter-
rupted Poisson process (e.g. λe = 0.8 for Poisson arrivals
and λe = 1.0 for interrupted Poisson arrivals). The data
arrival rate λd equals 0.6. As expected, the mean number of
stored data packets decreases as the arrival rate of energy
increases. Furthermore, the impact of the buffer capacity
decreases as the arrival rate of energy λe increases. Fi-
nally, comparing interrupted Poisson and Poisson processes,
burstiness in the energy harvesting process has a negative
impact on performance — there is on average more time
required to transmit one data unit. Figure 4 confirms the
previous results. Indeed, the probability to have an empty
energy queue decreases as the buffer capacity of energy de-
creases and the probability is higher for interrupted Poisson
than for Poisson arrivals.
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Figure 3: Irregular capture of energy results in a
higher mean number of stored data packets.
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tunity distribution has no significant impact on the
mean amount of stored energy.

Phase-type distributed data transmission opportunities.
The last numerical example quantifies the impact of the dis-
tribution of the data transmission opportunity on the sen-
sor node system. Figure 5 and 6 depict the mean amount
of energy in the queue and the mean delay of the sensor
node system. In both figures, the energy arrival rate λe is
varied and different values of the variance of the data trans-
mission opportunity distribution are assumed as indicated.
The probability to use one unit of energy for data trans-
mission p equals 0.8 and the mean service time equals 1 for
all curves. We consider a two-phase hyper-exponential dis-
tribution (in which each phase has the same probability to
occur) and a two-phase Erlang distribution. Note that two
corner cases coincide both with an exponential distribution:
a hyper-exponential distribution with unit variance and an
Erlang distribution with one phase. Furthermore, the data
arrival rate λd equals 0.6 and the energy capacity Ce equals
10. Clearly, figure 5 and 6 show respectively that the en-
ergy buffer content converges to maximum capacity and the
mean delay decreases to a certain value as the energy arrival
rate increases. The second plot shows values relative to the
exponential distribution. Concerning the mean amount of
stored energy, we observe that the data transmission oppor-
tunity distribution has no significant effect on this perfor-
mance measure. However, the difference between σ2 equal
to 1/2, 1 and 2 for the mean delay remains constant and is
significant. Finally, the mean amount of stored energy and
the mean delay show respectively a slight decrease and in-
crease as the variance of the data transmission opportunity
distribution σ2 increases.

5. CONCLUSION
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In this paper, we analyse the performance of different energy
harvesting sensor nodes. In particular, we investigate the
impact of irregular capture of energy in the environment as
well as the data transmission opportunity distribution on the
performance of sensor node systems. In the studied system,
both accumulated energy and data needs to be available for
transmission. Furthermore, we assume that there is a prob-
ability that one unit of energy whether or not will be used
to transmit one unit of data. Therefore, the studied sen-
sor node system is modelled as a homogeneous quasi-birth-
and-death process (QBD) and solved with matrix-analytic
methods.

As our numerical examples show, there is trade-off to be
made between the storage cost of energy and the service
level of the sensor node, as expected — e.g. a higher capac-
ity causes on average a higher storage of energy and a smaller
time between data availability and data transmission. Fur-
thermore, irregular capture of energy has a negative effect on
the performance of the sensor node system. However, system
performance is partially insensitive to variation in the data
transmission opportunity distribution. Future work will fo-
cus on determining the total cost of the studied sensor node
system.
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