114 research outputs found

    Deformable Part Models for Automatically Georeferencing Historical Map Images

    Get PDF
    Libraries are digitizing their collections of maps from all eras, generating increasingly large online collections of historical cartographic resources. Aligning such maps to a modern geographic coordinate system greatly increases their utility. This work presents a method for such automatic georeferencing, matching raster image content to GIS vector coordinate data. Given an approximate initial alignment that has already been projected from a spherical geographic coordinate system to a Cartesian map coordinate system, a probabilistic shape-matching scheme determines an optimized match between the GIS contours and ink in the binarized map image. Using an evaluation set of 20 historical maps from states and regions of the U.S., the method reduces average alignment RMSE by 12%

    Details of Deformable Part Models for Automatically Georeferencing Historical Map Images

    Get PDF
    Libraries are digitizing their collections of maps from all eras, generating increasingly large online collections of historical cartographic resources. Aligning such maps to a modern geographic coordinate system greatly increases their utility. This work presents a method for such automatic georeferencing, matching raster image content to GIS vector coordinate data. Given an approximate initial alignment that has already been projected from a spherical geographic coordinate system to a Cartesian map coordinate system, a probabilistic shape-matching scheme determines an optimized match between the GIS contours and ink in the binarized map image. Us- ing an evaluation set of 20 historical maps from states and regions of the U.S., the method reduces average alignment RMSE by 12%

    Using redundant information from multiple aerial images for the detection of bomb craters based on marked point processes

    Get PDF
    Many countries were the target of air strikes during World War II. Numerous unexploded bombs still exist in the ground. These duds can be tracked down with the help of bomb craters, indicating areas where unexploded bombs may be located. Such areas are documented in so-called impact maps based on detected bomb craters. In this paper, a stochastic approach based on marked point processes (MPPs) for the automatic detection of bomb craters in aerial images taken during World War II is presented. As most areas are covered by multiple images, the influence of redundant image information on the object detection result is investigated: We compare the results generated based on single images with those obtained by our new approach that combines the individual detection results of multiple images covering the same location. The object model for the bomb craters is represented by circles. Our MPP approach determines the most likely configuration of objects within the scene. The goal is reached by minimizing an energy function that describes the conformity with a predefined model by Reversible Jump Markov Chain Monte Carlo sampling in combination with simulated annealing. Afterwards, a probability map is generated from the automatic detections via kernel density estimation. By setting a threshold, areas around the detections are classified as contaminated or uncontaminated sites, respectively, which results in an impact map. Our results show a significant improvement with respect to its quality when redundant image information is used. © 2020 Copernicus GmbH. All rights reserved

    An Evolutionary Approach to Adaptive Image Analysis for Retrieving and Long-term Monitoring Historical Land Use from Spatiotemporally Heterogeneous Map Sources

    Get PDF
    Land use changes have become a major contributor to the anthropogenic global change. The ongoing dispersion and concentration of the human species, being at their orders unprecedented, have indisputably altered Earth’s surface and atmosphere. The effects are so salient and irreversible that a new geological epoch, following the interglacial Holocene, has been announced: the Anthropocene. While its onset is by some scholars dated back to the Neolithic revolution, it is commonly referred to the late 18th century. The rapid development since the industrial revolution and its implications gave rise to an increasing awareness of the extensive anthropogenic land change and led to an urgent need for sustainable strategies for land use and land management. By preserving of landscape and settlement patterns at discrete points in time, archival geospatial data sources such as remote sensing imagery and historical geotopographic maps, in particular, could give evidence of the dynamic land use change during this crucial period. In this context, this thesis set out to explore the potentials of retrospective geoinformation for monitoring, communicating, modeling and eventually understanding the complex and gradually evolving processes of land cover and land use change. Currently, large amounts of geospatial data sources such as archival maps are being worldwide made online accessible by libraries and national mapping agencies. Despite their abundance and relevance, the usage of historical land use and land cover information in research is still often hindered by the laborious visual interpretation, limiting the temporal and spatial coverage of studies. Thus, the core of the thesis is dedicated to the computational acquisition of geoinformation from archival map sources by means of digital image analysis. Based on a comprehensive review of literature as well as the data and proposed algorithms, two major challenges for long-term retrospective information acquisition and change detection were identified: first, the diversity of geographical entity representations over space and time, and second, the uncertainty inherent to both the data source itself and its utilization for land change detection. To address the former challenge, image segmentation is considered a global non-linear optimization problem. The segmentation methods and parameters are adjusted using a metaheuristic, evolutionary approach. For preserving adaptability in high level image analysis, a hybrid model- and data-driven strategy, combining a knowledge-based and a neural net classifier, is recommended. To address the second challenge, a probabilistic object- and field-based change detection approach for modeling the positional, thematic, and temporal uncertainty adherent to both data and processing, is developed. Experimental results indicate the suitability of the methodology in support of land change monitoring. In conclusion, potentials of application and directions for further research are given

    Geographic Information Science (GIScience) and Geospatial Approaches for the Analysis of Historical Visual Sources and Cartographic Material

    Get PDF
    This book focuses on the use of GIScience in conjunction with historical visual sources to resolve past scenarios. The themes, knowledge gained and methodologies conducted might be of interest to a variety of scholars from the social science and humanities disciplines

    Hyperspectral Imaging from Ground Based Mobile Platforms and Applications in Precision Agriculture

    Get PDF
    This thesis focuses on the use of line scanning hyperspectral sensors on mobile ground based platforms and applying them to agricultural applications. First this work deals with the geometric and radiometric calibration and correction of acquired hyperspectral data. When operating at low altitudes, changing lighting conditions are common and inevitable, complicating the retrieval of a surface's reflectance, which is solely a function of its physical structure and chemical composition. Therefore, this thesis contributes the evaluation of an approach to compensate for changes in illumination and obtain reflectance that is less labour intensive than traditional empirical methods. Convenient field protocols are produced that only require a representative set of illumination and reflectance spectral samples. In addition, a method for determining a line scanning camera's rigid 6 degree of freedom (DOF) offset and uncertainty with respect to a navigation system is developed, enabling accurate georegistration and sensor fusion. The thesis then applies the data captured from the platform to two different agricultural applications. The first is a self-supervised weed detection framework that allows training of a per-pixel classifier using hyperspectral data without manual labelling. The experiments support the effectiveness of the framework, rivalling classifiers trained on hand labelled training data. Then the thesis demonstrates the mapping of mango maturity using hyperspectral data on an orchard wide scale using efficient image scanning techniques, which is a world first result. A novel classification, regression and mapping pipeline is proposed to generate per tree mango maturity averages. The results confirm that maturity prediction in mango orchards is possible in natural daylight using a hyperspectral camera, despite complex micro-illumination-climates under the canopy

    Nonparametric image registration of airborne LiDAR, hyperspectral and photographic imagery of wooded landscapes

    Get PDF
    There is much current interest in using multisensor airborne remote sensing to monitor the structure and biodiversity of woodlands. This paper addresses the application of nonparametric (NP) image-registration techniques to precisely align images obtained from multisensor imaging, which is critical for the successful identification of individual trees using object recognition approaches. NP image registration, in particular, the technique of optimizing an objective function, containing similarity and regularization terms, provides a flexible approach for image registration. Here, we develop a NP registration approach, in which a normalized gradient field is used to quantify similarity, and curvature is used for regularization (NGF-Curv method). Using a survey of woodlands in southern Spain as an example, we show that NGF-Curv can be successful at fusing data sets when there is little prior knowledge about how the data sets are interrelated (i.e., in the absence of ground control points). The validity of NGF-Curv in airborne remote sensing is demonstrated by a series of experiments. We show that NGF-Curv is capable of aligning images precisely, making it a valuable component of algorithms designed to identify objects, such as trees, within multisensor data sets.This work was supported by the Airborne Research and Survey Facility of the U.K.’s Natural Environment Research Council (NERC) for collecting and preprocessing the data used in this research project [EU11/03/100], and by the grants supported from King Abdullah University of Science Technology and Wellcome Trust (BBSRC). D. Coomes was supported by a grant from NERC (NE/K016377/1) and funding from DEFRA and the BBSRC to develop methods for monitoring ash dieback from aircraft.This is the final version. It was first published by IEEE at http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7116541&sortType%3Dasc_p_Sequence%26filter%3DAND%28p_Publication_Number%3A36%29%26pageNumber%3D5

    You Only Look for a Symbol Once : An Object Detector for Symbols and Regions in Documents

    Get PDF

    Integrated approach to palaeoenvironmental reconstruction using GIS

    Get PDF
    • …
    corecore