8 research outputs found

    Deformation theory of nearly K\"ahler manifolds

    Get PDF
    Nearly K\"ahler manifolds are the Riemannian 6-manifolds admitting real Killing spinors. Equivalently, the Riemannian cone over a nearly K\"ahler manifold has holonomy contained in G2. In this paper we study the deformation theory of nearly K\"ahler manifolds, showing that it is obstructed in general. More precisely, we show that the infinitesimal deformations of the homogeneous nearly K\"ahler structure on the flag manifold are all obstructed to second order

    On the linear stability of nearly Kähler 6-manifolds

    Get PDF

    Topology of Asymptotically Conical Calabi–Yau and G2 Manifolds and Desingularization of Nearly Kähler and Nearly G2 Conifolds

    Get PDF
    A natural approach to the construction of nearly G2 manifolds lies in resolving nearly G2 spaces with isolated conical singularities by gluing in asymptotically conical G2 manifolds modelled on the same cone. If such a resolution exits, one expects there to be a family of nearly G2 manifolds, whose endpoint is the original nearly G2 conifold and whose parameter is the scale of the glued in asymptotically conical G2 manifold. We show that in many cases such a curve does not exist. The non-existence result is based on a topological result for asymptotically conical G2 manifolds: if the rate of the metric is below - 3 , then the G2 4-form is exact if and only if the manifold is Euclidean R7. A similar construction is possible in the nearly Kähler case, which we investigate in the same manner with similar results. In this case, the non-existence results is based on a topological result for asymptotically conical Calabi–Yau 6-manifolds: if the rate of the metric is below - 3 , then the square of the Kähler form and the complex volume form can only be simultaneously exact, if the manifold is Euclidean R6

    Complete non-compact Spin(7) manifolds from self-dual Einstein 4-orbifolds

    Get PDF
    We present an analytic construction of complete non-compact 8-dimensional Ricci-flat manifolds with holonomy Spin(7). The construction relies on the study of the adiabatic limit of metrics with holonomy Spin(7) on principal Seifert circle bundles over asymptotically conical G2 orbifolds. The metrics we produce have an asymptotic geometry, so-called ALC geometry, that generalises to higher dimensions the geometry of 4-dimensional ALF hyperk\"ahler metrics. We apply our construction to asymptotically conical G2 metrics arising from self-dual Einstein 4-orbifolds with positive scalar curvature. As illustrative examples of the power of our construction, we produce complete non-compact Spin(7) manifolds with arbitrarily large second Betti number and infinitely many distinct families of ALC Spin(7) metrics on the same smooth 8-manifold

    Complete noncompact G2-manifolds from asymptotically conical Calabi-Yau 3-folds

    Get PDF
    We develop a powerful new analytic method to construct complete non-compact G2-manifolds, i.e. Riemannian 7-manifolds (M,g) whose holonomy group is the compact exceptional Lie group G2. Our construction starts with a complete non-compact asymptotically conical Calabi-Yau 3-fold B and a circle bundle M over B satisfying a necessary topological condition. Our method then produces a 1-parameter family of circle-invariant complete G2-metrics on M that collapses to the original Calabi-Yau metric on the base B as the parameter converges to 0. The G2-metrics we construct have controlled asymptotic geometry at infinity, so-called asymptotically locally conical (ALC) metrics, and are the natural higher-dimensional analogues of the ALF metrics that are well known in 4-dimensional hyperk\"ahler geometry. We give two illustrations of the strength of our method. Firstly we use it to construct infinitely many diffeomorphism types of complete non-compact simply connected G2-manifolds; previously only a handful of such diffeomorphism types was known. Secondly we use it to prove the existence of continuous families of complete non-compact G2-metrics of arbitrarily high dimension; previously only rigid or 1-parameter families of complete non-compact G2-metrics were known.Comment: v2: Revised organisation of Section 4 and Appendix A; typos corrected. v3: Overall revision including correction of typos and updated references to reflect recent developments. Main changes: revised introduction, further details in Section 5.3, simplified argument in Section 8.2 and revised presentation of examples in Section

    Deformation theory of nearly Gâ‚‚-structures and nearly Gâ‚‚ instantons

    Get PDF
    We study two different deformation theory problems on manifolds with a nearly G₂-structure. The first involves studying the deformation theory of nearly G₂ manifolds. These are seven dimensional manifolds admitting real Killing spinors. We show that the infinitesimal deformations of nearly G₂-structures are obstructed in general. Explicitly, we prove that the infinitesimal deformations of the homogeneous nearly G₂-structure on the Aloff–Wallach space are all obstructed to second order. We also completely describe the de Rham cohomology of nearly G₂ manifolds. In the second problem we study the deformation theory of G₂ instantons on nearly G₂ manifolds. We make use of the one-to-one correspondence between nearly parallel G₂-structures and real Killing spinors to formulate the deformation theory in terms of spinors and Dirac operators. We prove that the space of infinitesimal deformations of an instanton is isomorphic to the kernel of an elliptic operator. Using this formulation we prove that abelian instantons are rigid. Then we apply our results to explicitly describe the deformation space of the canonical connection on the four normal homogeneous nearly G₂ manifolds. We also describe the infinitesimal deformation space of the SU(3) instantons on Sasaki–Einstein 7-folds which are nearly G₂ manifolds with two Killing spinors. A Sasaki–Einstein structure on a 7-dimensional manifold is equivalent to a 1-parameter family of nearly G₂-structures. We show that the deformation space can be described as an eigenspace of a twisted Dirac operator
    corecore