1,012 research outputs found

    Scale detection via keypoint density maps in regular or near-regular textures

    Get PDF
    In this paper we propose a new method to detect the global scale of images with regular, near regular, or homogenous textures. We define texture ‘‘scale’’ as the size of the basic elements (texels or textons) that most frequently occur into the image. We study the distribution of the interest points into the image, at different scale, by using our Keypoint Density Maps (KDMs) tool. A ‘‘mode’’ vector is built computing the most frequent values (modes) of the KDMs, at different scales. We observed that the mode vector is quasi linear with the scale. The mode vector is properly subsampled, depending on the scale of observation, and compared with a linear model. Texture scale is estimated as the one which minimizes an error function between the related subsampled vector and the linear model. Results, compared with a state of the art method, are very encouraging

    Revealing and modifying non-local variations in a single image

    Get PDF
    We present an algorithm for automatically detecting and visualizing small non-local variations between repeating structures in a single image. Our method allows to automatically correct these variations, thus producing an 'idealized' version of the image in which the resemblance between recurring structures is stronger. Alternatively, it can be used to magnify these variations, thus producing an exaggerated image which highlights the various variations that are difficult to spot in the input image. We formulate the estimation of deviations from perfect recurrence as a general optimization problem, and demonstrate it in the particular cases of geometric deformations and color variations.Israel Science Foundation (Grant 931/14)Shell Researc

    Coplanar Repeats by Energy Minimization

    Full text link
    This paper proposes an automated method to detect, group and rectify arbitrarily-arranged coplanar repeated elements via energy minimization. The proposed energy functional combines several features that model how planes with coplanar repeats are projected into images and captures global interactions between different coplanar repeat groups and scene planes. An inference framework based on a recent variant of α\alpha-expansion is described and fast convergence is demonstrated. We compare the proposed method to two widely-used geometric multi-model fitting methods using a new dataset of annotated images containing multiple scene planes with coplanar repeats in varied arrangements. The evaluation shows a significant improvement in the accuracy of rectifications computed from coplanar repeats detected with the proposed method versus those detected with the baseline methods.Comment: 14 pages with supplemental materials attache

    Physically based geometry and reflectance recovery from images

    Get PDF
    An image is a projection of the three-dimensional world taken at an instance in space and time. Its formation involves a complex interplay between geometry, illumination and material properties of objects in the scene. Given image data and knowledge of some scene properties, the recovery of the remaining components can be cast as a set of physically based inverse problems. This thesis investigates three inverse problems on the recovery of scene properties and discusses how we can develop appropriate physical constraints and build them into effective algorithms. Firstly, we study the problem of geometry recovery from a single image with repeated texture. Our technique leverages the PatchMatch algorithm to detect and match repeated patterns undergoing geometric transformations. This allows effective enforcement of translational symmetry constraint in the recovery of texture lattice. Secondly, we study the problem of computational relighting using RGB-D data, where the depth data is acquired through a Kinect sensor and is often noisy. We show how the inclusion of noisy depth input helps to resolve ambiguities in the recovery of shape and reflectance in the inverse rendering problem. Our results show that the complementary nature of RGB and depth is highly beneficial for a practical relighting system. Lastly, in the third problem, we exploit the use of geometric constraints relating two views, to address a challenging problem in Internet image matching. Our solution is robust to geometric and photometric distortions over wide baselines. It also accommodates repeated structures that are commonly found in our modern environment. Building on the image correspondence, we also investigate the use of color transfer as an additional global constraint in relating Internet images. It shows promising results in obtaining more accurate and denser correspondence

    Unsupervised Semantic Discovery Through Visual Patterns Detection

    Get PDF
    We propose a new fast fully unsupervised method to discover semantic patterns. Our algorithm is able to hierarchically find visual categories and produce a segmentation mask where previous methods fail. Through the modeling of what is a visual pattern in an image, we introduce the notion of “semantic levels" and devise a conceptual framework along with measures and a dedicated benchmark dataset for future comparisons. Our algorithm is composed by two phases. A filtering phase, which selects semantical hotsposts by means of an accumulator space, then a clustering phase which propagates the semantic properties of the hotspots on a superpixels basis. We provide both qualitative and quantitative experimental validation, achieving optimal results in terms of robustness to noise and semantic consistency. We also made code and dataset publicly available
    • …
    corecore