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Abstract
A natural approach to the construction of nearly G2 manifolds lies in resolving nearly
G2 spaces with isolated conical singularities by gluing in asymptotically conical G2
manifolds modelled on the same cone. If such a resolution exits, one expects there to
be a family of nearly G2 manifolds, whose endpoint is the original nearly G2 conifold
and whose parameter is the scale of the glued in asymptotically conical G2 manifold.
We show that in many cases such a curve does not exist. The non-existence result is
based on a topological result for asymptotically conical G2 manifolds: if the rate of the
metric is below−3, then the G2 4-form is exact if and only if themanifold is Euclidean
R
7. A similar construction is possible in the nearly Kähler case, which we investigate

in the same manner with similar results. In this case, the non-existence results is based
on a topological result for asymptotically conical Calabi–Yau 6-manifolds: if the rate
of the metric is below−3, then the square of the Kähler form and the complex volume
form can only be simultaneously exact, if the manifold is Euclidean R

6.

Keywords Special holonomy · Asymptotically conical manifolds · Einstein
manifolds

Mathematics Subject Classification 53C25 · 53C24 · 53C21

1 Introduction

If (L, gL) is a closed Riemannian manifold of dimension n, then the cone C(L) =
(0,∞) × L can be equipped with the cone metric gC = dr2 + r2gL . The manifold
L is called the link of the cone. If Ric[gL ] = (n − 1)gL , then Ric[gC ] = 0. This
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relationship between positive Einstein manifolds and Ricci flat cones has a very inter-
esting extension to the theory of special holonomy, elucidated by Bär in [1]. This
correspondence admits a uniform description in terms of Killing spinors and parallel
spinors. It can also be described on the level of each of the holonomy groups whose
underlying metric is Ricci flat:

(1) holonomy group SU(n): the cone over a Sasaki–Einstein manifold is a Calabi–Yau
cone,

(2) holonomy group Sp(n): the cone over a 3-Sasaki manifold is a hyperkähler
manifold,

(3) holonomy group G2: the cone over a nearly Kähler manifold is a G2 manifold,
(4) holonomygroupSpin(7): the coneover a nearlyG2 manifold is aSpin(7)manifold.

In the first case, the cone is of dimension 2n, in the second case, the cone has dimension
4n, whereas the third case only appears in dimension 7 and the last case in dimension
8. The holonomy groups G2 and Spin(7) are also known as the exceptional holonomy
groups. Remarkably, the structure group G2 appears both as a holonomy group and
as the structure group of the geometry on the link of a Spin(7) cone. Similarly, the
structure group SU(3) appears as a holonomy group and as the structure group of the
geometry of the link of a G2 cone. The groups G2 and SU(3) are the only groups
for which this is true and this observation is foundational for the investigations in this
article. A remark concerning terminology is in place: nearly G2 manifolds are also
known as nearly parallel G2 manifolds in the literature. We prefer the term “nearly
G2” to emphasize the analogy with nearly Kähler manifolds.

The purpose of this article is to study the possibility of constructing nearly G2 and
nearly Kähler manifolds on the basis of this observation.

Given any nearly Kähler manifold, one can construct an incomplete nearly G2
manifold, which has two singularities, modelled on the G2 cone associated to the
nearly Kähler manifolds [2]. This construction is known as the sine cone construction.
Spaces with singularities modelled on cones will be called conifolds in the sequel. It
is conceivable that there are more examples of nearly G2 conifolds.

On the other hand, for some of the known nearly Kähler manifolds, there exist
complete, non-compactG2 manifolds, which are asymptotic at infinity to the cone over
the nearly Kähler manifold. These will be called asymptotically conical G2 manifolds.

A G2 structure on a manifold M is given by certain 3-forms ϕ ∈ �3(M). This will
be explained in more detail in Sect. 2.

If (N , ϕAC ) is an asymptotically conical G2 manifold, then the rescalings
(N , t3ϕAC ) are also asymptotically conical G2 manifolds for every t > 0. Moreover,
(N , t3ϕAC ) converges to a G2 cone as t → 0. Given a nearly G2 conifold (X , ϕC S),
one can “chop off” the singularity and instead glue on a piece of (N , t3ϕAC ). If t is
sufficiently small, the error made is small to zeroth order. The equations satisfied by
the two pieces are quite different, however. Therefore it is a priori unclear if there
exists a nearly G2 manifold close to this resolved nearly G2 conifold.

Suppose for the moment, there exists a nearby nearly G2 structure for every suf-
ficiently small t > 0. Then we obtain a curve (M, ϕ(t)) of nearly G2 conifolds,
such that (M, ϕ(t)) converges to (X , ϕC S) as t → 0 and (M, t−3ϕ(t)) converges to
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(N , ϕAC ). Such a family of nearly G2 structures will be called a smooth desingular-
ization, if it also satisfies certain regularity assumptions. (See Definition 4.1 for the
precise meaning.)

The purpose of this article is to investigate whether such families can exist. It will
turn out that this question is closely related to the topology of asymptotically conical
G2 manifolds.

Theorem A Let (X , ϕC S) be a nearly G2 conifold with a singularity at x0 modelled
on the G2 cone (C = C(L), ϕC ). Suppose (N , ϕAC ) is an asymptotically conical G2
manifold, asymptotic to (C, ϕC ).

If there exists a smooth desingularization of (X , ϕC S) by (N , ϕAC ) at x0, then ∗ϕAC

is exact.

A precise definition of the notions of cones, conifolds and asymptotically conical
manifolds will be given in Sect. 3. Smooth desingularizations will be defined in Sect.
4 and this theorem and the next will also be proven there.

The equation for nearly G2 manifolds implies that the dual of the G2 form ∗ϕC S

is exact. Therefore the theorem essentially says that the asymptotically conical G2
manifold inherits this property if it arises from a smooth desingularization.

In six dimensions, a very similar construction is possible with nearly Kähler coni-
folds and asymptotically conical Calabi–Yau 6-manifolds. Both classes of manifolds
are described by SU(3) structures. These will be parametrized by a pair (ω,�), where
ω is a 2-form and � is a complex valued 3-form.

Theorem B Let (X , ωC S,�C S) be a nearly Kähler conifold with a singularity at x0
modelled on the Calabi–Yau cone (C = C(L), ωC ,�C ). Suppose (N , ωAC ,�AC ) is
an asymptotically conical Calabi–Yau manifold asymptotic to (C, ωC ,�C ).

If there exists a smooth desingularization of (X , ωC S,�C S) by (N , ωAC ,�AC ) at
x0, then ω2

AC and Re�AC are exact.

Similarly to the nearly G2 case, the nearly Kähler equations imply that the forms
ω2

C S and Re�C S are exact and this theorem shows that a smoothly desingularizing
asymptotically conical Calabi–Yau manifold inherits this property.

It turns out that below a certain rate threshold asymptotically conical G2 or Calabi–
Yau 6-manifolds can only satisfy the conclusions of the preceding theorems if they
are already Euclidean spaces. Therefore, no asymptotically conical G2 manifold with
rate less than −3 can desingularize a nearly G2 conifold in the sense of Definition
4.1. Likewise, no asymptotically conical Calabi–Yau 6-manifold with rate less than
−3 can desingularize a nearly Kähler manifold in the sense of Definition 4.2.

Theorem C Let (M, g, ϕ) be an asymptotically conical G2 manifold of rate ν < −3.
Then ∗ϕ ∈ �4(M) is exact if and only if (M, g) is isometric to (R7, geucl).
In particular, if (M, g) is not isometric to (R7, geucl) the cohomology group

H4(M, R) is non-trivial.

In 1989, Bryant and Salamon constructed the first three asymptotically conical Rie-
mannian manifolds with holonomy group G2, which were also the first complete
examples with holonomy group G2. [8] The underlying manifolds of these Bryant–
Salamon spaces are�2−S4,�2−CP

2 and S3×R
4. The rate of�2−S4 and�2−CP

2 is−4
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and to these spaces the theorem applies. On the other hand, the metric on S3 × R
4 has

rate −3 and therefore the theorem does not apply, which is also evident from the fact
that H4(S3 × R

4) = 0. This example also shows the sharpness of the rate threshold.
Recently, Foscolo, Haskins and Nordström constructed infinitely many more exam-
ples of asymptotically conical G2 manifolds, see [17]. These examples are of rate −3
and the theorem therefore does not apply.

Theorem D Let (M, g, ω,�) be an asymptotically conical SU(3) manifold of rate
ν < −3.

Then ω2 ∈ �2(M) and Re� ∈ �3(M) are simultaneously exact if and only if
(M, g) is isometric to (R6, geucl).

In particular, if (M, g) is not isometric to (R6, geucl), the cohomology group
H2(M, R) or H3(M, R) is non-trivial.

There exists an extensive literature for asymptotically conical Calabi–Yau manifolds,
which includes existence results, see for example [13] and references included there.
A class of examples to which the theorem can be applied are crepant resolution of
Calabi–Yau cones with compactly supported Kähler class. These have rate −6+ δ for
every δ > 0, see [31]. See also the discussion in Sect. 4 of [13] for an extension to
almost compactly supported Kähler classes. An explicit example in this class is given
by the Calabi metric on the total space of the line bundle O(−3) → CP

2, which has
rate −6. This space is asymptotic to C

3/Z3.
Two examples, in which the Theorem D does not apply, are given by the Stenzel

metric on T ∗S3, which has rate −3, and the Candelas-DeLaOssa metric on the total
space of the vector bundleO(−1) ⊕O(−1) → CP

1, which has rate −2. Both spaces
are asymptotic to the cone over the Sasaki–Einstein manifold S2 × S3. Since the third
and fourth cohomology group vanish in the second example, the forms Re� and ω2

are necessarily exact. While the topology of T ∗S3 permits non-exact 3-forms, after a
multiplication by a λ ∈ S1 ⊂ C the form Re� of the Stenzel Calabi–Yau structure
can be shown to be exact, as pointed out to the author by the anonymous referee. Since
the rate of this Calabi–Yau structure is −3, this also shows that the rate threshold in
the theorem is sharp.

Let us mention that the rate of asymptotically conical Ricci flat manifolds has been
studied in [11] and can be estimated using analytical properties of the link, see the
recent preprint [21]. In particular, asymptotically locally Euclidean Ricci flat spaces
of dimension n have rate ≤ −n.

The proofs of Theorems C and D can be found in Sect. 8. Both proofs are very
similar and they rely on a study of approximate potential functions. These are func-
tions on asymptotically conical manifolds, which are asymptotic to r2/2 and whose
Laplacian is constant. Such an approximate potential can be used to define certain
forms using the forms that are given by the G2 or SU(3) structure. Appealing to a
Hodge theoretical result shows that these formsmust in fact vanish. Application of this
result first requires a closer examination of the asymptotics of the approximate poten-
tial beyond the leading term. This is the technical core of the theorem and this is also
where the condition on the rate comes in, see also Theorem 6.2. Representation theo-
retic properties of G2 and SU(3) structures then imply that the vanishing of the forms
implies that the trace free part of the Hessian of the approximate potential vanishes –
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a theorem of Tashiro will then yield the desired statement, i.e. that the asymptotically
conical manifold must be isometric to a Euclidean space. Approximate potentials have
been used earlier in [5] to define an invariant of ALE gravitational instantons, which
vanishes if and only if the instanton is Euclidean R

4.
Theorems A and B assume that there are smooth curves desingularizing the nearly

G2 or nearly Kähler conifolds. Note that in general deformations are obstructed in both
the nearly Kähler and the nearly G2 setting [14, 15, 25]. For this reason the assumption
of a smooth curve of nearly G2 resp. nearly Kähler structures is fairly restrictive.
Examples of Einstein desingularizations of sine cones due to Böhm suggest that it can
happen that there is only a discrete sequence approaching the singular metric rather
than a smooth curve. By analogy with recent results of Ozuch [26, 27, 29], we believe
that the obstructions we found also exclude such desingularizations and we therefore
propose the following two conjectures. See also the discussion in Sect. 4.

Conjecture A Let (X , ϕC S) be a nearly G2 conifold with a singularity at x0 modelled
on the G2 cone (C = C(L), ϕC ).

If every asymptotically conical G2 manifold asymptotic to (C, ϕC ) has rate
ν < −3, then there is no smooth nearly G2 manifold Gromov–Hausdorff close to
(X , ωC S, ρC S).

Conjecture B Let (X , ωC S, ρC S) be a nearly Kähler conifold with a singularity at x0
modelled on the Calabi–Yau cone (C = C(L), ωC , ρC ).

If every asymptotically conical Calabi–Yau manifold asymptotic to (C, ϕC ) has rate
ν < −3, then there is no smooth nearly Kähler manifold Gromov–Hausdorff close to
(X , ωC S, ρC S).

There are formidable analytical challenges to transferring Ozuch’s approach to the
weak holonomy setting.

As pointed out by the anonymous reviewer, the G2 cones over the nearly Kähler
manifolds CP

3 = Sp(2)/(U (1) × Sp(1)) and F1,2 = SU(3)/T 2 have the property in
Conjecture A. Indeed, by corollary 6.10 in [20] an asymptotically conical G2 manifold
with cone at infinity C(CP

3) or C(F1,2) must be the corresponding Bryant–Salamon
manifold. As indicated earlier, any Ricci flat ALE manifold of (real) dimension n has
rate ≤ −n. In particular, any asymptotically conical Calabi–Yau manifold asymptotic
to C

3/
 with 
 ⊂ SU(3) a finite subgroup acting freely on S5 will have rate ≤ −6
and therefore these cones have the property posed in Conjecture B.

It should be noted that the theorems and the conjectures are statements only about
metrics near the conifold metrics. Indeed, the only two known inhomogeneous exam-
ples of nearly Kähler metrics, constructed by Foscolo and Haskins in [16], do arise as
desingularizations of sine cones in a certain sense, but they do not come in families
that converge back to the sine cone. Indeed, Foscolo and Haskins conjecture that the
examples they construct are the only cohomogeneity one nearly Kähler metrics. From
the point of view of the present article, this means that the construction should only
work for one specific size of the exceptional divisor of the asymptotically conical
Calabi–Yau manifold.

Previously, similar questions have been studied in the context of Einsteinmanifolds.
Biquard investigated the possibility of desingularizing Z2 orbifold singularities in 4-
manifolds in the article [3] by gluing in an Eguchi–Hanson space and more general

123



105 Page 6 of 25 L. Schiemanowski

isolated orbifold singularities on 4-manifolds in [4]. Biquard found a first obstruction
in terms of the curvature tensor at the orbifold singularity in [3] and secondary obstruc-
tions in [4].Morteza andViaclovsky extended this analysis to 2n-dimensional Einstein
manifolds with Zn-orbifold singularities. Ozuch deepened the understanding of the
Biquard obstructions in the papers [26, 27], investigated higher order obstructions
in [28] and gave a proof that certain Einstein orbifolds never appear as Gromov–
Hausdorff limits of smooth Einstein manifolds in [29], bypassing certain technical
restrictions, which were present in the earlier works on the question.

In the context of special holonomy, we note the works of Chan [9, 10], in which
(real) 6-dimensional Calabi–Yau spaceswith isolated conical singularities are resolved
by asymptotically conical Calabi–Yau manifolds. Similarly to our case, there is a
dichotomy depending on the rate of the asymptotically conical Calabi–Yau manifold;
if the rate is smaller than −3, the problem is unobstructed. If the rate is exactly −3
an obstruction can be identified, which depends on a cohomology class on the link
of the cone. Perhaps the article most similar to ours in subject matter is Karigiannis’
[19], in which G2 conifolds are desingularized by gluing in asymptotically conical
G2 manifolds. In contrast to our situation, this is possible if a topological condition is
verified or else the rate of the asymptotically conical G2 manifolds that are glued in
is less than −4.

2 SU(3) andG2 Geometry

The use of stable forms is a convenient approach to the description of SU(3) and
G2 structures with special properties, which originates in [18]. Let V be a real, n-
dimensional vector space. A k-form ω ∈ �k V ∗ is stable, if its GL(V ) orbit in �k V ∗
is open. The stabilizer of ω is the subgroup Stabω = {A ∈ GL(V ) : A∗ω = ω}.

Three cases are of interest to us:

(1) If n = 7 and k = 3 or k = 4, then the stabilizer of a stable form is isomorphic to
G2.

(2) If n = 6 and k = 2 or k = 4, then the stabilizer of a stable form is isomorphic to
Sp(6, R).

(3) If n = 6 and k = 3, then the stabilizer of a stable form is isomorphic to either
SL(3, R) × SL(3, R) or SL(3, C).

We denote by �k+V ∗ the set of all stable forms for n = 7, k = 3, 4 and for n =
6, k = 2, 4. In the last case, n = 6 and k = 3, �3+V ∗ is the set of all stable forms with
stabilizer isomorphic to SL(3, C).

Each of the groups G2, Sp(6, R) and SL(3, C) preserves a volume form in �n V ∗.
Therefore, in these cases, we can define a GL(V )-invariant, n/k-homogeneous map
φ = φn

k : �k+V ∗ → �n V ∗. Given ω ∈ �k+V ∗, the derivative dφ[ω] can be expressed
by an element ω̂ ∈ �n−k V ∗ via the identity dφ[ω]ν = ω̂∧ν. This defines the Hitchin
duality map

� = �n
k : �k V ∗ → �n−k V ∗, �(ω) = ω̂.
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In case dim V = 7 we will denote  = �7
3. For representation theoretic aspects of

stable forms in the 7- and 6-dimensional settings, we refer to [7, 15], respectively.
The interaction between the representation theory of the 6- and 7-dimensional cases,
which is needed to understand G2 cones, is well explained in [12, 32].

2.1 Torsion Free and Nearly G2 Forms

Let V be a 7-dimensional real vector space and suppose ϕ ∈ �3+V ∗. The form ϕ

induces a metric gϕ on V and a Hodge dual ∗gϕ on�∗V ∗. This can be used to describe
the Hitchin dual: (ϕ) = ∗gϕϕ.

Let M be a 7-manifold. The fibre bundle of stable 3-forms on M is given by

�3+T ∗M =
⋃

x∈M

�3+T ∗
x M,

and the space of its sections will be denoted by �3+(M). The constructions described
on a vector space in the previous paragraphs have their analogues on the manifold:
an element ϕ of �3+(M) induces a Riemannian metric gϕ , a volume form volϕ , the
Hodge star ∗gϕ . The map  induces a bundle map �3+T ∗M → �4T ∗M .

Definition 2.1 A section ϕ ∈ �3+(M) is called a G2 form on M . A G2 form ϕ is called
torsion free, if

dϕ = 0, d(ϕ) = 0. (2.1)

A G2 form ϕ is called nearly parallel G2 at scale λ > 0, if

dϕ = 4λ(ϕ). (2.2)

It is called a nearly parallel G2 form if 2.2 is satisfied with λ = 1.
A manifold M equipped with a torsion free G2 form ϕ is called a G2 manifold and

is denoted by (M, g, ϕ), where g = gϕ .
A manifold M equipped with a nearly parallel G2 form is called a nearly G2

manifold and is denoted by (M, g, ϕ), where g = gϕ .

The significance of these conditions is that if ϕ is a torsion free G2 form, then the
reduced Riemannian holonomy group of gϕ is isomorphic to a subgroup of G2 and
if ϕ is a nearly parallel G2 form, then the holonomy group of its Riemannian cone is
Spin(7).

2.2 Calabi–Yau and Nearly Kähler 6-Manifolds

Observing that SU(3) = Sp(6, R) ∩ SL(3, C) allows us to parametrize an SU(3)
structure on a six-dimensional vector space V by a stable forms ω ∈ �2+ and Re� ∈
�3+. To ensure that the stabilizers of these forms intersect the same way as Sp(6, R)

and SL(3, C), we impose the compatability constraints

ω ∧ Re� = 0,
1

4
Re� ∧ �(Re�) = 1

6
ω3. (2.3)
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The joint stabilizer of the pair (ω,Re�) is then isomorphic to SU(3) or SU(2, 1). In
addition to the compatability constraints, we will assume that the joint stabilizer is
isomorphic to SU(3). This is an open condition. Such a pair (ω,Re�) then induces a
Riemannianmetric and an almost complex structure onV . The complex 3-formRe�+
i�(Re�) is a complex volume form and therefore we denote Im� = �(Re�).

We will describe an SU(3) structure on V by a pair (ω,�), where ω is a stable
2-form and� is a complex 3-form, such that Re� is stable and Im� = �(Re�). We
will denote the associated metric by gω,� and the associated almost complex structure
by Jω,�.

The duality map on 2-forms can be described explicitly as �(ω) = 1
2ω

2.
On a 6-manifold M , one may define the bundles of stable 2-forms �2+T ∗M =⋃
x∈M �2+T ∗

x M and analogously �3+T ∗M .

Definition 2.2 An SU(3) structure on M is given by a pair (ω,�), where ω ∈ �2+(M)

and � ∈ 
(�3
C

T ∗M), such that Re� ∈ �3+(M), Im� = �(Re�),

ω ∧ Re� = 0,
1

4
Re� ∧ Im� = 1

6
ω3,

and the symmetric, bilinear form defined by

g(v,w)
1

6
ω3 = (v�ω) ∧ (w�Re�) ∧ Re�,

is positive definite.

Definition 2.3 An SU(3) structure (ω,�) is torsion free or Calabi–Yau, if

dω = 0, d Re� = 0, d Im� = 0.

An SU(3) structure (ω,�) is nearly Kähler at scale λ > 0, if

dω = −3λRe�, d Im� = 2λω2.

A 6-manifold M equipped with a torsion free SU(3) structure (ω,�) is called
a Calabi–Yau 6-manifold and is denoted by (M, g, ω,�), where g denotes the
associated Riemannian metric.

A 6-manifold M equipped with a nearly Kähler SU(3) structure (ω,�) of scale 1
is called a nearly Kähler 6-manifold and is denoted by (M, g, ω,�), where g denotes
the associated Riemannian metric.

3 Cones, Conifolds and Asymptotically Conical Manifolds

This section gives definitions of the principal objects of this article: asymptotically
conical and conically singular manifolds.
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Definition 3.1 Let L be a closed manifold. The cone over L is denoted by C(L) and
is the product manifold (0,∞) × L . The manifold L is called the link of the cone.

Points inC(L) are typically denoted by (r , x) and r can be considered as the canonical
radial coordinate function. In this section, L will always denote a closed manifold.

Definition 3.2 A dilation by the factor λ > 0 on a cone C(L) is the diffeomorphism

dilλ : C(L) → C(L), dilλ(r , x) = (λr , x).

The dilation vector field on a cone C(L) is r∂r .

The dilation vector field generates the dilations.

Definition 3.3 Let L be a closed manifold. A form κ ∈ �k(C(L)) is homogeneous of
rate λ if

Lr∂r κ = (k + λ)κ.

Similarly, a symmetric 2-form h ∈ 
(Sym2 T ∗C(L)) is homogeneous of rate λ if
Lr∂r h = (2 + λ)h.

Definition 3.4 A Riemannian cone is a cone C = C(L) together with a Riemannian
metric gC of the form dr2 + r2gL , where gL is a Riemannian metric on L .

Note that the metric gC is always homogeneous of rate 0, but a homogeneous
Riemannian metric of rate 0 need not be of this form.

The normalization of the rates of forms and tensors is explained by the following
observation. If κ ∈ �k(C(L)) is homogeneous of rate λ, then |κ|gC is a homogeneous
function of rate λ. In the same manner, if h ∈ 
(Sym2 T ∗C(L)) is homogeneous of
rate λ, then |h|gC is homogeneous of rate λ.

Definition 3.5 Let (L, gL) be a closed Riemannian manifold. A complete Riemannian
manifold (M, g) is asymptotically conical with cone at infinity (C, gC ) and rate ν < 0,
if there exists a compact set K ⊂ M and a diffeomorphism� : (R,∞)× L → M\K ,
such that for every k there exists Ck > 0, such that

rk |∇k(�∗g − gC )| ≤ Ckrν,

holds on (R,∞) × L . Here, ∇ is the Levi–Civita connection of gC and | · | refers to
the metric gC .

A radial function on (M, g) is a smooth function ρ : M → R, such that ρ ≡ 1 on
K , ρ ≥ 1 on M and �∗ρ = r on (R0,∞) × L for some large enough R0.

Definition 3.6 Let L be a closedmanifold of dimension 6with a nearlyKähler structure
(ω,�). The G2 cone over L is the manifold C = (0,∞) × L with the G2 form

ϕC = r3 Re� − r2dr ∧ ω.
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If (C, ϕC ) is a G2 cone, then the dual of ϕC is given by

ψC = (ϕC ) = −r3dr ∧ Im� − 1

2
r4ω2.

The associated metric gϕ is dr2 + r2gω,�.

Definition 3.7 Let (C, ϕC ) be aG2 conewith link L . AG2 structureϕ on amanifold M
is an asymptotically conical (AC) G2 structure asymptotic to the cone (C, ϕC ) at rate
ν < 0, if there exists a compact set K ⊂ M and a diffeomorphism� : (R,∞)× L →
M\K , such that there exists for every k ∈ N0 a Ck > 0, for which the following
inequality holds on (R,∞) × L:

rk |∇k
C (�∗ϕ − ϕC )|gC ≤ Ckrν.

A pair (M, ϕ) is called an asymptotically conical G2 manifold, if ϕ is a torsion free
asymptotically conical G2 structure on M .

For the sake of brevity, “asymptotically conical” will usually be abbreviated by AC.
It is easy to generalize this definition to multiple ends, but connected AC G2 man-
ifolds automatically have only one end. An asymptotically conical G2 manifold is
automatically an asymptotically conical Riemannian manifold with the same rate.

In the case of conically singular manifolds, we do admit multiple conical
singularities and each singularity may be modelled on a different G2 cone.

Definition 3.8 Let M be a topological space, � = {x1, . . . , xn} ⊂ M and suppose
that M = M\� is a smooth 7-dimensional manifold.

A conically singular G2 structure on M with singular set � and cones (Ci , ϕCi )

of rate νi > 0 at xi , 1 ≤ i ≤ n, is a G2 form ϕ defined on M , such that:

(1) there exists a compact set K ⊂ M and open sets S1, . . . , Sn , such that M\K =
S1 ∪ . . . ∪ Sn and the closures of the Si in M are pairwise disjoint,

(2) there exist diffeomorphisms �i : Li × (0, εi ) → Si , such that for every k ∈ N0
and i ∈ {1, . . . , n} there exists a Ck,i > 0 for which the following inequality holds
on (0, εi ) × Li :

rk |∇k
Ci

(�∗
i ϕ − ϕCi )|gCi

≤ Ck,i r
ν.

A space M equipped with a conically singular G2 structure will also be called a
conifold with a G2 structure. If the G2 structure is torsion free, we will call it a G2
conifold. If theG2 structure is nearly parallel, wewill call (M, ϕ) a nearly G2 conifold.

Note that our terminology is slightly different from the literature, where a conifold
usually also allows for AC ends.

It is clear that similar definitions are possible for manifolds with SU(3) structures.
To avoid needless repetitions, we leave out the precise definitions, but mention that
to define a Calabi–Yau cone, one has to employ Sasaki–Einstein structures on 5-
manifolds. Details on this may be found, for example, in Sect. 2 of [16].
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4 Smooth Desingularizations and the Obstruction Equation

The following definition will formalize the idea of the desingularization of nearly G2
conifolds by an AC G2 manifold. It can be seen as an analogue of Cheeger–Gromov
convergence for a smooth 1-parameter family instead of a sequence.

Suppose (C, ϕC ) is a G2 cone, (N , ϕAC ) is an AC G2 manifold with cone (C, ϕC )

and (X , ϕC S) is a nearly G2 conifold, which has a singular point x0 modelled on the
cone (C, ϕC ).

Definition 4.1 Suppose M is a topological space, � ⊂ M a finite set and ϕ(t), t ∈
(0, ε), is a smooth family of conically singular nearly parallel G2 structures on M =
M\�. This family is a smooth desingularization of (X , ϕC S) at x0 by (N , ϕAC ), if the
following conditions are met:

(1) For every t ∈ (0, ε), there exist open sets Ut ⊂ X , Ũt ⊂ M , such that

(a) Us ⊂ Ut for every s > t ,
(b)

⋃
t∈(0,ε) Ut = X .

(2) For every t ∈ (0, ε), there exists a diffeomorphism Ft : Ut → Ũt with the
following significance:

(a) Let U = ⋃
t∈(0,ε){t} × Ut . The forms F∗

t ϕ(t) on Ut define a smooth section
� ∈ 
(U , π∗�3T ∗ X), where π : U → X is the canonical projection.

(b) For any fixed t0, the restriction of � to Ut0 × (0, t0) ⊂ U extends to a smooth
section of Ut0 × [0, t0) and �

∣∣{0}×Ut0
= ϕC S

∣∣
Ut0

.

(3) For every t ∈ (0, ε), there exist open sets Vt ⊂ N and Ṽt ⊂ M , such that

(a) Vs ⊂ Vt for every s > t ,
(b)

⋃
t∈(0,ε) Vt = N .

(4) For every t ∈ (0, ε), there exists a diffeomorphism Gt : Vt → Ṽt with the
following significance:

(a) Let V = ⋃
t∈(0,ε){t}× Vt . The forms t−3G∗

t ϕ(t) on Vt define a smooth section

�̂ ∈ 
(V, π∗�3T ∗ X), where π : V → N is the canonical projection.
(b) For any fixed t0, the restriction of �̂ to Vt0 ×(0, t0) extends to a smooth section

of Vt0 × [0, t0) ⊂ W and �̂
∣∣{0}×Vt0

= ϕAC
∣∣
Vt0

.

(5) For every t , the sets Ũt and Ṽt cover M , i.e. M = Ũt ∪ Ṽt .

Since this definition is fairly technical, we explain it in informal terms. Some of
the sets appearing in the definition are illustrated in Fig. 1 . Roughly speaking, we
want the forms ϕ(t) to converge in the smooth Cheeger–Gromov sense to the conifold
(X , ϕC S) as t goes to 0. Similarly, a rescaling of the forms ϕ(t) should converge to
the AC G2 manifold (N , ϕAC ) as t goes to 0. The form ϕC S is only defined on the
non-compact manifold X and for this reason we pick an exhaustion of X in (1). This
is an exhaustion that expands as t decreases. The second point then essentially says
that ϕ(t) can be pulled back to this exhaustion, so that ϕ(t) defines a smooth family
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105 Page 12 of 25 L. Schiemanowski

Fig. 1 Spaces and sets occuring in a desingularization

of forms on the “space time” of the exhaustion. The convergence as t → 0 is then
encoded as condition (2)(b), which says that the smooth family extends smoothly to
the time 0 slice. It is crucial for our application that the family depends smoothly on
the parameter t up to and including time 0.

Definition 4.1 can easily be adapted to the nearly Kähler setting. In the interest of
space we refrain from giving the full definition again. Instead, the following definition
only serves as a reference point and to pin down the terminology.

Definition 4.2 Suppose (C, ωC ,�C ) is a 6-dimensional Calabi–Yau cone,
(N , ωAC ,�AC ) an asymptotically conical Calabi–Yau manifold asymptotic to
(C, ωC ,�C ) and (X , ωC S,�C S) a nearly Kähler conifold, which has a singular point
x0 modelled on the cone (C, ωC ,�C ). A smooth desingularization of (X , ωC S,�C S)

at x0 by (N , ωAC ,�AC ) is a family of conically singular nearly Kähler structures
(ω(t),�(t)) satisfying the conditions (1)–(5) in 4.1, changing the occurrences of ϕ(t)
by ω(t) and �(t) as necessary.

The existence of a smooth desingularization implies existence of a solution to an
equation on the AC manifold, which we will call the obstruction equation. This will
be used to prove the corollaries A and B.

We start with the G2 case.
Suppose (C, ϕC ) is a G2 cone, (N , ϕAC ) is an AC G2 manifold with cone (C, ϕC )

and (X , ϕC S) is a conically singular nearly parallel G2 manifold, which has a singular
point x0 modelled on the cone (C, ϕC ).

Let M be a topological space, � ⊂ M a finite space and suppose M = M\�
is a smooth 7-manifold. Suppose ϕ(t), t ∈ (0, ε), is a smooth desingularization of
(X , ϕC S) at x0 by (N , ϕAC ).

Then the family ϕ̃(t) = t−3ϕ(t) satisfies

dϕ̃(t) = 4t−3(ϕ(t)) = 4t(ϕ̃(t)),

where we use the homogeneity (t3ϕ) = t4(ϕ).
Now let Ut , U and Gt be as in Definition 4.1 and define ϕ̂(t) = t−3G∗

t ϕ(t). Then
ϕ̂(t) satisfies

dϕ̂(t) = 4t(ϕ̂(t)),
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on every Ut0 × [0, t0). A priori the second equation is only satisfied on Ut0 × (0, t0),
but since ϕ̂ is smooth on Ut0 × [0, t0), it also holds on Ut0 × {0}.

Taking the derivative of the first equation in t-direction yields d∂t ϕ̂(t) =
4(ϕ̂(t)) + 4td[ϕ̂(t)]∂t ϕ̂(t). Evaluating at time t = 0 we obtain d∂t ϕ̂(0) =
4(ϕ̂(0)). Note that this equations hold on any Ut0 . Since Ut0 exhausts N as t0 → 0,
it follows that the equation holds on all of N . According to Definition 4.1 at t = 0
the form ϕ̂(t) becomes the form ϕAC . Now let η = ∂t ϕ̂(0). Then we have derived the
obstruction equation

dη = 4(ϕAC ) = 4 ∗gAC ϕAC .

Therefore ∗gAC ϕAC is exact. This proves Theorem A.
The obstruction equation admits a different interpretation coming from the associ-

ated gluing problem. If one tries to glue the asymptotically conical G2 manifold into
the nearly G2 conifold one faces two problems. The first is that the equations satisfied
on each piece are obviously different. Given a solution of the obstruction equation η,
we find that

d(ϕAC + εη) = 4ε(ϕAC ),

i.e. ϕAC +εη solves the nearly G2 equation at scale ε to first order. The second issue is
that ϕAC at infinity matches ϕC S at the singularity only to the zeroth order. We could
now derive a condition on the expansion of η at infinity, which ensures that ϕAC + η

matches ϕC S at least to the first order. As we will see later, even without this extra
condition, it is difficult to solve the equation dη = 4(ϕAC ) and therefore we will
not pursue this here.

Note that in principle, one can derive obstruction equations to any order by taking
higher derivatives. However, as wewill find that already the first equation is not soluble
in many cases, this will also not be pursued.

This interpretation of the obstruction equations is closely related to the works of
Biquard [3, 4], Morteza–Viaclovsky [24], Ozuch [26, 27, 29]. As explained in the
introduction, the work of Ozuch suggests that much stronger results may be true. The
interpretation of solutions of the obstruction equations as a starting point for a refined
gluing construction is crucial for Biquard’s and Ozuch’s method of proof.

For nearly Kähler manifolds, the derivation of the obstruction equations is very
similar. To this end, we now assume that (X , ωC S,�C S) is a nearly Kähler conifold
with a singularity at x0 modelled on the Calabi–Yau cone (C = C(L), ωC ,�C ).
Suppose (N , ωAC ,�AC ) is an asymptotically conical Calabi–Yau manifold asymp-
totic to (C, ωC ,�C ) and suppose that (M, ω(t),�(t)) is a desingularization of
(X , ωC S,�C S) at x0 by (N , ωAC ,�AC ).

To derive the obstruction equations in this case, observe that by the construction
above, we obtain a family of forms (ω̂(t), �̂(t)), such that

dω̂(t) = −3t Re �̂(t), d Im �̂(t) = 2tω̂(t)2.
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Taking the time derivative at t = 0, we obtain a 2-form ν and a 3-form η satisfying

dν = −3Re�AC , dη = 2ω2
AC .

This proves Theorem B. As in the G2 case, we may also interpret this obstruction
equation coming from the associated gluing problem.

5 Analysis on Asymptotically Conical Manifolds

The proof of Theorems C and D will require an understanding of certain analytical
and topological properties of AC manifolds. For the convenience of the reader, we
summarize the required results here.

Let (M, g) be an asymptotically conical Riemannian manifold and let ρ : M → R

be a radial function.
For any tensor T , any integer l ∈ N0, p ∈ [1,∞) and λ ∈ R the L p

l,λ-Sobolev norm
is defined by

‖u‖L p
l,λ

=
⎛

⎝
∑

j≤l

∫

M

∣∣∣ρ j−λ∇ j T
∣∣∣

p

g
ρ−n volM

⎞

⎠
1/p

.

By L p
l,λ, we denote the completion of the space of smooth tensors with compact

support. If necessary, we will be more precise about the space of tensors considered
by putting it in brackets. For example, the Sobolev space of differential k-forms will
be denoted by L p

l,λ(�
k T ∗M). The parameter λ is called the weight of the Sobolev

space. Note that for λ = −n/2 and p = 2, we recover the unweighted L2 space,
L2
0,−n/2 = L2.
There is a well-developed theory of elliptic operators acting on these spaces. We

will only need results for the Laplacian acting on functions, �g = − trg Hess g. It is
easy to see that �g is a bounded operator

�g : L p
l+2,λ → L p

l,λ−2,

for any choice of p, l, λ as above. The set of critical rates on the cone (C, gC ) is
defined to be

D = {
λ ∈ R : ∃ f ∈ C∞(C) : �gκ = 0, Lr∂r f = λκ

}
.

This means that λ ∈ R is a critical rate of the Laplacian, if there exists a homogeneous
harmonic function of rate λ on the cone. This set is crucial for describing the mapping
properties of �g , as the following theorem explains.

Theorem 5.1 The Laplacian �g has the following properties.

(1) If λ /∈ D, the operator �g : L p
l+2,λ → L p

l,λ−2 is Fredholm.
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(2) The kernel ker�g : L p
l+2,λ → L p

l,λ−2 does not depend on p or l and is denoted
by kerλ �g.

(3) If λ1 < λ2 ∈ R are such that [λ1, λ2] ∩ Dk = ∅, then kerλ1 � = kerλ2 �.

A close reference for this result is Sect. 4.2 of [20]. (In this case, the theory is discussed
in dimension 7, but it holds in anydimension.) This particular approach to theFredholm
theory of elliptic operators on non-compact manifolds goes back to Lockhart and
McOwen, see [23].

On a closed Riemannian manifold, one consequence of Hodge theory is that
any coclosed, exact differential form must vanish. On non-compact manifolds, this
statement fails in general. The following theorem, due to Lockhart, gives a partial
replacement for this statement on asymptotically conical Riemannian manifolds.

Theorem 5.2 Suppose (M, g) is an n-dimensional asymptotically conical manifold.
If κ ∈ L2(�k T ∗M) with k ≥ n/2 is exact and coclosed, then κ ≡ 0.

See [22], Theorem 7.4 and example 0.15.
Investigating the critical rates of the operator d + d∗, one can sometimes improve

Theorem 5.2 beyond the L2 range. The following situation is relevant for our
application.

Corollary 5.3 Suppose (M, ϕ) is an asymptotically conical G2 manifold and λ < −3.
If κ ∈ L2

λ(�
4T ∗M) is exact and coclosed, then κ ≡ 0.

This is a consequence of corollary 4.29 in [20], which says that Hk
λ = {κ ∈

L2
2,λ(�

k T ∗M) : dκ = 0, d∗κ = 0} is independent of λ for λ ∈ (−4,−3). Since

theorem 5.2 says that H4−7/2 does not contain any exact forms besides the zero form,

this remains valid forH4
λ for any λ ∈ (−4,−3).

6 Approximate Potentials and Their Asymptotics

Let (L, gL) be a closed Riemannian manifold. The cone metric gC = dr2 + r2gC on
C = (0,∞) × L has a potential: the function 1

2r2 satisfies

HessgC

1

2
r2 = gC ,

or equivalently LgradgC
1
2 r2gC = 2gC . Conversely, the existence of a function whose

Hessian is the metric implies that the metric is locally conical. The only complete
manifold admitting such a function is Euclidean space. This is the content of the
following theorem, due to Tashiro [30].

Theorem 6.1 Let (M, g) be a complete n-dimensional Riemannian manifold. If there
exists u ∈ C2(M) with

Hessg u = g,

then (M, g) is isometric to (Rn, geucl).
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On an asymptotically conical manifold (M, g) we can study approximate potentials,
that is functions u ∈ C∞(M), which are asymptotic to 1

2r2 and satisfy �gu = −n.
These functions and understanding their precise asymptotics will be fundamental for
Theorems C and D. The following theorem ensures existence of such a function and
describes its asymptotics.

Theorem 6.2 Let (M, g) be an asymptotically conical Riemannian manifold with cone
at infinity (C, gC ) and rate ν < −2. Suppose that � : (R,∞) × K → M\K are
coordinates at infinity and let ρ : M → R be a radial function.

There exists a unique function u ∈ C∞(M), such that

�gu = −n, u − 1

2
ρ2 ∈ L2

2,−ε,

for some ε > 0. This function satisfies

u − 1

2
ρ2 ∈ L2

2,λ,

with λ = 2 + ν + ε for every ε > 0.

Lemma 6.3 Let (M, g) be an n-dimensional AC manifold.
For λ < 0 the operator

�g : L2
2,λ → L2

0,λ−2,

is an isomorphism is an isomorphism if λ is not a critical rate. There are no critical
rates in the interval (2 − n, 0).

Proof First observe that by partial integration for λ < 1
2 (2−n) any harmonic function

on M is trivial and therefore kerλ �g = 0 for this range of weights.
Let (C, gC ) denote the cone at infinity of (M, g). Let (L, gL) be its link. To see that

λ ∈ (2−n, 0) is not a critical rate, observe that for any function rλ f with f ∈ C∞(L)

we have

�gC rλ f = rλ−2(�gL f − λ(λ + n − 2) f ).

Therefore rλ f can only be harmonic if�gL f = λ(λ+n −2) f . But for λ ∈ (2−n, 0)
the coefficient λ(λ + n − 2) is negative. On the other hand, �gL is a non-negative
operator and therefore f = 0. Thus there are no non-trivial harmonic, homogeneous
functions of rate λ ∈ (2 − n, 0).

This also shows that kerλ �g = 0 for every λ < 0 by Theorem 5.1 (3), since
2 − n < 1

2 (2 − n) < 0.
Whenever λ is not a critical rate �g : L2

2,λ → L2
0,λ−2 is a Fredholm operator and

therefore when λ < 0 it is an isomorphism.
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Lemma 6.4 Let (M, g) be an asymptotically Riemannian manifold with cone at infinity
(C, gC ) and rate ν < −2. Suppose that � : (R,∞) × K → M\K are coordinates
at infinity and let ρ : M → R be a radial function. Then for every ε > 0

�gρ
2 + 2n ∈ L2

0,ν+ε .

Proof Denote the pullback of g to the cone via � by g̃ = �∗g. Then

�∗�gρ
2 = �g̃r2 + 2n,

because �∗ρ2 = r2. Since �gC r2 = −2n, we may rewrite this as

�∗�gρ
2 = �g̃r2 − �gC r2.

To estimate the difference �g̃ − �gC , recall the general formula

d

dt

∣∣∣
t=0

�g+thu = −2g(Hessg u, h) − g(Bgh, du),

where g is any Riemannian metric and h a symmetric 2-tensor and u is any function.
For g = gC and h = g̃ − gC , we therefore get

�g̃u = �gC u − 2gC (HessgC u, h) − g(Bgh, du) + Q(h, du,∇gC du),

for some Q satisfying

|Q(h, du,∇gC du)| ≤ C |h|2(|du| + |∇gC du|).

The absence of a term depending on the zero-order term u is explained by the definition
�g = − trg ∇gdu and the fact that the operator u �→ du does not depend on themetric.

If we now let u = �∗ρ2 = r2, we have HessgC u = 2gC and since gC (gC , h) =
trgC h, this yields

�g̃r2 = �gC u − 4 trgC h − gC (BgC h, 2rdr) + Q(h, du,∇gC du).

By definition of AC manifolds, we then have that there exists a constant C0, such that

|h|gC = |̃g − gC |gC ≤ C0rν.

This implies | trgC h| ≤ nC0rν . Similarly, we have |∇gC h|gC ≤ C1rν−1 and therefore
|gC (BgC h, 2rdr)| ≤ |BgC h|gC |2rdr |gC ≤ C̃rν for some C̃ > 0. Therefore, |�g̃r2 −
2n| ≤ Ĉ(rν +r2ν+1) for some constant Ĉ > 0. This yields the result, since 2ν+1 < ν

and rν ∈ L2
0,ν+ε for every ε > 0.
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Proof Define p = �g
1
2ρ

2 + n. By lemma 6.3, the operator

�gAC : L2
2,λ → L2

0,λ−2,

is an isomorphism for every λ < 0 that is not a critical rate.
Lemma 6.4 says that p ∈ L2

0,ν+ε for every ε > 0. Since the set of critical rates is

discrete, it follows that�g : L2
2,ν+ε → L2

0,ν+ε is an isomorphism for every ε ∈ (0, ε0)

for some ε0 > 0, even if ν is a critical rate. Therefore v = �−1
g p ∈ L2

2,ν+2+ε is well
defined for every ε ∈ (0, ε0).

Now consider u = 1
2ρ

2 − v. Then we have

�gu = 1

2
�gρ

2 − �gv = p − p − n = −n.

This shows existence and the decay property.
For uniqueness, assume that there exists another function û with û − 1

2ρ
2 ∈ L2

2,−ε̃

for some ε̃ > 0. Let λ = max{ν +2+ ε,−ε̃}. Then û − u ∈ L2
2,λ and �g(û − u) = 0.

By lemma 6.3 it follows that û − u = 0.

Remark. As pointed out by the anonymous reviewer, if the cone at infinity (C, gC )

is assumed to be Ricci flat, the condition on the rate ν < −2 may be improved to
ν < −1 + δ for some δ > 0. Indeed, as a consequence of Obata’s theorem the only
critical rates of the Laplacian acting on functions on a Ricci flat cone in the interval
[1 − n, 1] are 2 − n and 0. The critical rate 2 − n is not relevant for our discussion,
since a L2

2−n ⊂ L2. When crossing the rate zero, the kernel kerλ �g is enlarged by the
constant functions. Except for the uniqueness, this change does not affect the proof
of Theorem 6.2. In particular, we obtain an approximate potential up to a constant
function. This ambiguity is not relevant to the applications below. On the other hand,
in all applications below the rate will be assumed to be smaller than −2 for other
reasons.

7 The Action of Sym2 on3∗

Let (M, g) be a Riemannian manifold. If h ∈ 
(Sym2 T ∗M) and κ ∈ �k(M), then
we define

h∗κ = −
n∑

j=1

h(e j , ·) ∧ ιe j κ,

where e1, . . . , en is any orthonormal frame. Using the standard basis of �∗T ∗M
induced by the dual frame e1, . . . , en it is easy to see that

g∗κ = −kκ.

123



Topology of AC CY and G2 manifolds and... Page 19 of 25 105

Recall that for any differential form η ∈ �k(M), we have

d∗η = −
n∑

j=1

ιei ∇ei η.

Proposition 7.1 If κ ∈ �k(M) is parallel and u ∈ C∞(M), then

d∗(du ∧ κ) = (d∗du)κ − (Hess u)∗κ.

Proof This follows from repeated use of the product rule and the definition Hess u =
∇du:

d∗(du ∧ κ) = −
n∑

j=1

ιei ∇ei (du ∧ κ) = −
n∑

j=1

ιei [(∇ei du) ∧ κ]

= −
n∑

j=1

[
(ιei ∇ei du) ∧ κ − (∇ei du) ∧ ιei κ

]

= (d∗du)κ − (∇du)∗κ.

In general, not much can be said about h∗κ . For the forms associated to G2 and
SU(3) structures, the action of Sym2 can be described more precisely.

Suppose that M is a 7-manifold and ϕ ∈ �3+(M) is a G2 structure. Let g be the
associated Riemannian metric. Then we can decompose

Sym2 T ∗M = Rg ⊕ Sym2
0 T ∗M,

where Sym2
0 T ∗M = {h ∈ Sym2 T ∗M : trg h = 0}. It turns out that the map

Sym2
0 T ∗M → �3T ∗M, h �→ h∗ϕ,

is injective. This can be understoodmuch better from the representation theoretic point
of view. For this we refer to [7].

If, on the other hand, M is a 6-manifold and (ω,�) is an SU(3) structure, then let
g denote the associated metric and J the associated almost complex structure. In this
case, the space Sym2 T ∗M can be decomposed as

Sym2 T ∗M = Rg ⊕ Sym2
8 ⊕Sym2

12,

where

Sym2
8 = {h ∈ Sym2 T ∗M : trg h = 0, J ∗h = h},

Sym2
12 = {h ∈ Sym2 T ∗M : J ∗h = −h}.
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The subscripts denote the dimension of each of these spaces. Given h ∈ Sym2
0 T ∗M ,

we may decompose

h = [h]8︸︷︷︸
∈Sym2

8

+ [h]12︸︷︷︸
∈Sym2

12

.

With this notation, one finds that

h∗ω = ([h]8)∗ω,

h∗ Re� = ([h]12)∗ Re�,

and the maps

Sym2
8 → �2T ∗M, h �→ h∗ω,

Sym2
12 → �3T ∗M, h �→ h∗ Re�,

are injective. This decomposition is also best understood from the representation
theoretic point of view and we refer to [15] for more details.

8 Proofs of Theorems C and D

This section contains the proofs of Theorems C and D. Before we enter the proofs, let
us give two (closely related) conceptual motivations for the proof.

First, observe that on a G2 cone (C, ϕC ) the form ∗ϕC is exact. Indeed, since ϕC

is parallel Proposition 7.1 applies and with u = r/2, we find that

d∗(dr2/2 ∧ ϕC ) = −ϕC − g∗ϕC = −4ϕC .

Therefore, the form 1
4 ∗ (dr2/2 ∧ ϕC ) is a primitive of ∗ϕC . On an asymptotically

conical G2 manifold (M, ϕAC ), the form 1
4 ∗(du∧ϕAC ) for u an approximate potential

is then an approximate primitive. Provided the rate is small enough, it will then turn
out that by Hodge theory, this approximate primitive is a primitive if and only if u is
an actual potential function.

Second, as pointed out by the anonymous referee, deformation theory gives another
conceptual explanation of the proof. The conditions that a manifold has holonomy G2
is scaling invariant. Therefore, a given G2 manifold (M, ϕ) is part of the 1-parameter
family (M, λ3ϕ). The infinitesimal deformation at ϕ is then given by 3ϕ. On a G2
cone (C, ϕC ) the G2 form is homogeneous of rate 0, i.e.

Lr∂r ϕC = 3ϕC .

This means that on a G2 cone the scaling deformation is trivial, in the sense that it
is generated by diffeomorphisms. On an asymptotically conical G2 manifold (M, ϕ)
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asymptotic to (C, ϕC ) at rate ν, consider the formLgrad uϕ−3ϕ, where u is an approx-
imate potential. This is an infinitesimal deformation, which preserves the asymptotic
cone (C, ϕC ). By the deformation theory developed in [20], we may identify such a
deformation with a closed and coclosed 3-form of rate ν. These properties can also
be computed explicitly, as done in the proof below. Provided the rate is small enough,
Hodge theory will here yield that the Hodge dual of the form Lgrad uϕ − 3ϕ vanishes,
if and only if ϕ is exact.

Note also that the formula d∗(dr2/2∧ϕC ) = −4ϕC is closely related to the formula
Lr∂r ∗ ϕC = 4 ∗ ϕC . Indeed, we have

Lr∂r ∗ ϕC = LgradgC
r2/2 ∗ ϕC = d(gradgC

r2/2� ∗ ϕC )

= d ∗ (dr2/2 ∧ ∗2ϕC ) = ∗2d ∗ (dr2/2 ∧ ϕC )

= − ∗ d∗(dr2/2 ∧ ϕC )

andmore generally, we haveLgrad u ∗ϕ = −∗d∗(du ∧ϕ) on any G2 manifold (M, ϕ).
In the Calabi–Yau setting, we can argue similarly. In particular, on a Calabi–Yau

cone, we find

d∗(dr2/2 ∧ ωC ) = −4ωC = −Lr∂r ω
2
C ,

d∗(dr2/2 ∧ Im�C ) = −3Re�C = −Lr∂r Re�C .

Proof of Theorem C Suppose that (M, g, ϕ) is an asymptotically conical G2 manifold
of rate ν < −3.

If (M, g) is isometric to (R7, geucl), then the closed form ∗ϕ is exact by the Poincaré
lemma.

For the converse, assume that ∗ϕ is exact. We will show that (M, g) is isometric to
(R7, geucl).

By Theorem 6.2, there exists a function u : N → R with

�gϕ u = −7, �∗u − 1

2
ρ2 ∈ L2

2,λ,

where λ = 2 + ν + ε for any ε > 0. The tracefree part of the Hessian of u, ˚Hessu, is
then in L2

0,λ−2. The form

κ = ∗( ˚Hessu)∗ϕ,

is then also in L2
0,λ−2. Note that for sufficiently small ε > 0, the weight λ − 2 will be

smaller than −3, so that corollary 5.3 applies to κ . We will now show that κ is closed
and coclosed. The assumption that ∗ϕ is exact will imply that κ is exact.

Applying Proposition 7.1 yields

d∗(du ∧ ϕ) = −7ϕ − (Hess u)∗ϕ.
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The Hessian of u can be split into a tracefree part ˚Hessu and its trace part,

Hess u = ˚Hessu + 1

7
(trg Hess u)g = ˚Hessu + g,

where we use trg Hess u = −�gu = −7. Since ϕ is a 3-form, we have g∗ϕ = −3ϕ
and therefore (Hess u)∗ϕ = ( ˚Hessu)∗ϕ − 3ϕ. Therefore,

( ˚Hessu)∗ϕ = 4ϕ − d∗(du ∧ ϕ).

Since d∗ϕ = 0 and (d∗)2 = 0, we obtain d∗( ˚Hessu)∗ϕ = 0. This is equivalent to
dκ = 0. Applying the Hodge star operator to this equation, we see that

κ = 4 ∗ ϕ − d ∗ (du ∧ ϕ)

using that ∗d∗ = d∗ on �4(M). (Note that in view of the discussion before the proof
κ = 4∗ϕ−Lgrad u ∗ϕ.) Therefore, if ∗ϕ is exact, then so is κ . To see that κ is coclosed,
we compute

d∗κ = −d∗ ∗ d∗(du ∧ ϕ) = − ∗ dd∗(du ∧ ϕ) = − ∗ �(du ∧ ϕ),

where we used that d∗ϕ = 0 and that du ∧ ϕ is closed. Formula (10) in [20] says that
�(du ∧ ϕ) = (�du) ∧ ϕ. Moreover, �du = d�u = 0, since �u is constant and
therefore d∗κ = 0 as claimed.

According to Theorem 5.3 coclosed, exact 4-forms in L2
λ with λ ∈ (−4,−3) are

trivial. Since we checked all of these conditions for κ , we conclude that κ = 0. Thus
˚Hessu = 0 and since �gu = −n, this means

Hess u = g.

Therefore Tashiro’s Theorem 6.1 implies that (M, g) is isometric to (R7, geucl).

Proof of TheoremD Let (M, g, ω,�) be an asymptotically conical 6-dimensional
Calabi–Yau manifold of rate ν < −3.

If (M, g) is isometric to (R6, geucl), then obviously ω and Im� are exact.
For the other direction, we assume that ω2 and Im� are exact. We will show that

then (M, g) is isometric to (R6, geucl).
By Theorem 6.2, there exists a function u : M → R with

�gu = −6, �∗u − 1

2
ρ2 ∈ L2

2,λ,

where λ = 2 + ν + ε for any ε > 0. The tracefree part of the Hessian of u, ˚Hessu, is
then in L2

0,λ−2. The forms

η = ∗( ˚Hessu)∗ Re�, κ = ∗( ˚Hessu)∗ω,
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are then also in L2
0,λ−2. If ε is sufficiently small, they will also be in the unweighted

L2 space, since ν < −3. We will now show that η and κ are closed and coclosed. The
assumption that Im� is exact will imply that η is exact. Likewise, the assumption that
∗ω = 1

2ω
2 is exact will imply that κ is exact.

Using Proposition 7.1, we obtain the formulas

d∗(du ∧ ω) = −6ω − (Hess u)∗ω, d∗(du ∧ Re�) = −6Re� − (Hess u)∗ Re�.

Using these formula, we may argue exactly as in the previous proof to show that η

and κ are exact, coclosed forms.
By Theorem 5.2 coclosed, exact L2 forms of form degree ≥ 3 are trivial. Since we

checked all these conditions for η and κ , we conclude η = 0 and κ = 0.
If we decompose

˚Hessu = [ ˚Hessu]8︸ ︷︷ ︸
∈Sym2

8

+[ ˚Hessu]12︸ ︷︷ ︸
∈Sym2

12

,

then we have

( ˚Hessu)∗ω = ([ ˚Hessu]8)∗ω,

( ˚Hessu)∗ Re� = ([ ˚Hessu]12)∗ Re�.

Moreover, since these forms are 0, it follows that

[ ˚Hessu]8 = 0 and [ ˚Hessu]12 = 0.

This shows that ˚Hessu ≡ 0 and by Tashiro’s Theorem 6.1, this means (M, g) is
isometric to (R6, geucl).
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