44 research outputs found

    VoroCrust: Voronoi Meshing Without Clipping

    Full text link
    Polyhedral meshes are increasingly becoming an attractive option with particular advantages over traditional meshes for certain applications. What has been missing is a robust polyhedral meshing algorithm that can handle broad classes of domains exhibiting arbitrarily curved boundaries and sharp features. In addition, the power of primal-dual mesh pairs, exemplified by Voronoi-Delaunay meshes, has been recognized as an important ingredient in numerous formulations. The VoroCrust algorithm is the first provably-correct algorithm for conforming polyhedral Voronoi meshing for non-convex and non-manifold domains with guarantees on the quality of both surface and volume elements. A robust refinement process estimates a suitable sizing field that enables the careful placement of Voronoi seeds across the surface circumventing the need for clipping and avoiding its many drawbacks. The algorithm has the flexibility of filling the interior by either structured or random samples, while preserving all sharp features in the output mesh. We demonstrate the capabilities of the algorithm on a variety of models and compare against state-of-the-art polyhedral meshing methods based on clipped Voronoi cells establishing the clear advantage of VoroCrust output.Comment: 18 pages (including appendix), 18 figures. Version without compressed images available on https://www.dropbox.com/s/qc6sot1gaujundy/VoroCrust.pdf. Supplemental materials available on https://www.dropbox.com/s/6p72h1e2ivw6kj3/VoroCrust_supplemental_materials.pd

    Locally optimal Delaunay-refinement and optimisation-based mesh generation

    Get PDF
    The field of mesh generation concerns the development of efficient algorithmic techniques to construct high-quality tessellations of complex geometrical objects. In this thesis, I investigate the problem of unstructured simplicial mesh generation for problems in two- and three-dimensional spaces, in which meshes consist of collections of triangular and tetrahedral elements. I focus on the development of efficient algorithms and computer programs to produce high-quality meshes for planar, surface and volumetric objects of arbitrary complexity. I develop and implement a number of new algorithms for mesh construction based on the Frontal-Delaunay paradigm - a hybridisation of conventional Delaunay-refinement and advancing-front techniques. I show that the proposed algorithms are a significant improvement on existing approaches, typically outperforming the Delaunay-refinement technique in terms of both element shape- and size-quality, while offering significantly improved theoretical robustness compared to advancing-front techniques. I verify experimentally that the proposed methods achieve the same element shape- and size-guarantees that are typically associated with conventional Delaunay-refinement techniques. In addition to mesh construction, methods for mesh improvement are also investigated. I develop and implement a family of techniques designed to improve the element shape quality of existing simplicial meshes, using a combination of optimisation-based vertex smoothing, local topological transformation and vertex insertion techniques. These operations are interleaved according to a new priority-based schedule, and I show that the resulting algorithms are competitive with existing state-of-the-art approaches in terms of mesh quality, while offering significant improvements in computational efficiency. Optimised C++ implementations for the proposed mesh generation and mesh optimisation algorithms are provided in the JIGSAW and JITTERBUG software libraries

    JIGSAW-GEO (1.0): locally orthogonal staggered unstructured grid generation for general circulation modelling on the sphere

    Get PDF
    An algorithm for the generation of non-uniform, locally-orthogonal staggered unstructured spheroidal grids is described. This technique is designed to generate very high-quality staggered Voronoi/Delaunay meshes appropriate for general circulation modelling on the sphere, including applications to atmospheric simulation, ocean-modelling and numerical weather prediction. Using a recently developed Frontal-Delaunay refinement technique, a method for the construction of high-quality unstructured spheroidal Delaunay triangulations is introduced. A locally-orthogonal polygonal grid, derived from the associated Voronoi diagram, is computed as the staggered dual. It is shown that use of the Frontal-Delaunay refinement technique allows for the generation of very high-quality unstructured triangulations, satisfying a-priori bounds on element size and shape. Grid-quality is further improved through the application of hill-climbing type optimisation techniques. Overall, the algorithm is shown to produce grids with very high element quality and smooth grading characteristics, while imposing relatively low computational expense. A selection of uniform and non-uniform spheroidal grids appropriate for high-resolution, multi-scale general circulation modelling are presented. These grids are shown to satisfy the geometric constraints associated with contemporary unstructured C-grid type finite-volume models, including the Model for Prediction Across Scales (MPAS-O). The use of user-defined mesh-spacing functions to generate smoothly graded, non-uniform grids for multi-resolution type studies is discussed in detail.Comment: Final revisions, as per: Engwirda, D.: JIGSAW-GEO (1.0): locally orthogonal staggered unstructured grid generation for general circulation modelling on the sphere, Geosci. Model Dev., 10, 2117-2140, https://doi.org/10.5194/gmd-10-2117-2017, 201

    Delaunay Tessellations and Voronoi Diagrams in CGAL

    Get PDF
    The Cgal library provides a rich variety of Voronoi diagrams and Delaunay triangulations. This variety covers several aspects: generators, dimensions and metrics, which we describe in Section 2. One aim of this paper is to present the main paradigms used in CGAL: Generic programming, separation between predicates/constructions and combinatorics, and exact geometric computation (not to be confused with exact arithmetic!). The first two paradigms translate into software design choices, described in Section 4, while the last covers both robustness and efficiency issues, respectively described in Sec- tion 6 and 7. Other important aspects of the Cgal library are the interface issues, be they for traversing a tessellation, or for interoperability with other libraries or languages, see Section 5. We present in Section 8 some tessellations at work in the context of surface reconstruction and mesh generation. Section 9 is devoted to some on-going and future work on periodic triangulations (triangulations in periodic spaces), and on high-quality mesh generation with optimized tessellations. Section 10 provides typical numbers in terms of efficiency and scalability for constructing tessellations, and lists the remaining weaknesses. We conclude by listing some of our directions for the future

    Lp Centroidal Voronoi Tesselation and its applications

    Get PDF
    International audienceThis paper introduces Lp -Centroidal Voronoi Tessellation (Lp -CVT), a generalization of CVT that minimizes a higher-order moment of the coordinates on the Voronoi cells. This generalization allows for aligning the axes of the Voronoi cells with a predefined background tensor field (anisotropy). Lp -CVT is computed by a quasi-Newton optimization framework, based on closed-form derivations of the objective function and its gradient. The derivations are given for both surface meshing (Ω is a triangulated mesh with per-facet anisotropy) and volume meshing (Ω is the interior of a closed triangulated mesh with a 3D anisotropy field). Applications to anisotropic, quad-dominant surface remeshing and to hex-dominant volume meshing are presented. Unlike previous work, Lp -CVT captures sharp features and intersections without requiring any pre-tagging

    Restricted Constrained Delaunay Triangulations

    Get PDF
    We introduce the restricted constrained Delaunay triangulation (restricted CDT), a generalization of both the restricted Delaunay triangulation and the constrained Delaunay triangulation. The restricted CDT is a triangulation of a surface whose edges include a set of user-specified constraining segments. We define the restricted CDT to be the dual of a restricted Voronoi diagram defined on a surface that we have extended by topological surgery. We prove several properties of restricted CDTs, including sampling conditions under which the restricted CDT contains every constraining segment and is homeomorphic to the underlying surface

    Triangulating stratified manifolds I: a reach comparison theorem

    Get PDF
    In this paper, we define the reach for submanifolds of Riemannian manifolds, in a way that is similar to the Euclidean case. Given a d-dimensional submanifold S of a smooth Riemannian manifold M and a point p ∈ M that is not too far from S we want to give bounds on local feature size of exp −1 p (S). Here exp −1 p is the inverse exponential map, a canonical map from the manifold to the tangent space. Bounds on the local feature size of exp −1 p (S) can be reduced to giving bounds on the reach of exp −1 p (B), where B is a geodesic ball, centred at c with radius equal to the reach of S. Equivalently we can give bounds on the reach of exp −1 p • exp c (B c), where now B c is a ball in the tangent space T c M, with the same radius. To establish bounds on the reach of exp −1 p • exp c (B c) we use bounds on the metric and on its derivative in Riemann normal coordinates. This result is a first step towards answering the important question of how to triangulate stratified manifolds
    corecore