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ABSTRACT 

The last interglaciaL/glacial cycle is the key period for understanding the nature of long-term 
environmental change, and the complex interplay between the atmosphere, oceans, glaciers, the 
lithosphere and vegetation. It is the cycle for which most information is available, and the only one 
for which there is any hope of reconstructing a detailed history. Major obstacles to utilising the 
available data are the volume of complex, disparately located information, the difficulty of relating 
earlier observations to new models, and the increasingly global nature of investigations. There is a 
fundamental and pressing need for a way of optimising the co-ordination of research, and the 
organisation and analysis of data. Information Technology (IT) in general, and Geographical 
Information Systems (615) Science, in particular, offer a powerful means by which this can be 
achieved. 

Despite recent advances in palaeoenvironmental research methodologies, significant improvements 
may be realised through better data management and a more rigorous approach to spatial data 
analysis. Geographic Information Science research offers methods and techniques for handling large 
volumes of complex, multi-source, spatial data which require an understanding of spatial theory and 
scientific organisational structures. Research in this area combines computer science, social science, 
geography, geodesy, cartography and cognitive psychology to address these issues. 

Analyses of the data and methodologies employed in palaeoenvironmental reconstruction reveal 
particular areas where 615 might increase scientific understanding. Glacial geomorphological and sea 
level data sets provide very different palaeoenvironmental reconstruction challenges through which 
the issues of current practices, and the benefits of 615 techniques, can be explored. 615 data analysis 
and management methods considerably improved the potential for using this data in reconstruction of 
the NW European palaeoenvironment during the last glacial cycle. A spatial framework was 
developed, which facilitated data integration and quantitative analysis for regional datasets. The 
accuracy and speed with which this was achieved using 615 has hitherto been impossible using 
manual methods. However, several issues have emerged which highlight the limitations inherent in 
current palaeoenvironmental practices, and the shortfalls in 615 knowledge and technological 
development. This suggests that a change in the current research paradigm is needed. 

An object oriented approach to palaeoenvironmental reconstruction addressed limitations imposed by 
the current research paradigm and has been developed into the PaleoEnvironmental Reconstruction 
and Information System (PERIS) model. Changes in research practices are required to improve 
palaeoenvironmental research methods. These changes would support the PERIS model and are 
discussed in terms of a palaeoenvironmental infrastructural research strategy. 
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Chapter 1 Introduction 

1.1 Palaeoenvirornnents and global change 

In the current climate of unease about the future of the earth system and the impact of 

humans on global change, it has become imperative to find out more about the 

mechanisms of change and to understand which parameters play key roles. It is 

necessary to know the magnitudes, spatial patterns and rates of change, and to address 

the question of climatic evolution at different temporal and spatial scales. 

Importantly, the current changes being monitored in the earth's climate must be 

elucidated in relation to the overall pattern of climate change over a long time-scale. 

The question is whether current changes are part of a broader pattern of natural 

cycles, or if human impact is perturbing the long-term cycles to a degree which is of 

concern. Historical instrumental records provide only a barrow sample of possible 

changes. It is therefore important to know how these climatic variations compare 

with the major climate changes in the geological record (Crowley, 1989). Knowledge 

of past environmental evolution can also be used to understand the processes of long-

term climatic change. 

Information is required for policy making and planning. Understanding earth and 

climatic processes is a prerequisite for informed management of the environment 

(Lillesand, 1993). Pressing problems include how far green house gas emissions 

must be curbed to limit their impact on climate, and the capacity of oceanic and 

terrestrial systems to accommodate the dumping of hazardous waste. The safety of 

nuclear waste disposal, for example, has implications for future generations, because 

of the timescale of nuclear waste activity. There is concern over the impact of future 

glaciations on proposed underground repositories through glacial erosion and 

meltwater subrosion (Boulton & Payne, 1992a). Therefore studies of past climate 

have taken on a new importance in helping to address these issues. 

The last interglacial/glacial cycle holds the best opportunity for uncovering the large-

scale, long-term mechanisms of climatic change (Mangerud, 1991a, 1991b). It is the 

geological period for which the most detailed climatic records exist, making it 

possible to reconstruct significant environmental changes such as sea level and 

vegetation variations, and the waxing and waning of large continental ice masses. 

Thus the role of palaeoenvironmental science is crucial in global change research. 



1.2 Global science and the information explosion 

Unless there is a free sharing of information "it will be an impossible millstone 

around the neck of tomorrow's organisation" (Peters, 1987). The desire to share 

spatial and environmental information is stronger than ever within organisations with 

shared interests in common geographical areas (Nyerges, 1989a). As global science 

expands, the numbers of people involved in large collaborative projects increase. 

Locating, storing, retrieving and communicating data is a growing problem. There 

has been a profusion of data and an increase both in the number and diversity of 

disciplines contributing to this area, and in the geographical locations in which 

inforniation is being recorded, held and utilised. There is a perceived need for 

geographical analysis and spatial data on a global scale (Tomlinson, 1988). A large 

number of publications cover the wide---. range of subject areas relevant to 

palaeoenvironmental studies, continually presenting new data and evolving theories. 

The volume of data being produced is very large. Satellite data, for example, is 

currently being generated at almost unmanageable levels (Ehrlich et al., 1994). There 

is a growing need for data-on-demand to cover large areas, for a variety of purposes. 

Data must be shared and transferred between practitioners and the results of studies 

communicated to funding bodies, policy makers and governments. The ability of 

Information Technology (IT) to help manage this information and increase the speed 

and accuracy with which it can be processed and communicated, appears to best 

address these requirements. 

In the field of palaeoenvironmental studies the last fifteen years have witnessed major 

advances in the investigation of palaeoenvironmental change (Crowley & North, 

1991). New methods have created multiple sources of new data and, importantly, 

computer modelling techniques are now being applied to make sense of these large 

quantities of data (Eddy & Oeschger, 1991). There are significant benefits to be 

gained by improving the network of collaboration, and the handling of large volumes 

of data using computers. An efficient computer network system would reduce the 

time and resources involved, for example, in repetitive data review exercises. Data 

reviews are usually undertaken with limited resources and varying degrees of success. 

They rely mostly on literature sources where information can be obscured, 

misunderstood and inadequately documented. Structured data held on a computer 

system would allow immediate access to information required by individual groups at 

the beginning of most projects which could be formatted according to their needs. 

Not only would time be saved in this respect, but the value of individual project 

results would be greater through being inititiated from a better knowledge basis. 

2 



They would also contribute directly to the pool of knowledge through the information 

system. Finally, having all the information in digital form facilitates easily 

producible, clear, high quality presentation of results. Communication between 

groups within a project is faster and more efficient. Using computers to manage the 

data as well as the analysis is therefore of enormous benefit. 

Information technology combined with the global communication system fostered by 

the Internet, offer the possibility for an organised, strategic, global data and 

information system. This potential has been recognised by various international 

organisations, most notably the European Science Foundation and the US 

Government National Science Foundation. These organisations have initiated a 

number of projects which address the issues associated with large scientific databases 

and inter-institutional data sharing (e.g. US Global Change Research Program, 1993). 

Research is now being undertaken in the areas of multi-source, multi-purpose digital 

databases and the way in which earth observations are stored and integrated will 

determine the degree to which global spatial processes can be understood (Tomlinson, 

1988). 

1.3 Emergence of GIS 

Increasing volumes of information, and the needs of businesses, governments and 

researchers for spatial data management and analysis capabilities, have resulted in the 

emergence of the field of Geographical Information Science (Goodchild, 1992). The 

1960s and 1970s saw the development of computer mapping and database 

management. It was realised that there are special problems involved with digital 

spatial data handling (Tomlinson et at, 1976) and many initial attempts to create 

systems for spatial data failed (Marble, 1990). However substantial computing and 

conceptual advances enabled further development during the 1980s, and a change in 

focus to robust analytical capabilities and the emergence of cartographic modelling 

(Tomlin, 1990). The 1990s have seen an extension of cartographic modelling to 

spatial modelling and the move from mapped data to spatial information (Steyaert, 

1993). GIS have gained popularity in business and research as essential data 

management and analysis tools. They are fundamentally different from other types of 

information systems because they are specifically designed to handle the complexity 

of spatial relationships, which have many interdependencies (Evans, 1994). 

3 



GIS may be described in many ways. There are a number of definitions which 

depend on the perspective chosen. The most common definition combines a 

structural and procedural perspective: 

"A system of hardware and software, data and people, organizations, and 

institutions for collecting, storing, analyzing and disseminating information 

about areas of the earth", and, more recently, for integrated modelling of 

environmental processes (Dueker & Kjerne, 1989) 

A functional perspective defines GIS in terms of the application-oriented operations it 

performs (Nyerges, 1991). 

GIS generally comprises several functional components: 

Data Management: input, update, storage and retrieval, browsing,... 

Data Manipulation: georeferencing, classification, aggregation, integration,... 

Analysis: network modelling, spatial and non-spatial statistics, overlay,... 

Display: present results, visualize information for exploratory analysis,... 

GIS has also been described as a system for supporting geographically based 

decisions, or a Spatial Decision Support System (SDSS) (Cowen, 1988). 

Alternatively, Berry (1993) offers four descriptions which show the many levels at 

which GIS is perceived and how it has evolved: 

a tool to create and update maps 

a technology for combining and interpreting maps 

a revolution in map structure, content and use 

spatial statistics and mathematics allowing users to model complex resources 

and environmental systems 

Berry's descriptions (iii) and (iv) reveal how GIS requires users to view data in 

completely new ways. Geographical Information Systems (GIS) have the power to 

manage the large, complex, spatially referenced datasets associated with 

palaeoenvironmental reconstruction. They also enable these datasets to be integrated 

directly with environmental models to discover the mechanisms of environmental 

change. Geographical Information Science drives the development of Geographical 

Information Systems and sits at the interface between computer science, management 

science and geographical applications (Goodchild, 1992). Throughout the following 
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chapters GIS will be used to denote both science and systems, but where it is 

important to distinguish between the two the acronym will be appropriately expanded. 

1.4 Changes in scientific conduct 

The demands driving science, the increasingly global nature of research activities, the 

technological revolution, and the changes instigated by GIS in the way data is being 

used, are revolutionising scientific conduct. GIS is a powerful tool with substantial 

benefits, but its use reveals the weaknesses in data (Goodchild, 1991) and the way 

data has been handled traditionally. For example, traditional statistical analysis often 

assumes an even distribution of information (mean annual temperatures for a region, 

changes in species populations etc.), whereas spatial analysis characterises the 

geographic distribution of variables (Berry, 1993) and therefore reveals spatial 

variability and spatial dependency. It also facilitates the move from mapped data to 

spatial information. This forces users to think more explicitly about data 

representation. The suitability of a representation depends on the use to which the 

data is being put. Hard spatial boundaries are suitable for some applications such as 

river networks and roads. However, probabilistic distributions are more suitable for 

other information such as soils data. 

In addition the success of GIS is entirely dependent on the quality of the data which it 

holds (the provision of lineage and uncertainty measures, otherwise known as 

metadata), and the accessibility of this data to users. The present state of data that do 

exist, is that they "have limited metadata, and error in particular is not properly 

documented, [they] are incompatible in terms of temporal and spatial resolution, and 

have unsuitable archiving and retrieval formats" (Task Group 6, 1991). Lousma 

(1993) remarks that "we have fallen short in matching the vigour of data collection 

with the rigor of data management and integration". Many of these GIS issues are 

"old" issues, but 315 forces scientists to confront them explicitly. Research on these 

areas, to which the GIS community are currently contributing, will be of widespread 

benefit (Goodchild, 1991). 

Stafford et al. (1994) envisage that the current expansion of data management within 

scientific organizations driven by the need for timely and effective transformation of 

data into information, will lead to the emergence of "scientific information 

management" as a discipline, with research and management as fundamental 

components. The move to scale up traditionally detailed studies to regional and 

global levels underlines the integration and management of large data sets as crucial. 
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The concepts of scale and variability become key factors as larger regions are 

investigated (Levin, 1992). This is a particular issue in palaeoenvironmental studies, 

for which only certain resolutions of phenomena will be identifiable because of the 

scarcity of data. 

Projects establishing global databases will require the investment of large amounts of 

resources and will imply long-term commitments (Tomlinson, 1988). The problem 

is now, that the users' needs are not as well known to data producers as they were in 

the non-digital age (Hayes & Romig, 1977). This means that the information age 

demands higher standards to accommodate unforeseen requirements. GIS technology 

has the potential to provide the "glue" of common conceptual ground required to 

facilitate interdisciplinary Earth System science (Lillesand, 1993). The US 

Geological Survey is already going some way towards meeting the challenges of a 

multiscale geographic approach to global change and understanding earth processes 

within the United States Global Change Research Program (Kelmelis, 1993). It is 

important that the palaeoenvironmental research community prepare to follow this 

trend in order to exploit the opportunities fully. Bradley (1985) warns against the 

danger of limited interdisciplinary understanding and collaboration in the future. 

Significant advances in the future are likely to occur through multidisciplinary and 

interdisciplinary approaches to palaeoenvironmental reconstruction and by adopting a 

broad perspective and drawing on evidence from other regions (Lowe & Walker, 

1984). Such approaches are best exemplified by the work of CLIMAP (1976). 

1.5 Thesis Aims 

The main aim of the thesis is to evaluate the potential of GIS for addressing the 

information analysis and management requirements of palaeoenvironmental research. 

More specifically the objectives are to: 

• Examine the data, analytical methods and research organisation involved in 

palaeoenvironmental reconstruction 

• Determine where GIS offers scope for enhanced capabilities in 

palaeoenvironmental data storage, manipulation and analysis of 

palaeoenvironmental data using two case studies (glacial geomorphology and sea 

level) 



• Demonstrate areas where (MS offers new analytical possibilites unavailable to 

research using largely manual methods through the glacial geomorphology and 

sea level case studies. 

• Examine the implications for palaeoenvironmental research of moving from 

manual methods, to fully digital processing, for palaeoenvironmental data in 

relation to the organisation of research collaboration within and between groups 

both nationally, and internationally. 

Propose an innovative conceptual approach, and framework, for future 

developments in palaeoenvironmental research, taking account of both scientific, 

and organisational, issues involved in the management, integration and analysis 

of multiple large space-time datasets. 

1.6 Thesis Structure 

Chapter 2 reviews palaeoenvironmental research methodology to identify where 

significant information handling and analysis improvements could be made. From 

this a series of generic scientific and organisational research requirements are 

established. The issues associated with (MS are then examined in Chapter 3 by 

considering the technological and conceptual aspects of using GIS by adopting a 

spatial approach to analysis, and a systems approach to informaiton management. 

These details define the planning and design criteria with which the GIS requirements 

can be addressed. Relevant developments in other disciplines are reviewed. These 

include geophysical databases, remote sensing data systems, and projects which are 

addressing the issues associated with large databases and scientific data sharing and 

provision. 

The focus then narrows to two case studies in Chapters 4 and 5. These case studies 

concern reconstruction of the glacial environment in the area of North West Europe 

since the last glacial maximum using glacial geomorphological (Chapter 4) and sea 

level (Chapter 5) data. The datasets were selected because they are important 

palaeoenvironmental measures, which relate to the same palaeoenvironmental 

phenomena. They also comprise very different data characteristics and exhibit a 

range of analysis and processing requirements. The use of GIS to support 

palaeoenvironmental reconstruction was explored through these datasets. The 

objective was to store data relating to the last glaciation of North West Europe so that 

it can be used in a flexible way, be readily displayed in a variety of formats and 

7 



provides a framework within which a comparison with suitable models can be made. 

In carrying out this task the many benefits of GIS are realised. The system provides 

quantitative spatial analysis of data in contrast to previously qualitative 

manipulations. It also offers a degree of speed and flexibility not previously 

attainable. However, as well as the advantages, it also illustrates a number of issues 

of using GIS for scientific research, and the limitations of proprietary GIS 

technology. 

In Chapters 4 and 5 a data and methods discussion precedes the details of GIS 

implementation. These discussions establish the overall aims of reconstruction for 

the datasets and the complete suite of data and methods deployed to achieve this. 

They illustrate the complexity of the information associated with the case studies. 

Because of the time and expense required to establish a GIS, it is important to 

consider the wider context of information utilisation in the design and planning of an 

information system for long-term use (de Man, 1988). A system must be able to 

evolve to meet new requirements. The case study discussions exemplify the 

relationship between organisational, communicational and information management 

issues and scientific development. These case studies result in a set of technical and 

infrastructural requirements for handling palaeoenvironmental information using GIS. 

To address these shortfalls in current systems and research practices a Palaeo 

Environmental Reconstruction and Information System (PERIS) is proposed in 

Chapter 6, which provides an innovative conceptual framework for both scientific 

research and information management. The model addresses the current information 

and scientific issues identified in the preceding chapters. Proposals are discussed for 

changes in the global palaeoenvironmental data infrastructure which would facilitate 

the adoption of such a framework. The research strategies required to evolve a truly 

global palaeoenvironmental research and information system are discussed as 

proposals for a research agenda. 

Chapter 7 summarises the main conclusions and issues arising from the thesis. 



Chapter 2 Palaeoenvironmental Research Requirements 

2.1 Approach 

In this chapter the inadequacies of current palaeoenvironmental research practices are 

reviewed to define a set of information handling and analysis requirements. The 

contribution of an information system can be evaluated against these requirements. 

The general issues associated with palaeoenvironmental research are addressed in this 

chapter and then revisited in more detail in the case studies (Chapters 4 and 5). They 

are also used in the development of a new conceptual approach-  to long-term 

information management and reconstruction research proposed in Chapter 6. 

The objectives of research define how data are used, and by whom (Section 2:2). 

Current practices are reviewed to determine how reconstruction is achieved and the 

characteristics of data and methods deployed (Section 2.3). Some of the significant 

issues associated with current practices are then identified (Section 2.4), and 

improvements in information management which would help to address these 

shortfalls are discussed. A set of palaeoenvironmental requirements is presented 

(Section 2.5). 

2.2 Objectives of Palaeoenvironmental Research 

The objective of palaeoenvironmental research is to reconstruct and understand earth 

evolution. Modem spatial association, can be correlated and parámeterised using 

climatic and environmental variables. For example plant distributions may reflect the 

combined distributions of temperature, precipitation, seed sources and soil type. As 

climate changes with time, the mosaic of plant distributions must also evolve in 

response to this. Knowledge of these associations and an understanding of change in 

time and space are therefore required. The study of palaeoenvironmental change 

helps understanding of these processes over a long timescale. 

Different groups of scientists have different aims in pursuing palaeoenvironmental 

science. For the geologist the scientific goal is the investigation of the earth's history, 

for the geographer and the ecologist it is a search for long-term processes to explain 

things such as landform origins, and habitats. Botanists and archaeologists seek to 

uncover the history of plants or of man. There is also a utilitarian role in 

understanding the palaeoenvironment (e.g. Wright, 1973) to determine the original 

natural state of areas affected by man-induced change, for restoration purposes, or the 

origin of geotechnical properties in engineering (Weeks, 1969). Environmental 
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changes have implications for the long-term safety of radioactive waste disposal sites 

(e.g. Boulton & Payne, 1992b). Reconstruction of past environments can also be used 

as a means of extrapolating future environmental changes. It is important to 

understand the full range of natural variability in the climate system to recognise any 

man-induced effects. Despite these varying objectives, there is a common need to 

reconstruct the sequence of past environments. 

Some of the current issues in palaeoenvironmental research were recently discussed at 

the Dahlem workshop (Eddy & Oeschger, 1993). This series of workshops was 

founded in 1974 to provide a forum to stimulate co-operation and research. One of 

the aims during the 1991 meeting was to identify gaps in knowledge, find new ways 

to approach stubborn issues and define priorities for research. The results and 

recommendations of these discussions focused on spatio-temporal gaps in the data 

and the problems in certain methodologies. The main points of discussion are 

summarised below. Future palaeoenvironmental research should focus on studies in 

these areas: 

• Investigations into the validity of using geological analogues for understanding 

past, and projecting future, changes 

Increased understanding of the reliability and consistency of palaeodata derived 

from Continents, Oceans and Ice Sheets 

• Better approaches to the harmonisation of different dating chronologies 

• Investigations into particular phenomena and mechanisms of change (for 

example the problem of lead and lag between causal phenomena and the 

recorded consequences of change) 

• Consideration of the role of modelling in simulating and facilitating an 

understanding of change 

2.3 Methods and Data 

The evidence of past change comprises chemical, biological, sedimentological and 

morphological remains. These are proxy indicators from which palaeoenvironmental 

properties, such as temperature and precipitation, can be inferred, but not directly 

measured. These proxy data types include ancient pollen spores, beetle assemblages, 
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geochemical signatures from deep oceans and cave deposits such as speleothems and 

glaciological deposits. 

From this evidence palaeoenvironmental phenomena can be reconstructed in space 

and time. The reconstruction process comprises several stages which involve data 

collection, the derivation of palaeoenvironmental information from this data, and 

regional syntheses of this information through modelling and theoretical inferences 

(Figure 2.1). From the reconstructions, and from temporal and spatial sequences of 

proxy indicators, mechanisms and processes of change can be inferred. This can be 

achieved in several ways. Correlation methOds allow the comparison of 

environmental proxies through time to establish spatial and temporal links and 

associations. For example sea level index points on raised shorelines, discussed in 

Chapter 5, have been measured and correlated to produce maps of relative sea level 

change through time (e.g. Walcott, 1972a; Pirazzoli et al., 1982; Taira, 1975). 

Relationships between different data are then analysed to establish causal mechanisms 

for these associated changes. These hypotheses can then be tested using data from 

other areas. Modelling techniques also facilitate hypothesis testing with proposed 

mechanisms expressed as mathematical relationships. For example, Tushingham and 

Peltier (199 1) developed a model which incorporates mantle viscoelastic structure and 

the deglaciation history. They tested this model using data not used in the model 

formulation (Tushingham & Peltier, 1992). All palaeoenvironmental inferences and 

reconstructions are based on uniformitarian principles, in other words that 'the 

present is the key to the past" (George, 1976). 

The most important issue which arises in generating reconstructions is determining 

the temporal component. Essentially palaeoenvironmental inferences can be divided 

into three types based on their temporal attributes: 

Data to which a dating method can be applied and therefore for which a date is 

known 

Data for which some dating constraints are available. These can be considered to 

be relative dates. The samples cannot themselves be dated, but lie temporally close to 

(above and below) samples which can be dated, or which are correlatable with 

features of known dates. 
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Figure 2.1 Illustrating Simplistically the Iterative Nature of 
Stages in Palaeoenvironmental Reconstruction 
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(iii) Data for which no dates are known, but which give valuable 

palaeoenvironmental information. 

2.3.1 A Data Hierarchy 

In order to manage the range and complexity of information represented by the term 

"palaeoenvironmental data', some means of identifying different sorts of information 

is required which distinguishes data according to their origin and their role in the 

reconstruction process. The divisions (levels) discussed below relate to the stages of 

data transformation. This subdivision is also used in the following chapters 

(particularly chapters 4, 5 and 6) in the context of computer-based information 

systems. The analysis uses these subdivisions to help explore the limitations 

encountered using current methods of information management (section 2.4). 

The methods of palaeoenvironmental reconstruction have been summarised by 

Bradley (1985). This summary refers to palaeoclimatic proxy records, but can be 

extended to include morphological stratigraphic evidence, and is used as the basis for 

the three data levels considered below. The numbered stages describe the processes 

required to obtain the different data levels. 

LEVEL I DATA (observations) 

collection of samples and observations usually involving fieldwork 

laboratory analyses and measurements (e.g. tree ring width, isotopic ratios) 

LEVEL 2 DATA (palaeoenvfronrnental inferences) 

Calibration of Level 1 data to achieve palaeoclimate estimates. This may be 

qualitative (using terms such as 'warmer', 'wetter' etc.) or may involve explicit, 

reproducible procedures that provide quantitative estimates of palaeoclimatic 

variables and, often, a record of palaeoclimatic change through time for a 

particular location. 

LEVEL 3 DATA (spatial reconstructions of variables through time) 

Mapping of Level 2 data to provide a regional synthesis of palaeoclimate at 

selected time intervals. The synthesis provides a greater insight into former 

environmental patterns than any individual data set could provide alone (e.g. 

Nicholson & Flohn, 1980). In a few cases three dimensional arrays of Level 2 

data have been transformed into objective derived statistical summaries (such as, 

for example, principal components eigen vectors showing a reduced number of 

modes and patterns of drought (Wang & Zhao, 1981)). 
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These data levels are useful as a generic, although crude, classification system for 

palaeoenvironmental information. They reflect the degree of interpretation and 

processing which the data has undergone. 

2.3.2 Level 1 and 2 Data 

Obtaining Level I data requires field and laboratory work on core samples, earth 

morphology and observations and measurements of regional spatial characteristics 

(including photographic or satellite image data) or cross-sectional evidence (which 

may come from excavations or from seismic, gravitational or other geophysically 

sensed data). This results in a mixture of digital and non-digital data which will be 

textual (descriptive), diagrammatic, cartographic, photographic and numeric. In 

spatial terms, Level 1 measurements are usually associated with point locations, or a 

series of vertical point samples (such as core or sample site locations), but can 

comprise areal, linear and volumetric spatial measurements in cases such as 

geomorphological studies. There is a wide variety of Level 1 data types, such as 

marine and lake cores and terrestrial excavations (Table 2.2), from which can be 

derived a number of palaeoenvironmental inferences (several observations may be 

required to derive one palaeoenvironmental variable). The uncertainty in inferences 

made from these data are relatively small in the spatial dimension although poor base 

maps and inadequate ground control can introduce large spatial errors in field or 

remote sensing observations. The temporal errors depend on the resolution of the 

dating technique used, and are often of the order of several thousand years or more. 

Level 2 data inferences vary from quantitative measures of seasonal temperature 

variations and water depth, to more qualitative inferences such as 'warmer and wetter 

than the present day" (Table 2.3). The links between Level 2 data and Level 1 data 

can be complicated and more than one Level 1 measurement can contribute to a Level 

2 datum inference (for example temperature can be derived from the size of 

particulate matter in ice cores, the relative abundances of insects, and the growth of 

speleothems). The type of data will have implications for the suitability of current 

computing techniques to achieve Level 3 reconstructions. Interpolation routines may 

be applied to quantitative, numerical estimates with a reasonable spatial coverage. 

Most current methods of spatial analysis can only handle quantitative measurements 

and not qualitative data. The conversion of Level 1 data to Level 2 data involves a 

number of processes from interpretational intuition (for example, a glacial direction 

from a landform such as a moraine) to the complex use of present day analogues and 
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Table 2.2 Level 1 Proxy data (compare with Table 2.3) 

Source I nipl 1 Ilnt 

Ice cores Stable isotope compositions (Oxygen, Deuteriuin) point, measurement, depth sequence 

Ice fabric (melt layers/crystal size) point, event, description, depth sequence I 

Gas Bubbles (volume/composition) point, measurements, depth sequence 

Particulate matter (size/composition) point, measurements, depth sequence 
Nitrate ions point, measurement, depth sequence 

Marine Sediments Microfossils (relative abundances/morphology/porosity) point, classification, measurements, depth sequence 

Oxygen isotope composition of microlossil tests point, measurements, depth sequence 

Sedimentology (composition/bedding/mineral surfaces) Pont(, measurements, descriptions, depth sequence 
Terrestrial Geology Periglacial Features (pingos, ice wedges, polygons...) point/area, size, description 

Moraines (morphology, composition) line/area, size, description 
Eskers (morphology, composition) line/area, size, description 
Druinlins, flutes, striae (directions, size) line/area, size, description 
Shorelines (height/date) point/line, height, description 
Lake levels (height, palaeosols) point/line, height, description 
Speleotlicins (Deuteriuni/oxygen isotopes,varve width) point, measurement, event, width sequence 

Terrestrial Biology Plant inacrokssils (assemblage, relative abundance) point/area, measurenienis, description, classification 
Insects (assemblage, relative abundances) point, classification, depth sequence 
Tree rings (ring width, density variation, isotope composition) point, measurement, event, width sequence 
Pollen (relative abundances, assemblage) point, classification, measurements, depth sequence 

The Symbol column is a reference code For the Level I data observations to show which observations are used to derive which Level 2 inferences in Table 2.3 
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Table 2.3 Level 2 Inference Data (showing Level 1 links Table 2.2) 

Level 1 Data Level 2 Data Data Tvne flperrintinn 

L S Global Ice Volumes quant. aspatial, discontinuous time sequence 
B • S D Temperature quant./qual. spatial, point, time sequence 

0 • 0 * Seasonal temperature variations quant/qual. spatial, point, time sequence, isolated estimates 
Accumulation rates quant./qual. spatial, point, time sequence, isolated estimates 

[I Glacier mass balance quant./qual. spatial, area, time sequence, isolated estimates 
A ice surface height quant. spatial, point, time sequence 

'P atmospheric circulation quasi-quant. aspatial, time sequence 
F solar activity quasi-quant. aspatial, time sequence 
• 0 O Dn temperature ranges quant. spatial, point, time sequence 

sea surface temperature quant. spatial, point, time sequence 
bottom water temperature quant. spatial, point, time sequence 
ocean circulation quant. spatial, point, time sequence 

'P ice rafting - ice sheet size qual./quant. aspatial, time sequence 
P trade wind intensity qual./quant. spatial, point, time sequence 
'P P 0 • aridity qual. aspatial/spatial, point, time sequence, isolated estimates 
0 permafrost extent quant. spatial, area/pt, isolated estimates 
* • D 0 5 0 precipitation quant./qual. spatial, point, time sequence, isolated estimates 

Fl ice extent quant./qual. spatial, area/line/pt, isolated estimates 
D 0 U water mass balance variation quant./qual. spatial, area, time sequence, isolated estimates 
1? Iluvioglacial hydrology qual./quant. spatial, point/line, isolated estimates 
t y1  II deglaciation patterns qual./quant. spatial, line, isolated estimates 
ry) 

direction of ice movement quant. spatial, line, isolated estimates 
(L) U S sea level quant. spatial, point, isolated estimates 

• soil type quant. spatial, point/area, isolated estimates 

vegetation type/distribution/cover quain. spatial, point, time sequence, isolates estimates 
arctic frontal position qual. spatial, point, isolated estimates 

DO * length of growing season qual. spatial, point, time sequence, isolated estimates 
* 0 run-off quant. spatial, area, isolated estimates 
* anomalous weather patterns qual. spatial, point, time sequence, isolated estimates 
A atmospheric composition quant. aspatial, time sequence 

__ 
 salinity quasi-quant. spatial, time sequence 



transfer functions, to derive palaeoenvironmental parameters (for example, 

temperature and water salinity, from microfossil assemblages - Imbrie & Kipp, 1971). 

Uncertainties in Level 2 data are often difficult to quantify, even for results derived 

from mathematical equations, such as transfer functions. Errors are multivariate and 

therefore problematic conceptually. Errors depend partly on Level 1 measurement 

and interpretational accuracies, but also on the reliability of the relationship between 

the measured parameter and the inference, which is often difficult to assess. Methods 

of calculating errors exist for some techniques such as radiocarbon dating (Stuiver & 

Pearson, 1986). Errors in dates which are achieved through correlation are not 

usually addressed, although a probabilistic approach may be appropriate. These 

issues are little considered because of the difficulty of error determination and 

subsequent incorporation into analysis techniques. 

2.3.3 Level 3 Data 

Methods of regional synthesis are rarely rigorous. Scientists build up a regional 

knowledge over years of personal endeavour and utilise work published by others. 

Information is usually plotted by hand onto a map, and synthesised by eye. As with 

all scientific theory generation, visualisation plays an important role and is 

traditionally achieved with the help of maps, tables and specialist diagrams (e.g. 

pollen diagrams). Level 2 data comes in different forms (Table 2.3) with different 

levels of resolution and certainty. Some of the data is qualitative (using terms such as 

"warmer", 'wetter" etc.) and not accurately fixed in space and time. It is therefore 

difficult to integrate using quantitative methods, particularly for data which have 

limited dating constraints (Figure 2.4). Regional synthesis of even a single variable 

such as temperature, requires significant mental agility. In a few cases where data are 

sufficiently dense, computing methods have been employed to interpolate information 

(for example in sea level studies discussed in Chapter 5). 

To achieve a complete spatial synthesis of palaeoenvironmental evolution through 

time requires the integration of information from different sites and time frames, at a 

variety of scales. Data is fragmentary and becomes more scarce the older the 

environment under study. With few constraining data points the number of possible 

scenarios is fairly broad. Combined with the large error envelopes associated with 

these data points, the errors become three- and four-dimensional in nature, and the 

possibilities for palaeoenvironmental reconstructions (both valid and erroneous) are 

17 



Figure 2.4 
Techniques dealing with different areas of the data spectrum 
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enormous. In order to help manage this, by narrowing down the number of possible 

"fits" to the data; different modelling strategies are used: 

A non-empirical model describing in a qualitative manner the relationships 
between entities; 

An empirical, quantitative description of the palaeoenvironment; 

multivariate and stochastic models which describe a variable or set of 

variables using statistic and mathematical relationships; 

Dynamic models which use mathematical and differential equations to 

describe relationships between variables using physical principles (these may 
also utilise empirically derived relationships). 

(Jeffers, 1991) 

The first two models are predictive only in that they predict what should be found at a 

certain place for the instance of time which they describe. The third group of models 

describe the relationship between parameters in order to map their spatiotemporal 

patterns. They can be predictive in some cases, where they can statistically predict 

the changes in one variable with another (e.g. time series analysis of stable oxygen 

isotope ratios down a core, reflecting Milankovitch signals.). 

Dynamic models are based on differential equations and difference equations. These 

equations express levels of state variables in terms of rates of change, which are 

controlled by decision functions, with deterministic solutions, and positive and 

negative feedbacks. They involve the solution of a large number of equations and 

offer a means of concentrating on critical variables and subsystems (Jeffers, 1991) 
(e.g. ice sheet growth and decay - Boulton and Payne, 1992a). Multivariate and 
stochastic models are used to derive Level 2 parameters from Level 1 data, and 

dynamic models are increasingly used to help model the processes of 

palaeoenvironmental change and make sense of the fragmentary evidence. 

2.3.4 Key characteristics of data and methods 

The spatial distribution of palaeoenvironmental data is not uniform with the spatial 

sampling determined by data occurrences. The density of sites on the continent is 

very low, even for Europe and America, for the last 18,000 years BP (the density 

decreases rapidly with the age of the environment under consideration). The situation 

is even worse for less thoroughly investigated areas such as Africa, South America 

and Asia. The scattering of sites is not random (tending to be clustered within regions 



easily accessible to man, such as coastal areas) which causes further problems with 

piecing together the fragmentary evidence. For example two palaeoenvironmental 

models for Eastern Russia differ markedly (Grosswald, 1980 and Velichko, 1984) 

because of the paucity of data, and the correspondingly large number of possible 

interpretations. 

Palaeoenvironmental reconstruction is both multisource and multidisciplinary. A 

single site or core can yield several types of information (Table 2.2), and several of 

these Level 1 inferences may need to be combined to derive the value of a single 

palaeoenvironmental variable (Table 2.3). Furthermore a palaeoenvironmental 

parameter can be inferred from more than one source type. For example temperature 

estimates can be made by considering the size variation of mountain glaciers through 

time, studying the texture of ice cores, or through inferences made from pollen spores 

in bog and lake sediments. Records from these different sites must be combined to 

cover the complete temporal spectrum, since no single source supplies all the 

information for one variable throughout (Figure 2.5). 

A single site or core frequently requires the skills of a variety of experts working 

together, to apply specialist techniques and interpret the proxy records (Figure 2.6). 

Inter-site correlation is required to date sequences, and is also necessary to achieve a 

regional synthesis for reconstructions. Often inter-site correlation is achieved by 

comparing sequences with a known standard such as the Specmap oxygen isotope 

curve (Imbrie et at., 1984). This allows sequences to be dated and a spatial synthesis 

of events through time developed. Thus access to up-to-date standards and sets of 

techniques is required for site investigation. 

Computing methods are already being employed for measurement of some Level 1 

data (surveying equipment, digital image processing etc.) and some transformations of 

Level 1 to Level 2 data. For example, transfer functions utilise computing techniques 

to derive temperature and salinity measurements from microfossil assemblages (e.g. 

Imbrie & Kipp, 1971; Webb & Bryson, 1972). Generating reconstructions from Level 

2 data has also involved computer aided interpolation. However reconstruction is 

currently achieved manually for the most part, because of the fragmentary and 

complex nature of the data, and because of the difficulty of representing the 

complexity of experience and circumstantial knowledge used by scientists to achieve 

these visual syntheses in computing terms. 
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Figure 2.6 
Intersection of palaeoenvironmental source data and skills domains 
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There are also a number of vital supporting datásets, information pools and methods 

(e.g. equations and procedures) which must be readily available to those working in 

this area, whether they are concerned with the generation of Level 1, Level 2 or Level 

3 data. These reference data can be classified into dating methods, present day 

information, functions, methods, and models, and correlation standards (Table 2.7). 

2.4 Inadequacies in current practices 

The main problems associated with palaeoenvironmental data stem from a lack of 

rigour in some current practices for handling information, and the fragmentary 

distribution of research workers and the data they generate (examples are discussed in 

both of the case study Chapters 4 and 5): These practices are now increasingly 

inadequate for regional scale analysis. They came about because individual scientists 

traditionally mapped small areas and used the data as a basis for further interpretation. 

There is little in the way of regional approaches, spatial comparisons, areal continuity 

and thematic correlation. There is no existing means of managing this information so 

that it can be accessed and processed easily, and archived for future use in the light of 

new theories. This limits the potential for producing credible global 

palaeoenvironmental reconstructions through time, and is reflected in the scarcity of 

such synopses. Given the resources required to collect and process data, and the 

pressures on the palaeoenvironmental research community to contribute to global 

change research, this is both uneconomic and unwise. 

There are several issues associated with current reconstruction practices which are 

imposing increasing constraints on the ability of scientists to manage, and exploit to 

the full, the palaeoenvironmental data available. These issues concern the way data is 

collected, recorded and archived, and are associated with inadequacies in the current 

scientific information infrastructure. The points discussed below in Sections 2.4.1-3 

indicate the limitations imposed at different data levels by traditional practices, how 

these problems are propagated through the transformation processes between levels, 

and the potential GIS solutions (Figure 2.8). Many of these issues are clearly 

demonstrated by the case studies described in chapters 4 and 5. Geographic 

information science can facilitate solutions which address these shortfalls in method 

and infrastructure. These are proposed in Chapter 6 through the PERIlS conceptual 

framework. 
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Table 2.7 Reference Information (not exhaustive) 

Present Day Information 
Topographyfbathymetryfcoasthnes/islands/lalces/ice extents 
Geology and surface drift 
Faunal/floral distributions and habitats 
Pollen dispersal patterns 

Correlation Standards and Reconstruction Theories 
Palaeomagnetic Reversals/secular variation 
SPECMAP (Oxygen Isotope Stages) 
Pollen Stages 
Regional Eustasy 
Global Ice Extent for different time slices 

Functions and Models 
Transfer Functions 
Time Series Analysis 
Climatic variables and interrelationships (atmospheric compostion...) 
Static and Dynamic Models (e.g. Ice Flow, Milankovitch Variations...) 
Ocean and Atmospheric Circulation 

Datin! Methods 
Tephrachronology 
Palaeomagnetism 
Lichenometry 
Dendrochronology 
Amino Acid 
Weathering Rates 
Radiocarbon 
Potassium-argon 
Uranium Series 
Thermoluminescence 
Fission Tracks 
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Table 2.8 Data Transformations (Traditional Practices, Issues and GIS Improvements) 

Level I Data Sites/sources Level I Transformation Level I Data Level 1-2 Transformation Level 2 Data Level 2-3 Transformation Traditional Field Sites Description, Photographs, - Visual interpretation and Palaeoenvironmental Visual interpretation 

Level 3 Data 

Practices Surveys Measurement, descriptions, correlation, classification, estimates (temp., Manual mapped data transcription 

Hand drawn maps of 

Cores 

Satellite 

Surveying, ineasut-einenis, pattern matching, calibration, precipitation, cvind direction, Integration of multiple data 

palaeoenvironmental 

phenomena locations at 

Images 

Recording 

often using tape measure, 

chemical and Correlation using standards glacial flow direction, ice sources from publications or through different temporal bands, 

and field huuk note 

sediment content, such as Speculap curve, volumes, sea level change), collaboration, hand drawn contour maps hand scribed notation 
Temporal sequences of 

on naps and variables 
of temp. isostasy, 

notebooks 
descriptions of 

palaeoenvironment and 

____________________________________ Issues Poor field Difficulty with location Location inaccuracy, Lack of standardised Few uncertainty and data Loss of data thought not to fit 

change. 

Few quantitative measures naps, in some terrains Incompatible map methods, Variation in quality measures, theories, or good enough to publish, of how well theories fit nine required Time required to transfer scales and projections terminology use, Limited use interpretations and lack of quantitative spatial analysis data. Loss data of which to browse 

literature for 

and reformat data. Little structured data of quantitative methods, assumptions not properly techniques to support multisource does not fit current 

background 

Otnimiisstons to recording 

data 

management Data discarded if not in line documented. Loss of data data integration Lack of information thinking, locational and 

and 

not thought relevant Ltinmied data wtth current thinking which does not comply with managment strategies to facilitate temporal uncertainty is 

appropriate 

archivimig Illegibility Loss of level I data after theories data sharing. More en-or 
' unnecessarily increased by 

methods and 

of field notes transformation and so 
introduction. Visual interpretation hand-transcription, and so 

Result: data loss, difficulty of adjusting data to 
very demanding. it is difficult to identify strategies  quality reduction new theories and standards 

. 615 

improvement 

Portable field Direct digital input, Accurate, complete Quantitative techntques Archiving of contextual data, Spatial analysis methods for handling 

data conflicts 

Archiving and 

(inure details 

GIS linked to 

GPS 

accurate location direct data in digital form Measurable data fitting interpretations, assumptions, uncertainty, modelling phenomena, management of methods 

in Chapter 3) 

access in the field to appropriate for use in Speed of experimen(ation lineage of data processing, Direct integration with mathematical and uncertainty measures, information as required, Level 2 Access to variety of up to and traceability to level I models. Accurate mapping of quantitative techniques of data analysis in the field transformations and date standards and techniques data, helter quality and reconstructions. Reconciliation of rigorous data handling and 
archived far future quantitative methods information at different scales, analysis, spatial data 
reference and use, I 



2.4.1 Data recording and processing practices 

Most of the limitations in current practices centre around Level 1 data observations 

and measurements. These impose restrictions on data manipulation at later stages of 

reconstruction. 

Inaccuracy in recording data and a lack of uniformity in sampling, measurement and 

descriptive techniques mean that data is often insufficiently detailed for integration or 

application to many scientific theories. Using aerial photography and satellite 

imagery with inadequate ground control, or making measurements in areas with poor 

base maps can introduce substantial spatial errors. Poor georeferencing of site 

locations is compounded at later stages of data integration by combining maps, using 

manual methods, which are not only at different scales, but also have different map 

projections and datum levels. Examples of this problem are discussed in section 4.3 

of the glacial geomorphology case study (Chapter 4). 

Field work can also involve data loss through omissions in data recording, and 

through visual methods of data generalisation during data transformation, integration 

and interpretation stages. Information can also be lost because field notes are 

illegible. Such field information is often only used by one person and communicated 

to other researchers in an abstract form. 

Inadequacies in recording Level I data pose problems when it is transformed to Level 

2 information. Inferences cannot be checked between sites by those wishing to make 

a regional synthesis to ensure that compatible methods and hypotheses are being used. 

There is no possibility for checking site misinterpretations, because this information is 

not available. This limits the usefulness of data for other scientists. The ease with 

which misinterpretations can be made given insufficient evidence can be exemplified 

using Greenland ice core data. Two ice cores were drilled which displayed very 

similar records for several hundreds of metres depth (Johnsen a al., 1992; GRIP 

Project Members, 1993). Below a certain depth, however, there was little agreement 

between the two records. Glaciologists interpreted this as due to multiple ice folds 

close to the glacier bed which one of the cores had penetrated, but which had affected 

the other core much less (Boulton, 1993). Since many scientists view ice sheets as 

stratigraphic accumulations of snow, had only one core been drilled, this possibility 

may have been missed and resulted in a very different view of palaeoclimatic 

variation through time. This underlines the importance of supplementing Level 2 and 
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3 data with an understanding of the details of the Level I data to allow variations in 

interpretation of different sites by different scientists. 

The fragmentary and poorly documented nature of palaeoenvironmental data imposes 

restrictions on the potential for scientific innovation. There is a propensity amongst 

researchers to fit new data to old theories because few individuals hold sufficient 

information to reassess all the data and develop new models. This occurs even when 

it becomes increasingly obvious that these models are inadequate to explain new data. 

Such limitations to scientific innovation are exacerbated by the fact that many of the 

popular models are not demonstrably well substantiated. Charlesworth's model 

depicting the pattern of glacial events in the UK (Charlesworth, 1957) gives little 

indication, and no detail, of the information used to derive such a model. 

Nevertheless, this model has been cited in numerous papers ever since its conception. 

The limited information available to individuals has meant that most 

palaeoenvironmental research has involved Levels I and 2 data for individual sites 

only (Bradley, 1985) and there are only a few examples of work which included a 

spatial dimension to climate studies (CLIMAP Project Members, 1976; Petersen et 

al., 1979; COHMAP, 1988). 

The poor quality of some Level 1 data has limited the rigour with which the data can 

be treated and the reproducibility of many transformations (such as the transcription 

of data between maps). The limited application of quantitative techniques has 

restricted the degree to which the accuracy of data can be evaluated in many cases. 

Poor locational accuracy in particular makes meaningful integration with other 

information difficult. It has also hindered the development of methods to help 

manage the quantity of complex information which must be integrated spatially to 

obtain reconstructions. For example individuals compile and interpret data by eye 

using manual transcription, but variations in the interpretational adjustments during 

such transformations mean that these changes are neither reproducible nor 

compatible. There are also few quantitative spatial methods that are frequently used, 

such as areal calculations and spatial correlation algorithms. Consequently there are 

few measures of how well data fits conceptual models. 

The limited availability and use of quantitative methods has also hampered the 

development of techniques for handling scale and error during palaeoenvironmental 

data integration and analysis, and limited the application of rigour in respect of these 

issues. The extent to which data uncertainty might affect palaeoenvironmental 
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reconstructions, and measures of how well data fit theories, are two important aspects 

rarely considered in palaeoenvironmental research because of the difficulty in 

handling the information. 

There are also few appropriate techniques for global scale analyses. Recent changes 

in the quantity and geographical extent of the data sets being manipulated, and the 

global nature of the phenomena being reconstructed, have highlighted this 

inadequacy. Techniques which have been used on small regions are inappropriate for 

global scale analyses and integration. Some of the areas under study are too large to 

ignore the curvature of the earth, and map projections distort space at this scale. 

Whilst this has previously been the realm of cartographers, increasingly these 

concepts and skills need to be available to a larger spectrum of the scientific 

population. A failure to grasp these issues will result in scientific conclusions which 

are fundamentally flawed. There are cases where such errors have occurred. Areal 

calculations of basal melting under an ice sheet, for example, have been made using 

standard base maps (Ian Morrison pers. comm., 1992). Calculations made using 

inappropriate projections which do not preserve area produce very large errors in 

basal meltwater estimations. 

Finally, the time and expense of map drafting using manual methods is considerable. 

With each update in ideas or theories, redrafting of maps is required. This limits the 

frequency with which maps are updated and republished. 

2.4.2 Data archiving practices 

Most areas of palaeoenvironmental science suffer from inadequate data archiving. 

First of all data can be lost because they are not published if they do not accord with 

current thinking. If data are not published they are rarely available in the public 

domain. Data are also lost between projects because they are distributed between 

individuals who often leave an organisation at the end of a project. In addition the 

data may be published as interpretations which are perceived to be of more value than 

the original data, which is not published in detail. Level 1 data in particular are rarely 

retained with sufficient detail to allow them to be reassessed in the light of new 

theories. This loss of valuable information limits the possibility for reinterpretation 

and increases the propensity for misuse of data which have been archived without 

their contextual information The problems discussed in section 2.4.1. are thus 

exacerbated and the capacity of the scientific community to develop new theories and 

models is limited 
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For example, during post-cruise work associated with Ocean Drilling Program (ODP) 

Leg 133 (Northeast Australian margin), Alexander (1996) found significant 

discrepancies between isotopic records from the Australian margin and the 

SPECMAP oxygen isotopic chronology of Imbrie et al., (1984). The conclusion 
drawn was that certain parts of the Australian records, which did not match the 

reference curve, had been modified by post-depositional processes, and therefore data 

were discarded. However, there was no other evidence to support this conclusion. If 

the standard was flawed in some way, or not applicable to these circumstances, then 

much information was lost by drawing this conclusion. Such standards are being used 

throughout the world, and this is only one example of a very widespread phenomenon 

which goes beyond oxygen isotope stratigraphy. Were these data to be properly 

archived, they could be called up and reassessed in the light of any new theories and 

findings, or compared with other 'reject" data to see if an alternative interpretation 

may be appropriate. 

Lack of comprehensive data archiving means that the connections between Level 1, 2 

and 3 data discussed in Section 2.3.2 are lost. Those undertaking regional syntheses 

of variables may thus unwittingly incorporate Level 2 inferences which were made 

using out-dated theories. Programs which are addressing the issues of data archiving 

are merely archiving a subset of information (sea level examples are discussed in 

Chapter 5). The databases being designed only accommodate a specific subset of 

data, are not publicly available, and fail to reflect the full richness and complexity of 

palaeoenvironmental information demonstrated in Section 2.3 above. To date, it 

would appear that none of these databases have been designed to link with other 

palaeoenvironmental databases. The lack of comprehensive and available data 

archives mean that many of the models and palaeoenvironmental synopses used by 

the scientific community have a limited, traceable documentary basis. 

2.4.3 Scientific infrastructural limitations 

The scientific infrastructure poses several difficulties for the use and exchange of 

palaeoenvironmental data and the development of research. 

Communication and data sharing is achieved, for the most part, through publication in 

the literature. This is neither a timely, nor comprehensive mechanism of 

communication. Much of the data which is measured is never reported because it is, 

for particular reasons unpublishable (Section 2.3.2). In addition site and method 
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information is frequently not documented in any detail. These limitations in 

published information have been noted, for example, in relation to the use of 

publication material for constructing a sea level databank, where the research group 

was forced to contact individual authors for apropriate material (Sherman, 1989). 

Conventional publishing through journals and periodicals can delay the dissemination 

of new work by up to a year or more. For example, the median time for publication in 

the Journal of Ecology is approximately 52 months (Porter & Callahan 1994). The 

journal audience is also limited because of the number of journals which currently 

exist. Individuals and institutions have limited funds and so purchase only a small 

subset of available journal titles. New trends in on-line publishing through the World 

Wide Web (WWW) are, however, currently revolutionising this state of affairs. 

This delay in publication of new work, and the patchy communication coverage can 

cause significant problems. For example, some recent refinements (Shackleton et al., 

1990) in the interpretation of the ODP Hole 677 stable oxygen isotope curve have not 

been incorporated into all subsequent analyses of such data making it difficult to 

compare results and interpretations. For example, Raymo et at. (1990), presumably 

unaware of these changes because of publication timing, used the old interpretation 

(Shackleton & Hall, 1989). 

There is also a significant lack of standardisation between researchers in both data 

measurement (sampling techniques, tools, units, formats etc.) and methods of 

reporting (nomenclature, description etc.). Many standards do exist, but many 

conflict and there is little incentive for researchers to use them. Long-term, however, 

it becomes difficult and in some cases impossible, to reconcile such heterogeneous 

data over large areas. Imposing standards on research data collection is problematic 

and, in some instances, undesirable. However, integration over large areas is vitalfor 

understanding global phenomena, and standardisation facilitates integration. 

Finally, the current infrastructural support for the scientific community makes little 

provision for access to good basic map data, reference data sets, up-to-date standards 

and methods, or databases. This problem has been recognised, for example, by the 

Natural Environment Research Council (NERC) in the UK which is currently taking 

steps to develop a comprehensive information strategy (Richard Healey pers. comm., 

1997). 
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2.5 Discussion of Paiaeoenvironmental Requirements 

In summary, the cross-disciplinary nature of research means that these datasets cannot 

be treated in isolation if a coherent picture of the palaeoenvironment is to emerge. 

Retaining links between site information and measured data is vital, and the Level 1 

data associated with field sites, requires detailed archiving. Existing databases are 

partitioning valuable site information so that it becomes disconnected from the 

original data. It is also vital that links are retained between data and the correlation 

standards, dating techniques, sampling strategies and reference data with which their 

measurement and interpretation is associated. These issues are crucial to the 

progression of palaeoenvironmental science. 

Limits are being reached in the capacity of individuals to manage the quantity and 

complexity of data associated with palaeoenvironmental research using traditional 

methods. A structure to facilitate better management practices is imperative. The 

capacity of the current research paradigm to manage and utilise effectively data in the 

face of increasingly global scale demands, is rapidly becoming inadequate. 

One of the biggest issues for the integration of global scientific datasets is that of 

standardisation. Whilst data standards are a fundamental requirement for the 

integration of information, they pose several significant problems in the area of 

research. Not only will past data have to be reinterpreted to conform to standards, but 

standards change as theories change and standardisation between geographical 

regions can be problematic. Age names, for example, are often related to identifiable 

climatic changes. In Quaternary geology one of the main stumbling blocks to spatial 

integration has been the correlation of events of unknown extent (Kind, 1972; 

Sissons, 1979; Mangerud, 1979; Boulton, 1979). An event which has been recorded 

in sequences in Scandinavia does not appear in sequences in North America. It is not 

known whether this event, known commonly as the Younger Dryas, is a European 

climatic anomaly, or whether there has been a failure to identify it in North American 

sequences (Dawson, 1991). Further issues can be exemplified by developing a 

scenario discussed previously, which considers the case of two marine cores which 

were measured by different groups (Alexander, 1996). One group measured the 

oxygen isotope content, and the carbonate content, and used the latter to define where 

the former was reliable and where it was not. The other group, either through lack of 

awareness, or because they did not share the belief that carbonate content had any 

bearing on the reliability of the oxygen isotope signal, did not measure this parameter. 

How should standards be enforced in this situation? Would all groups be required to 
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measure carbonate content in a core, regardless of whether it related to their primary 

aim in a particular scientific context? How would these 'minimum data elements" 

(Slagle, 1994) be defined? It may be possible to address the problem in terms of a 

suite of objectives and scientific issues which can then allow the designed integration 

of different approaches (Slagle, 1994). Other issues include the ability of research 

scientists to improve their capacity to perform both empirical and qualitative 

modelling of data which requires manipulation of larger volumes of data over larger 

areas in four dimensions. 

There are practical and institutional, as well as scientific issues which must be taken 

into account when trying to improve scientific research and facilitate communication 

and data sharing. Complications arise because the data originates from different 

countries with their own methods, datum levels, protocols and languages. 

It is clear that there is a pressing need for new ways of managing these rapidly 

expanding data sets, of visualising the complexities of the information they represent 

and of developing rigorous methods which yield reproducible and testable results, 

which have a more measurable certainty. Timely and effective communication 

between a diverse and rapidly expanding international research community is of 

paramount importance because of the demonstrably interdisciplinary nature, and 

political immediacy of the palaeoenvironmental reconstruction problem. For global 

science the requirements are of information management, co-ordination of effort and 

communication. In terms of individual scientists the needs are for convenient 

provision of data, methods and standards, and a means of visualising, integrating and 

analysing the data using quantitative, rigorous techniques which allow interactive 

adjustment of parameters and multiple analysis runs. 

Generic palaeoenvironmental research requirements which have been identified in 

this chapter are thus summarised as points below: 

1. Comprehensive archiving and management of complex palaeo-data 

Level 1 Data 

• storage of all information (maps, photographs, laboratory measurements) 

• retaining links between data from the same origins and sites 

Level 2 Data 

recording of methods, techniques and standards related to the data 

• retention of unpublished data 
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• retention of uncertainty information 

Level 3 Data 

• preserving links between data levels 

• measures of 'goodness of fit" of data to models 

• support for the existence of many versions of analysis and reconstruction 

More rigorous and quantitative methods 

Level I Methods 

Improvements in rigour of data measurement and recording methods 

Level 2 Methods 

• Techniques for data correlation and pattern matching 

• support for, and analysis of, specialist methods (e.g. pollen diagrams) 

Level 3 Methods 

• spatial analysis methods suitable for irregular heterogeneous data 

• improved data integration methods (particularly spatial) 

• methods appropriate for large areas on a spherical earth 

• rigorous methods to exploit qualitative and poorly dated material 

• support for dynamic, stochastic, empirical and qualitative modelling 

• methods for assessing data uncertainty through data transformations 

Improvements in communication throughout the scientific community 

provision and use of data standards, and methods 

• timely access to all levels of data, and new findings and techniques 

• provision of present day information, particularly good base maps 

The development of palaeoenvironmental research must involve innovations which 

will go some way towards satisfying these basic methodological and operational 

requirements. The issues associated with using GIS technology to address these 

requirements are identified in the following Chapter. 
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Chapter 3 GIS Issues 

3.1 Introduction 

This Chapter provides an overview of the fundamentals of GIS. The purpose is to 

assess their capacity to address the issues that palaeoenvironmental research currently 

faces, at a conceptual level, and to provide information required for an appreciation 

of the case study chapters. From these fundamentals what GIS has to offer is 

established, and the issues that must be considered in improving the approach to the 

management and analysis of palaeoenvironmental data. 

The importance of GIS, as a collection of theories and techniques which can 

contribute to palaeoenvironmental research, is demonstrated through a brief overview 

of the areas (315 research encompasses (Section 3.2). Key GIS concepts are then 

introduced and explained. These concepts are discussed in relation to data capture 

(Section 3.3), data storage (Section 3.4), (315 functionality and spatial analysis 

(Section 3.5), data integration (Section 3.6), data management (Section 3.7), and 

finally global information networking (Section 3.8). Section 3.9 provides an 

overview of the potential of GIS to improve palaeoenvironmental research at a 

conceptual level, given the palaeoenvironmental requirements identified in the 

previous chapter. The key points are then reviewed to establish a set of general GIS 

issues for palaeoenvironmental research, which will be further explored in the case 

studies (Chapters 4 and 5). 

3.2 GIS potential for palaeoenvironmental research 

It would appear that the advent of computing techniques has already had a significant 

impact on palaeoenvironmental studies. Major contributions have been made in the 

areas of process modelling to simulate palaeoenvironmental change (glacial and 

general circulation models in particular) (for example Boulton & Payne, 1992a), time 

series analysis (for example Pestiaux & Berger, 1984), and remote sensing (for 

example Punkari, 1982), with computing power being exploited to solve equations 

and manipulate large data sets. However, computers have not been fully exploited to 

address the requirements identified in the previous chapter, although they appear to 

hold potential in this area. This is because of the complications involved with using 

computers to address the problems of information management and research and the 

difficulties in converting from manual to computing methods. 
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(ITS is not just a technological tool for storing and manipulating spatial data, but 

represents a growing body of scientific research. This research is concerned with 

addressing the intellectual questions associated with information systems and the 

handling of spatial data. The scientific issues range from philosophical to 

technological discussions. They concern the representation of geographic reality and 

how perceptions of the real world are structured and expressed. They also involve the 

methodological development associated with analysing systems and managing data. 

They include the development of technical solutions such as algorithms and spatial 

indexing schemes. GIS combines aspects ranging from computer science and 

geodesy, to cartography and cognitive psychology, to address questions about the use 

of spatial information. 

(IfS sits at the interface between geographical applications, computer science and 

information management. The area embodies a set of issues which can be considered 

generic, and the research findings can be used to support data management, spatial 

data handling, and analysis in geographical fields (Goodchild, 1992). The results 

offer new methods which may lead to new insights. (ITS comprises a broad range of 

investigation topics which have importance for palaeoenvironmental research and 

will help in addressing the requirements identified in Chapter 2. (ITS is relatively 

new, and these areas of combined methodological and technological development do 

not fall neatly under particular headings. The following sections have been selected 

to contain the key components. 

3.3 Data Capture 

Substantial technological progress has been made in the area of digital data capture in 

the last decade (Goodchild, 1992). Essentially data capture is of two sorts: 

• Primary (field, laboratory or satellite imagery input directly in digital form) 

• Secondary (capture from paper documents such as maps) 

Primary data capture offers the most significant improvements to the quality and 

handling of field data. Direct digital data capture is becoming more viable with 

cheap, portable, pocket-sized computers and GPS (Global Positioning Systems). 

These can be taken into the field for data acquisition and will make data more usable 

(Gosz, 1994). Tried and tested systems are reported to have improved data collection 

efficiency and accuracy (particularly locational accuracy) (Carver et aL, 1995). They 

allow interactive development of sampling strategies through visualisation and 
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feedback, on-the-spot modelling capabilities and field-based verification. This 

reduces the number of field visits and associated project costs. The disadvantages are 

currently the logistical problems associated with power sources, transport and 

protection of the equipment in the field, limited data availability for certain areas and 

the need for technical backup, education and training. 

Secondary data capture (from paper documents such as maps) entails the following 

stages: 

Data preparation 

Various important issues must be considered at the data preparation stage 

which have implications for using digital data at digitising, editing and 

analysis stages. Clean copies must be available for digitising, particularly 

where scanning is used. It may be necessary to reclassify or transcribe data to 

a common base map, particularly if overlapping layers of information are to 

be digitised. If different information layers share boundaries (for example 

geological and vegetation maps share the same coastal, lake and river 

boundaries) but are digitised separately, it is unlikely that these common 

boundaries will be identical. If they are not identical, then subsequent overlay 

operations will produce "sliver polygons" which are merely artefacts of the 

differences between digitising accuracies of the line, or different rendering of 

the same coastline on different maps. These considerations have major 

implications for data integration and are important for system design (they are 

discussed further in the following sections). 

Digitising 

Digitising table and puck 

The precision with which data can be captured using a digitising table 

depends on the precision of the digitising grid of fine wires in the 

digitising table, the accuracy of the operator, and the inherent accuracy of 

the material being digitised. Digitiser table accuracies typically vary 

from 0.075 mm to 0.25 mm. 

- Scanning 

Scanning can be used to input both spatial and tabular data. Scanner 

accuracy depends on the scanner resolution (typically 2,000-4,000 dpi 

(dots per inch)). Whilst scanners are much faster than manual digitising 

methods, they produce large data volumes and for vector (point, line, 

polygon) and character data they require clean paper copies and 

specialised line following software. For complicated maps, with 
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overlapping text and symbols, current software is inadequate and so 

manual separation of data layers is required. Alternatively scanned map 

images can be digitised on-screen, and some scanning/line tracing 

software also provides interactive line tracing so that operators can have 

control of the sequence of digitising and provide the interpretation 

necessary for feature coding prior to feature capture. 

- Keyboard input 

This is a very slow method of data input, usually used for entering 

attribute data. - 

Data checking and editing 

Probably the most time-consuming aspect of data capture is data checking and 

structuring (Nagy & Wagle, 1979; OEEPE, 1984). Checking is commonly 

achieved by the combination of manual editing and software algorithms 

designed to check for data inconsistencies. 

Data structuring 

Data are structured for storage in the information system (Section 3.3 

provides more information about this). Feature numbers are assigned to lines 

and polygons so that they can be identified in the database. Links are created 

which define the spatial relationships such as polygon adjacency, line 

direction and so on (Burrough, 1986). A particularly troublesome aspect of 

this structuring process, which is rarely appreciated by new users of GIS, is 

the necessity to create topology for vector data. This allows the system to 

identify features as points, lines and polygons via, for example, a link node 

structure, and to store, manipulate and analyse their spatial relations. Line 

duplication and unclosed polygons are common problems which require 

editing. Without topological structuring spatial analysis of, for example, 

network and vector polygon data is effectively impossible (Burrough, 1986). 

Data uncertainty is a function of the reliability of the source data which is usually 

much more significant than digitising errors (Aspinall & Pearson, 1995), although 

this is not always recognised. For example, Walsby (1995), has examined the issue 

of error in digital British Geological Survey maps as a function of digitising error, 

when the uncertainty in the geological boundaries on the original maps are rarely 

known to anything like the degree of accuracy implied by the hand-drawn map 

boundaries. 
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Inputting large volumes of multisource data into a system requires a very high 

investment and most of the cost of establishing a system is associated with data 

conversion (Masser & Blakemore, 1991). Tomlinson (1994) has suggested that this 

value is approximately 70-80 % of the total system cost. The substantial cost of data 

capture is often underestimated and results in compromises in accuracy and 

completeness. The problem is particularly acute for short-term ventures, with the 

consequence that the data have very limited value, and potential, for re-employment 

on subsequent projects. This is a significant issue for systems as they evolve since 

the initial system set up time can be longer than new users expect, and the anticipated 

adaptation of the system for new projects is not possible. 

Research areas focus on the development of more efficient means of data capture to 

reduce the time and cost. Methods to convert data from conventional media (mainly 

paper maps, diagrams and tables) to digital forms are required and developments are 

focusing on areas such as Artificial Intelligence to improve line-tracing algorithms. 

Automatic conversion of scanned images to topologically correct, structured, 

georeferenced data could significantly reduce the cost and time involved in data 

capture. Two (ITS companies LASERSCAN and ESRI and the Turing Institute in 

Glasgow, have developed sophisticated line tracing software which can be set to 

ignore character symbols (for example where height intervals are noted on contour 

lines), and maintain a continuous line trace. As more information is generated 

through direct digital data capture this will ultimately preclude paper-to-digital 

conversion and reduce the importance of this issue. 

3.4 Data storage 

The unique issues associated with handling geographical data are demonstrated most 

clearly by research into the means of representing spatial and, more recently, 

temporal, information in a database so that it can be accessed by location and time as 

well as by attribute. The issues associated with storage and transformation of data 

concern how the data should best be represented conceptually, in a form that is both 

structured for database efficiency, and useful to the data user. Data is stored in (ITS 

using data models and data structures. Most developments to date have been 

concerned with spatial representation. Spatio-temporal issues are more complex and 

are discussed at the end of this section. Data modelling is a definition and 

formalisation of the semantics of spatial data concepts (Egenhofer & Herring, 1991), 

and data structures are the programmable implementation of data models in the 

system (Peuquet, 1984). Both are important areas of research in (ITS, and data 
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modelling constitutes one of the major design components of a system. The NCGIA 

(National Centre for Geographic Information Analysis) Initiative I, "Multiple Roles 
for GIS in US Global Change Research", identified data models as the key issue for 

linking the GIS Community and the Global Change Modelling Community (Jelinski 

et al., 1994). 

Whatever decisions are made about data representations and relationships at this 

stage will be hard-coded into the system and may be impossible to change 

subsequently (Marble, 1988). Until recently the choice has been between raster (or 

tesselation) versus vector (point, line and polygon) representation for spatial data, 

although the debate has now been extended to include object oriented discussions 

(Goodchild, 1992). Raster data is more appropriate for the representation of 

continuous data and for modelling activities, but network analysis is almost 

impossible using raster data. Vector data is good for representing data with discrete 

boundaries and good for overlay of such data and for network analysis. Recent 

research has facilitated the transformation between the two so that both 

representations can be utilised. The pay-off is the risk of error introduction in the 

transformation operation (known as fuzzy creep). 

Entity relationship modelling is a type of data modelling, based on mathematical 

concepts which is particularly suited for complex attribute data. It ensures the 

maintenance of data integrity within the database to minimise the problem of data 

redundancy (duplication of the same information in different parts of the system) 

which can cause major inefficiencies in the database (Codd, 1982). Complex 

attribute data are best handled within a DBMS (Database Management System), but 

it is not sufficient merely to hold map elements in a database because standard 

database query languages do not support spatial query functions unless specially 

extended to do so (Healey, 1991). This is because explicit storage of spatial 

relationships is required to facilitate spatial queries and analyses, and a large degree 

of processing may be required to answer many spatial queries (such as what is 

adjacent to a location, or what is within a radius of a particular point). Most standard 

software systems, such as the one used for the case studies, handle the spatial and 

attribute data separately and link them through a unique identifier. 

Data structures have important implications for the way data are stored and the speed 

with which they can be accessed and processed. If one were to overlay two complex 

maps, the amount of processing time saved would be considerable if topological 
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relationships were used to build the new polygons. Another illustrative example 

concerns the quadtree data structure used for raster data. Successive divisions and 

sub-divisions of image space into quadrants can be stored in a hierarchical tree 

structure with nodes representing heterogeneous areas (Samet, 1989). Where there 

are significantly sized homogeneous areas the quadtree offers more compact storage 

and more efficient querying than a regular grid. However it can be less efficient for 

the analysis of certain sorts of adjacency problems because of the need to search up 

and down the tree structure. Morton indices (Morton, 1966) were introduced to 

alleviate this problem. They provide a means of subdividing space and assigning 

addresses for storage in quad tree structures in order to minimise the amount of 

hierarchical searching. These are merely a few demonstrative example of the many 

types of spatial data structure implementations. Some structures are more suited to 

some purposes than others, depending on the nature of the data and the query and 

processing demands. 

Currently research is ongoing to devise data models which accommodate data on a 

geoid and assess their suitability for global databases. An integrated raster-vector 

model (Peuquet, 1988b) is thought to be needed and, to this end, a unified body of 

representational theory is required. Goodchild and Yang (1992) describe a 

hierarchical data structure for global GIS that avoids the problems of projection 

distortion. A regular, hierarchical, spherical tesselation would have advantages for 

handling nested representations of global data to minimise redundancy of information 

amongst different storage models. Some new work recently published by Dutton 

(1996) proposes a means of doing this using a notation for location that offers scale-

specific positional encoding, at the same time as describing multiple characteristics 

using spherical quadtrees and a Quaternary Triangular Mesh (QTM). 

In the future it ought to be possible for system designers to select suitable data 

structures depending on data use, so that a GIS should provide the opportunity to 

make such choices. A unifying theory which could act as a framework for such a 

system to integrate multiple spatial paradigms has been proposed by Herring (1989) 

and Herring a al. (1990), but remains, for the moment, at the theoretical level. 

There is a growing body of research into developing methods concerned with 

incorporating the temporal dimension into geographic data handling and storage 

within a GIS. In current operational GISs time is treated as an attribute. As with 

space, different models are used for different temporal situations (Frank, 1994). most 
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models currently address time as calendar time with respect to measurements on an 

interval scale (Barrera and Al-Taha, 1990) although work is now developing to 

incorporate relatively ordered events without time which uses a qualitative as 

opposed to a quantitative reasoning model for time (Frank, 1994). This more recent 

work would be applicable to the palaeoenvironmental situation where relative 

temporal concepts play a major role. With respect to palaeoenvironmental 

reconstruction, models of time which permit both calendar dates, and relative dates to 

handle versions of time associated with a particular set of observations are required. 

Such models should be able to handle variations in spatio-temporal sampling and 

discontinuities in temporal knowledge. Temporal GIS which are suitable for all but 

the most specific basic functions which are based on simple temporal concepts do not 

yet exist, and spatiotemporal models which are appropriate for handling 

palaeoenvironmental reconstruction need to be developed (e.g. Wachowicz and 

Broadgate, 1993). Various issues associated with temporal data are demonstrated in 

the following case study chapters. These examples show the difficulties of treating 

time as an attribute which does not reflect the dynamism of the time dimension with 

respect to the concepts of past, present and future. The provision of a history of 

change which is not possible using the attribute treatment of temporal 

palaeoenvironmental data, is crucial to understanding patterns of change in the 

temporal domain, and therefore in facilitating temporal analyses, modelling and 

prediction. 

3.5 GIS functionality and spatial analysis 

An active and growing research area is that of spatial analysis and GIS functionality 

(Fotheringham & Rogerson, 1995). The availability of GIS opens up new vistas for 

spatial data exploration and the development of new analysis techniques. Research 

in this area currently has a dual focus: I) to develop new spatial techniques and 2) to 

develop appropriate systems architectures so that these techniques can be embedded 

within GIS and easily applied to the spatial data contained therein. 

Functions which operate on spatial data and its attributes within or outwith a GIS can 

be divided into three main categories. 

(i) data manipulation, querying and spatial data integration functions (e.g. raster to 

vector conversion, reclassification and grouping of data such as buffering, 

resampling, rectification, querying and data selection and display). These 

features are commonly found in proprietary GISs and in fact make up the vast 
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majority of commands in these systems. They are essentially automated 

mapping facilities with management operations. 

exploratory data analysis and modelling functions (e.g. statistical and 

geostatistical modelling, time series analysis, overlay, correlation, network 

analysis). Apart from limited methods for interpolation, and some network 

analysis facilities, only a few of these functions are available within most 

current GIS. packages. 

data visualisation and display functions (plots, graphical displays, three 

dimensional visualisations, map display, panning and zooming facilities). 

Many of these methods of displaying and visualising data are available in 

today's systems, although some, such as three dimensional display, are rather 

limited. 

In many systems it is possible for users to create their own analysis tools using macro 

languages, or to use programs written in standard programming languages (such as 

FORTRAN) within the GIS environment. 

Methods are currently being developed to utilise multivariate techniques and 

correlograins on spatial data, allowing the assessment of spatial structure and the 

quantification of spatial dependence (Cressie & Helterbrand, 1994; Dubin, 1994). 

Other research is investigating the suitability of GIS architecture to support spatial 

modelling (Densham, 1994), and the use of expert systems and artificial neural 

networks to facilitate spatial analysis and modelling within 015 (Fischer, 1994). 

Important areas of research include developing methods for tracking error 

propagation to enhance analysis of integrated datasets which are spatially 

heterogeneous (e.g. Aspinall & Pearson, 1994) and spatial techniques for global 

modelling and analysis in 3-dimensions (Wahba, 1981; Legates & Willmott, 1986). 

Advances in parallel processing, and the use of particular processing approaches for 

particular tasks to optimise processing in an intelligent heterogeneous processing 

environment is becoming a realistic and promising development (Densham & 

Armstrong, 1994). 

The role of visualisation, both of data and of analytical results, in the development of 

theories, is an extremely important area where GIS has potential. 'Visualisation is a 

tool both for interpreting image data fed into a computer, and for generating images 

from complex multi-dimensional datasets" (McCormick et al., 1987). Visualisation 

is important for increased understanding of the problem and, exploration of the data. 
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It is important for communicating theories and results to third parties. All types of 

data analysis can be enhanced by visualisation. Humans have extremely sensitive 

sensory and cognitive systems for visual pattern recognition. Thus representing 

reality in abstract form enables us to make connections and solve problems which are 

at the centre of the research process (Tobler, 1961). More sophistication is required 

to sift through the volumes of multivariate data currently at scientists' disposal. For 

example Openshaw et aL, (1995b) have used neurocomputing methods to apply 

multivariate classifications to census data in the UK. The efficiency of imagery, 

maps and graphs and the human visual processing system can be exploited to the 

maximum effect in order to manage and utilise this enormous amount of information. 

Future directions of visualisation research are addressing the development of 

multidimensional (3- and 4-dimensions) data structures and (]'IS capabilities for 

temporal analysis and display, and have the potential to revolutionise research design 

in science (Buttenfield & Mackaness, 1991). It is already possible to use GIS to 

visualise problems in three and even four dimensions (Gahegan, 1996). 

3.6 Data integration 

GIS provides the facilities for data integration including algorithms to convert data to 

different map projections, and rubber sheeting algorithms which allow data to be 

fitted to a common base map. However, some of the most difficult and complex 

problems of system design and implementation are associated with data integration 

and data sharing and therefore have significant implications for planning and 

establishing a GIS. Transformation of data for integration can also involve the 

introduction of uncertainty. 

Integration requires transforming, or rectifying all data to a standard co-ordinate 

system. This is important if data are to be integrated into a single data set, so that 

entities are accurately represented and manipulated in relation to one another. This is 

particularly crucial if the spatial coincidence of features on different layers is 

important. There are two methods of data rectification. If the projection system 

parameters are known with respect to the other data layers, then algorithms can be 

used to transform co-ordinates from one system to another. However, if the 

parameters of the co-ordinate system are not known then entities can be transformed 

using fitting algorithms (known as "rubber sheeting", or "geometric conversion" in 

Image Processing), as long as common points can be identified on both maps. The 

projection transformation method is preferable because it is usually simple to achieve 

and more accurate. The accuracy of the rubber sheeting depends on the number of 
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common points which can be identified and their relative spacing. For small projects 

this may not be much of an issue if all the data are the same scale and map projection 

and, related to the same base map. However, there are limits to the size of area, and 

circumstances for which rubber sheeting can be successfully applied. Major projects 

have fallen foul of paper map series whose projection stays the same, but for which 

projection pararpeters vary from sheet to sheet. Initial work on the CORINE (details 

in Appendix I) soils map of Europe, for example, ran into these difficulties. It was 

found that both co-ordinate and thematic information were incompatible across map 

sheets within countries, and could be irreconcilably different across national 

boundaries (Mounsey, 1991). 

Sliver polygons are data artefacts which can occur when maps which share common 

spatial boundaries are overlaid. They happen when different themes relating to the 

same region are digitised separately, and!or require different georeferencing 

procedures. Considering that map overlay may take place several times in a 

particular project, eradicating results which are merely artefacts and distinguishing 

them from the rest of the information for a large area could become a major practical 

issue. To avoid this problem the data preparation stage may involve transferring all 

the datasets to a common base map prior to data capture. 

Difficulties with edge matching adjacent map sheets can also occur. The uncertainty 

of information contained in a series of contiguous maps sheets will vary between 

sheets because of the accuracy of digitising, the accuracy of map drafting and the fact 

that maps may have been produced by different interpreters and organisations, and 

may incorporate different classification systems. Approaches to this problem must 

be considered in the planning stages. Many difficulties experienced on the CORINE 

project related to the variations in timeliness, spatial coverage, density and 

measurement method which were masked by inconsistencies in terminology and 

imprecise definitions (Mounsey, 1991). 

Thus the expected evolution of small systems, designed with short term goals, rarely 

occurs because information is unsuitable for reuse in subsequent projects. 

Information may not be at the correct resolution, or structured in a way that is 

unsuitable for the next set of requirements. In order to share data effectively it must 

be possible to integrate the information with all the sharing systems. If one considers 

that different groups and institutions may approach the design of a database in 

different ways then the result will be a suite of very complex data models and 
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incompatible data structures and data dictionaries. The potential for integration at a 

later date will thus be very limited (Marble, 1988). 

This argues for the introduction of data standards. FGDC and the US National 

Committee for Digital Cartographic Data Standards (Chrisman, 1984a; NIST, 1992) 

define basic metadata standards with particular emphasis on data quality (see the 

following section on metadata). However the time required for compliance with 

standards at the data capture stage is one factor that currently makes the use of 

standards unattractive to small, tightly budgeted projects. Several researchers are 

investigating the issues of data standards, and they are becoming an increasingly 

important issue for large institutions moving towards the use of digital data. This is 

discussed further in the following section. 

3.7 Data Management 

Traditional scientific methods of data collection have meant that scientists have 

usually been aware of the contextual information which accompanies their own data. 

Incorporating this knowledge into data analyses and interpretations has been routine 

and possible because of the individual expertise that is tied to data ownership. Paper 

maps were previously a fixed scale and used mainly by cartographers and surveyors 

who understood their limitations. Digital data are released from the scale "locking" 

of paper maps and can now be used at "scales" for which they have the "wrong" 

information (Goodchild, 1991). Whilst the resolution on a paper map is restricted by 

the smallest physical mark of cartography, it is not so easy to interpret the resolution 

of a digital map where the scale of display can be changed at will. However, as data 

are being more extensively broadcast and processed using computers, the 

consequence is that the contextual information is frequently not communicated to 

other parties and has been subsequently lost. 

The principal problem with data processing is "knowing what methods can be 

regarded as valid in processing a particular data set or what can be combined and 

compared legitimately" (Jeffers, 1991). The key to this question lies in the provision 

of adequate information about the data such as how they were collected, for what 

purpose and with what accuracy. The major difficulty is being able to foresee what 

processing might be required, and therefore what additional information is necessary. 

Particularly in scientific contexts, it is almost impossible to know to what 

applications the data will be put in the future. 
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The umbrella term for this uncertainty and lineage data is metadata. Metadata needs 

to provide several distinct sorts of information. In response to the problem of 

metadata inadequacy, a large number of data standards have come into existence 

(Chrisman, 1994), although many of them are unsuitable for the scope of data types 

which currently require metadata definitions. Unlike the pre-computer era, users' 

needs are no longer as well known to the data producers (Hayes & Romig, 1977). 

One example is the US Geological Survey's metadata standard (Federal Geographic 

Data Standards Committee, 1992). The Survey have also developed an electronic 

means of automatically checking that data input conforms to these standards. The 

FGDC Standard defines metadata as follows (the elements in brackets indicate 

entities defined as optional, and each category denotes the top of a hierarchy of sub-
categories which are not shown): 

Metadata = Identification information 

+ (Data—Quality-information) 

+ (Spatial—Data—Organization—Information) 

+ (Spatial—Reference Information) 

+ (Entity—and—Attribute—information) 

+ (Distribution Information) 

+ Metadata_Reference Information (FGDC, 1992) 

Criteria defined by the 155 National Committee for Digital Cartographic Data 

Standards (NCDCDS) (Chrisman, 1984; NIST, 1992) provide another example, and 
include: 

1. Quality Information: the spatial variation in quality for spatial data including 

lineage, positional accuracy, attributes, logical consistency and completeness, 

including temporal accuracy. Three methods of reporting accuracy are defined: 

Deductive Estimate: Any estimate, even a guess based on experience, is 

permitted. The basis for the deduction must be explained in as quantitative a 

manner as possible. 

Tests Based on Independent Point Samples: A misclassification (or 

confusion) matrix for categorical data, tabulated by the categories of the sample 

and of the tested material. Sampling procedure and sample point locations 
should be recorded and described. 
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(iii) Tests Based on Polygon Overlay: A misclassification matrix reported as 

areas. The relationship between the two maps must be explained as far as 

possible and the two sources should be independent, with one having a higher 

accuracy (and therefore probably covering a smaller area) (Chrisman & Lester, 
1991). 

2. Lineage: Description and date of the source material(s) from which the data were 

derived (such as the sampling intervals and methods used), methods of derivation, 

any transformations which the data have undergone, the dates and source material 

involved in any updates, and the dates on which all these transformations, updates 
and additions have occurred. 

There is now a need to find ways of measuring and describing error and uncertainty 

in maps. There are several methods which have been developed to address thematic 

and spatial uncertainty in categorical maps (Thapa & Bossier, 1992; Goodchild & 

Gopal, 1989), which consider the empirical assumptions of uncertainty within a 

formal model of error (Goodchild et aL, 1992). Such an approach allows information 

to be represented as sets of "mean objects', thus addressing the problem of 

uncertainty in boundaries derived from different map origins, as well as uncertainty 

in class identification and spatial heterogeneity within, for example, mapped 

polygons (e.g. Aspinall & Pearson, 1995). However these methods are not currently 

available within proprietary 315 packages for incorporation or analysis (Lanter & 
Veregin, 1992). 

Compiling metadata for digital data input is one stage, but computers can use this 

information to calculate the effects of transformations and analyses on error 

propagation. Lineage tracking functions attach metadata to new datasets produced as 

a result of computer processing. Research is currently looking into developing a 

framework for version management, to link metadata to source data, model code, 

storage and retrieval and model testing information. Management of such 

information is important. Various developments are occurring in this area. 

GEOLINEUS (Lanter, 1992) is a software package which tracks system transactions 

to attach lineage information to newly created datasets within the 315 package 

ARC/INFO. ARC/INFO provides logging facilities, such that system operations are 

recorded as sequential chronological entries in a flat (no structure, indices or 

pointers) log file (a log file records system transactions as they occur). This has been 

utilised by specially written software to reverse-engineer basic lineage information 
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for datasets (Lanter, 1994) (although there are limitations in that the software does 

not record all the operations such as sub-command parameters and user-developed 
functions). 

Other management issues concern data volumes, particularly for the storage of the 

results of data processing, analysis and transformation. Having a much lower volume 

than the processed data, the processing information could be stored with the original 

data and re-applied to generate the results. This precludes the need to store large 

quantities of voluminous results and research is being carried out into the use of 

JAVA applets (applications written using the JAVA internet programming language) 

which would retain this information and apply it to data for delivery of results over 

the internet (Raper & Livingstone, 1996). 

Further research is beginning in the area of managing the results of interpretation, 

analysis and modelling activities (Jelinski et aL, 1994; Evans, 1994; Chrisman, 1994; 
Strebel et aL, 1994) and can be adopted, together with other efforts, to develop a 

metadata framework for coverage and attribute data (Lanter, 1991, 1992). This 

would enhance efficiency, data sharing, co-operation and collaboration on a large 

scale. 

3.8 Information networks 

Data access and sharing rely on a medium for exchange, and on efficient 

communication networks. Electronic communication has enhanced the desire and 

ability to share information. Merit (1993) found, for example, that the chief use of 

the Internet was data sharing. The Internet now offers very sophisticated data access. 

Recent advances in networking, allow systems to operate in a distributed fashion. 

This means that only the processed information need be stored locally and both data 

and processing power can be accessed remotely, and the burden of data capture can 

be shared between sites and users. However, the implementation of standard 

practices network-wide, will be a crucial factor in ensuring that the distributed data 

can be integrated. This is an important management and organisational issue. 

The speed of networks is increasing, and large-volume, long-distance data exchange 

is a rapidly diminishing problem (having attracted a lot of research attention and 

investment in infrastructure). There exist a number of spatial data browsers currently 

available on the Internet which are based on simple spatial metadata (theme, extent, 

scale and accuracy), and although these browsers combine user friendly interfaces 
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with powerful search tools (e.g. Vrana, 1992; Thieman, 1992; Menke et al., 1991), 
data browsers to date omit important data semantics. They provide merely a standard 

representation of information which cannot be queried more deeply in response to 

particular enquiries and thus may limit their usefulness to wider applications. Data 

dictionaries which provide information about terms, definitions, notations, formats 

and standards associated with particular datasets are critical to the success of data 

browsers (Marble, 1991). Further research is ongoing in this area because these data 

dictionary approaches have been developed for business operations and may not be 

appropriate in the scientific context. 

The most realistic approach to the plethora of autonomous databases which have 

blossomed over the last couple of decades is that of Composite Information (or 

federated) Systems. These systems allow communication and information sharing 

across organisations and databases which are based on different data models, 

interfaces and organisational strategies. Unfortunately these are still very much at a 

theoretical level (Baker & Broadhead, 1992) and are not yet a tried and tested reality 

in global data sharing. Some development of test systems (e.g. Templeton et al., 

1987) have promising solutions. However maintaining information on, for example, 

data lineage for derived datasets over networks between autonomous databases is a 

particular problem which has not been properly addressed to date, even in the context 

of current Composite Information System theory (Wang & Madnick, 1989; Siegel & 

Madnick, 1991). Information sharing is a growing research area across disciplines 

ranging from computer science, organisational management science, QIS and 

environmental science (Evans, 1994). There is a particular challenge in locating 

relevant spatial information. Whereas attribute data can be searched via full text 

indexing, (using, for example Archive (Archie) and Wide Area Information Servers 

(WAIS)), there is an extra dimension of searching via location as well as theme for 

spatial data. The browser must be capable of assessing whether the search area and 

time frame correspond to any available datasets and exchange of spatial information 

makes it difficult to keep track of spatial relations which must be rebuilt after transfer 

(Evans, 1994). 

Despite the major advances in technological progress, the most significant barriers to 

global information sharing are organisational. Personal, organisationa.l and 

institutional factors are thought likely to have a profound influence on the extent to 

which the application of GIS techniques and the management of geographical 

information can be realised in practice (Campbell, 1991; DoE, 1987; Medyckyj- 
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Scott, 1989; Openshaw et al. 1990). Research into these organisational and ethical 

issues (technology transfer, data ownership, copyright and data security) has been 

slow to be initiated, but is becoming an active area of work as it is realised that these 
factors are increasingly important. 

3.9 Addressing palaeoenvironmental requirements 

It is clear that GIS offers a broad spectrum of technology and knowledge which could 

be used to address the issues currently restricting aspects of palaeoenvironmental 

research. Broadly speaking, the requirements identified in Chapter 2 comprised: 

Comprehensive archiving and management of complex palaeo-data 

More rigorous and quantitative methods 

Improvements in communication throughout the scientific community 

GIS provides special facilities for the storage and handling of spatial data, 

relationships and attributes. Many organisations are travelling inexorably down the 

road of digital databases because of the benefits they offer in information handling. 

Various examples of this move to digital data and methods are reflected in the 

number of large databases currently being developed, particularly concerning the 

state of the environment (Appendix I). GIS provides the methods and experience 

which palaeoenvironmental scientists can use to design and operate databases, which 

are tailored to their needs. Proper archiving of, and access to information and data 

which are at present inadequately reported is vital to the development of scientific 

theory. Metadata issues are akin to the requirements for comprehensive Level 1 data. 

Palaeoenvironmental research requires its own set of metadata standards, but has the 

advantage of being able to use other standards as a development base. The lineage 

criterion of the NCDCDS metadata standard for example is one of the most relevant 

to palaeoenvironmental data. The lineage element is not emphasised as much in the 

FGDC Standard (FGDC, 1992). 

The cost of digital data capture, the issues concerning the representation of data in 

GIS, and the problems of data integration show how long-term planning is of 

paramount importance. if several scientists in an institute were to digitise their data 

separately, the hoped-for integration using projection and rubber sheeting algorithms 

would not avoid the problem of sliver polygons and edge-matching. The data would 

50 



require re-capturing and this doubles the work, whereas forward planning would 

avoid the problem entirely. In the case of palaeoenvironmental data the volume of 

information associated with palaeoenvironmental reconstructions (e.g. the results of 

the processing and the interpretations), may be significantly greater than the volume 

of the original data. From a scientific viewpoint it is imperative to have a means of 

tracking the metainformation associated with these datasets. 

It is clear that merely archiving data is very different from developing an 

infrastructure and concepts so that data is stored in such a way that it can be 

manipulated and analysed. The ability to integrate data effectively and accurately 

would in itself be a major step forward in looking at data interrelations and variation. 

Being able to integrate this information, for example, for the last glaciation in N\AT 

Europe, would put many more constraints on the possible reconstruction scenarios, 

and allow more rigorous testing of models and results. It is particularly difficult 

using conventional methods to visualise this quantity of information for such a large 

area, but GIS could facilitate integration and visualisation of data and proposed 

reconstructions together. GIS methods also provide a suite of spatial analysis and 

correlation methods and scope for developing specific palaeoenvironmental methods. 

UPS together with field-based GIS would greatly improve the locational accuracy 

and completeness of level 1 data recordings. The propensity for data integration 

with, for example, air photographs and satellite imagery would be greatly increased 

because the improved georeferencing will facilitate multiscale analysis. Improving 

the quality of level 1 data will improve the reliability of Level 2 inferences and the 

efficiency of data input and processing. The ability to change map projections, or in 

the future, to analyse data on a geoidal surface, will be a significant improvement on 

current manual methods, and provide more flexible use of data. New methods to 

describe uncertainty in data will facilitate improvements in data analysis and 

modelling. 

The nature of space with respect to information is now changed (Abler et at., 1972). 

The scientific community is now linked into a global community and the internet is a 

medium for communication and data exchange. Development in this area has been 

extremely rapid. A co-ordinated digital access service for environmental scientists is 

already being proposed as part of the US Global Change Research Program in the 

Draft implementation Plan for the US Global Change Data and Information System 

(GCDIS) (CEES, 1993). Other strategies are reviewed in Appendix I, and discussed 

more fully in Chapter 6 (section 6.8) 

- 
-:, 
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The new incentives to share data nationally and internationally, in order to investigate 

problems of global change, are initiating a change in scientific practices and have led 

to a desire to exploit the possibilities offered by information technology. 

GIS provides both the methods to develop robust systems and the experience to avoid 

major pitfalls. From this discussion several key issues can be distilled. 

Project planning is crucial, and includes looking at all aspects of information use, 

both immediate and expected. All aspects of possible system evolution should be 

considered including the incorporation of other data sets and the establishment of 

standards. 

GIS establishment may be slow, particularly where analogue to digital data 

conversion is required, and since the research is distributed throughout several 

countries and organisations approaches will need to be compatible to facilitate data 

sharing and data management. 

GIS provides the basis for a framework for palaeoenvironmental data 

management, integration and use. Management requirements, for example metadata 

and data modelling require science to scrutinise methods and approaches more 

closely and rigorously. 

Now that the palaeoenvironmental requirements and GIS issues have been considered 

at a conceptual level, the next two chapters proceed to more extended case studies of 

two palaeoenvironmental applications that elaborate a number of these points much 

more fully. 
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Chapter 4 Case Study 1: Glacial Geomorphology 

4.1 Introduction 

This chapter concerns the first GIS case study. GIS is used to assemble, and perform 

quantitative analysis on a glacial geomorphological dataset which covers the entire 

Fennoscandian Shield. The analysis is much faster than has been achieved using 

manual methods, and allows a flexibility of experimentation and visualisation which 

was hitherto impossible. In addition, it has facilitated the integration and storage of 

detailed information over a large area, at a scale and accuracy not previously 

achieved. 

The geomorphological evidence, and the means of using it to derive 

palaeoenvironmental reconstructions are described in Section 4.2. The data are 

discussed in terms of the observational and measurable evidence (Level 1 data) and its 

transformation to palaeoenvironmental inferences (Level 2 data). Data derived from 

satellite imagery is discussed in most detail because it is the dataset used in the case 

study. The spatial reconstruction of glacial phenomena through time (Level 3 data) is 

then reviewed. The related datasets (such as dating methods and models) required to 

achieve Level 3 data using Levels 1 and 2 data are then summarised to demonstrate 

the breadth and depth of information required to support the evolution from 

observational data to reconstruction. The interrelationships between data, and 

transformations between levels, are then analysed. The analysis comprises a summary 

of current practices, and identification of the reconstruction method used to determine 

a set of information management and analysis requirements. 

The development of GIS to handle glacial geomorphological data and to facilitate 

reconstruction is then examined (Section 4.3). The work focuses on the use of 

landforms mapped using satellite imagery. This technique gives a regional overview 

of macro-scale glacial dynamics over the Fennoscandian Shield and is a key dataset 

for the study of glacial evolution. The steps involved in system development, and the 

fast, flexible and innovative analysis, and visualisation of the data are described. The 

system has been designed to accommodate the addition of further data and analysis 

capabilities, and these future developments are described. These show the increasing 

benefits of the system beyond the establishment phase. The benefits of using GIS 

concepts and tools and the issues associated with the current research practices and 

system capabilities are then reviewed (Section 4.4). The chapter concludes (Section 
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4.5) with a set of further requirements for the palaeoenvironmental research 

community and GIS. 

Glacial geomorphological data is one of the most important sources of information 

about the formation, evolution and decay of ice sheets through time. Ice sheet growth 

and decay are important reflections of climate change and have implications for 

isostatic subsidence of the earths crust and the rise and fall of sea level. They also 

control meltwater influxes which have profound effects on ocean circulation and, 

consequently, hemispheric heat transfer. These effects can influence atmospheric 

circulation. Atmospheric perturbations can also be caused by the topography and 

temperature of large continental glaciers (Heinrich, 1988). 

During the last glaciation significant ice sheet growth is thought to have begun around 

25,000 years BP in Fennoscandia reaching a maximum at around 20,000 years BP 

(Lundqvist, 1986b). The ice sheet was estimated to have been over 2.5 km thick 

(Denton & Hughes, 1981; Oerlemans, 1981). This information has been derived by 

examining the remains left by these large ice sheets together with related phenomena 

such as sea level change. 

4.2 Glacial Reconstruction 

The main objective of glacial geomorphological studies is to understand the evolution 

of past ice sheets and glacial climates through time and to draw conclusions about the 

climate system. Mechanisms of ice sheet growth and decay may be derived by 

analysing their effects on the landscape and by considering their relationship with 

other phenomena such as sea level change. Information about the size, position, mass 

distribution and timing of ice sheet growth and decay are required in order to do this. 

Glacial processes of erosion, debris entrainment, transport and deposition are 

governed by the behaviour of ice in different parts of glaciers and the material over 

which it flows (Collins, 1990). Sedimentological analysis and detailed mapping of 

ancient landforms, reveal information about the extent and thickness of former ice 

sheets. The directions of ice movement and ice limits through time can be derived 

and, in rare circumstances, enough evidence may be available to detect the height of 

the former ice surface in certain locations. The ice sheet is reconstructed by putting 

this information together in a single spatial framework. Present day glaciers can be 

used as analogues for interpreting past remains (e.g. Boulton, 1972). However, the 

very large continental glaciers of the past may not have behaved in similar ways to 
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present day glaciers which are much smaller and respond to very different climatic 

environments. Studies of major ice sheets in Antarctica and Greenland have been 

helpful in understanding present day glacial processes in the spatial domain. 

However, these processes are not entirely understood because of the difficulty of 

observing all but their surfaces and edges. Thus glaciologists and geologists have 

relied on theoretical considerations, particularly through the use of glacial models. 

There have been numerous studies to reconstruct the flow dynamics of the former 

mid-latitude ice sheets from the landforms they left behind, (e.g. Ljungner, 1949; 
Sugden, 1977; Boulton et aL, 1985; Dyke & Prest, 1987), and particularly to loOk at 

the changes in ice sheet flow activity through the superimposition of lineation patterns 

(Punkari, 1985; Boulton & Clark, 1990a). Research has also focused on the role that 

ice streams play and in the flow dynamics of past ice sheets (Punkari, 1984; Shabtaie 

& Bentley, 1987; Allen et al, 1987; Huybrechts & Oerlemans, 1990). These studies 

have used combinations of field information and, more recently, remotely sensed data, 

to reconstruct these flow patterns. Interpreting palaeolandforms has been done with 

the help of studies of present day glaciers (particularly in the Antarctic, Greenland, 

Patagonia, Sptizbergen and Iceland), and evidence from other proxy measurements 

(such as palaeosealevels, palaeotemperatures, palaeovegetation etc.). Currently there 

are several variants of a deformable bed hypothesis (Menzies, 1989) to explain these 

depositional landforms. They are thought to occur only under warm based ice sheets 

where the glacier is not frozen to its bed (Menzies and Rose, 1987). It is thought that 

high pore pressures reduce subglacial effective pressures and allow unconsolidated 

sediment to be deformed. Subglacial moulding and streamlining can form as a result 

of subglacial stress variation (Boulton, 1987). Subglacial sediment may be mobilised 

by anisotropic conditions caused by localised freezing and dissipation of pressure and 

water by sediment pores which reduce the effective pressure. Thus the development 

of flow parallel features depends on the capacity of the sediment to discharge 

subglacial meltwater and dissipate pore water pressure (Boulton & Jones, 1979; 

Aario, 1987; Menzies and Rose, 1987). Three subglacial warm-based bedform types 

have been identified (rigid, deformable and quasi- rigid/deformable) which depend on 

the meltwater discharge rate, the ice velocity, and temperature, to determine how the 

sediment will deform. It has also been suggested that basal meltwater can form 

drumlins and streamlined features, by filling in the subglacial cavities at the sole of 

the ice sheet formed by catastrophic subglacial floods or subglacial meltwater erosion 

(Shaw, 1983; Sharpe, 1987). This hypothesis has been used to explain the fact that 

some drumlins show no signs of deformation in contrast to the previous hypotheses. 
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Specific landform types are thought to relate to specific parts of the ice sheet (Aario, 

1987; Sugden & John, 1976; Prest, 1968). In some models only one stage (the 

maximum glacial extent) is responsible for most of the landforms. The formation of 

glacial features is also thought to be dependent on the length of occupancy time of the 

ice sheet in a particular location. The problem with this research has been that the 

size of the area thought to have been occupied by the ice sheets is very large, covering 

several countries. It has therefore been difficult to gain a coherent picture of evidence 

over such a large area. 

The following sections give an overview of the observations and measurements used 

in glacial geomorphology and the related data required to derive information about ice 

sheet evolution. The information is classified according to the levels discussed in 

Chapter 2 (Level 1: proxy measurements; Level 2: palaeoenvironmentaJ parameter 

derivations from level 1 data; Level 3: spatio-temporal correlation of level 2 data to 

achieve palaeoenvironmental reconstructions of features) 

4.2.1 Levels 1 & 2 Data 

Glacial formations are found extensively throughout Scandinavia. The different sizes 

of observable features depend on the resolution of the sampling techniques. There are 

generally four broad scales of observation and mapping used to study glacial features. 

These range from high resolution microscopy (which allows the origin and transport 

processes of glacial sedimentary components to be inferred, from grain shape and 

sedimentological analysis), field mapping and surveying, to aerial photography and 

satellite imagery. The detection and use of the landforms derived using these 

methods, the theories used to infer ice sheet evolution and the related data required to 

undertake reconstructions are discussed in the sections below. 

4.2.1.1 Field Information 

Several types of landforms can be identified at the field level. Terrestrial depositional 

landforms can be classified with respect to their formation processes, and therefore 

used to locate different palaeoglacial positions. Table 4.1a lists examples of 

landforms and indicates their relation to ice flow direction, and the glacier. This 

classification is based on a scheme generated by INQUA (Goldthwaite & Matsch, 

1989) and one originally published by Sugden and John (1976). Similarly 

classifications have been produced for glaciofluvial (Table 4. ib), glaciolacustrine and 

glaciomarmne sediments. Macroscale feature and microscale grain morphological 

studies, sedimentological and facies analysis all contribute to elucidate the feature 
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Table 4.1a Classification of glacial depositional landforms according to position in relation to glacier 
and ice-flow direction. Glacier surface features before the ice has totally melted are included, but 
glaciotectonic landforms are excluded, after Hambrey, 1994. 

Position in relation to 
glacier 

Relation to ice flow Landform Scale 

Subglacial; still actively Parallel Lateral moraine 10 m - 100 km 
accumulating Medial moraine 10 m - 100 lan 

(Transverse) Shearlthrust moraine 1 m - 1 km 
Rockfall lm- lkm 

Non-orientated Dirt cone 10cm-I m 
Erratic ca. 1 m 
Crevasse filling 10 cm - 100 m 

Subglacial during Parallel Drumlin 10 to - 10 km 
deposition Drumlinoid ridge 50  - 10 km 

Fluted moraine lOm - Ilan 
Crag-and-tail ridge 10 m - 10 km 

Transverse De Geer (washboard) moraine 10 m - 1 km 
Rogen (ribbed) moraine 10 in - 1 km 

Non-orientated Ground moraine: 
till plain 1-100km 
gentle hill 10m-10km 
hummocky ground moraine I - 10 km 

1-50km 
Supraglacial during 10 m - 1 km 
deposition iNon-orientateu riummocy tor oeaa 30 in - lUt) tan 

ice/disintegration) moraine 
Erratic l - lOm 

Ice marginal during Transverse End moraines: 
deposition terminal moraine 10 m - 100 km 

recessional moraine 10 in - 10 Ian 
Annual (push) moraine I - 10 m 
Push moraine 10m-5kin 

Non-orientated Hummocky moraine 10 in - 1 km 
Rockfall lm- lkm 
Slump lm- lkm 
Debris flow lm- lkm 

Table 4db Classification of glaciofluvial erosional and depositional landforms according to position 
in relation to the glacier margin. The scale range refers to the maximum linear dimension of the 
landforms, after Hambrey, 1994 

Position Process Landform Scale 
Subglacial Erosion by subglacial Tunnel valley 10- 100 km 

water Subglacial gorge 10 in - 50 km 
Nye (bedrock) channel 1 - 500 m 
Channel in unconsolidated sediment 10 no - 100 km 
Glacial meltwater chute I - 10 in 
Glacial meltwater pothole 10 cot - 10 m 
Sichelwannen 10 cm - I In 

Deposition in subglacial Esker 10 in - 100 km 
channels, etc. Nye channel fill 1 - 10 in 

Moujinkame 1-5m 
Carbonate film and cornices 0.1 - 5 mm 

channel 100m-101m 

Frog lacial 

Ice contact deposition 
from meltwater and/or 
in lakes 

Kane field 
Kame plateau 
Kame terrace 
Kame delta (delta moraine) 

loOm- IV kin 
100 in - 10 kin 
5Dm-S km 
5Cm- 100 km 

Meltwater deposition Uutwash plain (sandur) 100 m - 50 km 
Valley train 100 r -50km 
Outwash fan 100 n - 50 km 
Pitted plain 100m -  km 
Outwash delta complex 100 n - 50 km 
Kettle hole/pond I - 500 m 

57 



types and their origins. Relating the feature types to their formation processes allows 

the components and nature of parts of past glaciers to be located. Sedimentology can 

also be used to identify sediment provenances which allow glacial transportation 

paths to be mapped. Erosional features have also been classified and related to 

different glacial processes (Sugden & John, 1976). However, it is more difficult to 

use erosional evidence since it cannot easily be dated or correlated with other glacial 

features. 

Field observations and records are concentrated in areas which are most accessible 

and therefore there is some imbalance in the spread of information across areas. For 

example, there may be a lot of information offshore but it is not easily observable. It 

has been difficult to - establish an accurate deglaciation chronology for much of 

Western Scandinavia because of the difficulty of correlating moraines between 

different Fjord regions (Marthinussen, 1974; Andersen, 1979). Many of the moraines 

are submerged and therefore difficult to study and date. 

The issues associated with field studies are that detailed measurements and field 

descriptions are not formalised for integration with other observations, and are 

retained for the most part by the individual field scientist. Consequently data is not 

available for use by other scientists. In addition locational accuracy is dependent on 

the quality of the paper base map, and it is difficult to relate features accurately to 

other scales of study (for example aerial photography and satellite imagery). 

There are many controversies about the origin of features. For example end moraines 

are an issue of contention. Do they represent only successive phases of glacier retreat, 

or do some reflect glacial readvance or glacial surging? Furthermore, there is no 

widely accepted, universal, classification of glacigenic sediments. Some progress has 

been made towards addressing this issue through INQUA (e.g. Goldthwaite & 

Matsch, 1989, mentioned earlier), but scientists are under no obligation to abide by 

proposed standards. This is particularly important because there are often difficulties 

in distinguishing between different glacigenic sediments in terms of their origin (i.e. 

whether a sediment is glacial, fluvial, aeolian, marine or lacustrine in origin) and 

mis-diagnosis cannot be checked without field data. 

There are also many controversies about terminology which determine the temporal 

relations between the various ice sheets (for example the Scandinavian, British, 

Russian and Barents Sea ice sheets and shelves). These differences in opinion are 
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important because they have considerable bearing on the estimation of ice-water 

volumes used to calculate the oxygen isotope parameters and to produce different 

global atmospheric circulation patterns (Dawson, 1992). 

4.2.1.2 Remote Sensing 

Macroscale features can be identified on aerial photographs and satellite images, with 

the advantage that large areas can be covered more completely and more 

homogeneously using these techniques compared to field studies. In addition, 

interpretation over an area can be carried out by one individual so the problem of 

combining data gathered from different origins, at different scales, and using different 

interpretational preferences, is minimised. Many of the features which can be 

mapped using aerial photographs are visible on satellite images. Images enable the 

identification of macroscale features too large to identify on a single aerial 

photograph. They are less time consuming to interpret because fewer images are 

required to cover a large area. The size of features which are observable depends on 

the resolution of the technique being used. Air photos, have a resolution of a few 

metres and LANDSAT MS and TM satellite imagery have pixel sizes of 80 m and 30 

m respectively: The linear trends and spatial distributions of features mapped using 

these techniques are a major source of evidence for reconstructing former glaciers. 

Various hypotheses were discussed earlier (Section 4.2) about the origin of 

streamlined bedforms that indicate the breadth of possible glaciation mechanisms 

used to explain the occurrence of landforms and infer the nature of the processes 

which formed them against which the observational data is compared and tested. As 

hypotheses develop it is necessary to revisit data in order to reinterpret it and to make 

new spatio-temporal analyses of glacial landforms and sediment. 

Interpretation of glacigenic landforms from satellite images has been used in many 

areas and provided new insights into the dynamic behaviour of palaeoglaciers 

(Punkari, 1980, 1985; Boulton et al., 1985; Boulton & Clark, 1990b; Donglemans, 

1995). Interpretation has been visual using enhanced black and white, and colour-

composite, images. Auto-classification has been found to be unhelpful in this type of 

study since the spatial pattern of lineations is most important (Punkari, 1993). 

Features which can be identified are erosional forms, drumlins, transverse and 

longitudinal morainic ridges, hummocky and marginal moraines and glaciofluvial 

formations. The size of discernible features depends on the resolution of the imagery. 

The morphology of landforms is distinguished by changes in vegetation and moisture 

conditions. Changes are picked out by the visual and near infrared spectral bands. 
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This method of differentiating surficial deposits is called geobotanic interpretation 

(Punkari, 1982; 1985). Very small drumlins are not visible on satellite images (those 

which are less than or close to the resolution of the imagery), but the spatial 

coherence of drumlin forms over a large area is much more discernible using satellite 

imagery, than using any other technique. 

The steps used in the interpretation of these features, to explore glacial evolution are 

detailed in Dongelmans (1995) and are described briefly below: 

Groups of lineations are identified that form a coherent (often lobate) spatial 

pattern 

Features are checked using geological maps to eliminate those of bedrock, as 

opposed to glacial, origin. 

The age relations are double checked on different images to establish relative 

ages using lineation cross-cutting and. superimposition (determination of age 

relations is described in the dating Section 4.2.1.4 below) 

These patterns and relative ages are compared with known glacial phases. 

Inferences made from palaeo-glacial features depend on the accuracy of the models 

and theories upon which inferences are based. Possibly one of the biggest problems 

with the interpretation of glacial lineation data is the diachronous nature of the 

landforms. This makes the assignment of different features to different snapshots in 

time extremely difficult. Studies of the Ra moraines in Southern Norway, for 

example, have shown that these features are not the same age throughout their length 

(Mangerud, 1980). - 

However linking field measurements to features on satellite images can be more 

problematic since most of the imagery used is not georeferenced and corrected and 

therefore it can be difficult to identify locations in relation to ground measurements 

unless some prominent proximal feature is available for orientation purposes. 

Interpretations are usually transcribed by hand on to base maps, and this process can 

introduce major locational errors. This is particularly the case for images which are 

not properly corrected and georeferenced. These errors are compounded because 

other information is also transferred to a common reference system using the same 

techniques. The time consuming nature of inter-map transcription means that 

generalisation often takes place at the same time in order to reduce the amount of 

information which must be transferred. This can cause significant information loss. 
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It is also very important to know the contextual information when interpreting 

landforms. Morphological features such as the Salpausselka moraines in Southern 

Finland could be interpreted geomorphologically from remote sensing as end 

moraines. However, the sedimentological evidence suggested that they are sediment 

accumulations in fracture zones parallel to, but possibly some distance from, the ice 

front (Virkkala, 1963; Hyvarinen, 1973). Other work, however, argues that they are 

marginal, but may be interlobate in their lateral parts (Punkari, 1985). Further 

complications arise because the glacial remains may incorporate sediments and 

landforms produced during former glaciations (Mangerud, 1991a). These 
interpretational issues are major obstacles to discovering the true nature of the last 
NI,AJ European ice sheet and underline the importance of being able to make frequent 

reassessments of the available information. 

Despite the availability of methods to date landforms, Hambrey (1994) notes that the 

study of glacial and related landforms has proved to be an unreliable method of 

establishing glacial chronology. Further complications arise because of the 

contention between use of the different chronostrati graphic terminologies of the 

different countries (Dawson, 1992). 

4.2.1.3 Dating 

For macroscale features, a chronology can only be established in two ways. Where 

lineations cross-cut, or are superimposed on others, relative dating between associated 

patterns is possible. Alternatively, features can be related to dated ground 

observations. This is harder to achieve because it is difficult to relate image features 

accurately to locations on the ground. 

There are several methods used to date field evidence. These approaches are 

discussed in more detail in the following chapter with respect to sea level data. Most 

of the methods involve dating of non-glacial remains found incorporated within, or 

between successive glacial deposits. These are usually organic layers formed during 

glacial retreat, which constrain the glacial depositional phases (Punkari & Forsstrom, 

1995; Liivrand, 1991). Dating accuracy depends on the correct recognition of the 

circumstances of any dated material, and the resolution of the dating technique. For 

example, if organic beds are incorrectly thought to be in situ, then the sediment 
beneath is interpreted as being older than the organic horizon. Re-worked material is 

not always recognised as such. Most of these methods are also used to date other 
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palaeo-features than those associated with glaciations, and the techniques are fairly 

standard. These dates also have implications for other palaeoenvironmentaj 

parameters, such as temperature and vegetation coverage. Therefore, as with sea level 
interpretations (Chapter 5), the methodological techniques and standards associated 

with the dating methods are important sources of information which are required 

irrespective of the particular palaeoenvironmental phenomenon which is being 

investigated. The contextual information associated with a particular date (such as 

the material dated, the landform and sediment context, and the position in which the 

material was found) will help to discriminate reliable dates from those which are less 

certain. The list below gives an indication of the variety of techniques used to date 

glacial sediments and therefore the complexity of correlating, not just between 

sedimentary sequences and landforms, but between the techniques used to date them, 

which vary in their reliability and resolution. 

Radiometric Techniques 

-Radiocarbon Dating (Klein et at, 1982; Otlet et at, 1986). 
-Uranium-Thorium Methods (Ford et al., 1972, 1981, Kaufman, 1986). 

Amino Acid Racemization or "Aminostratigraphy" (Abelson, 1954; Wehmiller 

et al., 1988;) 

Obsidian Hydration Dating (Pierce et al., 1976; Trembour & Friedman, 1984). 

Lichenometry (Griffey & Matthews, 1978; Innes, 1985; Erikstad & Sollid, 

1986) 

Tephrochronology (Wilcox, 1965; Westgate & Gold, 1974; Knox, 1993) 

Palaeomagnetism (Tarling, 1971; Thompson et al., 1975; Easterbrook, 1988) 
Thermoluminescence (Dreimanis et al., 1978; Singhivi & Mejdahl, 1985; 

Berger, 1988) 

Dendrochronology (Damon et al., 1972; Baillie & Pilcher, 1973) 

Vane Chronology (de Geer, 1940; SchlUchter, 1979; Lundqvist, 1980) 

4.2.2 Level 3 data 

Methods of obtaining level 3 data involve correlating features spatially to determine 

the temporal variations in patterns left by the feature-forming processes. Features are 

mapped and correlated according to similarities in sediment and stratigraphy, and 

through the use of dating methods. The identification of spatial patterns is used to 

correlate landforms derived using satellite images. These patterns reflect variations in 

the direction and intensity of glacial flow. Inferences made from these features 

determine the size and position of the ice sheet and surrounding topography. They 

MIJ 



have implications for changes in the quantities and directions of meltwater discharge, 
and the isostatic effects on the lithosphere. 

Recognising spatial patterns and identifying features relative to their formation 

mechanisms are crucial aspects of reconstructing the location and evolution of 

glaciers through time. The scale of information is important because small features 

such as glacial striae show a higher degree of directional variation. Smaller features 

are more easily formed than macroscale features, and reflect the local scale 

topography (Kiernan, 1990). Particular features have their long axes parallel to ice 

flow directions (e.g. striae, drumlins, flutes). Superimposition of one direction on top 

of another is not always evident, but allows relative dating of the flow directions and 

therefore the relative dating of lobe patterns (Lagerback & Robertsson, 1988; Rose 

1987). Coherent lineation patterns comprise contemporaneous sets of lineations. 

Such patterns of macroscale landforms can be identified to map ice streams at a 

regional scale. Before satellite images were available these very broad scale patterns 

were hard to see. They extend over areas equivalent to a single air photograph and it 

is difficult to identify features that are the same size as, or bigger than the scene being 

viewed (Lillesand & Kiefer, 1987). However integrating these features over a large 

area using several images which overlap in order to identify lineation patterns is 

problematic using manual transcription methods. 

The spatial interpretations of glacial lineation features are based on several theories. 

Many theories are contested and a variety of views exist. Some suggest that flow was 

radial from the centres of glaciation, known as ice domes (topographically high point 

centres) and ice divides (linear centres), leaving radially aligned features (Gluckert, 

1974; Kurimo, 1980; Punkari, 1985). It has been suggested that erosion under the ice 

divide was very weak (Lundqvist, 1986a). As glaciation proceeded it is thought that 

the flow became progressively more lobe like from being a sheet-like flow, although 

this is difficult to prove (Punkari pers. comm., 1996). The centres of these ice 

streams had the highest velocity ice, and erosional streamlined bedforms appear to be 

more widespread upstream, towards the apex of the lobes, with depositional forms 

probably being formed 2-300 km from the ice margins (Punkari, 1985). In addition, 
areas between ice lobes are postulated to have left few formations and consisted of 

passive or stagnating ice. It is thought that these areas underwent much less erosion, 

and therefore are the most likely areas where older landforms will have been 

preserved (Punkari, 1980). These interlobate areas are thought to have been 

dominated by compressive flow, which incorporated subglacial debris into englacial 
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or supraglacial positions, and are thought to be preferred centres of fluvio-glacial 

activity (reflected in the large numbers of eskers preferentially found in such areas). 

These theories can be used to interpret the landform patterns but the landform patterns 

can equally influence the currency of theories. Calibrated ice marginal positions are 

used to delineate the edges of the lobes and ice streams, based mainly on the pattern 

of the lineations relative to the marginal positions (determined using correlated and 

dated moraines). Much of the interpretation often starts by using the patterns and 

dates of end moraines to help identify which lineations are associated with the ice 

lobes whose extents are marked out by these end moraines. 

The means of correlating level 2 data to produce level 3 interpretations is very much 

dependent.. on the theoretical concepts and beliefs adopted by the individual in terms 

of ice sheet evolution and the mechanisms of formation of glacial geomorphological 

features. Interpretations are dependent on the quantity of quality information which 

the interpreter uses. For example if the dates or locations of end moraines are wrong, 

the interpretation will be flawed. Interpreting ice flow directions, identifying ice 

streams, ice lobes and hence ice sheet dynamics, through time, from hundreds of 

lineations interpreted from satellite images, can be a challenge. It must be 

remembered that most of these features are probably time transgressive. They may 

also include information from previous glaciations. In addition many lineations may 

represent manifestations of bed rock linear features not closely related to glacier 

directions. A high degree of experimentation with Iandforms for interpretation, is 

required to test theories and obtain the suite of glacial models which best describe the 

glacial states through time. This degree of flexibility is limited at present by the time 

required to manipulate the data using paper maps. 

42.3 Related Information 

A large quantity of related information is required with geomorphological data to 

generate glacial reconstructions. The glacial record is correlated with, and timed 

using, many palaeoenvironmental indicators (and vice versa). Major changes in ice 
frontal position are reflected in the deep ocean sediments through variations in 

sedimentation rates, and sediment composition. They also correspond to changes 

reflected in the migration of beetles and vegetation, and growth variations of cave 

deposits. Sea level fluctuations, species of pollen spores and mountain glacier 

fluctuations in the tropics also reflect to a greater or lesser degree the changes which 

caused ice sheet growth and decay. Correlating this evidence with the glacial 

landform record aids the temporal correlation and determination of ice frontal 
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positions and ice dynamics. It is also vital to know where non-glacial features are 

located, at what times, and with what palaeotemperature inferences, in order to help 

constrain reconstructions. These related datasets can be divided into two main 

categories: 1) methods and guidelines; and 2) related data sets used in the derivation 

of glacial geomorphological reconstructions. Examples of these are outlined below: 

Methods and guidelines 

- Dating techniques 

Methodological standards and guidelines associated with dating techniques are 

required. The relationships between methods are needed so that measurements 

made using different techniques can be compared, and dates derived using older 
techniques updated. 

- Formation Theories 

Theories on the formation of glacial features and means of identifying these 

features for comparison with measurements. This would include studies of 
present day analogues. 

- Standards 

Glacial sediment classification schemes allow identification and documentation 

of field evidence. The most universally acceptable are those for classifying 

sediment fractions, grain size and morphological descriptors. 

Related data sets used in the derivation of glacial geomorphological 
reconstructions 

- Topographic maps 

These are required for many reasons, but particularly because both topography 

and geology exert control on glacial evolution and meltwater drainage. 

Topography also interacts with isostasy and sea level measures which are 

required to calculate palaeotopography. 

- Geological maps 

These are important for determining the types of basement over which ice 

flowed, to look at ice sheet basal conditions, provenances (particularly those of 



erratics) and to distinguish bedrock lineations from those of purely glacial 
origin. 

- Dynamic Models 

Glacial Models' These models are useful for helping to understand the 

importance of different parameters on glacial evolution • and dynamics. 
Geomorphological data can be used to test them. 

GCMs (general circulation models) It is helpful to involve simulations of the 

response of the atmosphere to inferred distributions of sea surface temperature, 

the extent and altitude of former ice sheets, the former distribution of lakes 

(requires ice extents as an input) (Kutzbach & Wright, 1985; Berger, 1979) and 
to look at, for example, the orographic effects of the Norwegian mountain 

range. 

Crustal isostatic models These models are discussed in more detail in the sea 
level chapter (5). They facilitate the integration of glacial and sea level 

reconstructions. 

- Pollen records 

Ice sheet advance and retreat deposits can be correlated with pollen records. 

For example the Grand Pile pollen sequence provides a continuous record of 

climatic change from the Eemian (the last interglacial) to the Holocene (current 

interglacial) (Woillard & Mook, 1982). 

- Cave deposits 

Some information about the timing of melting can be derived from speleothem 

growth which can be dated using radiometric techniques (speleothem deposits 

grow in response to an increase in ground water provided by glacial melting). 

These growth phases can be correlated with glacial deposits and vanes in 

fluvioglacial sediments. 

- Deep ocean records 

These can also provide a climate-related chronological framework. They 

include sediment accumulation rates, oxygen isotope compositions etc. (e.g. the 

SPECMAP curve of Imbrie et al., 1984) from ocean cores against which glacial 
phases can be correlated. 
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There are several issues associated with this "related data". It is difficult to manage 

the complexity of sites and correlations using different information given the number 

of different relations and the quantity of data. Comparison is poor between models 

and data because model output must be compared with numerous small, usually 
generalised, maps of field data. 

4.2.4 Reconstruction Requirements 

In summary, to carry out a glacial geoniorphological study the following sets of 

information are required: 

Background Information (Level 2 and 3 data and Related Data) 
-Review of current glacial theories and state of knowledge about the area (Level 
3 Data) 

-Specific information about particular areas 

(state of current Level 2 Data) 

-Current theories and state of knowledge about glacial processes 
(Related Data) 

II Focus Data (Level 1 and Related Data) 
-Glacial data (usually new) 

(Level 1 Data, but could be Level 2) 

-Geological, hydrological, topographical, base and drift information 

(Related Data) 

HI Methodological Information Linked to Level 1 Data (Related Data) 

-What measurements may be made and how 

-Accuracy guides of methods and measurements including assumptions made 
-Process, static and dynamic models 

IV Data handling and analysis methods relating to Level 2 and 3 Data 
-Visualisation 

-Generalisation of detailed information over an area to produce a regional 
picture 

-Selection of particular data elements for processing 

-Analysis of directional information (if glacial dynamics are being investigated) 

-Correlation either stratigraphically, spatially or both 
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Conventional methods of research generally focus on II and IV, with I and ifi being 

traditionally literature review activities. Section 4.3 discusses the exploration of a 

proprietary GIS in facilitating stages II and IV in particular, and discusses the issues 
associated with I and III. 

The numbered points below summarise the issues associated with current practices of 

palaeoenvironmental reconstruction identified in the above sub-sections: 

The size of the features to be reconstructed are much larger than the size of 
field studies 

The area thought to have been occupied by the Fennosciandian ice sheet 

covers four different countries with different datum levels, languages and 
methodologies) 

The spatial resolutions of measurable features vary from micro to macro 

scales, and therefore reconciliation between scales is difficult. 

Temporal correlations are difficult because of the lack of dates and the fact 

that many features may be time transgressive. 

Interpretation of the features to be integrated over a large area varies 
considerably. 

Features can be located disparately as well as inaccurately, which complicates 

analysis of relative feature locations, and integration of different features and data 
types. 

Paper maps offer limited flexibility for feature visualisation, selection, 

detailed data integration over a large area, rigorous analysis and theory testing. 

Many of the current transformation processes involve methods which are neither 

rigorous nor quantitative (Table 4.2 Data Issues and suggested GIS solutions). The 

benefits of GIS in addressing these issues and requirements are investigated in the 
following section. 
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Table 4.2 Satellite Imagery and Aerial Photography based investigation of Palaeoeglacial Environments 

Level I Data Level 1-2 transformation Level 2 Data Level 2-3 transformation Level 3 Data 
Current practices Satellite images Digital image processing Hand drawn lines representing Visual generalisation Generalised lines (ice 

Air photos Visual interpretation linear features of different ages direction, ice frontal 

Visual separation into age phases positions, ice divides) 
Field Data Detailed ground truth Transcription of other field mapped 

Field mapped data features 

Aerial photographs Sedimentological field evidence 

Geological and topographic 'naps Geological and topographic 'naps 

Vegetation cover data Standard oxygen isotope and pollen curves 

Sea level data 

Data issues Digital data (pixels) Information loss from visual Variability in the certainty of Information loss No measure to relate 
interpretation boundary location complexity of lineations final interpretations 
Time-consuming to revisit and alter Differences of realting all possible ground to original data 

Hard copies of images interpretations evidence to image integers 
(georeferenced and Significant feature location Multiresolution features Time required to transcribe different data Limited visualisation 
not georeferenced) inaccuracies sets to common basemap 

Misinterpretation through Limited flexibility for testing scenarios 

inaccuracies in geology map overlay because of time required to integrate data 

(315 Raster representations On-screen digitising and editing Vector lines and polygons Quantitative analyses of features Quantified, measurable, 
improvements digital image back-drop Fuzzy boundaries Rigorous generalisations results to support 

Detailed surface topography derived Digital elevation models (DEM) Surface visualisation and morphological hypotheses 
from stereo pairs of air photos analysis 

Accurate ground truth location Improved locational accuracy (UPS Improved visualisation High degree of possible 
Retrieving detailed sedimeniological for field observations / accurately experimentation 
and field data by location georeferenced images) System manages data, 
Full integration of field evidence with scientist free to 
macroscnje studies concentrate on research 

Accurate mao overlay 

Data required to achieve transformation: 

Other scales of Levels 1,2 and 3 glacial geomorphology data 

Related data 

Other level 2& 3 data 



4.3 A GIS based study 

The aim of this study is to utilise methods and techniques offered by GIS to improve 

palaeoenvironmental research using glacial geomorphological information. In 

essence the objective was to explore the potential role of GIS as a methodology and 

set of tools to improve palaeoenvironmental reconstruction and to address the issues 

identified above. The GIS manipulates and analyses raw data to facilitate their 

transformation through spatial and temporal correlation to support reconstructions 

which can be integrated, with glacial, hydrological and crustal deflection models 
(Figure 4.3). 

The GIS ARC/INFO is used in this study and was selected because it was available 

and incorporated all the functionality commonly offered by most systems. The 

system chosen was a mainframe/workstation-based product. Because of the size of 

data sets related to North West Europe and the processing envisaged, a PC-based GIS 

would have been inadequate in terms of disk space, processing power and 
functionality. 

4.3.1 Background to Case Study 

The case study focuses on the application of GIS to support glacial reconstruction 

using data derived from satellite imagery and national drift maps. The focus is 

therefore on macroscale landforms. The data.set provides a subset of information 

which covers the entire Fennoscandian region. This information helps draw 

conclusions about the large scale glacial dynamics and geomorphological 

relationships for most of the former ice sheet. It was selected because it provides a 

complete dataset which is manageable in terms of data collection, time, and cost. The 

spatial complexities of this data means that it is more difficult to integrate than the sea 

level data, which exist as discrete geographic co-ordinates. Consistency of data has 

been maintained by using satellite image interpretations generated by only two 

researchers working in close collaboration. This ensures compatibility of 
interpretation and therefore comparability of results over this large area. The datasets 

are discussed below. The first (Section 4.3.1.1) relates to the satellite image 

derivations and the second (Section 4.3.1.2) to interpretations from national maps. 

The characteristics of the datasets are discussed in order to describe the rationale 

behind the database design described in a subsequent section. 
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Figure 4.3 Manipulation and Analysis Requirements of Glacial Geomorphological Data 

RAW I I 
DATA Flow-Parallel Features I Fluvioglaclal and Flow- 

I Transverse Features 

INTERPRETATION COMPONENTS O GLACIAL 

I GENERALISATION 
SPATIAL CORRELATION FLOW DYNAMICS 

INTERPRETATION 

- CORRELATION I 

1EM OISDFON OF 
TEMPORAL FILTERING 

GLACIAL ROW DYNAMICS 

ICE STREAM AND ICE 
RECONSTRUCTIONS FRONTAL POSITIONS, 

AND PHASES OF 
GLACIAL ADVANCE 

AND RETREAT 

MODELLING INPUT/TESTING 
ICE LIMITS, ICE SHEET 

DYNAMICS, 

SUBGLACIAL 
HYDROLOGY, GLACIAL 

EVOLUTION 



4.3.1.1 Satellite Imagery Data 

The satellite data exist at two principal scales, although for one small, northern 

section higher resolution imagery has been used where that was all that was available. 

The imagery consists of thirty-two LANDSAT MSS (79 m resolution) and four 

LANDSAT TM (30 m resolution) images. These higher resolution TM data are 

approximately 1:400,000 scale, and the georeferenced mosaics of LANDSAT MSS 

data at a scale of approximately 1:1,000,000. In all cases the image scale quoted is 

based on the photographic versions of the images, which were used for the 

interpretations. The data consists of interpretations by Pieter Dongelmans and Milcko 

Punkari, made from hardcopies of satellite images. The methods of interpretation 

have been described in section 4.2. The coverage for the respective scales of imagery, 

and the locations of the images are shown in Figures 4.4a (MSS and TM single 

images) and 4.4b (MSS Mosaics). As it is important to differentiate correctly 

between flow parallel or flow transverse landforms, the interpretations were checked 

by the interpreters using field survey and conventional aerial photographic 

information. Essentially there is a difference in resolution and scale between these 

image sets which has resulted in a difference in the degree to which the results have 

been generalised. Linear features which were marked individually on the single 

images were too, small to be marked individually on the mosaicked images and are 

therefore represented by a single line for a suite of features. 

4.3.1.2 National Map Data 

Interpretations of eskers and end moraines have been made from national sand and 

gravel maps, of Norway, Sweden, Finland and Russia (Geological Surveys of Finland, 

1979; Sweden, 1958; Norway and Krasnov, 1971) and integrated into a single dataset. 

The source maps are in different projections at 1:1,000,000 scales. In the interests of 

completeness the North Kallott Project maps (North Kallott Project Members, 1987) 

have also been integrated. This map replaces information from the Swedish map in 

the North Kallott area because it was felt to be better data. It also supplements data 

for Northern Norway which the national map does not cover. The interpretations 

from the drift maps were also made by Milcko Punkari and Pieter Dongelmans. 

4.3.1.3 Glacial Data Model 

The use of macro scale features and end moraines for reconstructing glacial flow 

dynamics is shown in Figure 4.3. The flow parallel features consist of drumlins, 

flutes and other macro scale landforms, but are not differentiated as such. 
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Figure 4.4a Satellite Image Integration (TM) 
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Figure 4.4b Satellite Mosaic Integration (MSS) 
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Interpreted glacigenic landform features are stored as digitised lines. Lineation 

features reside in one data layer, fluvioglacial interpretations in another and morainic 

features in a further layer. There are two layers of lineation features, one for each 

scale of imagery. The names of the data layers were used to identify the features 
stored therein. 

Oriented lineations, which require directional analysis, are stored as straight lines with 

two co-ordinates only. This enabled their direction to be clearly and unambiguously 

generated and analysed. The relative angles of mapped lineations, at a Northern 

European scale, are very much dependent on the map projection employed for the 

mapping. The single images have not been corrected and therefore their projection is 

unknown. Since they cover relatively small areas the distortion due to the earth's 

curvature is minimal. However, once integrated to form a large areal coverage, this 

issue becomes more important. Data at different scales (for example single images 

versus mosaicked scale data) may yield different sorts of information about the ice 

sheet and were treated separately. 

There is no provision for linking metadata to coverage layers in the system. To 

accommodate this information, metadata files, which detail the origins of the images, 

the interpretations, and the georeferencing, are stored in the same directories as the 

coverage information. 

Finally a base map was required, to provide a framework for the information. The 

WDBII (World Database II) digital data set has been used. This dataset was 

originally digitised at 1:3,000000 and is therefore of a comparable scale to the 

macroscale data. The Lambert Conformable Conical projection was chosen as the 

reference system because it preserved area in the case of sea level, and is most 

appropriate for the Northern hemisphere (Maling, 1973). It is also the projection 

system used for the glacial model, with which it is hoped the data and analysis results 

can be compared in the future. 

4.3.2 Data Capture and Transformation 

The interpretations from the maps and images were digitised from acetate sheets on 

which the interpretations were marked. Other features such as the latitude and 

longitude graticules, coastlines and lake outlines were digitised in order to check the 

success of georeferencing later (by matching these digitised coastlines with those of 

the base map). The data, once digitised was transferred to the operating system and 
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then imported into the @15. The data was edited, checked and topologically 

structured within the @15. The data was then georeferenced so that the relative 

positions of features could be accurately established with respect to a common co-

ordinate system. 

4.3.2.1 Satellite Imagery 

To georeference the data a GIS makes use of TIC points. These are points which are 

interpreted as having special meaning in geographical space and are used by the 

projection and rubber sheeting algorithms in the GIS as being fixed points which are 

georeferenced. This means that in the situation where a set of digital spatial features 

is not georeferenced (i.e. the co-ordinates with respect to real world entities are 

unknown) TIC points can be placed on the map at locations which are known in 

geographical space. For example, a distinctive bend in a river on the unknown map, 

can be identified on a map where the co-ordinates are known so that a particular point 

on the river becomes a known point in real world co-ordinates. If several of these 

points can be identified on the known map, they can be used by a rubber sheeting 

algorithm to interpolate co-ordinates for the parts of the map between these known 

points so that the whole map can be transformed to a known co-ordinate system. 

The satellite images were then integrated, via mosaicking, into a single coverage. 

There are large areas of overlap between many of the images (see Figure 4.4a). Areas 

of overlap were dealt with by selecting only one image to represent the overlap area. 

The five mosaic images had already been corrected and georeferencing was much 

easier. Best estimates were made of the projection system to which they had been 

georeferenced, and a satisfactory fit was obtained using the Transverse Mercator 

projection. Similarly the mosaics were also mosaicked (see Figure 4.4b) and overlaps 

treated in the same way as for the single images (only one image chosen to represent 

the area of overlap). The final lineation coverages at the two different scales are 
shown in Maps 4.5a and 4.5b. 

4.3.2.2 National Maps 

The maps are all Gauss Krueger projections and although not all the projection details 

are available, some experimentation with projection parameters allowed these maps to 

be georeferenced with reasonable accuracy (within the accuracy of the base map). 

Mosaicking the maps to produce a single coverage was straightforward, with the only 

area of overlap occurring where the North Kallott map overlaps the Swedish and the 

Finnish maps (no Norwegian map data had been interpreted for that area). The North 
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Kallott map is thought to be more accurate than the Swedish map (being more recent 

and having been created with the co-operation of the geological survey in Sweden). 

The North Kallott map is identical to the interpretations from the Finnish map, so in 

order to combine the maps the top of the Swedish and Finnish maps were deleted in 

the area of overlap and replaced using the North Kallott map. The resulting map is 
shown in Map 4.6. 

4.3.2.3 Uncertainty Issues 

The extent to which rubber sheeting can be used to improve the quality of 

georeferencing for each area is limited by the base map, which is less accurate than 

most of the TIC point co-ordinate readings (taken from Operational Navigation Chart 

Sheets which are at a scale of 1:1,000,000). There is a notable discrepancy in the 

representation of features. The base shore and lake lines are more generalised than 

those digitised from the satellite images. The digital data used for the base map was 

digitised at scales of 1:3,000,000 and 1:4,000,000. This would imply an accuracy of 

approximately 1-2 km depending on the reliability of the original base maps and the 

care with which they were digitised. (It is generally assumed that digitising accuracy 

is approximately 0.3 mm (Burrough, 1986)). The accuracy of the National Map data 

interpretations was thought to be better than the base map and probably almost as 

good as the original maps. Some errors were produced through digitising. Other 

errors may have been caused because the parameters used in the projection algorithms 

may not have been identical to those originally used to create the maps. 

4.3.3 Data Integration and Analysis 

Unravelling the glacial dynamics from the geomorphological evidence requires some 

combination of generalising and filtering. Conventionally this has been done visually 

with the addition of hand-drawn generalised lines representing interpreted glacial 

phases. These lines and their relative ages were interpreted according to the density 

of features in particular directions for various sub-areas, with an appreciation of the 

general context. 

To facilitate spatial and temporal correlation of the data via generalisation and 

filtering techniques, a number of programs were developed to manipulate the 

lineation data which calculate rose diagram and lineation density maps for user-

specified areas. The size of the rose diagram area and units are user-controlled, 

allowing experimentation with generalisation at different scales. Filtering the data 

was achieved by variously selecting the maximum and secondary directions and 
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displaying them separately. These rose diagrams are easier to interpret than the 

unprocessed lineation coverage, and combinations of them can be used to interpret 

relative ages of flow directions and the pattern of flow evolution. 

The lineation density maps give further information about the concentrations of 

evidence remaining and can be correlated with the surface drift, geological basement 

and hydrological properties using spatial analysis techniques (although this 

correlation is a future development). It is important to remember that the pattern sets 

and features identified are time-transgressive and therefore potentially much more 

complex than might at first appear. Filtering principal and secondary directions can 

help to distinguish deglacial remains from evidence which pre-dates the deglacial 

phase, in areas where the deglacial evidence is otherwise very strong. However in 

areas for which the deglacial evidence is less pronounced, the filtered diagrams 

should be interpreted with care, as non-deglacial lineations may represent the 

strongest evidence and these directions will be removed during filtering. This is 

particularly important for areas which lie near the data coverage limit, where the data 

density is low because analysis windows overlap areas where there is no data. It may 

be possible with the addition of more sophisticated functionality, to use 

interpretations of deglacial ice extent to filter out directions perpendicular to these ice 

frontal or submarginal positions and obtain non-deglacial components. This could be 

done progressively using younger and younger ice marginal positions to filter bands 

of areas within a certain distance of these boundaries. If assumptions about the 

formation of glacial features is correct, most of the remaining directions should pre-
date deglaciation. 

The system analyses and manipulation (present and planned) are summarised in 

Figure 4.7. The input data are shown in the left hand column (Image and Mosaic 

scale lineations, eskers, moraines and topography) and the outputs (rose diagrams, 

lineation densities and integrated map overlays) are shown in the right hand column. 

The centre column and the arrows indicate which layers and analyses contribute to 

which output. 

Map 4.8 a-c show the different rose diagrams (described in more detail below) 

calculated for a sample area. Each rose diagram represents an area which is 30 km 

square. The programs used to calculate and plot the rose diagrams are listed in 

Appendix II. These programs allow a user to select an area for analysis and to define 

the size of the rose diagrams and the cell size for the lineation density calculations. 
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The rose diagrams are created by first calculating the location of the centre point of 

each lineation to ascertain which rose diagram it should relate to, and then calculating 

the direction of each lineation. This direction is then assigned to a 5 degree band. 

There are 36 of these directional bands (viz. Band I represents 0-4.999 degrees, band 
2 represents 5-9.999 degrees etc.). Thus grouped, the number of lineations in each 

band is calculated for each rose diagram area and this information is plotted using 

lines, the lengths of which reflect the number of lineations in a given band. The size 

of the rose diagram area is user controlled. Because of the complex nature of glacial 

lineation evidence, several different types of rose diagrams were developed which 

bring out different aspects of the lineation directions and coverage. The six types of 

diagrams are described below. 

Ri Proportional Rose Diagrams 

These are standard rose diagrams. Each directional line in the rose diagram is 

directly proportional to the number of lineations in that directional band. (Map 
4.8a) 

R2 Principal Proportional Rose Diagrams 

These diagrams show the principal directions only, from RI diagrams with the 

other directions removed. These are useful for overlaying with RI diagrams to 

help identify the principal directions. (Map 4.8b) 

R3 Secondary Proportional Rose Diagrams 

These diagrams show the secondary components only of RI diagrams. The 

principal directions (R2) and directions five degrees on either side of the 

principal direction are filtered out. This removes the directions which are most 

likely to be associated with the same glacial phase. There is an option to plot 

these diagrams with a larger basic unit so that very weak directions are still 

visible on the rose diagram. (Map 4.8c) 

R4 Scaled Rose Diagrams 

Each directional length of the rose diagram is scaled into four ranges relative to 

the number of lineations in the principal direction. Thus the directions in the 

top quartile (large number of lineations in each direction) are plotted at one 

length, those in the next quartile at a shorter length, and so on. This ensures 

that the minima are not under-represented (using the proportional diagrams the 

lengths are often too small to distinguish) and that the maximum lengths do not 



obliterate neighbouring rose diagrams. This is a useful generalised 

representation of the data present where all components can be identified but 

with some indication as to the relative importance of each. (Map 4.8d) 

RS Representational Rose Diagrams 

Each direction is plotted at the same length regardless of the number of 

lineations in that particular direction, (unless, the number of lineations in that 

direction is zero, in which case no representation occurs and the direction is not 

plotted on the rose diagram). These diagrams give an idea of the spread of 
directions present. (Map 4.8e). 

R6 Principal Representational Rose Diagrams 

Only the principal directions are plotted but each principal direction is plotted at 

the same length. These diagrams are useful overlays for R5 to give an 

indication of where the principal direction lies amongst those directions being 

represented by linear glacial elements. (Map 4.8f) 

Figure 4.7 shows the data storage, manipulation, analysis and results storage within 

the system. There are many more possibilities for feature correlation via line and 

polygon overlay, using the geological, drift, hydrological and topographic maps which 

are noted in this diagram. Figure 4.9 summarises the system from a user's 

perspective. The user can select an area or sub-area for which analysis is required and 

can control grid cell size, rose diagram unit length and can select which particular 

rose diagrams are to be calculated. It is also possible to select the area and grid cell 

size for the lineation density plots. The user interface also enables the user to 

automatically calculate, display, and create hardcopies of diagrams and browse 

through data, and results already generated and is explained in more detail in 

Appendix 11. 

4.3.4 Palaeoenvironmental Reconstructions 

It is important that each of these diagrams is not interpreted in isolation. Each is 

useful to distinguish different elements of the pattern of glacial lineations but spurious 

conclusions may result in the interpretation of a single diagram out of context. 

The results of analyses for 50 km square areas of rose diagrams are shown in Maps 

4.10 a-d for the single image mosaic Finnish area and Maps 4.11 a-d for the larger 

mosaic area covering Fennoscandia (RI and R2 figures are plotted together as are RS 
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and R6 diagrams). Lineation densities for both areas are shown in Maps 4.12a and 

4.12b for densities covering cells of 10 km square. Running the analysis for different 

areal sizes results in different degrees of generalisation and reveals patterns of 

information at different scales. Selecting and analysing sub-areas where data is 

particularly complex allows more detailed investigation. 

Close inspection of these diagrams reveals a wealth of information about ice sheet 

dynamics derived directly from the satellite mapped information. RI rose diagrams 

(Map 4.10a) clearly reveal several fan shaped ice streams which were thought to be 

operational during the deglacial phase (c.f. Figures 4.13 a, b and c, from Dongelmans 
1995, also identified by Punkari, 1984). On the mid Eastern side of Finland, for 

example (Map 4. ba) the rose diagrams clearly reveal a very strong ice stream which 

has its apex to the North East of the Baltic, with the lobe like pattern developing into 

Western Russia. A similar trend is revealed on the secondary rose diagrams, but there 

appears to be a shift further south as if the ice stream had migrated north slightly 

through time. These diagrams show a significant lack of any other directional 

information in these areas which leads to .the conclusions that either these later ice 

streams have completely obscured older features, or that ice continually flowed in this 

direction throughout the glacial period. 

Looking at the representative rose diagrams (which shows all the directions present 

equally represented Map 4.10d) for this same mid-Eastern Finnish area would appear 

to confirm that in some places only a very small range of directions is present. 

However, these diagrams also reveal that in other places within this ice stream area 

many more directions exist which do not appear on the other rose diagrams because 

there are too few of them to be represented. These may represent much earlier glacial 

directions which have not been removed by the intensity of the later ice streaming. 

These ice streams are also evident on the density map as areas of high lineation 

density where the power of ice streaming was sufficient to leave significant erosional 

and depositional evidence. 

In other areas these ice streams and lobate patterns are also clearly identifiable but are 

overriding other significant concordant directions. In Southern Sweden for example 

the proportional roses (Map 4.11a) show a distinctive lobate pattern heading south-

southeast and then curving round towards the West. The secondary directions (Map 

4.11c) reveal at least one other significant direction. These areas reveal significant 

changes in ice sheet flow directions which could be the result of shifting ice domes or 
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Figure 4.13a. Reconstruction of ice flow dynamics at 9.5 ka B.P. (after Dongelmans, 
1995) 



Figure 4.13b. Reconstruction of ice flow dynamics at 10 ka B.P. (after Dongelmaris, 
1995) 
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Figure 4.13c. Reconstruction of ice flow dynamics at 11 ka B.P. (after Dongelmans, 
1995) 



ice divides and controls exerted on the ice sheet at lobe edges by topographic, lake 
level and sea level variations. 

The density map (Map 4.12b) also reveals other areas where there are very low 

densities of features. In some locations these low density areas often coincide with 

zones of high directional variation revealed by the representative rose diagrams (Map 

4.1ld). For example in the North Central Finland near the Russian border. These 

areas were probably the sites of interlobate zones between ice streams where ice 

movement and the power of the glacier to erode and deposit was limited (c.f. Figure 

4.14, Punkari 1993, where the area is located between ice stream F and G). 

Zones of confluence are identifiable where the rose diagram evidence appears 

complex with many or even all directions being represented, often to equal degrees 

(for example in parts of Russia, Maps 4.11a and 4.11d, c.f. Punkari 1993 Figure 

4.14). Deglaciation patterns and ice extents are more clearly shown where large 

numbers of concordant directions appear to be truncated. For example North of the 

Baltic in the vicinity of the Swedish Finnish border, where a pattern of lineations 

coming from the north is halted at the apex of the very strong ice stream in mid-

northern Finland (Map 4.11 a). Such very long, intensely lineated, ice stream areas are 
thought to be deglacial. 

Some temporal correlations between lineations can be achieved by looking for sets of 

concordant directions and by assessing the relative strength of the directional 

signature using the RI diagrams (Maps 4.10a and 4.11a). Older signatures are 

generally weaker, with evidence being obscured by subsequent ice movement. 

The significant lack of lineation coverage in certain places can be explained by the 

location of mountainous areas where glacier movement was constrained by 

topography. These areas are less useful for studying ice sheet dynamics and the 

evolution of large ice caps. In the interpretation of these diagrams it is important to 

take into account topographical and geological basement considerations. Whilst 

glacial erosion will significantly enhance geological features when movement is 

parallel to the structural geology, it can also erode and enhance these features, even 

when ice flow is not parallel. 

A very low density of information exists in a band which stretches from the middle 

part of Northern Finland near the Swedish border to the North Western Russia (Map 
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Figure 4.14. Centre lines of ice streams during the deglaciation of the Late Weichselian 
Scandinavian Ice Sheet (Modified after Punkari, 1993). 
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4.12a). The proportional RI/R4 (Maps 4.10a and e) appear to suggest that there is 

very little evidence in this area. However the secondary R3 diagrams (Map 4.10b) 

and the representational R4 (Map 4. lOd) show that the spread of directions in some of 

these areas is very marked, with almost all directions being represented in an area in 

the North East of Finland. The existence of these directions could mean several 

things. They could represent older directions, indicating that the ice divide may have 

existed near there and shifted over time producing this criss-cross pattern. The 

pattern may also be due to misinterpretations where bedrock lineations have been 

interpreted as glacial forms. Examining field evidence in the area would be an 

important step in resolving the meaning of these patterns. 

Comparing the rose diagram map and the original lineation map, with the moraine, 

esker and topographic maps (these can be accurately overlaid within the GIS) gives 

further support to interpreting these patterns, particularly those relating to ice streams. 

Overlaying different rose diagram maps, and combinations of topographic and 

moraine maps is very quick and straightforward in the GIS. Switching layers on and 

off and the ability to zoom in on particular areas of interest can be achieved 

repeatedly in a matter of moments vastly enhancing the potential for assessing 
different interpretations. 

The programs allow a large degree of flexibility in manipulation of the data. For 

example it is useful to look at the rose diagrams and lineation densities at different 

scales depending on the item of interest. High densities of lineations appear to 

coincide with the axes of the lobes, but a small grid cell size will not incorporate 

enough data for this to be clear. Too large a grid cell size will generalise the 

information so that it is too highly aggregated. Therefore, the size of the feature being 

studied (for example an ice stream, or interlobate area) will determine the most 

appropriate grid cell size. Features of interest are not always clear prior to analysis, 

and so programs can be run repeatedly for different grid cell sizes to see which 

appears to be the most appropriate. They are also data independent, and can perform 

the same analysis on lineations of any length in any geographic area. 

The results of the lineation density and rose diagram analyses can be compared with 

interpretations derived by Dongelmans (1995) using the same data (Figures 4.13 a, b 

and c). These interpretations took some time to derive because of the complexity and 

volume of detailed information. The patterns he interprets can be recognised instantly 

on the rose diagram and lineation density maps. Importantly these maps give a 



rigorous and quantitative picture of the data. Previously it was hard to justify a 

particular interpretation given the complexity of evidence. No quantitative measures 

of such detailed data have previously been available over such a large area. 

The GIS work clearly demonstrates several points: 

I That the spatial patterns of data are crucial to gaining insights into ice sheet 
evolution 

II That quantitative, spatial analysis of the detailed information together with 

improvements in georeferencing of lineations can significantly reduce the 

amount of information loss compared to manual methods of analysis, and 

therefore improve the quality of information on which interpretations are based. 
ifi Viewing all the data in a structured format such as that provided by the rose 

diagram and lineation density plots allows an interpreter to quickly locate areas 

which require further investigation or where field level information is essential. 
IV That it is important to be able to make connections between ground 

observations and these macroscale features during analysis. This would involve 

being able to accurately locate one with respect to the other, and be able to 

query the field information spatially. For example, a significant improvement 

would be the ability to click on a certain area where macroscale interpretation 

is particularly interesting or problematic and being able to receive information 

from a database about the field information available for that location. 

4.3.5 Further Work 

Establishment time for a GIS can be longer than new users expect (Masser & 

Blakemore, 1991). However, with good planning and design, the system will be able 

to adapt rapidly to incorporate more developments according to the needs of the user. 

Some of the many developments which the current system can support are discussed 

in the following paragraphs. All of the functionality discussed in the previous section 

has been developed so that it can be used on any lineation data from any country 

regardless of the reference system used. 

There are many controversies that this detailed mapped and georeferenced data set 

could help to resolve through a series of simple overlays and correlations of even 

these macroscale data layers. For example, overlaying the esker inferences with a 

geological map would allow a quantitative relationship between bedrock type and the 

occurrence of eskers to be calculated. Some areas, however, must be handled more 
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elegantly. For example, comparing lineation densities can be very useful in 

determining lobate and interlobate areas. However, some means of adjusting these 

densities is required for areas where sea and lake areas occupy a grid cell thereby 

possibly concealing lineations. Further analyMs could involve the development of 

programs which progressively backstrip lineations to remove lineations whidh are 

perpendicular to ice frontal positions and are thought to have formed in the active area 

100 km behind the ice front (Punkari, 1980; Boulton, 1996) using interpreted 

deglacial patterns. If this theory is correct this might reveal the lineations associated 

with ice movements prior to deglaciation. Older landforms which were parallel to the 

younger deglacial directions would also be removed, but this approach should still 

allow many older directions to be revealed. 

Further flexibility could be obtained by storing the satellite images on the computer. 

If these images were mosaicked and georeferenced they could be used to digitise 

interpretations on-screen. This would reduce the time required for data input and 

allow interpretations to be changed, and their effect on any analyses results to be 

traced. It would also empower other researchers to make their own interpretations 

for an area through computer networks and compare these directly with other data 

they are using. This method is being used by researchers in Sheffield University 
(Knight & Clark, 1995) but involves using an image processing package for the image 

processing and digitising. These results would then be imported into the GIS in a 
separate step. 

One of the most valuable developments which could be achieved within the system 

would be the integration of much more detailed aerial photographic and field 

information. If this information could be linked directly to identifiable features on the 

images, the ability to discriminate between the different features would be much 

improved. Conclusions drawn from this macroscale information would be better 

founded. Some work is currently being undertaken towards this goal (Abert, 1995) by 
producing digital elevation models using stereo aerial photography. These models 

reveal Iandform relationships previously undetected using field mapping techniques. 

This method can achieve a resolution of I m although the computing resources 

required for such calculations over large areas are substantial. 

A large number of palaeoclimate studies now make use of glacial models to help 

make sense of the complexities of former ice sheet remains and to investigate the 

importance of certain parameters on ice sheet evolution. It is an advantage to have 
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the sedimentary information, remotely sensed data, and the results of any analyses on 

a computer where they can be integrated directly with model results to allow the 

optimum interpretation of past results and an even greater degree of flexibility in 

matching different model runs with different analyses and lineation interpretations. 

4.4 Discussion 
The system (summarised in Figure 4.15) makes a significant contribution to 

macroscale palaeoenvironmental studies, not only because it enables fast and rigorous 

analyses via iterative and experimental techniques, but also because it provides a 

dynamic and flexible framework for the storage and management of macroscale 

glacial data. Computerising techniques in this way can also facilitate the rapid 

advancement of glacial theories supported by data for which the source and reliability 

is known. It is also the first time such an accurate and detailed dataset has been 

available within the same spatial framework for such a large area. However, there are 

also issues associated with these advancements which concern the way data has been 

obtained to date, and the capabilities of current systems to handle this kind of data. 

The three subsections below discuss the advantages and these two categories of 

issues. 

4.4.1 GIS Contribution 
The advantages of having glacial lineations on a computer, for storage, display and 

analysis are substantial. The task of integrating maps of features of different scales 

and projections can be done much more accurately and with no loss of detail. The 

result is complete spatial coverage for the entire Fennoscandian Shield. 

Previously manual methods involved the transfer of numerous versions of maps at 

different scales onto a common basemap. This was mostly achieved by hand. Doing 

this only once using computing algorithms minimises the possibility of information 

being affected by artefacts of these inaccuracies. This is particularly important on the 

scale of NW Europe where the earths curvature is significant. For example linear 

elements may have apparently different directions depending on which map 

projection was used. Data may be repeated at map overlaps. Consequently there may 

be appeart to be more data in a particular area than there is in reality. When 

overlaying maps to compare the juxtaposition of features it is particularly important 

that the position of these features is known with some accuracy. if not, relationships 

may be apparent that do not exist, or existing relationships may not be identified. 

This issue is difficult to address using manual methods and is often not recognised. 
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For example in many cases it is impossible to obtain the projection parameters for a 

map. Maps for large areas which are produced by the palaeoenvironmental scientific 

community are often made up of several different base maps. The projection on 

these map composites changes across borders. The distortion differences have been 

'amended" by hand-drawing parts of coastlines, lakes and so on, where the adjacent 

maps do not match. Notable examples include the 'Map of deglaciations for NW 

Europe' compiled by Andersen (1980), and maps which appear in papers by Punkari 

(1980, 1989, 1992, 1993). The problem is much more widespread than these few 

examples might indicate. Knowledge of map projection parameters is essential for 
spatial information which is to be used on a GIS. 

In addition to this the time required to analyse such large data sets, on a variety of. 

scales, is significantly reduced. Trying to reconstruct the pattern of glacial dynamics 

requires investigations on all scales. Generalisation of micro- and mesoscale data to 

the macroscale will require analysis of the higher resolution data initially, and may 

entail further detailed investigations in areas of particular controversy. It would be 

very interesting to compare rose diagrams of these more detailed data with the 
macroscale evidence. 

This study has shown that the process of integration, generalisation, analysis and 

visualisation of lineation patterns has been significantly improved by the use of 

computing techniques. These quantitative methods can be applied to very large data 

sets using electronic processors to handle the large volumes of information associated 

with this task. The method of integration ensures that information is not over-looked 

and allows more freedom of experimentation without the time and accuracy 

compromises associated with manual georeferencing and data processing. The results 

clearly demonstrate how the system can facilitate reconstruction through the 

identification of ice streams and glacial extent, and how rigorous analyses of the 

lineations can reveal a great deal about the mobility of the ice sheet and ice sheet 

dynamics. Spatial correlation with other information such as geology, hydrology and 

surface deposits reveal relationships which may help in the development of theories 

about ice sheet dynamics and as input and testing for numerical models. The true 

association of landforms can be clearly seen without the risk of misplaced landforms 

being juxtaposed, resulting in misinterpretations. Furthermore, once the system is set 

up, the generation of clear, accurate, glacial lineation and analysis maps is quick and 
easy. 
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4.4.2 Data and Analysis Issues 

There are several data related issues which vary in importance depending on the scale 

of study. Ultimately it would be desirable to store all the information using electronic 

media to obtain the ease of comparison, analysis and re-use demonstrated above. 

These issues are discussed below by considering first those which were encountered 

during the implementation of the proprietary GIS work, and then extending the 

implications of these issues for other information which would be added in the future. 

Firstly, the time required for data capture, georeferencing and integration was 

substantial. The main issues concern the compatibility and comparability of data from 

different sources. The compatibility of data was less important because the satellite 

images and maps were interpreted by only two individuals. However, when 

comparing the areas of overlap between images, there is some difference in the 

visibility of lineations depending on variation in sun angle and season. Improvements 

in georeferencing would help such discrepancies. Currently the spatial correlation of 

features would only be reliable given error boundaries within which the lineations and 

map features could be compared. 

The most important inaccuracies however concern the way in which the images were 

georeferenced. The success of the georeferencing depended ultimately on the 

availability of features which could be identified on both the image and the map. 

Fortunately Finland is well-endowed with distinctly shaped lakes, otherwise the 

georeferencing would have been almost impossible given the available information. 

To improve the accuracy further would require the original images and the relevant 

satellite flight parameters. Alternatively corrected and georeferenced images could be 
used for the interpretation. 

More fundamentally, the maps lacked detailed georeferencing information. In 

Finland the projection parameters used for the maps are standard, but in Sweden these 

parameters were more difficult to establish and some experimentation was required to 

obtain parameters which produced the best fit to the base map. The base map was not 

very detailed and so the accuracy with which these features were transformed is 

uncertain. However they are, for the most part, within the accuracy of the basemap. 

If more detailed studies were made which would require the linking of field or aerial 

photographic information with these macroscale features, the lack of accurate 

georeferencing would become a serious issue. 
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The inclusion of more detailed field information would require an extensive data 

modelling exercise to produce a database which could accommodate this information. 

A central issue for the extension of this system to incorporate detailed data would 

focus on multiscale feature representation. At the scale under study, features can be 

treated as lines, which is the most appropriate representation for carrying out 

directional analyses such as rose diagram calculations. At a more detailed scale, 

however, these features require an area representation which would be much more 

problematic for directional analyses, but more suitable for other geomorphological 

analyses at that scale. Thus, features could appear twice in a system at different scales 

thereby causing data redundancy, or a more appropriate multiscale representation 

must be developed. Representation, however, is not the only issue associated with 

incorporating more detailed field data. Some means of permitting multiple, different, 

interpretations of features to coexist in the database will be required to accommodate 

all users views and interpretations. Harmonising the terminology relating to features 

between countries and dating chronologies will be a pre-requisite for integration. The 

ability to reinterpret information, and partition data according to different 

interpretations is required. The database would have to contain a hard core of generic 

information, to which attachments could be made for an individual to label particular 

observations with interpretations. Detailed and complete documentation of field data 

sources are not generally available, and are not recorded in such a way as to facilitate 

reinterpretation or regional integration. 

Again, the analysis of this information, at a scale where the curvature of the earth 

becomes an issue, argues for the incorporation of approaches which accommodate the 

data on a geoidal earth. 

4.4.3 System Issues 

There were several system issues encountered whilst developing the system. The GIS 

Macro Language was much less suitable for developing programs which can speedily 

process large arrays of data than FORTRAN. The rose diagram and lineation density 

calculations were carried out by FORTRAN programs called from within the GIS. 

The data was exported from the GIS for processing and then re-imported. It would be 

much more satisfactory to handle all the processing within the GIS. Although the GIS 

offers a high degree of sophisticated functionality, it lacks many spatial analysis tools. 

This has been noted by other researchers (for example, Openshaw, 1991b). Whilst 

the GIS would permit the overlay of eskers with bedrock geology to see how many 

eskers lie within a particular polygon, it does not provide functions which will 



statistically evaluate the nature of the relationship between bedrock geology and esker 
occurrence. 

Furthermore, to facilitate the flexibility of interaction required by the user, it was 

necessary to move between GIS modules fairly frequently. This slowed the speed of 

interaction. Finally software upgrades and operating system changes were a 

significant issue. Maintaining the glacial programs between upgrades was time-

consuming. This is a major consideration given that upgrades occur at a rate of at 
least one every two to three years. 

The lack of lineage management facilities within current GIS is also a significant 

problem. Files which explained the origins of the data and the way in which they 

were coded and georeferenced were retained on the system, but there was no means of 

attaching these to the data within the @15. There were a large number of possibilities 

for processing the data using different geographic extents and different cell size 

parameters for various datasets. For example the user can select any area within the 

region for analysis and analyse this data for any grid cell size and generate a number 

of rose diagrams and lineation densities for this area. The organisation and disk space 

required to retain this information to enable the user to make comparisons between 

the different results was considerable, much more, indeed, than that required by the 

original data. The GIS not only provides limited facilities for storing and handling 

metadata (for example origins, methods used for data encoding and error and 

accuracy data), but has no means of structuring results according to their lineage 
information. 

The log files produced by the system do not record processing which occurs outwith 

the system. Naming conventions and the hierarchical directory structure were 

employed to try to help users identify which results were produced using which 

parameters, but further development of the system would require a complete overhaul 

of this arrangement. A more satisfactory means of handling lineage information, and 

for communicating metadata to the user, is required for such systems. 

A means of recording and representing uncertainty in the (ITS is required. Currently 

one has to estimate the effect of rubber sheeting and projection transformations on 

data, and there is no simple means of attaching this information to individual features, 

or visualising it. Space is discretely represented in a @15 (points, lines, polygons or 

raster cells), but in reality it is usually continuous or has indefinite, fuzzy boundaries 
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(Burrough, 1996). Whilst discrete representation was acceptable on paper maps, and 

dotted lines could indicate some degree of uncertainty, the requirement for 

topological completeness, and the ability to perform powerful analyses on data using 

computers means that the effect of, and sensitivity to, uncertainty, has increased, and 

will be rapidly propagated and magnified through multiple operations (particularly 

when combining several data sets of variable certainty). Such magnification must be 

noted to ensure that invalid results are not treated as reliable. 

In the future, systems should be developed so that quality information can also be 

used in analysis. For example, considering the error in the directional features may 

alter the apparent coherence of ice stream patterns and open up new interpretational 

possibilities. The use of confusion matrices for geological maps may reveal different 

correlation structures between the coincidence of features with bedrock or drift. The 

consequences of combining different data sources and changing scales invites a loss 

of sensitivity to a data set's idiosyncrasies, particularly its accuracy (Goodchild & 

Gopal, 1989). The user must be certain that results produced as a consequence of 
these combinations are valid. 

Finally, the time required to develop the system was substantial. Indeed others have 

hinted at the significant investment required (e.g. DoE, 1987; Tomlinson, 1987). The 

time required to develop sufficient expertise and system skills was also significant. 

The system used is complex, comprising over 900 main commands, and 4000 

including sub-commands. In addition to this, knowledge of the ARC Macro 

Language (AML) and FORTRAN programming language was required to create 

programmes which supplemented the GIS functionality. The GIS provides facilities 

to create a user interface, and although the interface developed is crude, it is robust 

and a large time investment was required for its development. Hybrid systems such 

as this, which are created using several packages and programming languages are 

complicated to develop and difficult to maintain. 

4.5 Conclusions 

This example clearly demonstrates the need for improved communications throughout 

the scientific community to standardise and improve the measurement and 

documentation of observations, to facilitate data re-use and integration. It also 

identifies the inadequacy of current @13 for this type of palaeoenvironmental research 

and indicates the need for a concerted effort by the scientific community to develop a 

set of methods and approaches to address these shortfalls and allow exploitation of 



the data using GIS concepts and computer power to improve the understanding of the 

data which are currently held, and to verify results quantitatively and improve the 

ability to extend current knowledge of past events. 

Glacial reconstruction is a major challenge because of the complexity of glacial data 

and the difficulties of managing scale and quality differences between information 

sources spread over a large area. Researchers have resorted to macroscale techniques 

such as satellite imagery in order to achieve that which is not currently achievable 

using field information: the integration of comparable data over an area the size and 

scale of the ice sheet. However, in order to interpret this information effectively, 

knowledge is required of many other datasets, in particular the ground truthing 

information, which can confirm the accuracy of inferences made from satellite 

images. Again, the interrelated nature of this information argues strongly for the 

adoption of an integrated approach at a scientific organisational level, to develop a 

single framework, within which this information can be exchanged and integrated 

expediently and accurately. The case study indicates that GIS has great potential in 

this area, but the demonstrable shortcomings of current systems implies that a new 

systems approach is required. 

In summary, this case study resulted in the following demonstrable GIS benefits and 
issues: 

Demonstrable benefits: 

• spatial framework for geomorphologicaJ data 
• compact storage of detailed information 

• fast and flexible analysis and visualisation of data over a large area 
• clear, accurate, fast map production 

• quantitative, rigorous analysis of glacial lineation patterns 

Palaeoenvironmental issues: 

• lack of georeferencing information on maps and satellite images 
• lack of standardisation and detail for future incorporation of field data 
• lack of methods for analysis on a spherical earth 

GIS issues: 

• time required to gain system expertise 
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• time required to establish system, particularly for data capture, georeferencing and 
user interface development 

• lack of metadata facilities for managing lineage of system output and error 

propagation (particularly for georeferencing and rubber sheeting algorithms) 
• GIS macro language slow and cumbersome for manipulation and analysis of large 

scientific data sets 
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Chapter 5 Case Study 1: Sea Level 

5.1 Introduction 

In this chapter, details are presented which show how GIS has been used to facilitate 

palaeosea level reconstruction, by significantly improving the management, analysis 

and visualisation of sea level data for Scandinavia. Like the previous glacial 

geomorphological case study, the GIS has been developed to allow much faster and 

more flexible analyses and data experimentation, than has previously been achievable 

using manual methods. A comprehensive framework is also developed to store 

complex palaeosea level data so that it can be retrieved and updated easily. 

The means of deriving and analysing Levels 1 and 2 data to generate Level 3 spatial 

height associations are examined in Section 5.2, from which emerge a set of 
reconstruction requirements. The application of (ITS to meet these requirements is 
then described (Section 5.3). A data storage framework, analysis tools and a user 

interface are developed to facilitate palaeoenvironmental reconstruction using sea 

level data. Further system developments which would improve the existing facilities 

are also discussed. The advantages of using GIS techniques to enhance sea level 

reconstruction, and the limitations imposed by current palaeoenvironmental practices 

and system issues are considered (Section 5.4). The concluding section (Section 4.5) 
summarises the implications for the study of palaeoenvironmental research and (ITS 
development. 

Relative sea level data sets are vital for reconstructing palaeoenvironments. 

Knowledge and understanding of sea level changes also have fundamental 

implications for the impact of future climate change on man. Major sea level changes 

in the past few thousand years have been caused by climatic events associated with 

ice sheet advance and retreat. These caused global sea level falls of 100-130m during 

the last glacial (Weichselian) maximum (20,000 Years Before Present) (Morner, 

1979). Sea level data also yield information about isostatic crustal rebound. Net  
crustal depression and rates of uplift and mantle movements through time can be 

calculated. The study of isostasy in areas affected by glaciation, is important in terms 

of hydrological regimes since isostatic rebound will cause changes in coastline 

locations and land slopes. Relative sea level data can also be used to reconstruct past 

coastlines, sea levels, and palaeotopography, and have important implications for the 

study of ice sheet evolution and the behaviour of ice sheets by determining conditions 

at the ice sheet margin. The interplay between the rate of ice melting, changing 
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palaeotopograhy, sea level and ice marginal retreat are thought to have produced large 
fresh water ice marginal lakes, for example, in the Baltic area (Eronen, 1983). 

Uplifted features and coastal zones have been studied for over 100 years in 

Scandinavia and the North Sea basin (De Geer 1888; Liden 1913; Morner, 1991a). 

Therefore the potential database available for study is larger than for any other area of 
a similar size in the world (Sherman, 1987a). 

5.2 Sea Level Reconstruction 

The main aim of palaeosea level studies is the reconstruction of relative sea levels 

through time which can be used to reconstruct palaeosea level surfaces and to 

understand the causes of sea level change. From these reconstructions and theories 

the mechanisms thought to cause sea level change can then be determined. Such 

knowledge helps in the understanding of other phenomena, for which the magnitude 

and location of sea level has direct relevance. Extrapolation of causal phenomena can 

facilitate the prediction of future change, such as the retreat of ice sheets (Eronen, 

1983), or the effects on hydrological regimes (Jardine, 1980). 

The theoretical basis for sea level studies has evolved over a number of years. 

Essentially, relative sea level change is thought to be determined by components of 
the following phenomena: 

Glacio-eustasy (the formation or melting of ice sheets causing major 

redistribution of the global water budget) 

Geoidal eustasy (changes in the geoid causing perturbations in sea level 

surface due to variations in gravitational attraction) 

Isostasy and local tectonism (crustal depression, rebound, tectonics and 

associated mantle movements in areas which have undergone loading and 

unloading by the advance and retreat of large ice masses, known as glacio-

isostasy, or by the addition and subtraction of large volumes of water to 

ocean basins and continental shelves, known as hydro-isostasy) 

Tectono-eustasy (tectonic and crustal displacement associated with internal 

earth movements, these cause changes in the land surface with respect to 

sea level, and changes in the volume of ocean basins over a long time 

period through spreading at mid-ocean ridges and subduction of tectonic 
plates at ocean margins) 

(after Morner, 1987b) 
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Components I and 3 are the major factors controlling sea level change during the last 

glaciation in North West Europe. The history of sea level change through time is 

complex. Global low sea level stands occurred at glacial maxima with large volumes 

of water locked into the ice sheets, and high stands during warmer intergiacials when 

melting released water back into the oceans. Sea level changes associated with the 

last glacial maximum (18,000 years B.P.) were of the order of a hundred metres (e.g. 

Morner, 1971). Locally, in the areas affected by glaciation, these changes were 

complicated by the negative response of the crust to loading by the ice sheet. 

Maximum prustal depression occurred beneath the centres of glaciation with crustal 

deflection decreasing outwardly from the centre as the ice weight diminished to the 

edge of the ice sheet. Further complexities were caused by gedidal' perturbations, 

tectonic movements, gravitational attraction of the ice mass and the isostatic 

responses to changing water loads on the continental shelves (Walcott 1972b; 

Chappell, 1974; Farrell & Clark, 1976). These variations are thought to contribute 

differences of as much as 30% in estimates of transgression rates between certain 
areas. 

Relative sea level, is a term used to describe the resultant effect of these components 

on sea level at a particular time and place on the earth's surface relative to present day 

mean sea level. Sea level may change because the land moves relative to the sea, or 

because the sea moves relative to the land. Thus a relative drop in sea level, may not 

imply a drop in global, or eustatic, sea level, but may mean a movement of land 

relative to the sea. Measures of relative sea level through time can allow the 

magnitude of these components to be estimated, and can be used to reconstruct 

palaeosealevels, palaeocoastlines and palaeotopography. These measures also give 

some indication as to the mechanism of isostatic adjustments and facilitate 

geophysical investigations of crustal rigidity and mantle viscosity. They are also used 

to estimate the size distribution of the ice masses through time. There are several 

approaches which are used to reconstruct palaeosealevels and investigate the role and 
magnitude of the component factors: 

Measuring the change in (relative) sea level through time from inferences made 

using palaeoenvironmental evidence (discussed more fully below) 

Modelling the earth's crustal flexure and response to isostatic loading (for example 

Clark, 1980; Lanbeck, 1993a, 1993b). This may be done in conjunction with ice 

'The geoid is the equipotential gravitational surface surrounding the earth, to which 
the ocean surfaces equate 
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sheet investigations where the ice sheet growth and decay are also modelled (for 
example, Tushingham & Peltier, 1992). 

Comparing adjacent relative sea level measures to establish similarities and 

differences due to isostatic and eustatic components, and local tectonics (for example 
Momer, 1971). 

Measuring sea level change through time, in stable areas which are not affected by 
isostatic and tectonic movements (or where .the effects are relatively minor). This 

gives some idea of changes due to glacio-eustasy alone (for example Fairbanks, 
1989). 

These approachs are based on a paradigm of sea level change, which can be 

illustrated using North West Europe as an example. The onset of glaciation caused a 

drop in sea level on a global scale, which caused a relative sea level fall in North 

West Europe. The formation of an ice sheet over North West Europe would have 

caused depression of the crust in the vicinity of the ice sheet, but this depression 

depends on displacement of a slowly flowing viscous mantle under the affected area. 

Thus, relative sea level appeared to rise as the crust was depressed. With an 

amelioration in the climate, the glaciers receded and global sea level began to rise as 

meltwater contributed substantially to the ocean volumes. The response of the crust 

to the removal of the glacier was much slower than the rate of melting, but gradually, 

sea level began to fall relative to the land surface in many parts of North West 

Europe, as the earth's crust recovered from removal of the ice load and rose to regain 

isostatic equilibrium. This recovery still continues today (Emery & Aubrey 1985). 
Gravity measurements reveal geoidal anomalies caused by gravitational attraction 

(e.g. Kakkuri, 1987). These are much less than expected because of the 'missing' 

mantle which has been displaced away from the deglaciated area. Measurements 

indicate that recovery (isostatic rebound) is not complete. Crustal depression is 

thought to be greatest under the centre of the ice mass and decreases towards the 

edges of the ice sheet (Walcott, 1972a; Mdmer 1979). Beyond the ice margin some 

researchers have hypothesised the presence of a forebulge caused by crustal rigidity 

and/or mantle outflow (Oerlemans & Van der Veen, 1984) 

The sections below summarise relative sea level information in terms of levels 1, 2 

and 3 data identified in chapter 2 (Level 1. proxy measurements, Level 2. derivations 

and Level 3. regional correlations as previously defined). 
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5.2.1 Levels 1 & 2 Data 

In the context of relative sea level studies, level 1 and level 2 data are closely 

associated and thus will be discussed together, since measurements of the height of 

relict shoreline features directly yield information about the height of the palaeo-sea 

or tide levels. The summary below, is intended to give an overview of the wide 

variety of methods and evidence used in the' measurement of former sea levels, and 

the breadth of information that must be integrated to achieve a spatially continuous 

picture of sea level change through time, and to derive information about the other 

palaeofeatures with which sea level is associated. 

GeomorphologjcaJ evidence 

The heights of ancient shorelines can be determined through accurate 

geomorphologicaj mapping with respect to a national datum. Shorelines can often be 

morphologically correlated by mapping a continuous form over a distance. Maps and 

measures can be derived from three different origins: 

• field surveying (it has been noted that implements less precise than a surveyor's 

level used with a tripod and staff do not provide sufficiently good results (Gray, 
1975)) 

• stereo aerial photographs (1:10,000 - 1:25,000 scale on at least 1:10,000 maps) 
(Sissons & Smith 1965; Andrews, 1970; Rose & Synge, 1978). 

• echo-sounding, seismic profiling and diving (Eden et al., 1969) for submerged 
features 

Lithostratigraphic evidence 

Lithostratigraphic sequences consist of alternating layers of deposits through time. 

Intercalated marine and terrestrial sediments, or benthic and littoral sediments (Rose, 

1990) in particular, provide evidence of changing sea level through time. The 

identification of a continuous sequence is of vital importance. If hiatuses exist, then 

timing will be very uncertain. Therefore low energy environments are best and high 

energy ones such as headland regions or tidal mouths are suspect (Tooley, 1978). The 

types of sediment found in the sequence may also have implications for other 

palaeofeatures (such as glacial remains, ice rafted debris, pollen spores which might 

indicate temperature ranges, vegetation cover,  etc.) and as such will be key in linking 
different events through space and time. 

Such stratigraphic sequences can be established in the following ways: 
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• coring through overlying sediments. The form of the sequence in space must be 

determined by a series of cores. Insufficient or badly spaced cores or boreholes 

can yield incorrect interpretations. A good knowledge of local stratigraphy can 
help to limit this problem. 

• stratigraphic sequences can also be revealed through dissection of the land surface 

by rivers and streams or by subsequent coastal processes. 

Biostratigraphic evidence 

Biostratigraphic remains also indicate the height of sea level for a particular date, and 

give other related information about the palaeoenvironment. Standard analytical 

procedures should be adhered to, where possible, when making measurements and 
using the information (Rose, 1990) 

Former sea level can be derived from fossil remains. By analogy with the present day, 

different fossil flora and fauna indicate specific ecological niches or environments 

(i.e., marine, freshwater, brackish or terrestrial). Marine fossils enable the position of 

sea level, relative to the land (sea level transgression or regression), and/or the relative 

palaeo-water-depth to be determined. Dates nay be determined using pollen spectra 

(frequency of pollen of open-habitat taxa) (e.g. Tooley, 1978; West, 1972; Jelgersma, 

1961), or through correlation of sites using biozones (recognised time-stratigraphic 

ranges of faunal and floral taxa, some formally established, some not formal) 

There are two classes of dating methods in sea level reconstructions (these methods 

have been laid out more fully, with suitable references, in the previous chapter 
(Section 4.2.1.3): 

• Direct dating methods which give an 'absolute' date by measuring relative 

quantities of naturally occurring radioactive decay elements, for example, 

Uranium-Thorium (Ur/Th) dating, or Carbon 14C dating. 

• floating time scales, which give a recognised pattern of events which can be 

correlated and linked to the radiometric time scales. These include: amino-acid 

diagenesis, glacial varves, palaeomagnetism (linked to radiometric scales using 

techniques such as tephra chronology whereby correlation is achieved using 

chemical and mineralogical signatures and may be dated using a volcanic event), 

pumice (also dated using volcanic events), ice rafted debris. (which has a relation to 
climatic events) etc. 
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The spatial distribution of this data is uneven with concentrations near coastal areas 

where raised beaches have been located and measurements made with a few older 

sites further inland and a smattering of results from borehole drilling, seismics and 

echo-sounding by ships. Temporal distribution is also uneven. Generally the data 

volumes decrease rapidly going back in time, but beyond 14,000 BP in North West 

Europe much of the evidence has been erased or at least buried and disfigured by the 

Weichselian ice sheet. Thus the information has an uneven spatio-temporal 
distribution. 

Uncertainty issues associated with sea level reconstruction include methodological 

problems, such as dating techniques and the identification of appropriate horizons 

(Sutherland, 1987). Height errors can arise from several sources which relate to the 

correct identification of the feature, identification of the feature with respect to 

palaeosealevel, and (somewhat less significantly) the error in measuring the height. 

Temporal errors can be manifested as height errors where the rate of sea level change 

over time is severe. Continuous morphological forms may not be isochronous which 

is a problem when using only morphological methods to identify coastal features and 

correlate them. The resolution of data is determined by the rate of change of sea level 

since small temporal errors can be manifest as large height errors, but relates also to 

the time required for significant beach development. 

Accuracy depends on the correct identification of high and low water marks and 

estimates of their relation to mean sea level (which relies on present day tidal 
information). Shoreline features are identified through geomorphology or 

stratigraphic sediments. The determination of mean sea level depends on correct 

identification of the feature and its relationship to mean sea level. Local conditions 

such as tidal range and fetch may vary (Rose, 1990). In some remote areas accuracy 

may be reduced because of difficulties in measuring heights and locations with 

respect to a distant benchmark or national datum. Often measurements are made with 

respect to the present day mean spring tide levels and converted using tide tables. 

The level of resolution decreases going back in time, and high frequency changes are 

insignificant compared to the large scale trends (Sherman & Tooley, 1987). Dating 

errors can be large even if radiocarbon dating (generally considered one of the best 

methods) is applied. The problems with radiocarbon dating relate to the origin of the 

material being dated and problems of sample contamination and post-depositional 
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degradation and diagenesis: For example, if a piece of drift wood from a marine 

contact is used it may not be clear how the age of the wood from the original tree 

relate to that of the marine layer. Differences in measurements of up to 2000 years 

have been found depending on the fauna or flora which is dated (Donner a aL, 1977). 
Isotopic fractionation, is a particular problem for radiocarbon dating (Shotton, 1972) 

and contamination can originate from dissolved carbonates in percolating ground 

water and/or younger root penetration from overlying vegetation (Sutherland, 1987). 

There is also some uncertainty about the global variation of carbon isotopes through 

time. Amman and Lotte (1989) for example, found evidence of two distinct carbon 
plateaux between 10,000 and 13,000 years BP (Before Present) probably caused by a 
decrease in atmospheric 14C during these periods. This is manifest as clusters of 

dates for material of around that age, so that resolution at this time is very poor using 

this method. Other methods have similar problems and are mostly considered much 

less reliable than radiometric methods. However, the lack of suitable samples means 

that many points are not dated using radiometric means, but instead one of the other 
techniques is used. 

5.2.2 Level 3 Data 

Level 3 data are obtained from level 2 data by correlating and comparing heights and 

dates according to several criteria which may be geomorphologicaJ, stratigraphicaj 

(bio- or litho-) and dating-related. Combinations of these parameters are usually used 

to produce regional syntheses depending on the measurable entities at different sites. 

To achieve local and regional correlations several methods are commonly used: 

1. Sea level curves (examples from North West Europe are illustrated in Figures 5. la 

to e, used in the computing study discussed later in this chapter). Sea level curves 

represent sea level change in an area and are generated by putting together all the 

evidence for a small area to create a continuous description of sea level through 
time. These are then integrated spatially to produce four dimensional 

reconstructions. This is achieved by choosing particular time slices through each 

sea level curve and then producing a continuous height surface by mapping and 

comparing heights for each sea level curve location. Derivations such as sea level 

curves help in that they provide a continuous description of sea level through 

time. However, it has been noted that significant discrepancies can arise where 

sea level curves have been derived using different indicators, even for proximal 

sites (Tooley, 1978, Kidson, 1982). 
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Figures 5.1d. Sea Level Curves (Dolukhanov, 1979) 
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2. Shoreline diagrams. These are particularly useful for areas where there has been 

isostatic recovery after glacial occupation. They are used to correlate fragments 

of evidence when the time or height are uncertain. The diagrams are drawn 

perpendicular to the contours of uplift and are determined by regression analysis 

of a given set of points (Cullingford & Smith, 1966). Individual points are 

projected onto a plane which is perpendicular to the uplift isobases. 

3. Shoreline relation diagrams. These show the relationship between the heights 

and ages of points related by rate of uplift. The method assumes that the rate of 

uplift is constant, predictable and is related directly to the age of a shoreline and 

its height. They were originally used to correlate different shoreline fragments 

before radiometric dating was available. However there are several major 

drawbacks with this method: 

I The eustatic component must first be removed from the data (Andrews, 

1970); 

II Since the relationship must be a smooth change, reducing with time, any 

interruptions such as re-loading caused by an ice advance mean that data 

before this re-loading cannot be used; 

II The method is dependent on the accuracy of the data, which can be a 

problem if the right information cannot be found. 

4. Lsobase maps. The above three means of correlating data can be used as input to 

a fourth method for deriving regional and continental reconstructions for 

particular time slices. Information is grouped by date and plotted. Contours are 

then drawn which represent the relative sea level surface for each time grouping. 

The contours are usually hand-drawn, although interpolation methods have also 

been used. 

5.2.3 Related information 

By analysing the methods used to derive the information examined in the sections 

above, several types of related information can be identified and summarised: 

1) Methods and guidelines 

Dating techniques (pollen, radiocarbon, etc. and rules of applying these such 

as means of identifying contamination in radiocarbon samples, records of 

global carbon variation through time, palaeomagnetic records, information 

about tephra layers, their chemical compositions and eruption dates etc.) 
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• Interpolation routines and trend surface analysis methods. 

• Surveying techniques 

• Details and guidelines concerning different correlation techniques 

2) Related datasets used in the derivation of sea level reconstructions. 
• Interpolation routines and trend surface analysis methods. 

• Marine limit. This is really another reconstruction derivation, used as a 

reference (Rose, 1990), and is the highest level reached by the sea after 
deglaciation. 

• Tide Tables. These enable height relationships to be established between 

different countries to allow height comparisons (Jardine, 1976). The nearest 

point on the Admiralty Tide Tables is required for the UK (Synge, 1969). 

• Correlation standards. These are often used in conjunction with traditional 

dating methods, although correlation alone may occur where dating is 

unavailable. Typical correlation reference sets include: pumice, tephra and 

ice-rafted debris compositions and timing, palaeomagnetic records, 

SPECMAP oxygen isotope curve, other sea level curves etc. 

• Palaeofeature definitions and methodological information. These include 

height relations between morphological features and mean sea level (MSL), 

high water mark (HWM) or low water mark (LWM). 

• Conversion relationships between radiocarbon and sidereal years. 

• Information about present or past tectonic activity which might help to identify 

areas most likely to be affected by tectonically controlled discrepancies. 

• Basic reference information such as geological and topographic maps 

• Models:Compaction effects of sediments (e.g. Jelgersma, 1966) 

Geoidal variations (e.g. Clark etaL, 1978) 

Crustal flexure and mantle flow (e.g. Lambeck, 1991; Peltier, 1987) 

Ocean volume changes (thermal/salinity changes (e.g. Peltier, 1987) 

Tidal effects (e.g. Austin, 1991) 

Sediment loading and subsidence in coastal areas 

Hydrological models 
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5.2.4 Reconstruction requirements 

In order to achieve sea level reconstructions the following sets of information are 

required: 

I Background Information (Level 2 and 3 data and Related Data) 

- Review of current sea level theories and state of knowledge about the area 

(Level 3 Data) 

- Specific information about particular areas (state of current Level 2 Data) 
- Current theories and state of knowledge about identification of relic sea level 

indicators (Related Data) 

II Core data (Level 1 and Related Data) 

- Sea level data (usually new) (Level 1 Data, but could be Level 2) 

- Geological, hydrological, topographical, and base information (Related Data) 

III Available Methodological Information Relating to Level 1 Data (Related Data) 

What measurements are made and how (with particular reference to dating 

techniques) 

Accuracy guides of methods and measurements including assumptions made 

Process, static and dynamic models 

IV Data handling and analysis methods relating to Level 2 and 3 Data 

visualisation 

generalisation of detailed information over an area to produce a regional 

picture 

selection of particular data elements for processing 

analysis of height information such as interpolation for surface creation 

correlation either stratigraphically, spatially or both 

As with the glacial geomorphological case study, conventional methods of research 

generally focus on II and IV. The main issues associated with current practices of sea 

level reconstruction are: 

The heterogeneity of information which is often relatively poorly documented in 

numerous journals. 
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The time required to plot and contour sea level index points by hand for 

numerous time slices limits experimentation with errors and the inclusion and 

exclusion of different data. 

Integrating sea level information with other data and model output requires 

transformation between co-ordinate systems and sometimes between different 

media. Done by hand this is both tedious and tends to cause error introduction. 

The addition of hand-drawn contours and eye interpolation between index 

points is not rigorous. Thus it is difficult to obtain a quantitative measure of 

how well the data fits a model and there is little structure to the weighting of the 

particular index points. 

Paper maps offer limited flexibility for visualising the data and results. 

5.3 A GIS-based study 

This section discusses an investigation into the advantages and issues of using GIS to 

support and carry out sea level reconstructions over a large area in North West 

Europe. The GIS ARC/INFO was again used. The aim was the evaluation of the 

potential of GIS for handling palaeoenvironmental reconstructions, and to compare 

these computing methods with current methods, particularly in terms of speed, 

accuracy, data re-use, rigour and the reproducibility of results. If data can be mapped 

consistently over such a large area the possibilities for testing palaeosealevel 

hypotheses are considerable. 

5.3.1 Background to case study 

Although there is a wealth of sea level information in the literature, radiocarbon dated 

index points are considered to be the most reliable, and comparable (in terms of 

regional correlation). During IGCP (International Geological Correlation 

Programme) Project 61, the International Databank of Radiocarbon Dated Sea Level 

Index Points was established (e.g. Preuss, 1979). As the name might suggest, the 

database design was based exclusively on radiocarbon dated material. Aspects of the 

design of the database used for this case study were adopted from what could be 

established about the UK Working Group's databank of sea level index points (for the 

UK only) collected for IGCP Project 200, which was the follow up to IGCP Project 

61 (Sherman, 1989). However, the data model associated with that database (if such a 

model exists) has not been published, and the contents of the databank are available 

only to the Durham Group (based at Durham University and run by M.J. Tooley and I. 

Sherman) and those directly associated with development of the databank. It is worth 

noting, that this databank, and the data held, have been developed and collected over 
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a period of 20 years. The information associated with the index points which were 

stored in the databank was not collected solely from the literature, but through a 

comprehensive form which was sent out to researchers. In many cases dating and 

measurements had to be repeated by the Durham group because insufficient 

information about the details of the techniques used and the results were available 
(Sherman pers. comm., 1991). 

Initially, an investigation into the types and roles of data which would require analysis 

and storage within the GIS was undertaken. The results of this analysis, in terms of 

the reconstruction methodology and data categories is described in detail in the 

previous section. Using this information a data model (Howe, 1989) (detailed in the 

section 5.3.2) was constructed for- the relative sea level and related information. 

However, it was found that few data source publications quoted sufficient information 

to populate this database. Sherman (1989), when experimenting with an alternative 

approach to studying sea level and crustal movements before the UK databank was 

available, suggested that sea level curves offered a number of advantages for 

supporting such a study. There is a significantly lower effort involved in using sea 

level curves as opposed to index points because of the time required for, and the 

problems associated with, obtaining information from the literature. Curves provide a 

continuous description of sea level change through time, and so a more complete 

picture of sea level at any instance can be obtained using them. These interpretations 

have been made by those who have measured the index points used to construct the 

curves, and know the region well. Shennan points to this factor as also being a 

limitation because of the different interpretations made by the original authors. For 

this study it was deemed important to explore, as far as possible, the complexities of a 

comprehensive sea level database, and therefore a data model was developed which 

included fields for index point data despite the lack of detailed information which 

could be used to populate, physically implement, and test the database. Sea level 

curve data alone was used for the GIS analyses, and because of the importance of 

these curves, the database was designed to hold index points and curves, and to allow 

a relationship between curves and index points to be stored as well. This means that 

were index points to be added to the database, it would be possible to identify which 

index points were associated with which curves, and therefore to provide a means of 

obtaining the original information with which the curve was constructed, and also to 

facilitate reinterpretation and re-drawing of the curve if that were desirable. Thus, the 

database is usable by sea level specialists, and those who require sea level data for 

related work, but perhaps do not have the detailed background knowledge and 
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experience required to work with index points alone (they can rely on the judgement 

of the experts who constructed the sea level curves, and merely use those). The 

addition of sea level index point information linked to curve data, would also provide 

a means of obtaining error information. Error information was rarely available for 

curve data, which therefore limited error analyses to a general, qualitative discussion. 

Were the index points to be added, they would give sufficient information for the user 

to be able to draw their own conclusions, using their preferred methods, about the 

errors and how to incorporate them in any analyses (this is discussed under section 
5.3.6 with reference to further work). 

5.3.2 Sea Level data model 

In summary, levels 1 and 2, relative sea level data for which the database was planned 

fall into four general categories: 

Sea level index points height, plus error, date plus error, dating method, 

description of the sequence. 

Sea level curves 

Additional points - more general regression/transgression records which have 
relative dates but are not well constrained 

Contextual information - eustatic sea level curves - compiled to represent very 

large areas representing the behaviour of global eustatic sea level e.g. Fairbanks 

curve (Fairbanks, 1989), tidal information, and information about dated areas 

which were above or below sea level and may also give an indication of, for 

example, water depth or position with respect to sea level which will help to 

constrain interpretations. 

The use of this information in the reconstruction process is depicted in Figure 5.2. 

It should be possible for researchers using the system to filter data according to their 

preferences. These filters are based on such things as contamination of radiocarbon 

dating material, whether or not the contact is erosional, the stratigraphic and age 

contexts (all cited in Sherman 1989), and according to who made the measurements 

and the interpretations. Therefore all these items must be indexed within the 

database. It was also considered important to be able to recover, from the database, 

information about the publications associated with the data, so that the system user 

can obtain the original publication if necessary. The data model for the database is 

shown in Figure 5.3. This diagram shows what is known as an entity relationship 

119 



Figure 5.2 Manipulation and Analysis Requirements of Sea Level Data 
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model. However, because of the size of the model and the numbers of entities, the 

relationships are not annotated. Those boxes in bold contain the main data 

components, for example the Index points box represents the table which contains the 

heights and dates for the points, and any site descriptions. Most of the other boxes 

represent look-up' type tables which contain information referred to by identifiers in 

the main table. For example, the country table contains a list of countries and 

corresponding country identifiers. These country identifiers are contained in the 

index points table (thus saving a repetition of country names throughout the index 

points table). This enables efficient searches on codes, so that if the user required 

information for all the sites in Norway where the data was based on uncontaminated 

peak samples, a search would be made on these codes indices. Lines connecting 

entities (thus implying a relationship) which end with a crows foot denote a "many" 

relationship. Those ending in a single line denote a "one" relationship. For example 

the connection between the authors and references tables is a many-to-many 

relationship, i.e. many authors may be connected with one reference but many 

references may be associated with the same author For the sea level curve database 

subsection, Figure 5.4 describes the contents of tables in more detail and gives some 

suggestions for the types and sizes of fields required for each table. 

The standard concepts and notations associated with relational database modelling 

can be found in Date (1983) and/or Howe (1989). Briefly, though, the purpose of data 

modelling is to structure the contents of the database so that the information is stored 

in such a way that it can be retrieved efficiently, so that data redundancy is eliminated 

(i.e. data is not unnecessarily repeated in different parts of the database) and so that 

data integrity is maintained (data are not duplicated, and all the attributes are 

associated with the correct data entities, updates can occur easily, and all data is 

retrievable). This is important because most attempts at designing small databases for 

research have not followed these rules, but it is essential to do so in databases that are 

to be used by multiple individuals to ensure data integrity is maintained 

Both database design and data assembly for manipulation required exhaustive 

literature investigations. The data assembled was collected through a collaborative 

effort with Pieter Dongelmans. The sea level curves resulting from his literature 

search are those incorporated in this system. There are 51 sea level curves covering 

varying time periods from present day to 14, 000 years BP. Before this time much of 

the radiocarbon dating is unreliable (Rose 1990; Sutherland, 1987) and the evidence 
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Figure 5.4. Sea Level Curve Data Model 
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fragmentary and for much of Scandinavia, this evidence was destroyed by the 

presence of glaciers, since the area was largely ice-covered. 

The curve locations are shown in Figure 5.5. For many of the curves there was little 

additional information provided, such as detailed locational information, the index 

points from which the curves were constructed, and height and date errors for the 

curves. 

5.3.3 Data Capture and Transformation 

The locations of the curves were stored together as a layer of points; The latitude and 

longitude values were input and then converted using a map projection algorithm 

within the (ITS to the same co-ordinate system as the base map, and these locations 

were then linked using identity numbers to the height, time curve data in the database. 

Since the (ITS in question did not provide for the explicit storage of vertical or 

temporal data this information was stored as attribute information. The most compact 

storage method for this time-height data and the most efficient in terms of data 

retrieval, might be to convert the curve to a function of height against time. This 

means that when a time slice is required, the equation can be solved for height for this 

known time. The difficulty is that the curves are not only discontinuous but, in 

places, extremely irregular. This method was investigated using a curve-fitting 

package. The curve was described by a function or functions for different segments. 

It was found that where there were data gaps, or where the curve changed gradient 

very rapidly (particularly around maxima and minima), it was not only complex to 

describe in mathematical terms but resulted in erroneous values for solving the 

equation at end-points or places where there was a drastic change in gradient. A more 

straightforward method was to digitise points on the curve very close together and 

store the height-time values as a string of x, y co-ordinates. Using this method only 

an extremely simple linear interpolation was needed for heights which fell between 

digitised points. This also provided for the storage of certainty measures for parts of 

the curve so that if a sophisticated interpolation routine were employed for spatial 

interpolation, the retrieved heights could be weighted according to their certainty. 

Whilst this method is uneconomical in terms of both storage space and retrieval time, 

sea level curve data, even for an area the size of Scandinavia, is limited, and so the 

storage needs were not onerous. A subsection of the original sea level database was 

implemented within the system to store the sea level curves. Information was not 

available to populate the complete sea level data model. 
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Figure 5.5 
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5.3.4 Data Integration and Analysis 
A series of programs were developed to interrogate the database and interpolate sea 

level heights for each curve for user selected time slices. Further programs used these 

height data to perform spatial interpolations to generate relative sea level surfaces. 

From these relative sea level surfaces, additions to the original programs, allowed the 

interrogation of eustatic sea level curves (Figure 5.6) for an appropriate height value 

and the generation of sea level surfaces with a measure of the eustatic component 

removed. Most of these programs were written in FORTRAN, with the spatial data 

manipulation and plotting being managed through the (ITS by programs created using 

AML. The interpolation was carried out by a further software package, UNIRAS, 

although importing the interpolated values had to be achieved through a special 

program (written by Nick Hulton - see Appendix U. These manipulations are 
summarised in Figure 5.7 and the programs are listed in Appendix ifi). A user 

interface was also developed using AML which allowed users to interact with the 

programs and data in a flexible way. Users can browse data and results and 

experiment with the data by selecting different time slices, different eustatic sea level 

curves, and by adjusting the interpolation parameters (Figure 5.8). The interface is 

robust and forgiving and is explained in more detail in Appendix ifi. It will not allow 

users to use inappropriate numeric values and will recover if character values are 

entered where numbers are expected. 

5.3.5 Palaeoenviromnental Reconstructions 

Examples of the reconstructions produced using the system are shown in Figures 5.9, 
5.10 and 5.11. These show relative sea level isobases, isostatic isobases and a three 

dimensional visualisation of an isobase surface for 4000, 5000 and 6000 BP, 

respectively. These results can be generated in less than five minutes using the 

system via the interface for any time slice required between 0 and 14000 years BP. 

The base map on which they are plotted is derived from the WDBII (World Data Base 

II) dataset which was originally digitised at 1:3 million scale. Figure 5.11 shows a 

three-dimensional view of the dataset which can be obtained using the (ITS and 

facilitates visualisation of the surface. This stage was not automated because of the 

difficulty in automating the calculation of appropriate view variables for individual 

surfaces, although this should be possible with additional programming. 

Although the results presented here are no worse, in terms of error and accuracy, than 

those produced using manual methods (for example Figure 5.12) given the same 
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Figure 5.9 
Isobase Map of Relative Sea Level (4000 Years BP) 
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Figure 5.10 
Isobase Map of Isostasy (5000 Years BP) 
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Figure 5.11 
Isostatic Surface (6000 Years BP) 
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source data, (since they essentially use the same data and follow the same 

procedures), the results could be very much improved in terms of accuracy by adding 

an extension to calculate and visualise error. At a basic level, the ability to use error 

bands on the curves to generate different surfaces for the same time slices would be 

an easy step, given the ease of surface generation using the system. Upper and lower 

error bounded surfaces, for example, could be developed using error bands. A further 

refinement would involve the perturbation of individual points with error bounds 

according to user-preferences or a weighting of points according to their proximity to 

measured index points from which parts of a curve have been drawn. These simple 

refinements would enable a more quantitative approach to error in sea level 

reconstructions. A measure of surface fit to the points would also be a useful 

addition. Unfortunately the routines used in this study did not provide a means of 

doing this and the error data was not available. However, the surfaces produced are 

created with reference to the Fennoscandian ice sheet retreat, and therefore cover the 

period from 9000 to 12000 years B.P. There is insufficient data coverage available 

for these time periods for the interpolation routine to generate relative sea level 

surfaces. Dongelmans' results (Figure 5.12) show uplift centred over the northwestern 
edge of the Baltic, and this is consistent with the computer-generated maps (Figures 
5.9, 5.10 and 5.11). However, the interpolation routines struggle in areas where data 

is limited (for example, around the southern part of the Swedish/Norwegian border). 

The routine also struggles in areas where data gaps are adjacent to the edge of the data 

coverage area (for example the offshore area south of Tromso where an anomalous 

local high occurs). Compared with Dongelmans results, it can be seen that the 

essential structure of the surface is very similar. Other researchers have also tried 

computer analysis in the past using purpose-built software. Krumbein and Greybill 
(1965), for example, used trend surface analysis using derived F values for evaluating 

the goodness of fit contributed by each surface component to produce isobase maps. 

5.3.6 Further Work 

The system (Figure 5.13) could be extended in several ways. Given the index point 

information and appropriate meta-data, the system could be further developed by 

populating the extended data model and incorporating error measures. These could 

be used to generate further palaeo-sea level surface scenarios. Further refinements in 

the current method could be achieved with the addition of different measures of 

"eustatic" sea level used to generate the isostatic surfaces from the relative sea level 

surfaces, thereby giving further interpretations and possible reconstructions. Using 

different contouring routines would also produce different surfaces, and particularly 
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Figure 5.13 System Summary 
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employing a contour routine which could utilise weighted points and would give 

some measure as to the accuracy of fit of the surface to the points would also be 

beneficial and add rigour to the method. Options to provide the on-screen display of 

user-selected curves together with surfaces, and the ability to generate surface cross-

sections automatically (another function which, although possible, would require 

significant additional work to implement automatically through a user-interface), 

would greatly enhance the communication of the problem domain for system users. 

Further developments in the system could be made to reconstruct palaeocoastlines, 

and to calculate volumes between surfaces. Volume estimates between isostatic 

surfaces would provide a rough measure of mantle volumes displaced from beneath 

the Scandinavian area due to ice sheet loading. These calculations could be made 

given an appropriate resolution of hypsometric data together with the relative sea 

level and isostatic surfaces. Whilst the functionality to achieve this was not available 

within the GIS when this work was being undertaken, the latest version of the 

software does now provide facilities with which this could be achieved. These 

calculations are extremely laborious to undertake using manual methods; but would 

be relatively straightforward, much faster and much more accurate if done using a 
U'S. 

5.4 Discussion 

5.4.1 GIS Benefits 

The @15 benefits realised in this case study are generally the same as those 

encountered in the glacial geomorphology case study. The system afforded increases 

in speed, accuracy and rigour of data manipulation, facilitated flexible integration and 

data visualisation and incorporated functionality which permitted the development of 

a user interface, allowing the user freedom to concentrate on the data unencumbered 

by the details of the system. The time required to read each sea level curve and 

estimate the corresponding heights for particular time slices is substantial. Given that 

most curves are photocopied from published papers, the accuracy with which this can 

be achieved by hand tends to be variable. The computer routine developed can 

perform this operation in a few seconds with consistent accuracy. Using conventional 

methods of data collection and interpretation from the literature the sea level curves 

were photocopied from published papers and heights read off by eye for the desired 

time slices, copied by hand to a map and then interpolated by eye. Whilst this method 

is not a bad one, and can incorporate the researcher's judgement as to approximation 

and error, there is no quantitative measure of error in an individual's assessment of the 
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height value for a given time and no rigour in the interpolation methods which can be 

provided for the edification of other researchers. Using a properly planned 

information system and computing methods, however, this becomes possible. 

Unfortunately, due to the unavailability of original data, conventional techniques of 

photocopying sea level curves from the literature were used at the data assembly 

stage. The number of possibilities which can be explored in a few hours, is far in 

excess of anything which could be achieved in the same time using manual methods. 

All the interpolations are exactly reproducible even if weightings were added as a 

functionality extension. With manual methods it is not clear where, or why, a 

researcher has assigned more or less credence to particular values, and these 

weightings are not explicit. Furthermore, the availability of the surface visualisation 

function enhances the users ability to explore and communicate'results and data, and 

to integrate it with other information, such as rivers, coastlines and contours. 

5.4.2 Data Issues 

The limited success of the interpolation routine was imposed by constraints on data 

accuracy and availability. The sea level diagrams which were digitised were fairly 

crude and there was no possibility to perform weighted interpolations since 

appropriate information to allow data weighting was not available. One of the major 

problems with sea level data is that the techniques used to derive these measurements 

are diverse, as are the nationalities, circumstances, and aims of the investigators. It 

has been shown (Tooley & Sherman, 1987) that standardisation of methodologies of 

data collection, techniques and data presentation can ensure the comparability of 

results at any scale. IGCP (International Geological Correlation Programme) Projects 

61 and 200 have attempted to standardise the methodology of sea level investigations 

(Tooley & Sherman, 1987), although it is acknowledged that methodologies and 

techniques which are too rigid are neither practical nor desirable. However, it is 

suggested that researchers should be aware of the suite of methods and techniques 

employed in the study of sea level in order to enable useful comparison. However, 

this is not possible if sufficient data are not available. Sherman (1989) noted that the 

disadvantage of using sea level curves is related to incompatibilities in the methods 

used to 'derive them. There are currently limited incentives for field researchers to 

make this data available. As a result the quality of Level 1 information is, on the 

whole, low, and it is impossible to determine the compatibility of different 

information. Furthermore, if the sea level curve data were to be supplemented with 

individual sea level points, there would be a risk of duplication. It is often difficult, 

when using multi-source data from publications, to discern whether index points 
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published for an area have also been used in the derivation of sea level curves, and 

therefore whether one is duplicating data in the analysis. 

5.4.3 System Issues 

Many of the system issues were the same as those encountered in the glacial 

geomorphology case study. Again, the lead-in time for system establishment was 

considerable. In the case of sea lçvel, the time required to digitise and georeference 

the data was significantly less than that for glacial geomorphology. However, 

because the system development began with a much older version of ARC/INFO, the 

lack of functionality meant that considerably more time was spent on the initial 

system development, and subsequently, on system maintenance (discussed later in this 

section). Lack of functionality is a persistent problem in commercial GIS packages 

which are developed mainly for business purposes. Scientific research projects, with 

their small budgets and complex requirements are the least attractive market for GIS 

vendors. In the case of sea level data, this lack of 315 functionality in the earlier 

version, was supplemented by functionality from other packages, and therefore 

involved linking, in this case, UNIRAS with ARC/INFO via FORTRAN 

programmes. The macro language was, again, unsuitable for such scientific 

applications development. Furthermore, it would have been desirable to have 

functions which permitted interpolation of sea level points on a geoidal surface. 

Using different projection algorithms changes the relative spacing of sea level points, 

which is likely to affect the interpolation results. It was also difficult to control the 

handling of edge effects in the interpolation, and to display curves and peruse the 

database. The time and effort required to develop a robust user interface was 

substantial and is therefore a consideration when estimating the cost and time required 

for system development. Again, lineage tracking, and metadata facilities were not 

available. This caused problems because it is important to know which interpolation 

results were generated using which sets of parameters. 

The complexity of the sea level data model poses a particular issue if one considers 

that if different institutes were to develop sea level databases, they are unlikely to use 

exactly the same data model and codes. Integration of data across institutes then, 

would be a major problem, and would have implications for the increased complexity 

of lineage and metadata maintenance across systems. 

The most significant issue, was the rate of change of software and hardware upgrades 

in relation to the time required to develop a system and maintain the system in the 
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face of these changes. Maintaining the customised software through GIS upgrades 

was compounded by changes in the other software packages and compilers which 

were employed to extend the functionality of the system. The system underwent two 

GIS version changes, three interpolation package upgrades, two FORTRAN upgrades 

and a change in operating systems (VMS to UNIX). This reflects the rapidity of 

change that a typical system may encounter in two or three years. Even operating 

systems become more popular and others become obsolete. This problem has been 

experienced by others, for example during the development of a GIS for the FAO to 

support desert locust forecasting and monitoring (R.Healey pers. comm., 1995) 

Re-mapping the old implementation onto the new system involved the re-writing of 

many of the original programs. It highlights the advantages for keeping as much of 

the design as possible within a single GeOgraphical Information System Package 

thereby limiting the frequency of changes for which many problems can be referred to 

the software company. It should be noted that the database, so carefully planned for 

at the outset, was foregone in the final system and the curve data used by the resulting 

system is stored merely as flat operating system files. This was due to the operating 

system move, since the new platform had different database software loaded and 

operating and storing the data as files was much easier to re-implement. These issues 

have implications for the long-term planning of system development to secure 

adequate resources. 

5.5 Conclusions 

In summary, the study exemplifies the advantages of employing a GIS to facilitate 

palaeoenvironmental reconstruction in terms of managing the information, handling 

and visualising the complexities of time and space, and freeing the users from 

laborious, time-consuming data manipulation which are the requirements of manual 

methods, so that they can concentrate on experimenting with the data by exploiting 

the fast and accurate analysis provided by the system. However, several substantial 

issues have emerged from this study which, whilst they are manifested in issues 

associated with the quality of the data and the capabilities of the system, have 

implications for the approaches to scientific study and the international organisation 

of research. 

In summary, this case study resulted in the following demonstrable GIS benefits and 

issues: 
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Demonstrable benefits: 

• spatial framework for sea level and related datasets 

• compact storage of detailed information 

• increased processing speed and accuracy 

• rigorous and quantitative analysis 

• speed and flexibility of experimentation 

• the possibility to design a user interface and allow freedom to concentrate on data 

analysis and theory exploration 

Palaeoenvironmental issues: 

• poor level one data 

• limited methodological standardisation 

• incompatibility of sea level curves 

problems of data integrity 

GIS Issues: 

• time for system establishment 

• limited functionality 

• lack of metadata, error and lineage tracking facilities 

• rate of upgrades and related maintenance overheads 

• slow and cumbersome macro language manipulation 

In general terms both case studies reveal the following issues: 

The lack of long-term, international planning by the scientific community in 

terms of data resources. For example it is no accident that the HEFC (Higher 

Education Funding Council) now requires HE establishments to have an 

information strategy. This indicates the importance now attached to information 

resource management. 

The restrictions imposed by using proprietary systems which were developed 

mainly for business and data display and retrieval purposes, rather than analysis, 

and which impose a structure on applications which makes systems difficult to 

use and adapt and develop in a way and at a speed which is appropriate for 

scientific researchers. 
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The failure of the scientific community to adapt the research paradigm to the 

changing demands on environmental research (local to global) which fully 

exploit the data available and address the scientific issues that such global scale 
research requires. 

The failure of the scientific community to adapt computing tools and develop 

new methods for research which view systems as a long-term investment 

incorporated as part of the research development rather than used like a 

component tool in part of a larger process. 
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Chapter 1 A New Conceptual Framework 

6.1 Introduction 

The previous chapters demonstrate that current GIS do not fully support the study, 

management and analysis of complex palaeoenvironmental data. A 
PalaeoEnvironmentaJ Research Information System (PERIS) model is proposed in 

this chapter, that provides a new approach for palaeoenvironmental reconstruction 

and research, designed to overcome many of the current limitations. The model is 

based on object oriented concepts, and provides an innovative approach leading to a 

range of new methods for palaeoenvironmental reconstruction, and a novel 

framework for data sharing and management. This is a suggested framework in 

which palaeoenvironmental reconstruction could take place, but no formal evaluation 

has yet been undertaken. 

The palaeoenvironmental and GIS issues identified in the previous chapters are 

briefly reviewed to reveal the need for a change in the current research paradigm 

which GIS engenders (Section 6.2). The advantages of object oriented approaches are 

then discussed (Section 6.4) and palaeoenvironmental reconstruction methodology is 

redefined in terms of an object oriented approach (Section 6.4). The new object 

oriented conceptual framework (PENS), introduced in Section 6.5, is at a high level 

of abstraction. The formalisation of reconstruction methodology provides a basis for 

an innovative approach to palaeoenvironmental reconstruction which addresses the 

pressing issues encountered in the current research paradigm. The model assumes an 

environment of global information sharing and exchange (Section 6.7). Similar 

developments in the current international information infrastructure are considered 

(Section 6.8). Extending the model philosophy into the scientific infrastructure 

provides a framework for improvements in data management and communication 

(Section 6.9). 

6.2 Changing Paradigms 

Increasing pressures on the palaeoenvironmental research community to help answer 

questions about the global environment have led to a change in emphasis from local 

field studies, towards spatial integration of palaeoenvironmental evidence over very 

large areas. Sources of new and higher resolution information have increased the 

potential of palaeoenvironmental data to reveal much more about the nature and form 

of palaeoenvironments through time. However, the information is not being exploited 

to the full because several factors are currently hampering the progress of 
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palaeoenvironmental reconstruction in important ways. These factors have been 

identified in a general sense in Chapter 2, and explored in more detail for two 

palaeoenvironmental data sets in Chapters 4 and 5. Briefly summarised, they are: 

Palaeoenvironmental methods and data management issues 

• Poor data documentation and archiving (particularly of Level 1 data) 

• Little methodological standardisation 

• Problems with data integrity (for example data duplication) 

• Lack of methods for analysis on a spheroidal earth 

• Limited spatial analysis methods 

• Few rigorous, quantitative methods 

The case studies have clearly shown that GIS (Science and Systems) offers powerful 

techniques which address many of these palaeoenvironmental issues. However there 

have also been shortfalls in system capabilities, and in the ability of both systems and 

science to offer solutions for palaeoenvironmental reconstruction. These shortfalls in 

GIS emerge from the case studies (Chapters 4 and 5) and are summarised below: 

GIS technology issues 

• Time required to gain system expertise (poor user interfaces) 

• Time required for system establishment 

• Limited scientific functionality in commercial systems 

• Lack of metadata storage and tracking facilities 

• Rate of upgrades of commercial systems and system maintenance 

• Slow and cumbersome macro language facilities 

• 'Black box' functionality (lack of algorithm documentation) 

The significant difficulties in palaeoenvironmental reconstruction indicate the need 

for a paradigm change. The issues associated with current Geographical Information 

Systems in the context of palaeoenvironmental research can be addressed by 

developments in Geographical Information Science. Having considered both 

palaeoenvironmental and GIS issues, a position has now been reached from which to 

modify the current research paradigm to improve palaeoenvironmental research. The 

case studies pursued reconstruction using the traditional palaeoenvironmental 

paradigm, and GIS improved the manipulation of data and facilitated quantitative and 

rigorous spatial analysis and visualisation over large areas. However, the 

cartographic construct prevailed. The data is thematically partitioned, and thus can 
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only be used to reconstruct separate aspects of, what is in fact, a complete 

environmental system, where different features are juxtaposed, interact and evolve 

through time. GISs offer the powerful combination of complex data management and 

visualisation capabilities, and the possibility of manipulating data in three- (or even 

four-) dimensional space. However the philosophy behind their design, like the 

palaeoenvironmental methodology, remains based on mapping concepts. New 

possibilities are available which could be used to overhaul the traditional paradigm 

(Figure 6.1), and move from static maps to dynamic reconstruction. 

6.3 Object Oriented Concepts 

Many of the shortcomings of current GIS summarised above, have emerged in other 

areas of environmental research. Difficulties centre round the formulation and 

representation of environmental models in GIS. The structure of the GIS has 

determined the framework within which the environmental application must exist, 

which therefore imposes stringent constraints on the treatment and handling of data 

models. Current GIS methods operate, for the most part, on thematically layered, 

two-dimensional data. This structure requires geometrically indexed methods of data 

representation (Raper & Livingstone, 1995) and does not permit the handling of 

discrete three-dimensional entities, overlapping features (Goodchild, 1992) or 

temporally changing phenomena (Langran, 1991). These GIS features reflect the 

map-based paradigm for data representation which preceded environmental modelling 

approaches, and causes users to be distracted from scientific tasks by data 

management and system tasks. The underlying data structures do not appropriately 

reflect the user's ideas. Therefore using these structures for purposes for which they 

are unsuited has a negative impact on system performance (Gunther & Lambert, 

1994). 

Recently there has been a trend to challenge this segmentation of entities into separate 

layers, and, rather than map the application onto the system, to determine alternative 

approaches to spatial representation for environmental models (Livingstone & Raper, 

1994). Object-oriented analysis and design approaches (Booch, 1991) have been 

explored and this has led to progress in other areas (for example Raper & Livingstone, 

1995; Freska & Barkowsky, 1996; Gunther & Lamberts, 1994). 

Object orientation is an approach for modelling the world in terms of interacting 

objects in relation to a particular problem domain (in this case palaeoenvironmental 

reconstruction). At the core of object oriented philosophy is the belief that humans 
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Figure 6.1 The current reconstruction process 
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think naturally in terms of objects, and therefore by modelling systems using key 

abstractions (objects), problem solving is made much easier. Using the object 

oriented approach, all actions are carried out via objects. Objects have behaviour, can 

interact with (be changed by, and change) other objects, and can also be aggregates 

(an object can be made up of component parts). 

This approach was developed because objects encapsulate much of the complexity of 

the real world in terms of single data abstractions which are modular (self-contained). 

Previously, system designers and software programmers were having difficulties 

modelling the complexity of the real world. The key idea of data abstraction is that 

definition in terms of objects which are independent entities, develops into a system 

which is much easier to maintain. 

Object orientation was thought to be a suitable approach for considering 

palaeoenvironmental reconstruction because of the complexity of the problem, caused 

by the multiple, interdependent relationships of data, methods and reconstruction 

features. Some means of abstracting the key elements of reconstruction is required in 

order to analyse and improve the methodology. An object oriented philosophy seems 

an appropriate option. 

For the purposes of computer system analysis and design, objects are tightly defined 

using terminology associated with their behaviour and structure. However, use of 

such terminology at the level of abstraction adopted here is inappropriate, and would 

be more confusing than helpful. Object oriented concepts are being used here in a 

problem analysis, rather than a system design context, and therefore such terminology 

is not relevant. One of the advantages of the object oriented approach is that only one 

model of the system exists. The development of the system involves progressively 

adding more detail until the model can be executed on a computer. This level of 

detail will not be reached in this discussion, but the model developed here would 

represent the most general level of abstraction which could be developed further to an 

implementable system design. 

6.4 Object Oriented Reconstruction 

Using the object oriented approach for palaeoenvironmental reconstruction requires 

the re-definition of palaeoenvironmental data and models in terms of objects. 

Identification of palaeoenvironmental entities is fundamental to palaeoenvironmental 

research itself. The abstraction of entities for constructing scientific theory is a point 
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of philosophical debate, and the position accepted for the purpose of this discussion is 

that entities are defined according to a theory (Haines-Young & Perch, 1986). In this 

case there are likely to be different abstractions for the same "real world' and thus 

different "world views" will depend on the theoretical basis being used and the task to 

be undertaken. To identify appropriate constructs for palaeoenvironmental science, a 

consideration of the theories and views is required. 

Palaeoenvironmental research comprises many facets, but generally reconstruction is 

achieved by assembling fragments of evidence for multiple environmental features 

simultaneously, in space and time, to obtain a series of "snapshots" of the 

palaeoenvironment through time. The fragments of evidence are identified according 

to the paleoenvironmental feature or parameter to which they are thought to relate. 

Therefore this feature or parameter (which may be contained within, or influence, 

features) could be selected as the basic construct in palaeoenvironmental research. 

For example, particular sites contain landforms or materials thought to relate to parts 

of past glacier or shoreline features. These features then, rather than a space-time 

framework, provide the integrating medium for the fragments of palaeoenvironmental 

data. The reconstructed features also provide the means of analysing 

palaeoenvironmental behaviour which is expressed by their evolution and interaction. 

Palaeoenvironmental reconstruction is achieved via two strategies. The first involves 

assembling field and measurable information to infer the boundaries and 

characteristics of palaeoenvironmental features (empirical and qualititative 

interpretational models of the data). Inferences used to derive these models are based 

on knowledge of present day processes. The second involves developing numerical 

models which describe the processes that act to change these features, using 

information based on physical principles observed in present day environments. 

One of the reasons why palaeoenvironmental reconstruction is difficult is the 

complexity of putting this information together because it is uncertain in time, and 

sometimes also in space. Even the feature inferences themselves may be in doubt. 

Data is sparse and evidence may often conflict (for example where two data points 

appear to occupy the same spatiotemporal position but indicate different 

environments). Where incompatibilities occur the impact of conflicting evidence 

must be reassessed and the data model, or the data, adjusted to reconcile the conflicts. 

There are three main factors which. currently hamper solutions to these problems: 
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Data is divided into layers, partitioned into themes, and each layer contains 

information relevant to several features. This makes it difficult to integrate all the 

information from the different layers for one feature. 

Thematic separation causes further complications to arise because data 

interpretations (linked by site and theory) in different layers are interdependent. 

Reconciling data conflicts by changing an interpretation for one point may have a 

knock-on effect for data in other layers. Managing these interrelationships can be 

problematic. 

Reconstruction features exist as mental concepts within the mind of the scientist 

and their expression is achieved via the unsatisfactory medium of schematic diagrams 

on two-dimensional paper. Therefore there is no quantitative or rigorous approach to 

feature reconstruction. 

Process models have improved the situation by allowing some features, or parts of 

features to be expressed as mathematically derived bodies which have definite 

surfaces or boundaries and can therefore be viewed more easily and described using 

empirical measures. They can be used to help visualise features. However they differ 

markedly from data models. Data constructed model features, are characterised by 

fuzzy and incomplete boundaries. In many cases parts of features are completely 

unknown in nature and extent. 

Therefore there are essentially two different sorts of palaeoenvironmental feature 

reconstruction, which can be considered "object types" in an object oriented approach: 

Data Constructed Model (which represents the structure of real world domains 

constructed using palaeoenvironmental data) 

Process Model (which represents theories such as exchange of mass or energy 

within a system, based on mathematical principles and present day observations) 

The Data Constructed Model comprises quantitative and qualitative information 

which helps to define the boundaries and nature of a- feature. Data may be assigned to 

different space-time manifestations of a feature with the assignation being determined 

by other models (for • example a. core sequence correlated with calculated 
Milankovitch cycles, Imbrie et A, 1984). In some cases Process Models can be used 

to assign interpretations and temporal positions. to palaeoenvironmental data where 
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very little information is available. However, process models are often very crude 

and do not adequately express more than the general form and evolution of the 

feature. They are therefore used to help identify candidate parameters which may 

control, or be influenced by, climate change, rather than to simulate a feature in detail. 

The success with which they do this is tested by comparison with 

palaeoenvironmental data and Data Constructed Models. 

6.5 The PERIS Model 

An object oriented model for a PalaeoEnvironmentaJ Reconstruction and Information 

System (PERIS) is proposed, which has the Data Constructed and Process Model 

object types, identified above, as central to the system. This approach has many 

features in common with an approach suggested by Raper and Livingstone (1996) for 

testing present day coastal geomorphological theories. The Data Constructed Model 

and Process Model object types are comparable with their geomorph_info and 

geomorph_system object classes although the definitions of the objects and their 

behaviour differ. It is proposed that reconstruction take place within the object 

oriented system, through the Data Constructed and Process Model Object types. 

Essentially the process will involve construction and incremental improvements in 

definition of the object through addition of data elements and the definition of object 

behaviour (Figure 6.7). This can be done simultaneously for more than one object, 

with object interactions controlling the validity of a particular reconstructed scenario. 

To clarify this procedure, the object types will be defined from Data, Functional and 

Behavioural perspectives. These definitions will then be elucidated in terms of 

reconstructing a glacial Data Constructed Model object using the system. 

I. Data Perspective 

The data perspective defines the major data elements of which the object type is 

composed. For each of the object types, these are: 

Data Constructed Model 

• Known, inferred and unknown feature structures and boundaries 

• May be an aggregate encapsulating component parts 

• Boundaries and parts defined by palaeo-data elements, possibly using present day 

data elements for reference 

• Sets of rules defining behaviour, constraints and thresholds between different 

object states, and object interactions 
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Figure 6.2 Simplified, schematic view of Palaeoenvironmental Information System 
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Process Model 

• Model code describing relationships and interactions 

• Rules defining behaviour, constraints and thresholds between different object 

states and the use of different sets of code 

• May be an aggregate encapsulating component parts 

• Initial conditions 

• Input data 

• Output data 

2. Functional Perspective 

A functional perspective views the responsibilities of each object type and the 

operations it must perform: 

Data Constructed Model 

• controls behaviour of, and interaction between, any component parts 

• requests data from the database, selected according to criteria such as feature type, 

geographical area under consideration, methodological sympathies of scientists and 

data quality. 

• controls the allocation of data to different parts of the object structure and different 

states, including allocating data weightings for more reliable data. 

• carries out analysis of data (e.g. interpolations, extrapolations, interpretations) 

• checks and controls internal logic: 

Data rules - maintains and checks data links. For example if several data 

points came from the same correlated core and the correlation 

of one of the data points had to be adjusted, the object would 

use the links to flag other data which may be affected by this 

interpretational change. 

Physical rules - ensuring valid parameters and component part interactions 

(e.g. "rivers cannot flow uphill") 

State rules - controls the transition between states if certain thresholds are 

exceeded, which in turn controls the set of applicable physical 

rules and are linked to inter-object interactions. 

• controls interaction with other objects such as mutual spatio-temporal occupancy 

and adjacency conditions (for example glaciers cannot exist within a certain 

distance of tropical vegetation, and terrestrial and deep water marine objects 

cannot occupy the same spatiotemporal position). 

* tests for inconsistencies and flags data elements which don't "fit" current model 
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Process Model 

• requests model code from the database, based on feature type and other conditions 

• controls validity of model formulation and inter-linking of any component parts 

• controls transition between states and selection of appropriate code and parameters 
for different states. 

requests input data and parameters 

• carries out inter-object comparisons of output (with Data Constructed Model) and 

validity checks (with other Process Models) 

3. Behavioural Perspective 

External events that stimulate the object can be defined by taking a behavioural 
perspective: 

Data Constructed Model 

• requests from the user (e.g. to query an object and determine its attributes) 

• instructions from the user (e.g. changes in logic, addition of data, weightings 

allocations for data, addition of new analysis methods) 

• instructions from the user for comparisons with other Data and Process Models 

Process Model 

• requests from the user (e.g. to query an object and determine its attributes) 

• instructions from the user (e.g. changes in logic, additions of code, changing input 

data, model parameters, and initial conditions) 

• instructions from the user for comparison with other Process and Data 

• Constructed Models 

6.6 Reconstruction using PERIS 

Considering the last glaciation in North West Europe, reconstruction focusing on a 

glacial Data Constructed Model object is considered to demonstrate the use of the 

proposed PERIS system model and the meaning of the criteria above. There are three 

broad stages involved. The first two are concerned with object formulation and 

reconstruction. The third step is a hybrid of the first two steps which is repeated 

iteratively until the user is satisfied. Further stages involve comparison between Data 

Objects and Model Objects, and may be followed by repetitions of the first two stages 

to further develop and refine the reconstruction and associated theories. Interaction 
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between the user and objects would take place through a user interface which would 

control the underlying processes and liberate the user from such concerns. 

Reconstruction through a Glacial "Data Constructed Model" Object 

STAGE 1 Object and Rule formulation 

The user will define the nature of the object, in this case "ice sheet", and the region of 
interest, here, "NW Europe". It may also be desirable to retrieve information about 

the behaviour of large ice sheets (past and present) and any previous reconstructions 

that have been made for the area. The user will then proceed through a number of 
steps to define: 

• Any component parts of the object - for example ice streams associated with the 

deglacial phase might be considered for one object state 

• The palaeo-data selection criteria - This might initially comprise macroscale 

glacial geomorphological features, measured by a particular research group during 

a recent project. 

• The rules defining the behaviour of objects in particular states, and which govern 

the change between states. For example, if it was thought that when the glacier 

reached a certain size at a particular temperature regime, ice streams would 

develop, or when it met the sea, ice calving would commence and change the flow 

type. These rules might be "borrowed" from present day glacial research. 

STAGE 2 Reconstruction using data and rules 

The data which has been retrieved from the database according to the selection 

criteria will be Level 1, 2 and 3 data. The user may wish to begin with Level 3 data to 

define the more certain aspects of the ice sheet. In some of the southern areas for 

example, deglacial retreat patterns may be clear and well-dated, and these could 

provide the initial boundaries for the model in the south. There may not be much 

information in the northern area and therefore this boundary might be an inferred line 

or might be classed as unknown. However, there may be evidence (theoretical or 

data-supported) to suggest that the ice sheet did not extend further north than the edge 

of the continental shelf, but that it was further north than a range of high mountains. 

Therefore a zone between the northern mountains and the edge of the continental 

shelf could be declared as the zone within which the edge of the ice sheet existed. 

The user may then wish to apply the rose diagram analysis to the Level 2 macroscale 

lineations data set to define the location of ice streams and use this information 

together with the retreat patterns to define the evolution and temporal existence of the 
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ice streams. As ice streams are identified the lineations can be assigned to the 

appropriate ice stream and temporal position (which may be defined as a temporal 

zone of maximum and minimum duration, rather than a definite point in time). Thus 

the lineations can be displayed together (but possibly using colours to indicate those 

assigned to the same time zone), or separately. A degree of experimentation may be 

necessary, in trying out different sets of lineations in different time zones, to find the 

most satisfactory combinations. Ice streams do not necessarily have clear boundaries, 

and their location could be described by some probabilistic surface which describes 

the likelihood of a feature in a particular area being part of the ice stream. 

Present day topography may be requested to define the glacier sole for the late glacial 

phase, and also to establish the position of the continental shelf mentioned earlier. 

STAGE 3 Reconstruction refinement 

Reconstruction refinement (summarised in Figure 6.3) could involve several things. 

Changing or adding data selection criteria and rule logic (STAGE 1) 

Requesting Level 2 field information would help to further constrain the nature 

and locations of the glacier frontal positions, and the timing of particular ice 

streams. This field data might be linked to the macroscale information, or the 

user may wish to make links which might exist. The strength of these links 

could be variable (strong if the link had been made by the field scientist, weaker 

if the link had been made by the user who knows the data less intimately). 

Re-analysing data, or analysing new data using new functions (STAGE 2) 

The field data would then be fitted to the structure of the object, and 

information which did not "fit" could be more deeply queried, so that the user 

could consider alternative interpretations, or adjust the model. if model 

adjustment occurred, the object would automatically check the previously fitted 

information to ensure that it complied with the new model. if data required new 

analysis, functions could be requested from the database, or developed within 

the system by the user (possibly using visual programming CASE (computer 

aided software engineering) tools). 

Defining inter-object interactions and comparing the glacial Data Constructed 

Model Object with a sea level Model Object, Or a glacial Process Model Object. 

Interobject interactions might specify that a sea level object cannot overlap a 

glacial object, but that a glacial object can overlap a sea level object within 

certain distance and depth restrictions. Significant discrepancies between the 

results from a Process Model glacial object and the Data Constructed Model 
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Figure 6.3 Tailoring the data view to individual theories and methodological 
preferences via manipulable objects 
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Object for the same area and time range might result in adjustments to the Data 

Constructed Model or Process Model objects (or both). 

The Process Model object type may be constructed by "plugging together" sets of 

component models, with the model construction and running being performed by a 

piece of software called a "Model Manager" such as that suggested by Bennett et al. 

(1993). The Model Manager would also control the transition between model states 

and the exchange of new code in moving from one state to another. 

Design features 

The system offers several substantial advantages over current reconstruction methods. 

From a practical point of view, the system is responsible for validity and consistency 

checking, and for data retrieval. Artificial Intelligence methods could be used to 

manage the implementation of these rules. Circular hypotheses could be flagged, 

such as the fact that calculated Milankovitch cycles had been used to correlate the 

deglacial positions of the Data Constructed Model Object, and to drive the Process 

Model Object with which it was being compared. Furthermore tests could be made to 

find the effective sampling resolution for features. Tobler (1988), for example, 

recommends that a sampling interval which is one fifth the size of the feature is 

required to resolve that feature. This would add weight to the validity of particular 

reconstructions. Chapters 4 and 5 have shown how accurately georeferenced digital 

datasets can be manipulated, viewed and overlaid with other data very easily. These 

functions allow the scientist to concentrate on formulating the reconstruction 

undistracted by the burdens of manual data manipulation. In addition, the system 

provides much more scientific flexibility, with the user able to define objects in any 

way desired, and have control over the quality, and, to a large degree, the 

interpretation, of the data. Furthermore, the system could be developed directly into a 

system implementation because it is conceived in object terms, and can therefore be 

further developed into a detailed system design. The object oriented approach has 

further advantages because it expresses palaeoenvironmental reconstruction in terms 

which it is possible for both the palaeoenvironmental scientist and the software 

engineers and system designers to understand. 

However, the system must be supported by a suitably structured database, or system 

of databases. Given the issues discussed in Chapter 3 concerning the difficulty of 

integrating heterogeneous databases because of different data standards, data 
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classification systems and incompatible data structures, it is clear that an international 
infrastructure is required to support such a system. 

6.7 PERIS Infrastructure 

The diversity of scientists which could use PERIS means that it must be supported by 

an international infrastructure which can provide the database PENS needs. Clearly 

it is necessary to identify what is required of a database to support PERIS and then to 

consider what infrastructure must be put in place to support the database. 

PENS requires access to five distinctive datasets: 

Palaeoenvironmental data (Levels 1, 2 and 3) and metadata, including core/site 

origins and associated with particular methods, researchers, data themes, 

uncertainty information, dates etc. 

Model code and state transition parameters 

Reference information about techniques, methods and standards 

Present day studies, observations and theories 

Basic reference information 

Results of other reconstructions 

These requirements are essentially the same as those identified in Chapter 2. 

However, PENS requires a structure through which users can find particular data for 

a specific study. The structure must allow them to "filter" the information according 

to some selection system. This will mean providing a set of search keys for database 

query. Selection on the following criteria would constitute a minimum requirement: 

• Location 

• Reconstruction feature type 

• Site type 

• Dating quality 

• Method, Technique, Sampling strategy 

• Research scientist or research group 

In order for the system to create the logical links between data elements, links 

between Levels 1, 2 and 3 data and their metainformation (such as methods and 

standards used) must exist in the database. This is particularly crucial where suites of 

data are correlated, because some change in interpretation, either of the standard, or of 

a particular sample, may affect the correlated values of the other data. Given the 
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importance of the metainformation, the site search key could be considered the 

primary identifier. Being able to associate a set of measurements, which are linked 

because they were measured at the same site, by the same researchers, using the same 

methods, and interpreted in relation to one another, is of prime importance. 

A distributed database systems approach allows databases in different geographic 

locations to be accessed remotely over a network, but to the computer user, the effect 

is as if they were accessing files in their local system (Stafford, 1994). Warner (1991) 

suggests that such decentralisation is the way forward. Centralised systems cannot 

compete with the demands of the information age in terms of efficiency and 

accessibility. PERIS could therefore exist in an environment where the underlying 

database is of a distributed nature, and data, methods and modelling tools would be 

provided by sites throughout the world. Thus the burden of data capture and system 

maintenance could be spread across different sites. PERIS would be available at each 

location from which the distributed database could be accessed. 

However, given the issues associated with data integration, which include 

incompatibilities in data structures, classification systems, data models and data 

capture practices (Sections 3.3 to 3.6), the introduction of data standards and 

internationally agreed protocols is a prerequisite to the establishment of PERIS. Thus 

a PENS database would require an international infrastructure which encompasses 

means of planning, implementing and running a distributed database system. This 

system would incorporate agreed search keys, data standards and compatible data 

structures and data models. The distributed system would thus operate on centralised 

concepts (Figure 6.4) and its development raises several substantial scientific and 

organisational issues. 

Potentially the most important scientific questions concern the development of data 

standards and a classification system to provide search keys for the 

palaeoenvironmental data and to facilitate data integration. Such a system must 

incorporate the interests of all scientific needs both past and future, and therefore a 

balance must be struck between creating a system which is too complex to be usable, 

and one that is too restricted and unable to accommodate the flexibility required of 

scientific data to facilitate research innovation. In addition to this, substantial work 

will be required to develop techniques to describe, and handle, uncertainty in data and 

in the reconstructions, and to implement the logical rules associated with the data, 

object behaviour and inter-object interactions. 
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Developing a data model to handle the palaeoenvironmental data, and a metadata 

framework to enable the tracking of lineage information, will also be a challenge. 

Essentially no framework exists for version management, linking metadata to source 

data, model code, model results and model verification data. However, some research 

is beginning in this area (Jelinski et aL, 1994; Evans, 1994; Chrisman, 1994a; Strebel 
et aL, 1994) and could be adopted together with other efforts to develop a metadata 

framework for coverage and attribute data (Lanter, 1991, 1992). A further, related 

problem, concerns the volume of information associated with, and produced by, 

modelling. For simulation modelling, in particular, and experiments involving monte 

carlo methods, the quantity of data generated can be enormous. These alone will 

require special management. Further issues concern the development of the database 

to include new types of information resulting from new methods and sources, not 

incorporated in the original data model. 

Practical issues centre around the modifications which will be required in 

organisational and scientific practices in order to accommodate PERIS, and the 

infrastructural changes associated with software maintenance, data capture and the 

implementation of data standards. Initially, canvassing the scientific community to 

resolve the scientific issues, will probably be the most significant barrier to progress. 

Evans and Ferreira (1993) cite the key research areas in spatial information sharing as 

lying in the interaction between predominantly organisational and predominantly 

technical issues. Another key issue concerns the availability of, and access to, data. 

Database management systems have the capability to permit access to parts of any 

database to certain individuals only, but the question arises of whether such security is 

desirable. Real integration of multidisciplinary palaeoenvironmental datasets cannot 

be achieved if those datasets are studied in isolation, and the true potential of the 

system will not be fulfilled unless multiple datasets are available for theory testing. 

The publication system, whereby individuals gain credit and status through literature 

publication of data, is one method by which data can become public property. 

However, this published data is often insufficiently detailed. There need to be 

changes to information management policies to increase rewards for data contributors 

(Porter & Callahan 1994). Funding Councils could require that projects contribute to 

the database as part of their contracts. 

Other issues include the question of data integrity, data ownership, and database 

security which inevitably lead to the legal issues of copyright and multiple users of 
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multiple data sources (Epstein, 1988). These issues are fraught with problems, many 

of which have not been resolved in the information technology field. Some means of 

implementing data standards will also be required. This could be facilitated by the 

use of Artificial Intelligence software to check for standards and make any necessary 

conversions, or warn where standardisation has not been used. As more data is input 

directly in digital form, data standards will become less of a problem to implement, 

because data capture software will be able to handle the coding and format of the data 

automatically. A more difficult issue will be preventing data duplication in different 

parts of the system, particularly where pre-existing analogue data is being digitised. 

Artificial intelligence methods may hold part of the solution to this problem, and 

could be used to check for similar information. Major developments will also be 

required in the area of user interfaces to make systems much easier to use. The 

amount of training required to use and develop a GIS for research purposes is 

currently substantial. Finally, an investigation is required into existing digital 

databases and their potential for incorporation within the PERIS structure. 

It is clear that substantial long-term funding will be required to develop the methods 

and infrastructure required by PERIS and to undertake manual to digital conversion of 
data. 

6.8 Current Information Infrastructure Development 

The benefits of a digital data infrastructure have been recognised by the European, US 

and United Nations science programmes, to name but a few. The end of the 1980's 

heralded a new era of global science with the development of global databases 

(Mounsey & Tomlinson, 1988). Various operational global databases now exist 

which demonstrate that the technological knowledge and hardware are available to 

support global information systems. The World Data Centres, projects such as the 

International Geosphere Biosphere Programme (IGBP), the EOS data centre and the 

National Oceanic and Atmospheric Administration (NOAA), are probably the most 

notable from a palaeoenvironmental perspective. WDC-A and NOAA indeed hold 

some palaeoclimatological data. These, and other similar digital database projects 

and information strategies are described in more detail in Appendix I. The 

appearance of Digital Chart of the World (DCW) as the first high quality base data set 

with global coverage marked a turning point in the development and use of global 

digital data. 
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Many of the databases and programmes discussed in Appendix I have related aims 

and interests, but operate separately with limited reference to one another. In fact, the 

duplication of effort amongst organisations on projects which have been initiated in 

the last five to ten years is remarkable. Despite all this activity, a comprehensive 

means of discovering what datasets exist, obtaining details about the datasets 

(coverage, quality and lineage), and accessing the data, is still no nearer (see also 

Section 3.8). Many of these projects do not address the issue of multi-thematic data 

integration, or have only recently realised the importance of this issue. The US 

NGDC's Global Change Research Program includes data integration as one of its 

most important areas of study (Hastings et aL, 1991). It has recently been recognised 

in the European Union EGil (European Geographic Information Infrastructure) 

document (September 1995), that the biggest impediments to an open and coherent 

geographic information society, are organisational and political and therefore that the 

issues need to be addressed at the highest levels if the opportunities provided by 

Geographic Information Technology are to be fully grasped. 

A co-ordinated digital access service for environmental scientists is already being 

proposed as part of the US Global Change Research Program in the Draft 

Implementation Plan for the US Global Change Data and Information System 

(GCDIS) (CEES, 1993). The plans are to create a service which is a 

clearinghouse/card catalogue' for environmental information related to global change, 

to organise data sources from many disciplines and organisations. In addition the 

Federal Geographic Data Committee and National Research Council Committee on 

mapping in the US is developing a plan for a National Spatial Data Infrastructure 

(NSDI) (Chrisman, 1994). 

In order to achieve global, communication and data sharing in technological terms, 

some degree of standardisation of communication protocols (TCP/IP, ASCII), query 

languages (SQL) and so on, have emerged (Croswell & Abner, 1990), and other 

technology standards are being formulated and co-ordinated by the ISO (International 

Standards Organisation). In GIS terms, the stranglehold of proprietary systems is the 

biggest impediment to the development of GIS as a fully fledged research tool. The 

Open GIS Foundation (OGIS) (Buehler & McKee, 1996) has been established to 

provide the basis for an extensible software system, free from the closed system 

architecture, "black box" functionality and file interchange problems which are the 

bane of researchers using current proprietary systems. 
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The current mode of GIS application project development is short-term, ad hoc, 
unstructured and system-centric. Figure 6.5 illustrates the concentric methodological 

support structure which is required for the development of a successful GIS. Outer 

support layers ensure the success of consecutive inner layers. Without the outer 

layers of an international infrastructure, inner, individual system, layers, will not be 

successful long-term. Figure 6.6 summarises the current development of 015, 

whereby the technology is adapted as a useful, but relatively peripheral tool. Initially 

the organisational structure remains the same until there is a realisation that the 

technology is indispensable, but requires substantial changes in working practises in 

order to evolve and to allow integration with other systems. Figure 6.7 shows which 

of the necessary supporting layers exist in any form at the present time. Factors 

illustrated in italics are those which exist, but to a highly inadequate degree. Many 

important factors are entirely absent. Figure 6.8 illustrates the evolution of change at 

present from the system outwards. The ideal evolutionary path, from the 

infrastructure inwards, is also illustrated. Progress in practical terms will involve an 

iterative process involving both of these, with a realisation of what is require from 

systems, and an attempt at an international level to organise data and strategies to 

accommodate these requirements. The present system-centric evolutionary direction 

often results in disillusionment with the system because as projects progress it 

becomes more difficult to adjust the often incompatible data classifications and 

structures to new demands and the input of new data. Thus a systems response to 

growing demand becomes slower and more difficult to achieve when expectations of 

the system are growing. 

System developers in the scientific field are limited in the number of system 

development models they can follow. The application, in scientific contexts, of 

structured methodologies to the design of information systems for exploratory science 

usually fails (Lucas, 1975; Preheim, 1992). Most large and successful systems are set 

up for business where needs, and operations, are very different from those of the 

researcher. Onsrud and Pinto (1989) note that in a typical GIS journal paper, the 

author's main aim is to implement a system successfully, not to carry out research. 

6.9 Palaeoenvironmentai Information Strategy 

There are several key stages, therefore, which are required in the establishment of an 

information infrastructure for palaeoenvironmental data and research to facilitate the 

adoption of the PERIS model. A global information strategy for palaeoenvironmental 

information should be established to avoid the current development of fragmented un- 
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Figure 6.8 Evolving Methodological Support Structure for GIS 
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coordinated data and software, limit the misuse of tools ('black box' GIS functions, 

and data without metadata) and therefore the loss of crucial information. The order in 

which developments must take place is also important. Figure 6.9 summarises the 

main stages of development which must take place. Initially there must be changes in 

organisational co-ordination and an international forum must be established to 

oversee progress. This progress should occur in stages listed below: 

Establishment of an international network and a series of committees. 

• These committees would be responsible for carrying out the necessary 

planning and decision making, disseminate information, looking into 

investment and develop standards and protocols. These should probably be 

coordinated by a major palaeoenvironmental research body such as the 

International Union for Quaternary Research. 

• The national scientific bodies, institutes, groups and individuals who have an 

interest in palaeoenvironmental information and who use and collect data 

should be identified. 

• The data and methods used by these palaeoenvironmental groups and 

individuals, which will be required and used in PERIS should be identified. 

• The PERIS model should be elaborated and a framework developed for the 

data and methods which can evolve into a set of data models. 

• Protocols, standards and methods should be developed for the capture and 

storage of these data and methods. 

System Development 

• Adequate funding and personnel should be identified and prepared for system 

development. 

• Suitable hardware and software should be identified for the system 

implementation. 

• Prototypes should be developed along with validating frameworks, to assess 

the utilisation of GIS. Prototype testing should be carried out by as many 

users as possible over a broad cross-section of the palaeoenvironmental 

community. 

• Identification of further developments and plans to undertake these 

developments should then be carried out. 

6.7 Conclusions 

The object oriented approach, and the infrastructure to support it, provide a 

framework for reorganising palaeoenvironmental reconstruction which would fully 
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utilise the potential of all data available and provide a much more rigorous and 

flexible means of performing palaeoenvironmental reconstructions and developing 

research, although formal evaluation of will be the next requirement. Such an 

approach has always been conceivable, but this route has never been followed before 

because: 

the quantity of data required to manipulate multiple objects in a meaningful way 

has not previously been available; 

the incentives and pressure on the scientific community in terms global 

environmental change have never been so great 

but most importantly, 

computer systems which could manage the information and carry out the 

complexity of rule implementation, data gathering, expression of 4-d ideas and 

visualisation of data, were not available. Manual methods are very difficult to 

apply, and this is impossible to achieve with any rigour. 

It is clear from the discussion of infrastructural issues, that unless an international 

context is established, each individual project GIS will have short-term success. 

Scientific data management is partially a scientific task (Strebel et aL, 1994) and 

some of the functions required for palaeoenvironmental research are unique to the 

science. Therefore unless the palaeoenvironmental scientific community takes it upon 

itself to make developments in this field, most will not be forthcoming. 
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Chapter 7 Conclusions 

7.1 Palaeoenvironmental Science Needs (MS 

The demands on palaeoenvironmental research to answer questions about global 

environmental changes have led to new information handling requirements. At the 

level of field observations global positioning systems, electronic surveying 

equipment, satellite imagery and field-based computing systems are improving the 

accuracy and efficiency of data collection. In the laboratory, computers are being 

used to record digital measurements directly. In deriving palaoenvironmental proxy 

values from this data, mathematical techniques supported by the speed and accuracy 

of computer processing are enhancing scientists ability to interpret their results. 

Finally mathematical models of environmental processes have allowed scientists to 

gain better insights than data alone will allow. The large numbers of calculations 

required to develop and run these models have only been possible with the advent of 

computing technology. 

However, despite exploiting computers to record and process field and laboratory 

data, reconstructing palaeoenvironments spatially is still largely being achieved using 

manual methods. The quantity of complex information which scientists must 

synthesise could be much better exploited through improvements in several areas. 

Information technology can be exploited to meet these requirements. (ITS, in 
particular, can provide the spatial framework to support the management and analysis 

of data for palaeoenvironmental reconstructions. This thesis provides a conceptual 

overview of GIS in the context of palaeoenvironmental research. 

7.2 Demonstrable GIS Benefits 

The two case studies discussed in Chapters 4 and 5 clearly exemplify the benefits of 

(ITS. Both case study data sets were used to derive inferences about the last 

glaciation which are closely related. However they exhibited very different 

information handling and analysis requirements. For these reasons they provided a 

representative case history against which the potentials of GIS could be tested for 

handling the properties of palaeoenvironmental data. 

The GIS substantially improved many aspects of palaeoenvironmental reconstruction. 

The provision of a common spatial reference system allowed the integration of a 

number of datasets from very different sources. The synthesis was achieved over a 

larger area, and with greater accuracy than had previously been possible using manual 
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methods. This was the first time such detailed datasets had been synthesised over 
such an extensive region. 

A set of programs were developed to analyse and display the data. The programs are 

user-friendly, flexible and interactive. They allow the user to experiment with 

different analysis parameters and to visualise the data and analysis results in ways 

which are entirely user-controlled. The numbers of analysis scenarios and data views 

that can be created, are far in excess of any previously achieved. These scenarios can 

be generated in a fraction of the time required for manual synthesis and allow the user 

to focus on the analysis and results. Manual methods require the user to transcribe 

information between differently scaled maps. Significant amounts of time are spent 

reducing the detailed information, through generalisation, to a scale which is 

manageable. This generalisation is achieved by eye and is not only time-consuming 

but hard to achieve without significant information loss. The (MS processing imposed 

rigour on the analysis results which was not possible using manual methods. The 

reconstructions made using this information are therefore demonstrably better 
founded. 

The results of the analyses and the original data were very easy to visualise in the 

computing environment. They could be displayed on screen, or printed onto paper 

quickly and easily. The three dimensional display of the relative sea level and 

isostatic surfaces demonstrated how visualisation can be used to enhance exploratory 

data analysis and theory generation. These surfaces can be displayed together with 

coastline and river information, and even combined with the glacial information if so 
required by the user. 

GIS provides a flexible spatial framework within which this data can be managed, and 

used. It is held in its original, detailed form, but integrated over a large area. It is 

simple to apply this information to new problems because it can be transformed, 

scaled and analysed accurately and quickly. Particular areas of interest can be located 

and extracted very easily. It is also easy, to allow co-workers in disparate 

geographical locations to access the information through digital networks. GIS 

significantly improves the management, analysis, visualisation and dissemination of 
palaeoenvironmental research. 

7.3 Further Developments are Urgently Required 
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Although the case studies clearly demonstrate the value added benefits of using GIS, 

several significant issues are apparent. These issues are fourfold. They concern 

inadequacies in the scientific method; the conceptual developments required to 

exploit GIS fully; limitations imposed by the research infrastructure; and the 

limitations of proprietary GIS to fulfil scientific requirements. 

The limits of the current research paradigm are currently being reached. It is 

necessary to go beyond the cognitive abilities of the individual to synthesise large 

amounts of complex information unaided. The need to consider the implications of 

palaeoenvironmental change through time on a global scale demands new ways of 

managing information. This is necessary in order to integrate different data sources 

and use information to its full potential. The international and interdisciplinary nature 

of this research means that scientists will need to use data that they did not derive. 

They will need detailed metadata in order to understand this data and to be able to 

integrate it effectively. The current research paradigm makes no provision for 

structuring the recording or exchange of this metainformation. 

There are several long-term consequences of this omission. In the first instance 

integration over large regions may result in unsound reconstructions. Secondly 

scientists will be unable to apply old' data to new ideas. Given the cost of data 

collection, this is both uneconomic and limits the amount of information available for 

testing models. Thirdly, the extent to which scientists can exploit GIS will be 

curtailed. The resources required to establish an information system are too onerous 

to be undertaken at the beginning of individual projects. In order to reap the benefits 

of an information system it must support data use which encompasses many projects. 

This means that data must be incrementally integrated into the central resource. 

Variations in information requirements cannot be incorporated into the system if they 

were not accommodated at the outset in the system planning and design stages. 

Methodological developments are required to structure this information in terms of its 

quality and its potential use. This framework could impose certain international 

standards on data documentation to ensure that the most necessary information is 

recorded at the data collection stages. These standards would facilitate both data 

sharing and the design and planning of GIS for long-term use. 

However in order to fully exploit GIS other conceptual issues must be addressed. 

What data models are to be used to represent the data items and reconstructed features 
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at different scales? The geomorphological case study showed that different 

representations of geomorphological features are appropriate for different scales of 

analysis (morphological features which have height and areal extent at one scale, 

versus lines comprising two points at another). How to accommodate different 

definitions of boundaries for features and then represent these, is another issue. 

Current proprietary GIS do not support the storage or use of complex metadata. 

Neither do they incorporate much of the functionality required for scientific research. 

Most are not user-friendly and incorporate algorithms which are not properly 

documented. They also operate, for the most part, on a two-dimensional, layer-based 

paradigm which is unsuitable for the accommodation of natural environmental 

models on a geoidal earth. Developments which address these shortfalls are required. 

7.4 The PERIS Model 

The benefits of the digital age must be exploited by palaeoenvironmental researchers. 

Chapters 2 and 3 reviewed the palaoenvironmental requirements and GIS issues 

associated with the planning and design of a palaeoenvironnmental information 

system. The case studies described in chapters 4 and 5 demonstrate these issues in 

some detail. The requirements of palaeoenvironmental research illuminate the 

shortcomings of GIS in the analytical domain, and the strengths of GIS and its 

technical requirements highlight the shortcomings in the organisation and practice of 

palaeoenvironmental research. From this, the above sets of information handling, 

research infrastructural, and GIS issues, emerged. These issues form the basis for 

planning a specially designed PalaeoEnvironmental Reconstruction and Information 

System (PENIS). 

The PENIS model is proposed as a suitable framework for exploiting the benefits of 

GIS whilst addressing the current shortfalls. It is based on object oriented concepts 

which appear to offer the best means of handling environmental features. Most work 

on extending GIS into the temporal dimension is also based on object orientation. 

Although it is not developed in detail and requires further, more formal, evaluation, it 

offers a conceptual model for palaeoenvironmental research. It also incorporates 

some ideas for the development of an international palaeoenvironmental data 

infrastructure. An agenda is suggested to develop the infrastructural support and the 

system model, which ensures that databases and approaches will be compatible 

internationally but will encompass the flexibility required for scientific research. 
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The new model facilitates individual exploration of data, tailored to user 

requirements, and much more freedom for experimentation of individual ideas 

through the ability to define many of the system variables and objects in individual 

user terms and to manage large quantities of data efficiently and effectively. 
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The global information network 

Large digital databases of scientific data have been available for over three decades 

(Kemp, 1993). The space agencies have led the way in developing large systems to 

maintain archives of satellite remotely sensed data. For example in the US; there are 

three main examples; EROS (Earth Resources Observation Systems) and EOSAT 

(Earth Observation Satellite Company) archive and distribute Landsat data and the 

EQS (Earth Observing System) Programme gathers data from US, European and 

Japanese satellites. These programmes have instigated work on methods of storing, 

retrieving and managing very large databases but have not had to address the problem 

of integration with other thematic datasets. 

The following sections provide a summary of what exists at the moment in terms of 

hardware, software, data and organisation with a critical appraisal of how successful 

these projects have been, what issues have arisen and to what extent these issues are 
being addressed. 

1.1 SEQUOIA 2000 

Probably the most comprehensive development towards an operational global 

information system, of direct relevance to palaeoenvironmental science and related 

studies, is the SEQUOIA 2000 Project which is "a long term research project to 

develop advanced computer technologies in support of global change science." 

(Gardels, 1994). The project has tremendous technological resources at its disposal, 

being sponsored by the Digital Equipment Corporation. The overall strategy 

incorporates direct input from computer scientists and earth scientists, working in 

collaboration, to develop the best possible tools and approaches which reflect user 

needs. The project covers the development of all tools, from network and file 

systems, to database management systems, storage and visualisation with the aim of 

tackling the issues of large file sizes, dispersed research and complex science all of 

which are fundamentally relevant to palaeoenvironmental data. Importantly, the 

project also incorporates the Open GIS Foundation's Open GeoData Interoperability 

Services testbed (OGF, 1994). The importance of OGIS in freeing system users from 

the closed architecture and confidential format and software restraints of many system 

vendors has already been discussed (Section 3.3.2.4.1) 

1.2 The European Union 

The European Union has made a concerted effort to provide the basis for a successful 

integrated European Geographic Information Infrastructure (EGil). Whilst the 
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mainstream effort has been to direct a unified approach to the collection, storage, 

maintenance and dissemination of Geographic Information, the practical 

implementation of these aims has itself been divided and resulted in a plethora of 

bureaucratic organisations and acronyms, with apparently overlapping aims. 

Historically, the first phase was an effort to produce comprehensive datasets of 

economical, environmental and communicational significance for all members of the 
European Union. 

CORINE was initiated by the Commissions of the European Community (CEC) in 

1985 with the objective of gathering co-ordinating and improving the consistency of 

information on the state of the environment in the European Community. There have 

been two main approaches to this objective. One has been the development of 

procedures for the collection, standardisation and exchange of data in the community 

and the second has been the establishment of an information system capable of 

providing policy-relevant information on the EC environment The main task of the 

CORINE central team has been to harmonise methodologies and subsequently to 

assemble the regional and national datasets into a consistent EC or European wide 

database. Within the programme a number of digital databases were created with the 

purpose of giving information on the status and the changes of the environment while 

ensuring compatibility between countries. CORINE Land Cover (the collection of 

Land Cover information) is one of the projects within the programme. In 1994 the 

size of data holdings in the CORINE information system was almost 2 gigabytes. 

EUROSTAT is one of the Directorates-General of the European Commission. Its 

mission is to provide the European Union with a high-quality statistical information 

service. It has embarked on a programme of standardising concepts, terminology and 

methodologies in addition to the collection, processing and distribution of data for a 

heterogeneous population of users who require data for different purposes, in different 
forms and at different scales. 

GISCO (Geographic Information System of the Commission of the European 

Communities) is the follow-up to the CORINE major computing project and operates 

within EUROSTAT. It was set up to identify user requirements concerning basic data 

to be used in GIS applications at the Commission and to propose strategies for, and to 

carry out, the acquisition, compilation, maintenance, updating and distribution of 

reference data, and undertake spatial analysis and spatial problem solving (de Esteban 

Alonso, 1995). GISCO is developing a wide range of value-added products resulting 
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from the combination of georeferenced data and a statistical information System 

(European Statistical System, ESS). The data are maintained in a distributed fashion 

with certain Directorate Generals being responsible for particular datasets. The data 

are available free, or at a cost, depending on the user and the purpose to which is they 
are being put. 

EUROGI (European Umbrella Organisation for Geographic Information) was 

initiated in 1994 to "support and represent all GI groups at the European level" and 
,.
to stimulate, encourage and support the development and use of GI at the European 

level and to become the official partner for GI with the relevant European 

Institutions" (Committee for Investigating the Feasibility of Creating a European 

Umbrella Organisation for Geographical Information, 1994). It represents a practical 

means by which issues such as data standards, data access, data integration and 

legalities could be addressed. It also aims to co-ordinate, focus and maximise the 

research and development effort within Europe and, furthermore, to provide a contact 

point for global harmonisation of digital data and issues. However the concern is 

mainly focused on the provision of economic and present day environmental data, the 

reduction in duplication of effort in data collection across Europe, and the integration 

of data on a European-wide basis via standards for increased international co-
operation and innovation. 

1.3 GRID 

The Global Resource Information Database (GRID) (first conceived in 1985) supports 

the United Nations Environment Programme (UNEP) and UNEP's Environment 

Assessment Programme to address increasing environmental hazards and degradation 

of the planet. The GRID network seeks to provide up-to-date and reliable, 

georeferenced environmental data on a global scale across a network of co-operating 

centres providing environmental information for decision- and policy-making. GRID 

provides data cataloguing, archiving and analytical services using GIS, remote 

sensing, database and telecommunication technologies. Projects address the issues of 

data collection, archiving, management and analysis for present day and reference 

environmental information, some of which is of relevance to palaeoenvironmental 

sciences. One of GRID's prime functions is the compilation of key global and-
regional environmental datasets produced by monitoring activities, in particular the 

Global Environment Monitoring System (GEMS). More importantly one program 

addressed the issues of error, quality and integrity of digital geographic data with 

reference to the Digital Chart of the World (Langaas and Tveite. 1994), data which 
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has facilitated many continental and global scale projects and is a vital framework 

data set for environmental and palaeoenvironmental studies. Palaeoenvironmental 

studies and data are not considered as part of the programme, but GRID demonstrates 

the successful co-operation of international centres for the management of large 

varied thematic datasets which have global coverage, are regularly updated, and are 

globally accessible at low cost, and thus has lessons for palaeoenvironmental 

scientists. Importantly, they also provide GIS analysis facilities. However it is not 

clear how effectively these datasets are integrated. More recently there has been a 

realisation that no single comprehensive metadata system exists and that the 

development of such a system is crucial to the continued evolution of GRID. An 

initiative has been set up to address this increasingly serious deficiency, and plan a 

comprehensive metadatabase. 

1.4 NOAA 

One environmental programme which does provide palaeoenvironmental data is the 

National Oceanic and Atmospheric Administration (NOAA) established in 1970 as 

part of the U.S. Department of Commerce. Its intention was the creation of a civil 

centre for expanding the effective and rational use of ocean resources for monitoring 

and predicting conditions in the atmosphere, oceans and space, and exploring the 

consequences of natural and manmade environmental change (Clark and Kineman, 

1988). Whilst it is very much United States oriented, it was recognised that 

supporting global databases were required for effective accomplishment of NOAA's 

aims. Once data have been used by its operational components the data are available 

to the scientific community. Other data from external sources, which are not always 

used by NOAA are also compiled as a result of international agreements and projects 

and made available. World Data Centre-A (Section 3.4.1.5 ), parts of which are 

managed and run by some of NOAA's operational components, provides 

palaeoclimatological data and related items such as free software, abstracts of funded 

proposals, address exchange, opportunities to add individual datasets to the central 

data bank and indices of other sites of interest. It also provides an extensive range of 

palaeoenvironmental information which could act as a basis for development of a 

fully fledged palaeoenvironmental system. However, once again it does not appear to 

address the issues of data integration and comprehensive metadata management. The 

datasets, collected through a process of voluntary contributions, mainly comprise 

reference datasets and standards such as the GRIP ice core data (e.g. Wolff et at, 

1995) and Fairbanks sea level curve (Fairbanks, 1989), and summary compilation 

datasets such as the CLIMAP project 18K database (CLIMAP, 1981). 
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1.5 The World Data Centres 

World Data Centres (WDCs) were the result of an international effort towards the 

collection, archiving and dissemination of geophysical and solar data during the 

International Geophysical Year 1957 (ICSU, 1987), and were the forerunner for 

global data collection, storage and dissemination. The numbers of world data centres 

and their locations are as follows (Allen, 1988): 

WDC-A - located in US (9 centres) 

WDC-B - located in Russia (2 centres) 

WDC-C I - located in Europe (8 centres) 

WDC-C2 - located in Japan (8 centres) 

They are the result of a non-Governmental initiative, based on voluntary scientist-to-

centre submission of data according to agreed standards developed by relevant 

international scientific bodies in each discipline. They have now been in operation 

for almost forty years and originated mainly in the pre-computer era originally for 

geophysical data (meteorology, snow and ice cover, geomagnetism, gravity, solar 

activity etc.). Some WDC-C's were mainly specific data analysis and processing 

services rather than comprehensive archives. The central monitoring of data flow and 

copying between centres and scientists was co-ordinated in Brussels. In 1980 a 

decision was reached by the ICSU (International Committee of Scientific Unions) for 

a concerted move to digital databases. Originally there was a trend for a few 

comprehensive data centres because it was more economical to centralise the costs of 

staff, resources and specialised equipment which was required. However cheaper, 

higher capacity, faster Personal Computers (PCs) and communications networks, and 

the advent of improved software allowing the automation of many time-consuming 

jobs and processing by less highly trained personnel has heralded the possibilities of a 

trend reversal allowing an increase in centre numbers within Universities and 
Institutions (Allen, 1988). 

The original WDC principles are still active and are based around a free data 

exchange policy controlled by international data standards of accuracy, clarity and 

durability (e.g. Chrisman, 1984). It was based on the premise that planning should 

include provision for data collection, archiving and distribution and operated on a 

principle that data are completely accessible to all scientists in all countries without 
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exception. There are some charges related to handling costs to those researchers who 
are not sources of data or for very large or specialised requirements. 

These centres are significant because they hold and manage very large data volumes 

of both palaeoenvironmental data and many other datasets relevant to 
palaeoenvironmental reconstruction. These other datasets are present day 
comparative or reference datasets. A further significance concerns the principles of 

accessibility of data to scientists, on which the data centres operate in terms of 

organisation, data exchange and dissemination. The way in which these aspects have 

evolved is worth noting. They are also closely related to NOAA and underpin the 

significant International Geosphere Biosphere Project (IGBP). The International 

Council of Scientific Unions (ICSU) supported the setting up of the International 

Geosphere-Biosphere Programme (IGBP) (Evteev and Rostotsky, 1985), often 

referred to as Global Change, to 'describe and understand the interactive physical, 

chemical and biological processes that regulate the total Earth System, the unique 

environment it provides for life, the changes that are occurring in that system and the 

manner by which these changes are influenced by human actions' (Report of ad hoc 
Planning group for IGBP (1986), quoted in IGBP (1988)). 

1.6 G1SDATA 

One of the most significant initiatives recently has been the European Science 

Foundation's GIS Data Integration and Database Design Project (GISDATA). This is 

supported by fourteen European national research councils and has good collaborative 

links with other GIS research initiatives such as the NCC1IA (National Centre for 

Geographic Information and Analysis) of the US National Science Foundation as well 

as agencies such as EUROSTAT and the European Environmental Agency. It was 

launched in January 1993 and is due to run until the end of 1996. The programme 

aims to address the ever more pressing issues of European-wide limitations in spatial 

data integration, database design and social and environmental applications, to 

facilitate the development of appropriate methodologies for GIS research at the 

European level and to build-up a European network of researchers with particular 

emphasis on young researchers in the GIS field (ESF, 1991). It is important that those 

involved in palaeoenvironmental studies are involved in this sort of initiative 

otherwise the special needs of palaeoenvironmental studies will not be well 
represented in the output from these projects. 

1.7 Project Alexandria 
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The Alexandria Project is one of six projects sponsored by the US National Science 

Foundation (NSF), the Department of Defense's Advanced Research Projects Agency 

(ARPA), and the National Aeronautics and Space Administration (NASA), as part of 

the inter-agency Digital Library Initiative (DLI). It is a consortium of researchers, 

developers and educators exploring a variety of issues related to a distributed data 

library for geographically-referenced data, the centrepiece of which is the Alexandria 

Digital Library. This library is on-line and accessible through the web, although still 

in the developmental stages, and currently incorporates a text data set of maps and 

imagery for California. It is the most significant example of moves to design a 

database which supports spatially indexed data for browsing and down-loading 

1.8 GENIE 

One attempt to provide a user interface and metadata browser, has been the GENIE 

(Global Environmental Network for Information Exchange) project. The project 

began as a government funded research project for the provision of a Global 

Environmental Change Data Network Facility to construct a fully-distributed multi-

site metadata capture and enquiry system.. This project has been a valuable step 

forward towards assembling information about data bases with collaboration from 

scientists working with the data and managing the data centres. The system is still 

under development and promises to offer a flexible and innovative system which is 

distributed in nature and has an ability to search via concepts as well as characters. It 

is planned that it will retain a complete history of transactions making it possible to 

identify what was said to whom at any point in time. However, it has run into 

financing difficulties and in terms of its aims some fundamental organisational 

changes are required in addition to the metadata management and user interface 

facilities it provides. What is required is a robust, comprehensive framework within 

which would reside a central index for global information. One of the main 

drawbacks is that the system is de-coupled from the data on which it holds 

information and therefore this information is often no longer a true representation of 

the data holdings, and those managing the data receive no feed back on queries made 

about their data (Medycky'j-Scott et aL, 1996). 
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The User Interface for Rose Diagram and Lineation Density Calculations 

This interface is written using the ARC Macro Language (AML). which calls 

FORTRAN programmes to undertake the rose diagram and lineation density 

calculations. The analysis is described below in the stages represented by the boxes 

in Figure 4.9. 

The user is asked whether they wish to analyse the lineations, or merely view the 

data and the results of previous analyses. 

If the user chooses to undertake analysis a menu appears which displays the names 

of the different data layers available for analysis. The user can choose any of these 

layers (they contain different lineation interpretations at different scales). Once a data 

layer is selected there is an option which allows the user to select a smaller sub-area 

for the analysis. This is useful because analysing the entire Scandinavian area can 

take several minutes of programme run time if the machine is busy. To do this the 

system moves to the arcedit module, the area covered by the data layer is displayed 

and the user must select two corner points to define the analysis window. The 

programmes use these x, y coordinates to "cookie cut" an area from the data layer and 

create a new data layer. 

The user must then indicate through a series of questions which particular rose 

diagram analyses they wish to make. Yes/No variables are then set for each analysis 

type which are passed to the FORTRAN programme which undertakes the analyses. 

Some subroutines are not run if certain analyses are not selected which saves time. 

They are also asked what window cell size they would like for each rose diagram 

analysis, to allow different degrees of generalisation and the size of units they would 

like used for the rose diagram. This option has been added because in areas of intense 

lineation density neighbouring rose were being obscured, but in areas of low lineation 

density, the diagrams were sometimes too small to interpret using a standard unit size. 

The FORTRAN programme operates in the following way. The AML 

UNGENERATE command is used to produce an ASCII file of x, y coordinates for 

the lineations (two coordinates for the end of each lineation). The FORTRAN 

programme is then called which sets up a three dimensional array. Each element in 

the array corresponds to a directional band within a particular rose diagram square 

(the 3 dimensions of the array are the 36 directional bands, the number of cells in the 
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x direction, and the number of cells in the y direction). The programme then reads 

each of the lineations in turn from the ASCII file, calculates within which grid square 

the centroid of the lineation is located, and within which five degree directional band 

the lineation direction lies and increments an element of the array accordingly. Once 

all lineations are read and all directions and locations calculated, a subroutine is called 

which calculates the coordinates of the rose diagrams for each grid cell area using this 
- 

information and the rose diagram unit size given by the user. The lineation density 

calculation operates in an almost identical way but only a two dimensional array is 

required to calculate the number of lineation centroids which fall within each grid 

cell. Control is then returned to the AML programme and the rose coordinates are 

then written to an ascii file and imported into the Cr5 using the AML GENERATE 

command. 

The user is then asked whether they wish to view the diagrams or continue with 

further analyses. This option is added because viewing the diagrams means moving 

to the ARCPLOT module which is very slow, and it may be preferrable to continue 

with the analyses and view the results in a single session rather than move between 

modules several times. 

The user is asked whether they wish to create lineation density plots and is invited 

to enter a grid cell resolution for these plots. The AML programme does a quick 

calculation to check the grid cell resolution against the size of the data layer to ensure 

that a reasonable value has been entered and requests that the user enter a different 

value if this is not the case. 

The lineation density calculations proceed in a similar manner to those of the rose 

diagram calculations using FORTRAN programmes as described above. 

The user is asked whether they would like to browse the results of the calculations 

and generate plots of these results. All these operations are performed through the 

ARCPLOT module. 

Finally the user has the option to exit, or to perform further analyses. 
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2 I 
3 / called from arc with the new arc command tINS 
4 /* or from system with shell script Sins 
5 R starts analysis and plotting of lineations programs 

/ runs linasl 
7 &amlpath /home/e0e017/arc/glac/linsiam] 
B sterminal. 9999 
9 &thread eCreafe Un Sr lin.aml 
10 &thread edelete eseif 



tend 

tiE variable .new cov] &then 
&sv .lincov = %.newcov% 

Say .qros = query 'Create Various Rose diagrams for selected area'] 

SiE %.qros% &then 

I' create rose and principle direction coverages 

Sr rnewroslin,aml 

Say .qden = [query create Lineation densities for selected area'] 

Sif %.qden% &then 

1a create lineation density plots 

Sr linden. aml 

Send 

1* view plots 

Siabel view 

Say vw = (query 'View plots'] 
Sit %vw% &then 
&do 
Sr rviewplot.ami 
&sy ,vcv = . false. 
&goto view 

Send 
&sv .vcv = false, 

1* create plotfiles of rose, principal direction and lineation density 
I' plots 

Slabel hardcopies 

Say quer = iquery 'Create and print hardcopies'] 
Sit %quer% = true. &then 

ado 
Sr rhacdpiot.ael 
&goto hardcopies 

Send 

&sv qbeg (query 'Perform further analyses') 
Sit %qbeg% Sthen 

edo 
Ss covsel = ,true. 
&goto begin 

&return 

Send 

J. / lin.ami 
2 1' 
3 I' called from stactlin.aml 
4 I' Main controlling Ant which creates rose diagram principle direction 
5 I' and lineation density plots for user-defined area 

7 1' ensure that globals don't already exist 

9 &amlpath /homelegeol7/arc/glac/lins/aml 
10 
11 &r setpaths.aml 
12 
13 &terminal 9999 
14 
15 &sv covsel query 'Do you wish to do some analysis YIN] 
15 
17 /' set variable to show status of arcplot 
18 &sv . vcv= false. 
19 
20 &label begin 
21 
22 tiE variable .newcov] &then 
23 &dv %,newcov% 
24 tiE [variable .lincov] &then 
25 &dv %.lincov% 
26 tiE [variable .qcov[ &then 
27 &dv %.qcov% 
28 tif %covsel% tthen 
29 
30 &do 
31 
32 &label chcov 
33 
34 &type Select a coverage 
35 
36 &sv .lincov = (getcover IhomeIegeol7IarcIglacIlins) 

— 37 
ON 38 1' look at coverage 

39 
40 &sv .vcov (query Do you wish to view this coverage] 
41 &if %.vcov% &then 
42 ado 
43 &thread &creete aplor &r linaplot,arnl 
44 &sv -vcv true. 
45 tend 
46 &sv .qcov t,usry Do you wish to use this coverage] 
47 
48 sit %.qcov% athen 
49 &qoto chcov 
50 
51 I' decide whether to clip down the coverage or not 
52 
53 &sv .qclip = [query Take a subsection of this coverage] 
54 
55 tiE %.vcv% tthen 
56 quit 
57 &sv ,vcv false. 
SR 
59 1* if coverage is to be clipped quit arcplot and run the clip eel 
60 1* to create a new coverage %.nwwcov% 
61 
62 Sit %.qclip% &then 
63 
54 edo 
65 
66 I' create clip box coverage and clipped coverage 
67 1' Ihome/egeol7larclglac/linslrdclipl%newcov% 
68 I' according to the user-defined limits 
69 
70 &r rclip.aml 
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r ciip.aml 

7' Arcedit 
7' AML for clipping down big coverages to create 
7' smaller ones for which rose diagrams and diagrams of principle 
7' directions can then be created 
&amlpath % linpath%/aml 

&severity &error &routine error 

aif (exists %.linpath%/clip_c -coven ethen 
kill %.linpath%/clipc 

arcedic 
diap 9999 2 
&terminal 9999 

7 if program is not being called from another AML then get a cover to clip 
7' select large coverage from which to create clipped coverage 
7' from menu which appears at top right of screen 

/'&if not (exists %backcnvar% -cover] &fheo 

I' is .beckcover getcover %.linpath%I 

/'&else 

&s ,backcover* %.lincov% 

plot the big coverage and any other related datesets (coastlines etc) 
1' to locate the area for clipping 

mapex % backcnver% 
beckcover %.backcover% 3 
backcover %.basepath%/ceurcjcc 1 
backenv arc 
draw 

7* create clip box to clip the large coverage with, to create the 
7* smaller coverage 

7* create coverage using large coverage bnd file 

create %. linpath%/clip_c %backcover% 

7' choose to draw a box of a single arc 

editfeature arc 
arctype box 

7' get lower left and upper right coordinates of box 
I select lower left coord 

&rype Select the lower left point using the ..use 
&getpoint &map &mouse 

7' read mouse-selected points into variables 

&sv llx %pnt$x% 
isv fly %pnt$y% 
Estype selected point is %llx% %lly% 

7* select upper right coord 

itype Select the upper right point using the souse 
&getpoint 5*map mouse 

I' read mouse-selected points into variables 

isv urx %pnt$x% 

72 isv ury %pnt$y% 
73 itype selected point is %urx% %ury% 
74 
75 1' reed these points into the buffer which will then be used by 
76 7* the add command 
77 J usage is: &pushpoint key xcoord ycord 
78 
79 &pushpoint 2 %llx% %lly% 
80 &pushpoint 2 %urx% %ury% 
81 &pushpoint 9 0 0 
82 add - 

83 
84 
85 7* draw to check where the clip box is 
86 
87 setdrawsymbol 0 4 
88 
89 ipause 
90 
91 7' exit arcedit 
92 
93 c?iit 
94 y 
95 y 
96 
97 / build the clip coverage 
98 
99 build %.linpath%fclip_c poly 
100 
101 itype clip box coverage successfully created 
102 
103 7*  show coverage names so a name isn't chosen which already exists 
104 
105 /*lc  %clippedpath% 
106 
107 7* ask user for new coverage name 
108 
109 f'&sv .newcov s  (response 'Enter new clipped cover name' I 
110 7*  elf (exists %.clippedpath%/%.newcov% -coverl ithen 
111 7' kill %clippedpeth%/%.newcov% 
112 
113 isv newcov = (entryneine %,lincov%) 
114 isv newcov = %.clippedpath%/%newcov% 
115 kif (exists %.newcov% -cover] ithen 
116 kill %.newcov% 
117 7* clip large cover with clip box cover 
118 
119 clip %,backcover% %linpath%/clipc -. 
120 %.newcov% line 
121 
122 7' kill clip box coverage to save hassle and space 
123 
124 kill %.linpath%/clip_c 
125 
126 iworkapece %.linpath%/eml 
127 
128 /'arcplot 
129 /'disp 9999 2 
130 /*mepex  %.clippedpath%/%.newcov% 
131 /'linecoior 3 
132 /'arcs %clippedpath%/%.newcov% 
133 /'linecolor 1 - 

134 /5arcs %basepath%/ceurc_lcc 
135 /'ipsuse 
136 
137 is ,li000v = %.newcov% 
138 
139 &return 
140 
141 &routine error 
142 &thread icreate term &try 
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f* gridplot.arnl 

/ plots .dencov density coverage on screen in arcp1ot 
: called by linden.aml 

&amlpath /home/egeol7/arc/glac/lina/aul  

disp 9999 2 
mapex 
I'pageunits cm 
textquality proportional 
textfont 93715 
/*pagesize 29.7 42.0 

/-box 0.9 0.9 28.8 41.1 
t'maplimics 0.9 4.0 28.8 35.0 
mapposition can cen 
Pmapunits meters 
/'mapscale 5000000 
linecolor 1 
shadeset /hcrne/egeo17/arc/11ac/ljns/lindeflfblue shd 
gridnodacasymbol 1 
gridshades /home/eqeo17/arc/g1acflin5/ljn8/% ,dencov%_d value 
1 ins/linden/density. rmt 
linecolor 8 
arcs /home/egeo17/arc/bruap/ceur0 j, 0  
/*linecolor 1 
/*box 2.0 2.5 7.0 2.6 
/'line 2.0 2.5 2.0 2.7 
/line 3.0 2.5 3.0 2.7 
/*line 4.0 2.5 4.0 2.7 
/-line 5.0 2.5 5,0 2.7 
/'line 6.0 2,5 6.0 2.7 
/*line 7.0 2.5 7,0 2.7 
/*line 2.0 2.55 3.0 2.55 
/'line 4,0 2.55 5.0 2,55 
/-line 6.0 2.55 7,0 2,55 
/*move 2.0 3.0 
/'textsize 0,3 0.2 
/*text 0 cc 
/'move 3.0 3.0 
/*text 50 cc 
/*move 4.0 3.0 
/'text 100 cc 
/*move 5,0 3.0 
/ .text 150 cc 
/'move 6,0 3,0 
/*text 200 cc 
/*move 7.0 3,0 
/*text 250 cc 
/*move 7.5 3,0 
/*text km cc 
/*move 4.5 3.5 
/*textsize 0.4 0.25 

/*text 'Scale 1:5 000 000' cc 
/'move 14.85 37.0 
/*textsize 0.9 

/*text 'Lineation Density Plot of Satellite Napped Landforrss' cc 
/*linecolor 1 
/*keyposition 2.0 20.0 
keyshade /home/e0e017/arc/glac/lins/linaen/de05jty key 
/'move 2.0 22,0 
/textsize 0.5 
/'text 'Lineation' 11 
/'move 2.0 21.0 
/*text 'Densities, 11 

/home/egeo17/arc/g1c/ 
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tsLlpIUL anti 

/' called from linaml 
I this program creates hard copies of analyses 
/ it is called by lioaml 
/5 it sets the angle of the plot (portrait or landscape) 

and the size/type of the plot (e3 colour/a4 tIe) 
I' eventually it will be able to plot any combination 
I' of any analyses plots including plots created during 
I' past sessions. 

&amlpath /home/egeol7/arc/glac/l1ns/am1 

Icall whichplots 

scall angleplot -  

&call sizeplot 

It h%lp%%size%psplotaml 

areturn 

&routine whichplots 

/5 
&s choice = (getchoica LINEATIONS CLIPPEDLINS DENSITIES ROSE -prompt - 

/'select the coverage type to plot' ] 

Is choice = (getchoire LINEATIONS ROSE CLIPPEDLINS -prompt - 
'select the coverage type to plot, ) 

Itype 'Select a coverage to plot 
lit %choice% LINEATIONS &then 

Is .plotcov (getcover /home/ege017/arc/glac/lios] 
/*&if %.choice% = DENSITIES &then 
/* &a plotcov [getcover /horne/egeol7/arc/glac/lina/lj00( 
hf %.choice% ROSE Ithen 

Is plotcov (getcover /home/egeol7/arc/glac/1insJros] 
hf %choice% CLIPPEDLINS athen 

Is plorcov- (getcover /home/e9e017/arc/glac/lins/rdclipl 
/later additions for clipboxes - n-b- need to save clip boxes in 
/c1ipam1 - 

Ire Lu rn 

&routine angleplot 

Isv glp = [query 'portrait plot'] 
hf %qlp% Ithen 

Ido 
Isv qlp [query 'landscape plot) 

hit %qlp% &then 
Isv 1p = 1 

helse 
hdo 

Itype 'defaulting to portrait plot' 
Isv 1p p 

& end 
lend 

&else 
Isv 1p = p 

Ire turn 

hrouti,ie sizeplot 

Isv siz = query 'a4 plot- ] 

hit " %siz% Ithen 
ad. 

Isv siz = (query 'a3 plot')  

72 hf %siz% Ithers 
73 Isv size a3 
74 helms 
75 - Ido 
76 htype 'defaulting to a4' 
77 Isv size a4 
78 lend 
79 lend 
80 helse 
81 Isv size a4 
82 
83 &return 



I / hJ.a3psp1ot.aml 
- 2 /'  72 &s setupi a mapex %,plotcov% 

3 /' called from hardplot.aml 73 85 setup2 = pageunits cm 
4 I' aml to run already existing allplot,arsl aml which plots the base 

74 85 setup3 textfont 93715 
5 I' map and all the data sets on a landscape Pd colour plot with 75 85 setup4 = textquality proportional 
6 / university treat  76 Pd setups = pagesize 29.7 42.0 
7 77 Cs setup6 = box l.5 1.528.841,1 

asv file top  78 Cs setup? = maplimits 0.9 6.0 28.8 38.0 
9 &sv newfxle a3%file%  79 Cs setupS = mapposition ceo con 
10 Coy plotfile a3p5%file% 80 Cs setup9 textsize 0.9 
11  81 /* add more set-up variables below this line (e.g. legends etc) 
12 &if (exists %nawfile%) &then 82 Creturn

83  13 &sys rm %newfile% 
14 84 troutine lines 
15 - 1' open new p1cc file to write aml commands to  85 
16  86 es linel = linecolor 1 
17 &sv plotf_ul (open %nesfile% openstarl -write] 

87 as line2 = arcs /home/egeol7/arc/bmap/ceurc l 
18 

- 
88 as line3 linecolor 2 

19 /' check status and unit number 69 Cs 11ne4 = arcs %.plotcov%
90  20 &type %plotLul% Cs lines = move 10.0 27.0 

21 &typa %npensratl%  91 Cs 1ine6 = text %.p1otcov% 
22  92 Creturn 
23 R set variable names to records for plot sat-up 93 
24  94 &routine aplot 
25 &cail setuplines 95 

26  96 arcplot 
27 I write setup variables to new aml file 97 disp 1040 
28  98 %newfile% 
29 edo mdcxi a 1 Crepaat %indexl% + 1 awhile [variable setup%indexl%] 

99 Cr %plotfile%
100 30 Cs record = (value setup%indexl%) 101 

quit 
31 Cs writestat (write %pintf,,ul% (quota %record%() 
32 tend 102 Creturn 
33 
34 trail lines 
35 
36 / set variable names to records strings to write to new file 
37 
38 edo index2 = 1 trepeat %index2% + 1 &whiie (variable lina%index2%) 
39 &sv record = (value line%index2%( 
40 &sv wstat2 = (write %plotf_ul% (quota %racotd%(( 
41 tend 
42 
43 /' ciose-arcplot command and file 
44 
45 Cs closestatl a [close %piorf_ul%( 
46 
47 / create HP plot file 
48 
49 trail aplot 
50 
51 ," check plot 
52 
53 dray %newfila%.qra 9999 2 
54 
55 /' convert gra plot file to postscript file 
56 / and plot landscape style 
57 
58 postscript %newfile%.gra %newfila%.ps 
59 
60 
61 &sv q a (query 'send this Ad plot to the A4 plotter') 
62 
63 elf %q% ethen 
64 1pr -P p5q1g4 %newfiia%.ps 
65 
66 &return 
67 
68 tend 
69 
70 troutine setuplines 
71 



/* hla4psplot.aml 72 

/' called from hardplcc.arsl - 73 &return
74  

aml to run already existing allplot.aml eel which plots the base 75 &end 
I' map and all the data sets on a landscape A) colour plot with 76 / university crest 77 &routine setuplines 

&sv file = tmp 
. 

&sv newfile = a4%file% 

78 
79 as setupl mapex %.plotcov% 

&sv plotcov = entryname %.plotcov%] 
80 as setup2 pageunits cm 
81 as setup3 textfont 93715 

elf [exists %newfile%.aiel -file] &then 
82 as setup4 textquality proportional 

&sys rm%newfile%.aml 
83 as setups = paqesize 42.0 29.7 

&if [exists %newfile%.gra -file] &then 
84 &ssetup6 =box 1.5 1.5 41.5 29.2 
85 

&sys rm %newfile%.gra 
as setup? = maplimits 1.6 1.6 41.3 29.0 

aif (exists %newfile%,ps -file] ithen 
86 &s setup8 = mapposition cen can 
87 

&sys rm %newfile%ps as setup9 textsize 0.9 
88 / add more set-up variables below this line (e.g. legends etc) 
89 areturn 

1 open new plot file to write aml commands to 
90
91 &routine floes 

&sv plotf ul open %newfile%.eml openstatl -write] 
92 
93 as linel = hioecolor 1 

/ check status and unit number 
94 as 1ioe2 arcs /home/egeol7/arc/bmap/ceurchcc 

atype %plotf_ul% 
95 as final = hinecolor 1 

&type %openstatl% 
96 as 1ine4 = arcs %.plotcov% 
97 as lines = move 10.0 27.0 

1* set variable names to records for 
98 as lineG = text %plotcov%
99  plot set-up areturn 

acall setuplines 
100 
101 aroutine aplot 

1 write setup variables to new aml file 
102 
103 arcplot 

ado indexl = 1 arepest %indexl% + 1 awhile [variable setup%indexl%( 
104 disp 1040 
105 %newfile% 

Ls record = (value setup%indexh%) 106 ar %newfile%.aml 
as writestat = [write %plotf_ul% (quote %record%(( 107 quit aend 108 

acell lines 
109 areturn
110  

/ set variable names to records strings to write to new file 
111 aroutine chaplot,arel
112 arcplot 

ado index2 = 1 &repeat %index2% * 1 awhile (variable line%index2%] 
113 disp 9999 2 
114 ar %oewfile%.aie1 &sv record [value line%index2%1 115 &sv hit [response 'Hit any key to continue'( Say wstat2 [write %plotf_ul% (quote %record%]] 116 quit aend 117 areturn 

I close arcplot ccrcvnend aml file 

as ciosestatl = (close %plotf_ul%] 

/' create HP plot file 

acall aplot 

as qchp [query 'View plotfile'( 

f= check plot file 
elf %qchp% athen 
acall chaplot,aml 

I' convert gra plot file to postscript file 
/' and plot landscape style 

postscript %newfile%.gra %newfile%,ps 065 - 
/home/egeol7/arc/glac/lins/sis1/eps file 

asv q (query 'Send this A4 plot to the A4 plotter'( 

aif %q% athen 
&sys 1pr -P psghg4 %newfiie%.ps 
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IN) 
t IN) 

I' hpalpsplot.aml 72 &s setup2 pageunits cm 
/* called from hardplot.aml 

73 is setup) textfont 93715
74  

am' to run already existing allplot.aml aml which the base plots 
is setup4 textquality proportional 

fl map and all the data sets on a landscape A) colour plot with 
75 
76 

is setups = pagesize 29.7 42.0 

university crest is setup6 = box 1.5 1.5 28.8 41.1 
77 is setup7 = meplimits 1.4 1.4 28.7 41.0 

isv file = tsp - 
78 55 setup8 = mapposition cen cen 

isv textile = a3%fale% 
79 &a setup9 = textsize 0.4 

isv plotfile a3p5%file% 
80 /* add more set-up variables below this line (e.g. legends etc) 
81 ireturn 

sif (exists %newfile%] ithen 
82
83 iroutine lines says ret %newfile% 84 

/ open new plot file to write aml  cosmiands to 
85 
86 

is linel 
is line2 

linecolor 1 
arcs /home/egeol7/arc/bmap/ceurc1cc 

Lev plotf_ul open %newfile% openatatl -write] 
87 is line3 linecolor 1 
88 is Used arcs %.plotcov% 

I check status and unit number 
89 is lines = move 14.85 39.0 

itype %plotLul% 
. 

90 is line6 = text %.plotcov% 

&type %openstatl% 91 
92 

&return 

1= set variable names to records for plot set-up 
93 &routine aplot
94  

icall satuplines 
95 arcplot
96 disp 1040 

/ write setup variables to new aml file 
97 %newfile%
98 Sr %plotfile% 

Lou mdcxl = 1 &repeat %indexl% t 1 (while variable setup%indexl%] 
99 
100 

quit 
. 

is record [value  setup%indexl%] 101 (return is writestat (write %plotf_ul% I quote %record%I] 
iend 

(call lines 

r set variable names to records strings to write to new file 

(do index2 I irepeat %index2% * I (while [variable line%index2%] 
&sv record = [value line%index2%] 
isv wstat2 a [write %plotful% (quote %record%]J 

send 

/° close arcplot command aml file 

is closestatl [close %plotf_ul%] - 
/= create HP plot file 

(call aplot 
- 

/ check plotfile 

draw %newfile%.gre 9999 2 

I convert gre plot file to postscript file 
1° and plot landscape style 

Postscript %newfile%.qra %newfile%.ps 

isv q = (query Send this e3 plot to the a) plotter] 

sif %q% sthen 
1pr -P csglgo-a3 %newfile%.ps 

ire turn 

send 

(routine setuplines 

is setupl = mapex %.piotcov% 



I 
2 

V hpa3psplot.aiel 72 Ps setup2 = pageunits cm 

3 
V 
/* called from hardplot.arnl 

73 Ps setup3 textfont 93715 

4 V aml to run already existing allplot.aml aml which the base plots 
74 Ps setup4 = textquality proportional 

/ map and all the data sets on a landscape A3 colour plot with 
75 
76 

Ps setups = pagesize 29.7 42.0 

6 /un1vers1ty crest 77 
Ps setup6 = box 1.5 1.5 28.8 41,1 

7 Ps setup7 maplimits 1.4 1.4 28.7 41.0 

8 &sv file = tsp 
. 

78 Ps setups mapposition can red 

9 isv newfila a3%frle% 
79 Ps setup9 textsize 0.4 

10 isv plotfile = a3p5%file% 
80 V add more set-up variables below this line (e.g. legends etc) 

11 81 &return 

12 iii (exists %newfile%I ithen 
82 
83 Proutine lines 13 653,5 rm %newfile% 84 14 

15 V open new plot file to write aml commands to 
85 
86 

Ps final 
Ps 11ne2 

= linecolor 1 
= arcs Jhome/ageol7/arc/bmapfceurcicc 16 

17 isv plotf_ul = [open %newfile% openstatl -write) 
87 
88 

is line3 
Ps 1ina4 

linecolor 1 
arcs %.plotcov% 18 

19 V check status and unit number 
89 
90 

Ps lines 
is lines 

move 
text 

14.85 39.0 
%.plotcov% 20 itype %plotf_ul% 91 Preturn 21 &type %openstati% -  92 

22 
23 V set variable names to records for plot set-up 

93 
94 

&rootine aplot 

24 
25 &call setuplines 

95 arcplot 

26 
96 disp 1040 

27 V write setup variables to new aml file 
97 
98 

%newfile% 
Pr %plotfile% 28 

29 ido mdcxl = 1 irepeat %indexl% + 1 pwhile [variable setup%indexl%[ 
99 
100 

quit 

30 Ps record (value setup%indexl%[ 101 Preturn 31 is writestat = [write %plotf_ul% (quote %record%][ 
32 Pend 
33 
34 pcall lines 
35 

N.) 36 V set variable names to records strings to write to new file 
37 
38 ido index2 = 1 irepeat %index2% + 1 pwhile (variable line%index2%[ 
39 isv record (value line%index2%) 
40 isv wstet2 [write %plotf_ul% (quote %record%3] 
41 send 
42 
43 V close arcplot command aml file 
44 
45 is closestatl [close %plotf_ul%] 
46 
47 V create HP plot file 
48 
49 &call aplot 
50 
51 V check plotfile 
52 
53 draw %newfile%.gra 9999 2 
54 
55 V convert gre plot file to postscript file 
56 V and plot landscape style 
57 
58 postscript %newfile%.gra %newfile%.ps 
59 
60 isv q = [query Send this e3 plot to the a3 plotter) 
61 
62 Pit %q% Pthen 
63 1pr -P csglgo-a3 %newfile%.ps -  
64 
65 ireturn 
66 
67 Lend 
68 
69 &routine setuplines 
70 
71 is setupl mapex %.plotcov% 



(return 

send 

&routine setuplines 
is setupi = mapex %.plotcov% 
is setup2 = pageunits cm 
is setup3 = textfnnt 93715 
is setup4 = textquality proportional 
La setups pagesize 29.7 42.0 
is setup6 = box 1.5 1.5 28,8 41,1 
is setup7 = meplimics 1.6 1,6 26,7 41.0 
is setup8 = mapposition can can 
Sw setup9 = textsize 0,9 

V add more set-up variables below this line (e.g. legends etc) 
(return 

iroutmne lines 

is final linecolor 1 
is line2 = arcs /home/egeol7/arc/bmepfceurc lot 
is line3 = iinecolor 1 
is 11ne4 = arcs %.plotcov% 
is lines = move 14,85 39.0 
is 1ine6 = text %plotcov% 
&return 

iroutine splot 

ercplot 
disp 1040 
%newfile% 
Sr %newfile%,eml 
quit 

(return 

iroutine chaplot aol 
arcpiot 
disp 9999 2 
Sr %newfile%,aml 
isv hit [response 
quit 

(return 

Hit any key to continue') 
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71 

V hpa4psp3ot.l 
V  72 
V called from hsrdplot.aml 

V aol to run already existing allplot.aml aml which pints the base 74 

V map and all the data sets on a landscape A3 colour plot with 75 
' university crest 76 

77 
&sv file = tmp 78  
55w newfiie = a4%file% 79 
55w piotcov (entryname %.plotcnv%] 80 

81 
&if (exists %newfile%amlJ &then 82

83 &sys rm %newfile%.aml 
&if [exists %newfile%.gral &then 84 

&sys rm %newfile%,gra 85 
&if [exists %newfile%.ps] &then 86 
&sys rm %newfile%.ps 87 

88 
/* 

open new plot file to write aml commands to 89
90 

55w piott_ul= IOPen %newfile%.arsl  open -write] 91statl 
92 

I check status and unit number 93
94 &type %plotLul% 

&type %openstacl% 95 
96 

V set variable names to records for plot see-up 97 
98 

&call setuplines 99
100 

/* write setup variables to new ad file 101 
102 

&do mdcxl = 1 &repeat %mndexl% + 1 &while [variable setup%mndexl%] 
103
104 &s record value setup%mndexl%] 

is writestat e (write %plotf_ui% [quote %record%[] 105 
Send 106 

- 107 
scall lines 108

109 
I set variable names to records strings to write to new file 110

111 
&do index2 1 irepest %index2% + 1 &while [variable line%index2%] 

112
113 &sv record [value lmne%index2%I 

&sv wstat2 [write %plotful% [quote %record%]] 
114 

Send 115 

/* close arcplor command maT file 

is closestatl [close %plotf_ul%] 

V create HP plot file 

&call aplot 

is qchp = Ignery 'View plotfile') 

V check plot file 
tiE %qchp% (then 
&call chaplotaml 

V convert gre plot file to postscript file 
I and plot landscape style 

postscript %newfile.gra %newfile%.ps 0.7 

isv q = [query 'Send this P4 plot to the P4 plotter'] 

&if %q% &then 
osys 1pr -P ps91g4 %newfiie%.ps 
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I KILLCOVSAML 

/* Kills rose coverages if they exist 

/ the values of .qr* are 1 if true and 0 if false 

olingen - unqenerated line coverage file 
I hogan - u.generated weeded line coverage file 
r qrl - requests rose diagrams where rose length is proportional 

to the number of lineations in the grid cell 
newlingen 

/ qr2 - requests calculation of principal directions from the rose 
diagrams of .qrl 
pringen 

/*  .qr3 - requests calculation of secondary directions from the rose 
diagrams of .qrl 
sec.geo 

/ qr4 - requests calculation of rose diagrams where numbers of lineations 
are represented by fixed lengths to ensure that all directions 
are visible and high numbers in one direction do not cause 
lengths which stray into other grid cells 
prop gen 

/* .qrl - requests calculation of representative rose diagrams where the 
lengths of all the lineations represented are exactly the same 

/5 
regardless of the number of lineations in a particular direction 

/ repgen 
I .gr6 - requests calculation of the principal direction which will be 

plotted as a fixed length to help interpretation of qrs diagrams 
repprin.gen 

&arqs roscov gcs 

/5 check that coverages do not already exist and if they 
/ do delete them 

&if %qrl% eq 1 &than 
&do 

&if (exists %rospathl%/%roscov%_%gcs% -coven] &then 
kill %rospathl%/%roscov%%gcs% 

send 

&if %.qr2% eq 1 athen 
&do 

&if [exists %.rospath2%/%roscov%_%gcs% -cover) &then 
kill %.rospath2%/%toscov%%gcs% 

Cend 

&if %.qr3% ag 1 &then 
& do 

&if [exists %rospath3%/%roscov% %gos% -roved &then 
kill % r05path3%/%roscov%%gcs% 

send 

tif %.qr4% eq 1 &then 
edo 

&if (exists %.rospath4%/%roscov%_%gcs% -cover] &then 
kill % .rospath4%/%roscov%_%gcs% 

aend 

&if %-qr5% eq 1 ethen 
edo 

eu (exists %rospaths%/%roscov%_%gcs% -cover) ashen 
kill % rospath5%/%roscov%_%gcs% 

Lend 

sit %.qr6% eq 1 ethen 
ad. 

&if (exists %rospath6%/%toscov%_%gcs% -coven &then 
kill %rospath6%/%roscov%%gcs% 

tend 

72 
73 &return 
74 
75 tend 
76 



C 

/ kILLGEN.PdlL 
1* 72 &do 

1° Kills rose rose generate files 73 Soil (exists %geopath5%/r5gen -file) &then 
if they exist- 74 &sys rm %genpeth5%1r5.gen 

/0 75 send 

1° the values of qr° are 1 if true and 0 if false 
76 
77 /0 

olin.gen - ungenerated line coverage file 
lingen - ungenerated weeded line coverage file 

78 
79 

sif %.qr6% 
&do 

sif 

eq 1 &then 

(exists %.genpath6%/r6gen -file) &then 
/° qrl - requests rose diagrams where rose length is proportional 

80 
81 

&sys rm %genpath6%/r6gen 
P to the number of lineations in the grid cell 82 

send 
send 1° newlingen 

83 .qr2 - requests calculation of principal directions from the rose 84 &return 1° diagrams of .qrl 
1° prin.gen 85 

86 send qr3 - requests calculation of secondary directions from the rose 87 P diagrams of -qrl 
/0 secgen 

qr4 - requests calculation of rose diagrams where numbers of lineations 
1° are represented by fixed lengths to ensure that all directions 

are visible and high numbers in one direction do not cause 
1° lengths which stray into other grid cells 
P propgeo 

qrs - requests calculation of representative rose diagrams where the 
P lengths of all the lineations represented are exactly the same 
/0 

regardless of the number of lineations in a particular direction 
repgen 

/° -qr6 - requests calculation of the principal direction which will be 
/0 plotted as a fixed length to help interpretation of .qrs diagrams 

repprin.gen 

&args roscov 

/ check that generate files and coverages do not already exist and if they 
/° do delete them 

&if (exists %genpach%/olingen -file) &then 
&sys rye %genpath%/olin.gen  

&if (exists %genparh%/lingen -file) &theo 
&sys re %genpath%/lingen 

elf %.qros% &then 
edo 

&if %qrl% eq 1 ethen 
&do 

&if [exists %genpathl%/rl.gen -file] ethen 
&sys rm %genpathl%/rlgen 

Send 

liE %.qr2% eq 1 &then 
&do 

elf (exists %.genpath2%/r2gen -file) &then 
Says rm %genpath2%/r2gen 

Send 

elf %gr3% eq 1 &then 
edo 

&if (exists %.genpath3%/r3gen -file] &then 
555's rm %.genpath3%/r3.geo 

send 

Si f 6.1114't eq 1 Sothen 
edo 

elf [exists %genpath4%/r4.gen -file] &then 
&sys rye %.geopath4%/r4.gen 

lend 

&if %qr5% eq 1 &then 
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I' linaplot.aml 

1' called at various stages from linarnl to plot the lineations 
/ coverage chosen 
&amlpath /hcme/e95017/arr/glac/ljna/aml 
Sit variable qcov] t,then 
&do 
&if %vcv% &then 
agoto start 
Send 
arcplot 
disp 9999 
Slabel start 
clear 
mapex %.lincov% 
linecolor 1 
arcs /home/egeo17/ arc/bmap/ceurc1cc 
linecolor 3 
arcs %lincov% 
Sthread &focua son un 
&return 
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1 1* lindenaml - 
2 / 
3 / called from linaml 
4 I' AML to create Grids of lineation densities for user-defined grid /5 

cell sizes gcs. Uses lingen fill createdby cproslineml 
6 1* 
7 I' Asks for grid cell size gcs 
8 1' 
9 / call fortran program which calculates an ascii grid file 
10 /* 

of lineation 11 /5 densities for cell size gcs 
12 1* 
13 I' creates grid %.newcov%_d from linden.asc file 
14 / 
15 /5 

plots grid and background coverages (coastline and lineations) 
16 I' 
17 1' NOT YETdeietes grid on request 
18  
19 I' deletes linden asc file to clear for next run 
20 I' 
21 
22 &am1path /home/egeo17/arc/glac/i05/ 5  
23 
24 I' extract coverage name for naming density plots 
25 
26 &s dencov (entryname %.lincov%] 
27 
28 &setvar 009 [response Enter grid cell size for density plots'] 29 
30 Sit [exists /home/egeo17/arc/g1ac/lins/1inden/ind0 as ] &then 
31 &sys ret 
32 
33 Sif %.qros% &then 
34 ado 
35 Sr killgenarnl 
36 UNGENERATE LINE %lincov% /home/egeol7/arc/glac/lins i onngen  
37 
38 /* Weed out extra points on lines 
39 
40 &sys /home/e9e017/arc/glac/lins/progs,wd 
41 Send 
42 
43 &sv x = [task /home/egeol7/arc/glac/lins/progs/lind %gcs%j 
44 /'&type %x% 
45 
46 /* create and plot new density grid in directory 
47 I' 
48 
49 Sit (exists /home/egeo17/arc/glac/1in5/lflen/% dencov%d 

-grid] &then 50 kill 
51 asciigrid 

ass 
 

den/%dencov%d /home/ege017/arc/glec /1j05/jj0  

52 
53 / view grid 
54 
55 grid 
56 Sit [exists /home/egenl7/arc/glac/lin5/lindn/m% dencov%d -file] athen 
57 killmap .dencov%_d 58 map .dencov%d 59 
60 Sr gridplot.ersl 
61 
62 / exit grid return to ARC 
63 - 

64 &peuse 
65 trait 
66 
67 &return 
68 



V rosplotami 

Large r.sc.v 

&arnlpath /home/e9e017/ar-C/glac/ljns/asl 

V set variables 

&sv gcs = %.gcs% / 1000 
bay rospatha [value .rospath%.qra%J 
bit (variable .qrb) &then 

&sv rospathb = (value .rospath%.qrb%] 

check whether already in arcplot 

&if %.rosaplor% athen 
ad. 

&if %.rosaplot% &then 
&goto start 

&eod 

V go into arcplot 

arcplot 
disp 9999 2 
&sv .rosaplct true. 

&label start 

V clear screen and delete old mapcomposition 

clear 
&xf (exists %rospatha%/rg%roscov% -file) &then 

killmap %rospatha%/m%roscov% 

V open new sepcomposlrlon 

map %rospatha%/m%roscov% 

V plot coverages on screen 

texrfont 93715 
texrquality proportional 
texrsize 0.3 
move 0.5 0.5 
text %roscov%_%gcs% 

MAPEX %.lincov% 
linecolor 3 
arcs %.lincov% 
linecolor 1 
arcs /home/ege017/arc/bmap/ceurcicc  

LINECOLOR 4 
ARCS %rOspatha%/%roscov%%gcs% 

bit [variable .qrb] 8then 
ado 

linecolor 6 
arcs %rompathb%/%roscov%_%gcs% 

bend 

&pause 

killmap %rosparha%/m%roscov% 

breturn 

bend  

1 V rosquer.aml 
2 /5 

3 V asks user which rose diagrams they wish to create and sets 
4 V query variables .qrm to 1 (true) or 0 (false) 
5 
6 &sv qrl [query 'Calculate rose diagrams') 
7 bit %qrl% &then 
8 bay .qrl = 1 
9 &else 
10 kay .qrl = 0 
11 
12 &s, qr2 (query 'Calculate principal directions) 
13 bit %qr2% &then 
14 &sv .qr2 1 
15 &else 
16 amy .qr2 = 0 
17 
18 &sv qr3 (query 'Calculate secondary directions') 
19 bit %qr3% &then 
20 bay .qr3 = 1 
21 belse 
22 kay .qr3 0 
23 
24 &sv qr4 [query 'Calculate proportioned rose diagrams') 
25 kit %qr4% athen 
26 kay .qr4 = 1 
27 &else 
28 &sv .qr4 0 
29 - I  
30 &sv qr5 [query 'Calculate direction representation plots) 
31 bit %qrs% &then 
32 &sv .qr5 1 
33 kelme 
34 bay .qrs 0 
35 
36 bay grE [query 'Calculate principal representations') 
37 bit %qr6% &then 
38 bay .qr6 = 1 
39 belse 
40 &sv .qr6 = 0 
41 
42 breturn 
43 
44 bend 
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t') 

'0 

1 rviewplotaml 

/* called from linaml 
/ this program creates hard copies of analyses 
/' it Is called by lin,aml 
/* 

it sets the angle of the plot portrait or landscape) 
/ and the size/type of the plot al co1our/a4 b&w) 
V eventually it will be able to plot any combination 
V of any analyses plots including plots created during 
/ past sessions, 

&amlpach /home/egeo17/a1cf gla /lifl5 / 

stall whichplots 

&sv dr true. 

Sr viewplot.aml 
&sv .vcv z true. 

&label viewq 
&sv gvsew query view further plots) 

&lf %qview% &then 
ado 
Stall whichplots 
&sv dr query 'clear Screen) 
&type %.plotcov% 

- Sr viewplotaml 
&goto Viewq 
Send 

&else 
quit 

&return 

&routioe whichpiots 

V &s -choice gerchoice LINEATIONS CLIPPEDLINS DENSITIES ROSE - 
/*PRoPORTIONALROSE SECONDARYROSE PRINROSE REPROSE PRINREPROSE -prompt 
/*seJ.ect the coverage type to plot') 

as -choice = Igetchoice LINEATIONS CLIPPEOLINS ROSE - 
PRINROSE SECONDARYROSE PROPORTIONALROSE REPROSE PRINREPROSE - 

-prompt 'select the coverage type to view) 

&type 'Select a coverage to plot' 

Sif %.choice% LINEATIONS &then 
Es .plotcov (getcover /home/ege017/arc/glac/lins] 

/*&if %.choice% DENSITIES &then 
V as .plotcov (getcover /horee/egeoI7/arc/glac/lin5/j0)  
511 %.choice% = ROSE &then 

Es .plorcov (getcover /home/egeol7/arc/glac/lins/roso/o51)  
Sit %.choice% = cLIPPEoLINS &theo 

Es .plotcov= (getcover /home/egeol7/arc/glac/1jrjs/r ijpJ  
Sit %.choice% PROPORTIONALROSE &then 

Es .plotcov = (getcover /home/egeol7/arc/glac/jjn5/r05/054]  
&if %choice% = SECONDARYROSE &then 

55 .plottov = getcover /home/egeol7/arc/glaC/lj,fl5/ 05e/o53)  
S-if %.choice% PRINROSE Ethen 

as plotcov = (getcover /home/egeol7/arc/glac/jj s/ o5 / 0521  
&if %.choice% REPROSE Ethen 

Es .plotcov (getcover /home/egeol7/arc/glac/ljfls/r05e/ 055)  
aif %.choice% = PRINREPROSE &then 

&s .plotcov = [getcover /home/egeol7/ard/glac/lins/r0, /o5J  

/*later additions for clipboxes 
- nh, used to save clip boxes in 

/clip,aml 

Ereturn 

72 
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U) 
0 

rimwrrTltn and. 

I' called from lineal 
/* 

(originally cproslin,aml bafore Sec directions were added) 
/' AML to create coverages of rose diagrams for user-defined grid cell 

size using generate and unganerate and calling a fortran program roslin for 

.lincov is the global variable coverage name 

&amlpath Ihome/egeol7/arc/glac/j,j 5/0j,  

/* 
extract coverage name for naming rose diagrams 

is roscov (entryname %.lincov%) 

/' find out which rose diagrams user wishes to create 

&r roaquer.aml 

/* create generate file for coverages 

&call createlin 

/n 
Ask for grid cell size to pass to fortran program I get grid cell site from user 

&descrihe % . lincov% 
isv xmin (round (calc %dsc$xmin% / 1000]) 
isv xlsax [round (calc %dsc$xmax% / 1000)1 
isv vain (round lcalc %dsc$ymin% / 100011 
isv ynax (round Icalc %dsc$ymax% / 100011 

&type xjnin=%xlnin% xmax-%xrsax% ymin%yrsin% sncax=%ytnax% 
& type 

&label gridcellsize 

&servar gcs response Enter grid cell size (km] for use plots 

&if loull %gcs%] &then 
igoto gridcellsize 

bif (type %gcs%I ne -1 &then 
&if (type %gcs%I ne -2 &then 
igoto gridcellsize 

1' check that grid all size is not below the limit 

isv xmaxgrid [caIc %xmax% - %xsuin%] 
isv y7nax9rid = [calc %ymax% - %ymin%[ 
isv rsaxgrid (max %xJnaxgrid% %ymaxgrid%[ 

&if cab %aaxgrid% / 2001 gt %gcs% &then 
& do 

&type 'WARNING: The gridcell size cannot be bigger than max-min/200' 
&type 
&gcto gridcellsize 

bend 

isv .gcs = (calc %gcs% 1000] 

/' check that grid cell size is not ridiculously big 

=if 'tgcs% qe 1000 irheri 
ido 
&type 'WARNING: gridcel1size too big' 
&goro gridcellsiza 
bend 

isv gcs = round lgcs%)  

'-U,-'- 
72 
73 / create rose diagram coverages 
74 
75 &csll cceetecovs 
76 
77 is o,plotcov (query 'View rose diagrams'] 
78 
79 /* 

plot coverages of rose diagrams and lineations and backgrounds 
80 &if %o,plotcov% &then 
81 icell plotcovs 
82 
83 &return 
84 
85 bend 
86 
87 
88 &rnufine createlin 
89 
90 &r killgen.aml %roscov% 
91 
92 UNGENER,p/rE LINE %,lincov% %genpath%/olingen 
93 
94 / Weed out extra points on lines 
95 
96 &sys %.forpath%/wd 
97 
98 
99 breturn 
100 
101 &routine createcovs 
102 
103 at killcovs,eml %roscov% %gcs% 
104 
105 isv .qs (query Plot using large rose diagram units'] 
106 
107 /n 

call fortran program to create rose diagram generate files 
108 
109 &if %.qs% &then 
110 
111 isv x = [task %.focpeth%/bros (quote %.gcs% %.qrl% %.qr2% - 112 %.qr3% %.qr4% %.qr5% %.qr6%1J 
113 
13,4 
115 &else 
116 
117 isv x m (task %.forpath%/ros iquote %.gcs% %.qrl% %.qr2% -' 118 %.qr3% %.qr4% %.qrs% %.qr6%]I 
13.9 
120 /* 

create and plot new rose diagram coverages in directory 
121 /* 
122 
123 &if %.qrl% eq 1 &then 
124 &dn 
125 GENERATE %.rospathl%f%roscov%_%gcs% 
126 INPUT %.genpathl%/rl.gen 
127 LINES 
128 QUIT 
129 bend 
130 ut %.qr2% eq 1 &then 
13], &dn 
132 GENERATE %.rospath2%/%rnscov%_%gcs% 
133 INPUT %.genpath2%/r2,gen  
134 LINES 
135 QUIT 
136 (end 
137 &if %.qr3% eq 1 (then 
138 &do 
139 GENERATE %.rospath3%/%roscov%%gcs% 
140 INPUT %.genpath3%/r3,gen 
141 LINES 
142 QUIT 



143 send 
144 sit %.qr4% eq 1 Ethan 
145 &do 
346 GENERATE % r05path4%/%roscov%%gcs% 
147 INPUT %.gsnpath4%/r4 .gen  
148 LINES 
149 QUIT 
150 send 
151 &if %.qrs% eq 1 &then 
152 &do 
153 GENERATE %.rospaths%/%roscov%%gcs% 
154 INPUT %genpath5%/r5.gen 
155 LINES 
156 QUIT 
157 send 
158 kif %.qr6% eq 1 &then 
159 &do 
160 GENERATE % r05P5th6%/%roscov%_%gcs% 
161 INPUT %.9enpath6%/r6gen 
152 LINES 
163 QUIT 
164 Send 
165 
166 
167 &return 
168 
169 Sroutine plotcovs 
170 
171 / plot rose diagrams and principle directions 
172 
173 &sv .rosaplot false. 
174 
175 Sit %.qrl% eq 1 Srhen 
176 &do 
177 &sv qra 1 
178 Sit %.qr2% eq 1 sthen 
179 &sv qrb 2 
180 Sr rosplor.aml %roscov% 
181 Sdv qra 
182 Sit (variable .qrb) &then 
183 Sdv qrb 
184 Send 
185 
186 /5 plot secondary directions 
187 Sit %.qr3% eq 1 &then 
188 6do 
189 Ssv qra = 3 
190 Sr rosplot aml %roscov% 
191 &dv .qra 
192 send 
193 
194 /5 

plot rose diagrams proportional to lineations per cell 
195 Sit %qr4% eq 1 Sthen 
196 &do 
197 Sev .qra = 4 
198 Sr rosploraml %roscov% 
199 Sdv -gra 
200 Send 
201 
202 / plot representational rose diaqrams and principle directions 
203 
204 Sit %.qr5% eq 1 Sthen 
205 Sd0 
206 Say .qra 
207 51 fi%.qr6% eq 1 erhen 
208 &sv .qrb = 6 
209 Sr rosplot aml %roscov% 
210 Sdv .qra 
211 SIt [variable .qrb) Sthen 
212 Sdv qrb 
213 Send 

F'acie 
214 
215 quit 
216 &sv .vcv false. 
217 
218 &return 
219 
220 Send 
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R setpaths.aml 1 1* viewplotam1 
2 1* 

1 sets all the path names for the coverages programs and files /* any changes to Lot 
3 f called at various stages ftcm liriami to plot the lineations path names relocation of output or input should 

/ he made here 
4 / coverage chosen 

set I for path names the lineations 
6 &amlpath /home/egeol7/arc/glac/lins/aml 

&sv linpath /home/e9e017/arc/glac/lins 9 

I set path names for besemap 
10 &if %.vcv% &then
11 sgoto start 

&sv basepath /home/egeo17/arc/bmap 
12 &else 
13 Isv colindex = 1 

/* set path names for the rose coverages 
14
15 arcplot 

isv .rospathl /home/egeol7/arc/glac/ljnsjrose/rosl 
16 disp 9999 
12 

isv rospath2 /home/egeol7/atc/glac/1ins/ro5e/05 18 ilabel start 
&sv rospath3 /home/egeo17/atc/glac/lins/ose/053 19 
isv rospath4 = /home/egeo17/arc/glac/lins/ro5e/054 20 
isv rospath5 /home/egeo17/arc/glac/1ins/rose/r055 21 &if %clr% &then &sv .rcspath6 22 igoto overlay 

I set path names for the rose diagram generate files 
23 
24 clear 

&sv .genpath Jhome/egeo17/arc/glac/11n5 
25 mapex %.plotcov% 
26 linecolor 1 isv genpathi/h~m~/ege.l?!~r~/glac/lins/rosa/rosI 27 arcs /home/egeol7/erc/bmap/ceurc_ltc &sv genpath2 /home/e9e017/arc/91ac/ijnsyrose/t052 28 

&sv genpath3 /home/e9e017/arc/glacjins/rose/r053 29 &label overlay &sv genpath4 /home/egeo17/arc/glac/lins/rose/r054 30 Rarcs %.plotcov% isv genpath5 = /home/egeo17/atc/glac/lins/rose/ros5 31 &sv colindex = [cab %colindex% * 11 &sv genpath6 /home/egeol7/arc/glac/lins/roser056 32 

/ set path names for the forttsn 
33 linecolor %.colindex% 

programs atype %.plotcov% 

&sv = /hcme/egeol7/erc/g1ac/lins/progs .forpeth 
35 /&type %colindex% 
36 arcs %.plotcov% 

R set path names for lineation density coverages 
37 
38 iteturn 

&sv .denpath /home/egeo17/src/glac/lins/1jntle, 

I set path names for lineation density ascii file 

&sv .asrpath /home/egeo17/arc/glac/lin/id00 

/ set clipped cover psthname 

&sv .rlippedpath /home/e9e017/arc/91ac/lins/rdc1ip 

1 make anymore path additions below this line 

I return 

iend 



1 mapex /hosie/e9e017/arc/glac/lins/rdcljp/cross 
2 pageunits cm 
3 text font 93715 
4 textqua1ity proportional 
5 pagesize 29.7 42.0 
6 box 1.5 1.5 28.8 41,1 
7 maplimits 1.6 1.6 26.7 41.0 
8 mapposition cen ceo 
9 texfsize 0-9 
10 linecoloc 1 
11 arcs /hoinelegeol7/arclbmap/ceurcicc 
12 linecolor 1 
13 arcs /home/e9e017/arcjglac/11ns/rdc11p/cross 
14 move 14,85 39.0 
15 text cross 

p.) 
U) 
U) 
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Er setpaths.aml 
&sv roscoy = test - 
&sv gca =1 
Er klllcovs.aml %roscov% %gcs% 

GENERATE %.105path1%/%roscov%%Qcs% 
INPUT % .genparhl%/rl.gen 
LINES 
QUIT 

GENERATE 1. rosparh2%/%roscov%_%gcs% 
INPUT %.genpath2%/12 .gen 
LINES 
QUIT 

GENERATE %.r05pa1h3%/%roscov%_%gcs% 
INPUT % .genpath3%/r3 gen 
LINES 
QUIT 

GENERATE %. rospath4%/%roscov%_%gos% 
INPUT %.genpath4%/r4 .gen 
LINES 
QUIT 

GENERATE % rosparh5%/%roscov%%gcs% 
INPUT %.oenpath5%/r5.gen 
LINES 
QUIT 

GENERATE % . rospath6%/%roscov%_%gcs% 
INPUT % .genpath6%/r6,gen 
LINES 
QUIT 

Say .qrl = 1 
Ely .qr2 = 2 
Ely .qr3 = 3 
&sv .qr4 = 4 
&sv ,qr5 = 5 
&sv .qr6 6 

1' plot rose diagrams and principle directions 

isv .rosaplot - false. 

&if %,qrl% eq 1 Ethen 
Edo 
&sv .qra = 1 
Sif %.qr2% eq 1 ithen 

&sv .orb 2 
Er rosplor.aml %roscov% 
&dv ,qra 
Elf (variable ,qrb] Ethen 

&dv .qrb 
Send 

/* plot secondary directions 
Eif %.qr3% eq 1 ithen 
& do 

&sv .qra 3 
Er rosplor.aml %roscov% 
&dv .qra 

&end 

J plot rose diagrams proportional to lineations per cell 
Sit %.q14% eq 1 &then 
Edo 

&sv ,qra 4 
Er rosplot.aml %roscov% 
Edy .qra 



arcp lot 
disp 9999 2 
mapex 
image /home/egeo 7/arc/gjac,ljns,f27jmg ice 
lineco]or 2 
arcs Jhome/e9eo17 /arc/glac / 'ins, f27i1cc 

('a 
(-'I 
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L'=) 

0 

CI'LS.,,U*7 RUSLIN 
C 72 + RX, RI, DO, GXO, 010, 
C Last edited 14/11/94 73 + REX, REV, PR4, PRS, PRG 
C  74 

C This program and its subroutines ZER03D, WHGC, cALDIRs, 
75 CHARACTER E
76 o creates a generate file Rl.GEN of rose diagrams for a coverage INTEGER Ri, R2, R3, R4, RS, R6 
77 C from a generate file LIN.GEN which is created by the aml which runs this) 

CHARACTER-80 FNANE 
C for grid squares according to user input grid cell size DO. 

78 PARAMETER (PR1 300.0, PR2 =300.0 , 8R3 1000.0) 
C also creates files R2.GEN R3,GEN R4.GEN R5.GEN R6.GEN 

79 
80 C Get grid cell size DO from user c 

-  found in directories /home/egeol7/arc/glac/lins/rose/r./r. 
81 

.gen 
c 82 READ (5,5) DC, Rl, R2, R3, R4, RS, RE 
C which are principal directions, secondary directions, proportional 

83 
84 C Set for C rose diagrams, representational rose diagrams and principle directions 

units rose diagram lengths 
85 C of the representational rose diagrams respectively, on request from Ala 86 PR4 = 0.125 * DC C 

C This program is called by /home/egeoi7/arc/glac/lins/aml/rosli5rn 
87 PRS a  0.35 = DC 
88 C 

c . receives variables grid cell size dg, and rose requests rl-s6 from 

PRG a  0.35 = DC 
89 
90 c Ala. 

c - reads lines from lin.gen 91 C Set all V)XYZ) to zero 
- calculates grid origins and dimensions of grid 

92 
93 

assigns values to 3-cl array v(x,y,z( CALL ZER03D)V, NX, NV, NZ) 
-  calculates which grid cell a line is in - assigns x,y 
- calculates what direction the line is in - assigns z 

94 
95 C Calculate Grid origin and number of grid cells in X and I 

-  adds I to V for each line 10 5 particular cell and direction 
96 

c  97 CALL GRIDOR(DG, OXO, 010, XN, IN) 
Rl = 1 98

99 • do loop to calculate rose diagram coordinates for each v)x,y,z) C open old lineations file 

c and write coordinates to an output generate file 
c 

100 
 101 OPEN (UNIT=1O, STATUS= 'OLD', 

. c R2 = 1 102 
- 

+ FILEa'/home/egeol7/arc/glac/1ins/ljnge.)  
• call maxv 103

104 c - calculate prinv)x,y,maxz) -  array of maximum directions for each cell 
coUNT=l 

105 c calculate coords and write to generate file (call rose, call writegen) 
c 106 C Beginning of grid calculation loop  
c R3 1 107 C Read a lineation from old generate file LIN.GEN  
c call maxv 108

109 c - sets all principal directions of v(x,y,z) to sec(x,y,z) a 0 110 30 o and the rest of v)x,y,z) to sec(xz) v(c,y,z) and sets non-principle 
READ (10, , ERR = 20, END a 20) ID 

111 directions, and directions within S degrees of the principle 112 o directions to  zero - prinv(x,y,maxz_l/maxz/maXz+l) 
READ (10, , ERR = 20, END = 20) LX1, Lyl 

o calculates coords and writes to a generate file (call rose, call writegen) 
113 
114 READ (10, ERR C 

c R4a1 
, = 20, END = 20) LX2, LV2 

115 

c - classifies V(x,y,z) into bands Vband(x,y,z) 
116 READ(10,'(A)',EIma2o,ENDS2o)E 

C there are 4 of these bands and the values v are scaled according to 
117 
119 COUNT a COUNTel c the number of lineations in the maximum direction for that call vmax(x,y) 119 c then the value of V becomes Vband depending on the original value of V 

c 120 C ZERO X AND V 

c R5al 121 

o - sets all non-zero values of V(x,y,z) to VREP(x,y,z)=1 
122 XaO 

0 123 V a 0 

o R6 a 1 -  124 
- 

Z=0 

o - sets all non-principal directions ne. zmex for v)x,y.z) 
125 
126 c calculate which grid square lineation is in, Assign X & V c to VPRINREP(x,y,z) 0 

c 127 

c 128 

IMPLICIT NONE 129 CALL (48CC (Lxi, Lvi, LX2, 1112, X, I, 
130 + GXO, GYM, DO) 

INTEGER HZ, NX. NV, ID, DIR, ZN, IN, EN. X, V. Z, 
131 

+ NAXZ, COUNT, PRINV. VNAX, REPU, PRIHREPV, 
132 C calculate direction and direction bend. Assign E 

+ V5AND, RAZZ, RESULT 
133 
134 CALL CALDIRB (DIR, Z, LX1, Lvi, LX2, 1112) 

PARAMETER (NX a 100 , NV a 100 HZ = 36, ZN = 36) . 
135 
136 C count number of lineations for grid Cell X,V in direction Z 

INTEGER V)NX,NV,NE), SEC(HX, NV, NE). PRINV(NX, NV, HZ), 
137
138 

+ VBAND)NX, NY, HZ), VH,AX(NX, NV). PRINREPV(NX, NY, NZ), - 

V(X,Y,E) = V(X,Y,Z) + 1 
139 

+ REPV(NX, NY, NZ) 140 c return to start of loop and reed next line from LIN.GEN 
-  REAL'8 LXl, LX2. LVl, LY2, OCX, CCV. PRl, PRY, PR3, 

141 
142 GOTO 30 



C end of file, no more points to read continue from here 

20 CLOSE (10) 

C-------------------------------- _______________________ 
C Ri 
C 

IF (Ri EQ. 0) THEN 
GOTO 100 

END IF 

C Open new generate file for output of rose diagrams 

OPEN (UNITll, STATUS='NEW', 
FILE' /homelegeol7/arc/glac/ljns/rose/roslyrlgen' 

ID = 1 

C Do mops for calculating coordinates for rose diagrams 
C and writing generate file for them using V(X,Y,Z) 

DO X 1, XN 
DO Y= 1, YN 

DO Z 1, ON 

C check if there is any data for this grid cell and direction 

IF (V(X,Y,Z) HE. 0) then 

C Calculate GCX,GCY coordinate of grid centres 

CALL ORIDCEN (OXO, 010, DO, Ccx, CCV, X, I) 

C Calculate RX and RI coordinates for rose diagrams 

CALL ROSE (PRl, V. X. I, Z, CCX, CCI, RX, RI, 
+ REX, REY, NX, NI, HZ) 

C Increment ID by one 

ID = ID + 1 

C Write ID, OCX, CCI, RX, RI to R1.GEN 

CALL WRITEGEN (ID, CCX. CCI, 
+ RX, RI, REX, REY) 

END IF 

END DO 
END DO 

END DO 
WRTTE(11, '(A(')'EHD' 
CLOSE (11) 

C------------------------------------------------------------
C R2 
C------------------------------------------------------ ______ 

100 IF R2 EQ. 0) THEN 
GOTO 200 

END IF 

c open new generate file r2.gen 

FHANE '!home/egeol7/arc/g1ec/1insJrose/ro2/r2 .gen' 
OPEN (UNIT = 11, STATUS 'NEW'. FILE FNANE) 

— 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
3.53 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
274 
175 
176 
177 
178 
179 
180 
183 
182 
183 
184 
185 
186 
187 
188 
169 
190 
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214 CALL ZER03D (PRIM, NX, NI, HZ) 
215 
216 CALL ZER02D )VMAX, NX, NI) 
217 
218 
219 CALL MAXV (V, 16, 1, Z, NX, NV, NE, XN, IN, ZN, 
220 + NAXZ, VM.AX, PRIM) 
221 
222 
223 ID = 1 
224 
225 C do loops for calculating coordinates for rose diagrams 
226 c and writing generate file for them using v(x.y,z) 
227 
228 
229 DOX= 1, XN 
230 D0I1, IN 
231 DO Z = 1, ZN 
232 
233 c check if there is any data for this grid cell and direction 
234 
235 IF (PRINV)X,Y,Z) NE, 0) THEN 
236 
237 c calculate got, gcy coordinate of grid centres 
238 
239 CALL CHIDDEN (GXO, 010, DC, OCX, CCI, X, I) 
240 
241 c create rose diagram generate file 
242 
243 CALL ROSE (PR2, PRIM, X, I, Z, CCX, CCI, 
244 + RX, RY, REX, REI, NX, NI, NZ) 
245 
245 c write id,gcx,gcy,rx,ry to R2,gen 
247 
248 CALL WRITEGEN (ID. CCX, CCY, RX, RI, REX, RE?) 
249 
250 ENDIF 
251 
252 c increment ID by 1 
253 
254 ID = ID * 1 
255 
256 END DO 
257 END DO 
258 END DO 
259 
260 WRITE (11, '(A)') 'END' 
261 , CLOSE(11) 
262 
263 
264 C 
265 C RI 
266 C 
267 
268 200 IF (R3 EQ. 0) THEN 
269 GOTO 300 
270 END IF 
271 
272 C run maxv if it hasn't been run before 

-- -- 273 
274 IF (R2 EQ. 0) THEN 
275 CALL NAXV( V. X, I, NX, NI, NE, XN, IN, ZN, 
276 + MAXZ, WAX, PRIM) 
277 

.278 END IF 
279 
280 
281 CALL ZEROID (SEC. NX, NY, NE) 
282 
283 CALL SECV)V, 16, 1, Z, PRIM, SEC, NX, NY, NE) 
284 
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INANE = /horse/egeol7/arc/glac/lins/rose,'r053/r3 gen' 
OPEN (UNIT 11. STATUS = NEW', FILE = FNAME) 

ID = 1 

C Do loops for calculating coordinates for rose diagrams 
C and writing generate file for them using SEC(X,Y,Z) 

DO X 1. NFl 

DO V 1, IN 

DO Z 1, ZN 

IF (SEC(X, I, Z) NE. 0) THEN 

CALL GRIDCEN )GXO, CYO, ON, OCX, 
+ GCV, N, I) 

CALL ROSE)PRJ, SEC, X, I, Z, 
+ OCX, CCI, RX, RI, REX, REV, NX, NV, NE) 

CALL WRITECEN (ID, CCX, Gd, 
+ RN, RI, REX, REV) 

ID ID + 1 

END IF 
END DO 

END DO 

END DO 

WRITE)ll,')A)')'END' 
CLOSE) 11) 

C__________________________________________________________________ 
C R4 
C------------------------------------------------------------------ 

300 IF (84 EQ. 0) THEN 
GOTO 400 

END IF 

IF )R2 .EQ.0) THEN 

CALL ZER02D (WAXy, NX, NY, NE) 

CALL MAX' U, N, I, NX, NV, NE, XN, IN, EN, 
* MAXZ, VNAX, PRINV) 

END IF 

CALL ZEROJD (VSAND, NX, NV, NE) 

C Open new generate file for output of rose diagrams 

INANE )'/home/egeol7larC/giac/lins/rose/r054/r4gen') 
OPEN UNIT = 11, STATUS 'NEW', FILE FNANE) 

C set arrays of bandy to fixed values according to total number of 
C ilijeations In each grid cell 

CALL BAI4DV)V, N, Y, Z, VEAX, VBAllD, NX, NV, NE, XN, VN, ZN) 

ID 1 

DO N 1. XN  

DO V 1, IN 

DO Z = 1, ZN 

C check if there is any data for this grid cell and direction 

IF )VBAND)X,V,Z) NE, 0) THEN 

C Calculate CCX,CCY coordinate of grid centres 

CALL GRIOCEN )GXO, 010, ON, CCX, CCY, X, VI 

C Calculate RX and RY coordinates for rose diagrams 

CALL ROSE (PR4, VBAND, N, I, Z, OCX, CCV, RX, 
+ RI, REX, REV, NX, NV, NE) 

C Write ID, CCX, Gd, RX, RI to R1.GEN 

CALL WRITECEN (ID, CCX, CCV, 
+ RX, RI, REX, REV) 

ID = ID + 1 

END IF 

END DO 

END DO 

END 00 
WRITE 11, ' (A) 'I 'END' 
CLOSE) 11) 

C_________________________________________________________________________ 
C RS 
C_________________________________________________________________________ 

400 IF IRS EQ. 0) THEN 
COTO 500 

END IF 

CALL ZER03D )REPV, NX, NY, NE) 

FNAME = '/hoae/ege017/arc/glac/lins/rose/ros5/r5 get,' 
OPEN UNIT = 11, STATUS = 'NEW', FILE = FNANE( 

ID 1 

DO X = 1, XN 

DO Y 1, IN 

DO Z = 1, ZN 

IF )V)X,V,Z( -NE. 0) THEN 
REPV)X,V,E) = 1 

C Calculate GCX,GCY coordinate of grid centres 

CALL GRIOCEN )GXO, 010, DO, 
OCX, CCV, N, I) 

C Calculate RN and RI coordinates for rose diagrams 

CALL ROSE )PRS, REPV, X, V. Z, 
+ CCX, CCV, RN, RI, REX, REV, NX, NY, NE) 



427 C Write ID, COX, CCV, RX, RV Co R1.GEN 
428  498 CALL WRITECEN (ID, OCX, CCV, 
429 CALL WRITECEN (ID, CCX, CCV, 

499 RX, RV, REX, REV) 
430 * RX, RV, REX, REV) 

500 

431  501 C Increment ID by one 
432 C Increment ID by one 502

503 433 ID = ID + 1 
434 ID = ID + 1 

504 

435  505 END IF 
436 506

507 437 END IF END DO 
438 508 

439 END DO 
509 END DO 

440 510 
441 END DO 511 END DO 
442  512 

443 END DO  513 WRITE(11, '(A)')'D' 
444  514 CLOSE(11) 
445 WRITE) 11,' (A)') 'END' 

515
516 446 

447 
CLOSE(11) 

 517 600 RESULT-1  
448 518 WRITE(0, * RESULT 
449 519 CALL EXIT(0) 
450 C R6 END 
451 C 
452 
453 

C ------------------------------------------------------------------------- -
-520  

454 500 IF )R6 EQ. 0) THEN 
455 0010 600 
456 END IF 
457 
458 C run maxv if it hasn't been run before 
459 
460 IF (R2 EQ. 0) THEN 
461 CALL MAXV( V. X, V, NX, NV, NE, XN, VN, ZN, 
462 NAXE, VMAX, PRINV) 
463 
464 END IF 
465 
466 FNAJ4E = ' /horee/egeol 7 / a rC/91ac/11n5/rDse/r056/r6 gen' 
467 OPEN (UNIT = 11, STATUS 'NEW', FILE z FNANE( 
468 
469 ID z 1 
470 
471 DOX1, XN 
472 
473 D0V1, YN 
474 
475 DO Z = 1, ZN 
476 
477 IF )PRINV)X,V,Z) HE, 01 THEN 
478 PRINREPV(X,V,Z( 1 479 ELSE 
480 PRINREPV(X,V,E( = 0 
481 END IF 
482 
483 ID = ID + 1 
484 
485 IF )PRINREPV)X,V,Z( NE, 0) THEN 
486 
487 C Calculate GCX,GCV Coordinate of grid centres 
488 
489 CALL CRIDCEN )OXO, GVO, DC, CCX, CCV, X, V( 490 
491 C Calculate RX arid RV coordinates for rose diagrams 
492 
493 CALL ROSE (PRG, PRINREPV, X, V. Z, CCX, 494 COY, RX, RV, REX, REV, NX, NV, NE) 495 
496 C Write ID, CCX, CCV, RX, RV to R1,CEN 
497 



SANDY (V, X, V. Z, VNAX, VBAND, NX, NV, NE, XN, YN, ZN) 

C 

C SUBROUTINE to calculate band values for proportional rose diagram 
C plots 
C 

IMPLICIT DONE 

INTEGER V, VMAX, VBAND, X, V. 1, VBAND1, VBA}1D2, VBAND3, 
+ VBAND4. NX, NV, NZ, XN, VN, ZN 

INTEGER V(NX, NV, NE), V}IAX(NX, NY), VBAND(NX,NY,NZ( 

DO X 1, XN 

DO Y 1, YE 

VEAND1 0.25 * VHAX)X,V) 
VEAND2 = 0.5 * VNAX(X,V( 
VBAND3 = 0.75 * VNAX)X,Y) 
VBAIID4 = VMAX(X,Y( 

DO Z = 1, ZN 

IF (V(x,y,z) eq. 0) then 
VBAIID(X, V. 2) 0 
GOTO 10 

END IF 

IF )V(X,YZ( .LT. VBAND1) THEN 
VBANO(X,Y,Z) 1 

ELSE IF )V(X,Y,E( .LT. VBAIJD2) THEN 
VDAND)X,Y,Z( 2 

ELSE IF (v(x,y,Z( .LT. VBAND3( THEN 
VBAND(X,Y,Z( = 3 

ELSE 
vsANo(x,y,z( = 4 

END IF 

10 CONTINUE 

END DO ,  

END DO 

END DO 

RETURN 

END 

an 
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1 SUBROUTINE CALDIRB(DIR, Z, Lxi, Lvi, LX2, LY2( 
2 
3 C Program to calculate the direction of lineation and the direction 
4 C band to which it should be assigned 
5 C 
6 c 0-4.999 deg *> i-i, 5-9.999 deg => z=2 
7 C 85.0-89.999 deg > z=18, 90-94.999 deg => z=19, 175-179.999 => z36 
8 C 
9 C calculation formula is: 1 = Zdir/5 + I (where Z is an integer) 
10 C 
11 IMPLICIT NONE 
12 
13 REAL-8 DIR, Lxi, LY1, LX2, LY2, DX, DY, 91, RADIR, FDIR 
14 PARAMETER (P1 3.1415927) 
15 INTEGER Z 
16 
17 
18 DX ABS(LX2-LX1( 
19 
20 BY = ABS(LY2-LY1) 
21 
22 IF (((Lxi .LT. LX2( AND. (LYi ,GT. LY2() 
23 + OR, ((Lxi .GT. LX2) AND, (LY1 .LT. LY2()( THEN 
24 
25 RADIR ATAN(DX/DY) 
26 
27 FDIR = RAI2IR*(180fPI) 
28 
29 DIR 180 - FDIR 
30 
31 Z (DIR/5l + 1 
32 
33 ELSE IF (LY1 EQ. LV2) THEN 
34 
35 DIR = 90 
36 
37 1 = (DIR/5) + 1 
38 ELSE IF (Lxi EQ. LX2( THEN 
39 
40 Z = 1 
41 
42 ELSE 
43 RADIR ATAI4(DX/nv) 
44 
45 DIR RADIR*(180191) 
46 
47 2 = (DIR/5) + 1 
48 
49 ENDIF 
50 
51 RETURN 
52 
53 END 
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C 
SUBROUTINE EAXNINLIN )GXNAX, GXMIN, GYMAX GYMIN) 

- 

C finds max and sin coords of area for grid Creation 
C - 

IMPLICIT NONE 

REAL'8 GXMIN, GXMAX, GYMIN, GYNAX, lx, ly 
CHARACTER E 
INTEGER COUNT. ID, NCCUNT, FCOUNT 
PARAMETER (NCOUNT 500 000) 
REAL58 LCX(MCOUNT), LCY)MCOUNT) 

C 
C Open up I/O files 
C 

GXMIN 99E32 
GYMIN 99E32 
GXMAX -99E32 
OYNAX -99E32 

OPEN (10, STATUS='OLD' 
* FILE'/home/egeo17/aro/g1a/jfl5/ijflgfl' 
+ ERR,,9999) 

COUNT = 1 

30 READ (10, *, ERR = 20, END 20) ID 

READ (10, , ERR = 20, END 20) LCX(COUNT), LCV(COUNT) 

READ (10, , ERR = 20, END = 20) LCV)COUNT + 1), LCV)COUNTt1) 

READ (10, ')A)',ERR 20, END = 20) E - 

COUNT=COUNT+2 
FCOUNT COUNT 
COTD 30 

20 CONTINUE 

COUNT = 0 

FCOUNT FCOUNT - 1 

100 CONTINUE 

IF (COUNT EQ. FCOUNT) THEN 
COTO 200 

END IF 

COUNT = COUNT + 1 

LX LCX)COUNT) 
LV LCV)COUNT) 

IF (LX -CT- GXMAX) THEN 
OXMAX LX 

ENDIF 

IF (LX .LE. GXMIN) THEN 
GXMIN = LX 

ENDIF 

IF (LV -CT- GYMAX) THEN 
GYMAX = LV 

ENDIF 

IF (LV .LE. GYMIN) THEN 
GYMIN = LV 

72 ENDIF 
73 
74 GOTO 100 
75 
76 200 CONTINUE 
77 
78 9999 CLOSE (10) 
79 
80 CONTINUE 
81 RETURN 
82 END 
83 



SUBROUTINE MAZy (V. K, V. Z, MX, NV, NZ, XN, YN, ZN, 
MAZE, 914AX, PRINV) 

C calculates maximum number of lineations in a particular gridcell 
C and creates a 2-d array vmax(x,y) of these maximum values for each 
C grid cell and a 3d array pririv(x,y) of principle directions and maximum 
C values for each grid cell. 

IMPLICIT NONE 

INTEGER NX, NV, NZ, X, 1, Z, ZN, YN, ZN 
INTEGER VNAX, MAXZ, PRINV, V 
INTEGER PRINV(NX, NV, Nfl, VMAX(NX, NV), V(NX. NV, HZ) 

DO K 1, ZN 

DO V = 1, VN 

DO Z = 1, IN 

IF (Z EQ. 1) THEN 

\fl4AX(X,Y) = 0 
MAZE 1 

END IF 

IF (V(X.V,Z) .OT. V}4AZ)X,V)) THEN 

VNAX(X,V) = V)x,V,Z) 
NAXZ z Z 

ENDIF 

IF (Z NE. ZN) THEN 
GOTO 10 

ELSE 
PRINV(X,V,MAXZ) V(X,Y,MAXZ) 

END IF 

10 CONTINUE 

END DO 

END DO 

END DO -  

RETURN 

END 

— 

5 
6 
7 
8 
9 
10 
11 
12 
ii 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41. 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 

1 



72 c create rose diagram generate file 
73 
74 CALL ROSE(PRINV, X, V. Z, CCX, COY, 
75 + Eli, RV, REX, REV, NX, NV, HZ) 
76 
77 c increment ID by 1 
78 
79 ID = ID + 1 
80 
81 c write id,gcx,gcy,rx,ry to prin.gen 
82 
83 CALL WRITEGEN (ID, OCX, CCV, RX, RV, REX, REY) 
84 
85 END IF 
86 END DO 
87 END DO 
88 END DO 
89 
90 WRITE 11, ' (A)') 'END' 
91 CLOSE 11) 
92 
93 RETURN 
94 . 

95 END 

t 

SUBROUTINE PRINLIN)V, X, Y, Z. XN, VN, ZN, 01(0, OVO, DO) 
C 

C 

C This subroutine selects the principle lineations and creates a 
c generate file of these lineations which plot as rose diagrams 
c It calls subroutine rose to create the rose diagram generate file 
c and zero3d to zero the 3 dimensional array of principle directions 

IMPLICIT NONE 

REAL'8 ocx, GCV, RX, RV, REX REV, OXO, OVO, DO 
INTEGER X. V, Z, XN, VN, ZN, ID, V}IAX, U, PRINV, 

+ NX, NV, Ni 
PARAMETER )NX = 200, NV 200, Ni = 36) 
INTEGER V(X, NV, Ni), PRINV(NX, NV, Ni), VNAX)NX, NY) 
CHARACTERRQ FNANE 

c calculate principle directions for each grid cell X,V 

C zero all prinv)x,y,z) 

CALL ZER03D)PRINV, NX, NV, NZ) 

DO X 1, NX 

'Th!AX)X,V) 0 

DO V = I, NV 

VNAX)X,V) 0 

DO Z 1, NZ 

IF )V(X,V,Z) .GT. VNAX(X,Y)) THEN 
GOTO 10 

END IF 

GOTO 20 

10 VMAX)X,V) V)X,V,Z) 

PRINV(X,V,Z) = V)X,V,Z) 

20 CONTINUE 

END DO 
END DO 

END DO 

c write coordinates to lineation generate file pringen 

FNAWE = '/home/ege017/arc/glac/lins/rose/pringen' 
OPEN (11, STATUS 'NEW', FILE FNANE) 

ID = 1 

c do loops for calculating coordinates for rose diagrams 
c and writing generate file for them using v)x.y,z) 

DO X = 1, XN 
DO V = 1, VN 

DO Z = 1. ZN 

c check if there is any data for this grid cell and direction 

IF (PRINV(X,V,Z) NE. 0) THEN 

c calculate gcx, gcy coordinate of grid centres 

CALL ORTOCEN )GXO, OVO, DO, OCX, CCV, 1<, 1') 
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SUBROUTINE ROSE (p. V. X, V, Z, CCX, CCy,  I SUBROUTINE SECV)V, X, V. RX, BY, REX, REV, NX, NV, NZ) 2 Z, PRIHV, SEC, Dx, Dy, no) 
3 C 

C To calculate the coordinates for the end of the line for each part 4 C Sets 
C of the rose diagram for given X and V )X=colueins,- Vrows) S C 

all secv(x,y,z) 
and 

= non-zero prir1v(x,y,z) to zero 
C p Is the Unit length of the line for one lineation in a particular 6 C 

all prinv)x,y,zt/_1) non-zero to zero 
C direction on the rose diagram 

- 
7 C thus only recording the secondary directions 

- 8 C principal component, 
outside 5 degrees of the 

IMPLICIT NONE 9 C 
10 C 

REAL'B RDIR, COX, GCV, P, ZOIR, DRX, 0EV, RX, RV, 11 
+ Pt, REX, REV 12 IMPLICIT NONE INTEGER X, V. Z, NX, NV, Ml 13 

PAR.AIIETER (ZDIR = 5.0, P1 3.1415927) 14 INTEGER X, V INTEGER V)HX, NV, NZ) 15 
Z, NX, NY, NZ, V, PRINV, SEC INTEGER VINX, NV, NI), PRINV(NX, NV, HZ), SEC)NX, NV, NZ) 

C Convert I value to an angle RDIR 17 
18 

DO X 1, MX 

ROIR ZDIR'Z - 2.5 19 
20 

DO V 1, NV 

C calculate distance in X and V (DRX, ORV) from centre of grid call 
21 
22 

DOz=1, NY 

C and end coordinates RX and RV of lines for rose diagram 23 
C and to work out other end of rose diagrams rex and ray 24 SEC(X,Y,Z) V)X,V,Z)  

25 
26 IF (PRINV(X,V,z) .NE. 0) THEN  

IF (Z CT. 19) THEN 27 SEC(X,V,Z) = 0
END 28 IF 

DRX PV(X,V,Z)'5INpIJ1go)'RDIR( 29 
DRY PV(X,V,Z)*C05)(pI/l80)*RDIn) 30 IF (Z . ME. 1) THEN 

31 IF (PRINV)31,V,Z_l) NE, 0) THEN  
32 SEC(X,V,Z) 0  

RXGCX+DRX 33 END IF
ENDIF RVGCV+DRY 34 

REX COX  - DRX 
. 

35 
36 IF (l NE. 36) THEN 

REV GCV - DRY 37 IF )PRINV(X,V,Z+1) .ME. 0) THEN 
38  SEC)X,V,Z) 0 

ELSE 
. 39  SEc)X,V,Z) = 0 

40 END IF  
RDIR RDIR - 90 41 END IF  

- 42
' BUD DO 

43 
DRX P*V(X,V,Z)*COS((PI/IBO(*RDIR) 44 
DRY = P*V(X,V,Z)sin)(pI/1e0)=RDIR) 45 

END DO 

81< = CCX + DRX 
46 
47 

END DO 

RV = CCV - DRY 48 RETURN 
49 

REX =GCX-0R31 50 ENO REV = GCV + DRY 

END IF 

RETURN 

END 



1 SUBROUTINE WHGC(LX1, Lvi, LX2, LY2, 3<, V. GXO, 010, DC) 

3 c subroutine to calculate which grid square a lineation is in 
4 c and assign X and V values accordingly 
5 
6 IMPLICIT NONE 
7 
8 REAL-8 Lxi, Lvi, LX2, LY2, CXO, GVO, 
9 * Lcx, Lcv, DC, DLcx, DLCV 
10 INTEGER X, 1 
11 
12 c print, 'wlxl=' ,lxl, 'w1x2=' ,1x2 
13 
14 
15 c calculate mid-point of line LOX, LCY 
16 
17 DLCX AES((LXl - LX2}/2) 
18 
19 OBEY = A8S((Lyl  
20 

- L12(/2) 

21 c calculate x and V values (X=colunms, Vrows( 
22 
23 IF (LX1 -GE. LX2( THEN 
24 
25 - LOX (LX1 - OLCX( 
26 
27 ELSE 
28 
29 LOX (LX1 4 DLcx( 
30 
31 ENDIF 
32 
33 IF (Lvi GE. LY2) THEN 
34 
35 LcY = (LY1 - DLCY) 
36 
37 ELSE 
38 
39 LcY = (Lyl + nLcy) 
40 
41 ENDIF 
42 
43 x ABS((Lcx - 01(0)/ DC) + 1 
44 
45 Y ABS((Lcy - 010)/DC) + 1 
46 
47 c Print*, 'x=' ,x, '1=' 1 
48 
49 RETURN 
50 
51 END 

PROGRP34 WEED 

3 C this program weeds out the extra coordinates from file olin.gen 4 
5 

c the generate file produced by "generating the lineations 

6 
c coverages. The reason for this program is that the rose diagram 
C program will only accept pairs of coordinates to create rose 

7 C diegrems. 

9 c this program reads from generate former file OLIN.GEN 
10 c and writes out weeded file LINDEN which is accepted by 
11 c the rose diagram program roslin.f 
12 
13 
14 implicit none 
15 real8 lxi, 1x2, bxl, bx2, bx3, bx4, lyl, 1y2, 16 t by2, byl, by3, by4 
17 integer ID 
18 character-80 fname, nfname 
19 
20 c open generate format file olin.gen 
21 
22 fname'/homeJegeol7/arCJglac/lins/o1ingen. 
23 open(unitlofiie-fname status='old', err-997) 24 
25 c open new file to write weeded coords to 
26 
27 nfneme' Jhome/egeol7/arc/giac/ljns/lin gen' 
28 open(unit=l1,filenfnamestatus . new. err9991 29 - 

30 c beginning of loop for reading olin.gen and writing 000rds 
31 c to file lin.gen such that each line has only one pair of 32 c coordinates 
33 
34 c read ID - 
35 

("2 36 10 read(10, ',enth995, err=995( TO 
' 37 - 

38 c read coordinates up to 5 pairs until reach END flag 
39 
40 read(10, , err20) lxl, lyl 
41 read(10, ',err=zo( 1x2, 1y2 
42 read(10, , err20( bxl, byl 
43 readllo, ',err2O) bx2, by2 
44 read(10, 5 err=20) bx3, by3 
45 read(lo, , err=20( bx4, by4 
46 
47 c write ID and only one pair of coordinates and END flag 
48 c to new file 
49 
SD 20 write)ll, ') ID 
51 write(ll, ) lxl, lyl 
52 write(ll, 1x2, 1y2 
53 write(ll, '(a)') 'END' 
54 
55 goto 10 
56 
57 c error lines 
SB - 

59 995 write(ll, ' (e( ( END' 
60 goto 999 
61 997 print*, 'could not open file olin.gen' 
62 goto 999 
63 998 print, 'could not open file lin.gen' 
64 
65 999 continue 
66 
67 end 



1 subroutine writegrid(v, 'C, y, gxo, gyo, dg, nodxn, yn, nx, nit) 
2 
3 implicit none 
4 
S rea1*8 gxo, gyo, dg 
6 integer x, y, nod, so, yn, ox, ny 
7 0 paralneter(nx=300, ny=300) 

integer v(nx,ny) 
9 
10 c write header of ascii file 
11 
12 print*, calling writegrid' 
13 
14 writé(li, ) 'ncols ,xn 
15 write(ll, ') 'nrows 1 ,yo 
16 write(ll, *) 'xllcorner gxo 
17 write(ll, ) 'ylicorner ' gyo 
18 write(ll, *) 'cellsize , dg 
19 wrire(11, *) 'nodats_velue' nod 
20 
21 c do loop for writing grid values to ascii file 
22 
23 print*, 'sdg=',v)l,l) 
24 
25 do yyn,l,-1 
26 - 
27 write (11, * , err100) v(x,y),xl,xn) 
26 
29 100 end do 
30 
31 return 
32 end 
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C 

C 

this program calculates lineation density plots and writes the 
results to a file for input into ARC/INFO GRID in ASCII formar 
the input is created by ungenerating a Coverage to a lin.gen 
file and the output file linden.gen is then read into ARC/INFO 
output tile: gen 

implicit none 
real's dg, gxo, gyo, lxi, 1x2. lyl, 1y2 
integer nx. ny, nod, result 
parameter (nx=300, ny300( 
integer v(nx,ny( x, y, xn, yn, Id, count 
character e 

get grid cell size for calculation 

write('. (a)')' Grid cell size?' 
reed )*•*) dg 
Print-. . dg= , dg 

read (5,-) dg 

sec all v)x,y( to zero 

call zero2d(v, ox, fly) 

calculate grid origin 

call gridor(dg.gxo,gyoxnyo) 
print', 'dg' , dg, 'gxo' , gxo, 'gyo=' , gyo, 'xn=' , xn, 'yr=' , yii 
Open old lineations file 

open (unit10, status' old', 
+ 

countl 

beginning of loop to calculate number of lineations in 
each grid cell 

read a lineation from old generate file linden.gen 

READ (10, . err=20, end=20) Id 
READ (10. . err20, end=20( lxi, lyl 
READ (10, '. err=20, end=20) 1x2, 1y2 
READ (10, ', err=20, end=20( e 
.rite(',-) lxi, lyl 
couot=count+l 
print', 'cDunt' , couot 
calculate which grid cell a lineation is in 
assign X, Y values of V 

cell whgc(lxl, lyl, lx?, 1y2, x, y, 
+ gxo, Syr, dg( 

Print*, 'x=' x, y '  Y 
add to number of lineations for that grid call 

v(x,y( v(x,y( 4 1 

goto 30 

close (10) 

open new generate file for output of rose diagrams 

open (unit=ll, status= new'. 
+ filee' 

write esciigrid file 



C 
C" 



The User Interface for Sea Level Calculations 

This interface is written using the ARC Macro Language (AML) which calls 

FORTRAN programmes to undertake the relative sea level suface and isostatic 

surface calculations. The analysis is described below in the stages represented by the 

boxes in Figure 5.8. 

The program is initiated using a shell script which calls the program SL.AML. 

The user is asked whether they wish to analyse the sea level curves, or merely view 

the data and the results of previous analyses. if they elect to undertake analysis the 

AML prompts for a time between 0 and 1000 years BP. The program checks that 

the user has entered a valid response, and continues to prompt for a valid time until 

one is entered. 

The user is then asked whether they wish to calculate an isostatic surface by 

subtracting a eustatic value from the relative sea level heights for each location, if 

they elect to do this, they are given a menu of possible eustatic estimates from 

which they can select the eustatic curve which they prefer. 

The time variable is then passed to a FORTRAN programme which accesses the 

sea level curve files which are stored as a set of height, time strings. A subroutine 

searches through the strings for the two points which are either side of the time 

which has been entered (i.e. the two numbers which are closest to the required 

value on each curve). For some curves a null value may be returned because there 

is no data for the required time slice. If the user chose to calculate an isostatic 

surface, the height value on the eustatic curve is also calculated. 

A further subroutine then uses a straight line interpolation between these two 

points to calculate the height value for the time slice selected for each curve. 

These points are read into an array for use later. If the user chose to calculate 

isostasy the eustatic value is then subtracted from each element in the relative sea 

level array to create a second array of isostatic height values. 

These arrays are then used in a set of UNIRAS subroutines which interpolate the 

points for each location to calculate a regular grid of points which can be used to 

generate a surface within ARC/INFO. The routines generate a two dimensional 

array of height values. 
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The array of points is then written to a system file in grid lattice format, control is 

passed back to ARC and the surfaces are generated in the GRID module and 

contoured within ARC/INFO. 

The user can then view these surfaces, and the points used to generate them using 

AMLs within the GRID module. 

Finally the user has the option to exit, or to perform further analyses. 
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I /* 

2 /* 22/11/94 
3 1 
4 R called from arc with are corriznand SEA 
5 /* or from system with shell script lins 
6 / starts analysis and plotting of sea level programs 
7 /runs miami 
B 
9 &amlpath /homeJageo17/arc/sea/aml 
10 &termina]. 9999 
11 &thread &creare sea &r siarni 
12 &thraad &delete &self 
13 



2 /' 22/11/94  72 atype 2. Fairbanks 1989 curve 3 /* 73 atype 
4 /' SL.AI'IL /  74 as one file  = (response Select number  for eustatic S I' 75 curve to use) 
6 I' Controlling AML for creation of ralarive and isostaric sea level surfaces 

76 &if %eusfile% ne 1 &then 
7 I' according to user defined time slices. Isostatic surfaces created 

77 ado
78 8 / user-defined eustaric curve. Also creates plotfiles 

using &if %eusfile% ne 2 athen 
9 /* of surfaces. 79 ado 
10 
11 

/s  80 
 81 

atype WARNING: appropriate numeric response eected' 
12 &amlpach /home/egeo17/arc/s / rn  82 

&goto eustcurve 
&end 

13  83 &end 
14 &r setpafhs eel 84 
15 .  85 &if %eusfile% eq 1 athen 
16 &terminel 9999  86 &s .eusfile eustasy 
17 87 
18 &sv ansel (query Do you wish to d o some analysis V/N) 88 /' should really have another curve digitised but don't 19  89 
20 'if %ansel% arhen  90 &if %eusfile% eq 2 athen 
21 &goco sview  91 / as .eusfile %.e8lpath%/eustasy 
22 92 &s .eusfile = eustasy 
23 alabel begin  93 
24 
25 

 94 / look up curves for that time slice and produce; 
/'&sf [variable &then  95 /s relative sea level grid 

26 I' &dv  96 /* 
(isostatic surfaces grid) 

27 . 97 /* info data file(s) of heights for input into INFO 28 . V ask for time slice x  98 
29  99 /s 

delete previous ascii.grid/sl.dat/info dat files 30 alabel ts1ice 100 
31  101 Sr kil1fi1e1 
32 
33 

&setvar .x (response 'Enter time slice (Y ears 891 for surface creation'] 
102 - 
103 Sr killcovs,aml %eusfile% 

34  104 
35 aif [null Ix%) arhen 105 /* create irregular point, grid and info files 
36 &goto rs lice ,  106 /5 Create grid of surface(s) 
37  107 /s create contour coverage of surfaces 
38 611 ItYPe %.x%( Be -1 &rhen 108 
39 ado 109 Sr slcgrid,aml %eusfile% 
40 Sit [type I x%[ Be -2 arhen  110 
41 &goro tslice  111 /5 create point coverage with height values 
42 Send 112 
43 113 Sr htinfoaml %eusfile% 
44 1' check that time slice is not too big or negative 114 
45 - 115 Slabel aview 
46 aif %.x% Or 14000 &rhen  116 
47 ado  117 /5 display surfaca(s( 
48 &rype 'WARNING; Out of range time slice, Naximue 14 000' 

118 
49 &goto lice 119 Sr sView eel %eusfile% 
50 Send  120 
51 

. 

121 /5 hardcopy of surface(s)  
52 aif %.x% It  0 ashen 122 
53 ado 123 Var splotaml 
54 atype 'WARNING; Time slice must be a positive number' 
55 igoto talice - 

56 Send 
57 
58 /5 create isoltatic surfaces? 
59 
60 as eus = (query 'create isosratic surfaces'( 
61' Sif %eus% &then 
62 
63 /5 

ask which aostaric sea level curve to use 
64 
65 Slabal eustcurve 
66 
67 Sif %eus% &rhen 
68 ado 
69 isv .eus 1 
70 &type ' I. Hornet.''' e 1984 curve 
71 arype 



(3' 
(3' 

/HTIMFO.At4L 1/12/94 

/ inputs height information into INFO copying the locations coverage and adding height values 

&args eusfile 

&amlpath /homc/egeol7,arc/sea/aml  
copy %.slocpath%/slioc icc %.rslocpath%,sllocicc 

arcedit 
create %rsloCpath%/H% x1 111 -11T INFO %.rslocpath%/HTTEMpL DAT quit 

&workspace % . rsiocpath% 

&data ARC INFO 
ARC 
SELECT H% . X%_LCC .DAT 

ADD SLLOCLCC-IDZ FROM %.tinfopath%/relinfodat 
0 STOP 

lend 

IOINITEM SLLOC LOC PAT H%.X% LCC.DAT SLLOC LCC.PAT SLLOC LCC-ID SLLOC LOCO 

Idata ARC INFO 
ARC 
SELECT H%.X% LCC DAT 
DELETE HI. X%_LCC .DAT 
V 
0 STOP 

lend 

Copy slloc_icc h%.x%lcc 
kill slloc_lco 

&workspace %.islocpath%/jsl%euafjle% 

ku %.eus% eq 1 Othen 

&do 

copy %.aiocpeth%/sllocicc %.isloCpath%/isi%eusfile%/sllO icc 

arcedi t 

Create HI%.x% LCC.DAT INFO %.islocpath%/HTTEMPL DAT 
qu 1 t 

&data ARC INFO 
ARC 
SELECT HI% . XI LCC .DAT 

ADD SLLOC_LCC_ID,Z FROM %.iinfopath%/isoinfodat 
Q STOP 

Lend 

JOINITEM SLLOC LCC PAT HI%.X% LCC DAT SLLOC.LCC.PAT SLLOC LCC-ID SLLOCLCC# 

&data ARC INFO 
ARC 
SELECT HI%.X%_LCC.DAT 
DELETE HI%.X% LCC DAT 

- Y - 
0 STOP 

tend 

COPY slloc_lcc hi%.x%lcc 
kill Slloc_lcc 

tend 

72 
73 &RETIJRN 



c-fl 
C" 

10 
11 
12 
13 
14 

72

24 

/ KILLCOVS AJ1L 1 1* 
2 / KILLFILEA14L 

r AMLto check whether grid and contour coverages already exist and 
/A if they do kill them for 

3 1 
4 1* kills files by fortran new ones to be created produced program before a second run 

6 
7 f* 

delete relative and isostatic irregular point files (x,yz) aargs eusfile  8 
&te %eusfile% 9 elf (exists %.rslirrpath%/rsl.det -file) &then 10 &sys re %.rslirrpeth%/rsl dat 
tiE [exists %.rslocparh%/sllorlcc  -cover] erhen 

11 

kill %rslocpsth%Isllocicc  12 &if [exists %.islirrpath%/isl dat -file) ethen 13 &sys rm %.islirrpath%Jjmldat 
tif (exists %.islocpsth%/isl%eusfile%/slloc 1cc -cover) &then 

14 

kill %islocpath%iisl%eusfile%/slloc ic  
15 I' delete relative end isostatic info files 
16 

tif (exists % rslocpath%/h% x%lcc  -cover) &then .r 17 &if [exists %infopath%/rejjnfodat -file) &then 
kill %.rsiocpath%/h%x% 1cc 18 &sys r.%rinfopath%/rel nf0  

19 
&if (exists %.islocpath%1i51%5u5f118%/hi% x% icc -cover) &then 

20 tif [exists %.iiofopath%/isoinfodat -file) &then 
kill %.islocpeth%iisl%eusfile%yhi% x% 1cr 21 &sys rm %.iinfopath%/isoinfodat 

 22 
23 1* delete relative and isostatic ascii grid files 
24 &if exists %rsurfpath%/rsl%x% -grid) &then 

kill % rsucfpath%/rsl% x% 25 sit (exists %.rascpath%/rsl.grid -file) ethen 26 &sys rm %rascpath%/rsl grid 
&if (exists %isurfpath%/isl%eusfiie%/isl%x% -grid) &then 

27 

kill % isurfpath%/isl%eusfile%/isl%% 
28 &if (exists %.iascpath%/isl.grid -file) ethen 29 &sys ne %.isscpath%/isl.gnid 

tif (exists %rsurfpath%Irslt% x% -tin) athen 
30 

kill %.rsurfpath%/rslt%.x% 31 
32 &rerurn 

tiE [exists %isurfpath%/isl%eusfile%/i51t%x% -tin] &then 
33 

kill %.isurfpsth%isl%eusfile%/is1t% x% 
34 

- 

sif (exists %nsurfpath%/crsl %.x% -cover) &then 
kill %.rsurfpeth%icrsl% x% 

sit (exists %isurfpsth%/isl%eusfile%/cisi%x% -cover] athen kill %. isurfpath%/isl%eusfile%/risl%x% 

ireturn 



12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 

i' setpathsaml 
1 

/ sets all the path names for the coverages, programs and files 3 
2 SLCGRIO.P24L 

1* 
any changes to path names for relocation of output or input should 

V be hete made 4 1* creates surfaces and contour coverages of grid files 
5 /* 

mamipath /homa/egeoi7'arcjseaI rn  6
7  &args eusfile 

V set path name for sea level locations coverages 
8 
9 f create irregular point, info and asciigrid files 

isv .slocpath /home/egecl7/arc/se 
- 

10 

. isv rslocparh /hoee/egeol7/arc/se/  11 isv y (task %.forpath%/sl tote %.x% %.eus% %.eusfile%I) 
isv .islocpath /home/egeo17/arc/mea/isos  12

13 1* set path names for the fortran programs 1 create grids 
14 

. isv fcrpath = lhome/egeol7/erc/sea/pr0g5/0  15 asciigrid %.rascparh%/rml.grid %.raurfpath%/rsl%x% float 
16  

set path names for sealevel curves 17 elf %.eus% eq 1 athen
18  

asciigrid %.iascpath%/isi.grjd %.imurfpath%/isl%eusfiie%/isl%x% float 
isv .slcparh = /home/egecl7/arc/s/5j 19 
isv .eslpath /home/egeol7/arc/sea/eslc 

20 1* create contour coverages 
21 

- 1 set path name for new irregular sea level  22 latricecontour %.rsurfpath%/rsl%x% %.rsurfpath%Jcrsl %.x% 2.0 points (x,y,z) 23 
isv .rsllrtpath /home/egeo17Jarc/se/ 0r  24 is rcrov %.rsurfpafh%/crsl% x%

25 isv .islirrpath /home/egeo17/arcJsea/ 0r  
26 &if %.eus% eq 1 ithen 

I ' set path names for the new into data files - 27
28 latticecootour %.isurfpath%Jisl%eusfile%,151 %.x% - 

. isv tinfoparh /home/egeol7/arc/sea/work  29 %.isurfpath%Iis1%eumfi.le%/cisl%x% 2.0 
isv iinfoparh /home/egeol7/arc/aea/ r  30

31 is .iccov = %.isurfpath%/isl%eusfile%/ci51%.x% 
I' set path names for asciigrid files 32

33 1* create surfaces 
isv .rascpeth /home/e9e017/arc/sea/rel 34 

. isv iascpath /hcme/egeo17/arcjs jj505  35 latticetin %.rsurfpath%/rsl_%.x% %.rsurfpath%frslt_%.x% # 
36 10000 

7' set path names for contour coverages and surfaces 37
38 &if %.eus% eq 1 ithen 

isv .tsurfpath = /homc/egeol7/arc/sea/rel   39 
isv .isurfpath = /home/ege017/arc/sea/j505  40 latticetin %.isurfpath%/isl%eusfile%,isl%x% - 

41 %.isurfpath%/isi%eusfile%,islt%x% 8 8 10000 
42 
43 - 
44 ireturn 
45 



CA 
00 

1 /5 
2 i' SVIEW.AML 
3 /* 
1 /' program to view surfaces with contour and coastline drapes 

6  

8 
9 &args eusfile 
10 
11 arcplot 
12 
13 disp 9999 2 
14 
15 I' view Contour Coverage and base map 
16 
17 
18 slapex %,rccovl 
19 linecolor 2 
20 arcs %.rccov% 
21 taxtsjze 0.08 
22 textcolor 2 
23 overflow off 
24 arctext %.rccov% contour line blank 
25 
26 linecolor 1 
27 arcs /home/e9e017/b/ceurc 1cc 
28 
29 markercolor 3 
30 markersize 0.25 
31 textcolor 3 
32 points %.rslocpath%Ih%x%lcc 
33 reselect %rslocpath%Ih% x% icc points z ne -999.999 34 pointtext %.rslocparh%/h% xl icc z 11 
35 
36 &pause 
37 
38 clear 
39 textcolor 2 
40 mapex %.lccov% 
41 linecolor 2 
42 arcs %.lccnv% 
43 textaize 0.08 
44 overflow off 
45 arcrext %.iccov% contour line blank 
46 
47 linecolor 1 
48 arcs /home/e9e017/b/ceurcicc 
49 
50 texccoior 3 
51 points %.islocpath%/isl%eusfile%/hi% xl lcc 52 reselect %.sslocparh%/isi%eusfile%/hi% xl icc 53 reselect %.rslocpath%/h% xl icc points 

points z ne -999.999 
S ne -999,999 54 

55 pnlnrtext %. tslocpath%/isl%eusfile%/hi%x%lcc z 11 56 &pause 
57 
58 clear 
59 
60 1 view surfaces 
61 
62 quit 
63 
64 &return 

1 PROGRAM SEALEVEL 
2 
3 IMPLICIT NONE 
4 
5 CHARACTER EFNA14E80 
6 INTEGER ES, RESULT 
7 REAL  
8 CHARACTER-80 INFNAME, OUTFNAME 
9 
10 READ (5, -) X. ES, EFNAX4E 
11. 
12 write (efname, fmt=' (a)') efname 
13 EFNM4E = '/home/e9e017/arcjsealeslc,./IEFNAME,f.  .dat' 14 c print, 'efname=' ,efname 
15 CALL FESLINTER(X, ES, RENAME) 
16 
17 INFNAME '/home/e9e017/arc/58a1w0rkJ591d5t. 18 OUTFNAME '/home/e9e017/arc/seafrel/r519r1d 19 
20 CALL FISOINTERP0L(INFNIE OUTFNAME) 21 
22 
23 IF (ES EQ. 1) THEN 
24 
25 INFNAME = '/home/egeol7/arc/sea/work/isidet. 26 
27 c 

OUTFNAME '/homefegeol7/arc/sea/jsos/j53 grid 

28 
Print*, 'ceiling fininterpol again' 

29 CALL FtSOINTERp0L (INFNAME, OUTFNAME) 

30 END IF 
31 
32 
33 RESULP1 
34 WRITE(o, 5) RESULT 
35 CALL EXIT(D) 
36 
37 
38 END 

raye 
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57 
68 
69 
70 
71 

subroutine dataload (xx, yy, nmax, success, 
+ good, location, lat, ion, cn, n, ilo) 

implicit none 
integer ±1cm nelax, n, un 
dimension good(nmax) xx(nmax) yy(nmax) 
dimension let(52(, lon(52), location(52) 
character nchr2, fname80, record80, 9ood1,1005rj0n80 
logical success 
real lat, ion, xx, yy 

c 
C --  Open file fnarne of form "sl".dat" 
c 

write )nchr, fer=' (i2.2( ') cr2 

fname '/home/egeo17/arc/sea/slc/s1'//n0 //' 

open (11, file=fname, err200, 5t6tu5'oid'( 

c -- file found 

success = true. 

c -- read header first lines 

read (11, fmt='(a(') location(on) 
read (11, 5) 

read (11, fmt=10) lat(cn), lon(cn( 
read (11, 5) 

10 format (f6.2,2x,f6,2,lx) 

C - some traps for blank linea 

iso 
100 continue 

ii+1 
read (ll,fmts' a)', and-800) record 
if (record eq. ' ' I goto 100 
read (record, 1 , err=100) xx(i), 

c -- search for V or N putting (3 if niether found 

good(i)s'u' 
do 1=1,80 
if (record(j:j) eq. 'V or. 

+ record(j:j) eq. 'y') good(i)='V' 
if (record(j:j) eq. 'N' or. 

+ record(j:j) eq. 'nI good(i)s'N' 
end do 
goro 100 

800 n = i-i 
if tn eq. 1) then 

jlo=1 
endi E 

goto 999 

200 success false. 

999 continue 

72 
73 
74 return 
75 
76 end 
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.-- 

SUBROUTINE EUS (EFIJAME, X, El 1 SUBROUTINE EUSLOAD (XX, YY, NMAX, SUCCESS, 
C-- 2 + GOOD, LOCATION, LAT, LON, CN, N, JLO, EFNAIIE) 
C 3 

IMPLICIT NONE 4 

---- 

5 IMPLICIT NONE 

CHARACTER EFNAJIE'eO. LOCATION-8G,  000D'l 
6 INTEGER I, CN, NMAX, N, JLO 

REAL XX, YV, X, LAT, LON, H, E, NULL 
7 DIMENSION GOOD(NMAX), XX(NMAX), YV(NMAX) 

INTEGER NMAX, CN, JLO, N 
8 DIMENSION LAT(52), LON(52 ), LOCATION(52) 

PARAMETER (NMAX = 3001 
9 CHARACTER EFNAIIE'80, RECORD*80, GOOD-1, LOCATIONSD 

DIMENSION XX(NMAX(, VV(NMAX(, LOCATION (52), 0000(NMAX) 
10 
11 

LOGICAL SUCCESS 
DIMENSION LAT (51), LON(51) REAL LAT, LON, XX, YY 
LOGICAL SUCCESS 12 

13 C --  Open file fnaiee of form'eustasy.dat' 
NULL = -999.999 14 C efname - /home/egeol7/arC/saa/e51c/eustasydat 
success = false. 

. 

15 OPEN (11, FILE EFNAME, ERR = 200, STATUS 'OLD') 
-- 0 load data from eustariC Curve fnaeie 

16 C print, 'efname=' , efname 
c print', 'calling euslnad' 

17 C -- file found 
C print, 'success=' sucCess, 'efname' ,efname 

18 
19 CALL EUSLOAD (XX, Yl, NMAX, SUCCESS, 

SUCCESS = TRUE. 
GOOD, LOCATION, LAT, LON, CN, N, JLO, EFNAME( 

20 C priot*, 'success=' success 
21 C -- read header first lines 

c -- file sicn.dat found? 22
23 READ (11, FMT '(A)') 

IF (SUCCESS) THEN 24
25 10 FORMAT (F6.2, 2X, F6.2, lx) 

C -- look for points xx(jln( xx(jlo-t1) on either side of desired 
26 

x 27 c -- some traps for blank lines 
CALL HUNT (XX, X, NMAX, N, JLO) 

28 
29 I = 0 

IF ((XX(JLO) EQ. 0) AND. (YY(JLO) EQ. 0)) THEN 
30 
31 100 ENULL CONTINUE 

GOTo 10 32 

END IF 33 I I + 1 
34 

c--write file number, location and Coords 
35 READ (11, FMT '(A)', END 800) RECORD X,y,z to file slpts.dat 36 

H = (YY(JLO+1( - YV(JLO() * X I (XX)JLO*l( - XX)JLO() 4 YY)JLO( - 

37 
38 

IF (RECORD EQ. ' ') GOTO 100 
* )YY(JLOt1) - YY(JLO() = XX(JLO) / (XX(JL0t1) - XX)JLO() 39 READ (RECORD, =, ERR 100) XX(I), n(l) 

ECH/1000 40
41 c prinr*, 'e' a , 

800 N=I_1 

ENDIF 42 
43 IF (CM EQ. 1) THEN 
44 JLO =l 

10 RETURN 
. 

ENDIF 
 

45 
46 

END 47 ONTO 999 
48 
49 
50 200 SUCCESS FALSE, 
51 
52 
53 999 RETURN 
54 
55 END 



SUBROUTINE FESLINTER)X, ES, EFNANE) 
C 
C 
C-- 17/11/94 
C-- this program interpolates using simple straight line interpolation 
c-- from files of two columns of numbers with the location name and date 
C - - Contained in the first and third lines respectively at the top of the 
c-- file the second and fourth lines being blank. Filenames of the form c-- SL * 

.dat up to 51 which can be extended to 99 
. It uses the 

c-- subroutine HUNT to search for the two numbers XX)JLO), XX)JLO*1) 
C-- surrounding the required date X and if the first cootds are found to 
c-- be zero the program assumes that there is a data gap 

- can also cope with C-- a data gap at the end of files. 
c 

C-- it also calls subroutines EUS and EUSLOADand eustatic component 
c-- is subtracted from the relative sea which also produces file isl.dat 

IMPLICIT NONE 

CHARACTER EFNANE58O, 1,11ATI11*80, 000080 
REAL XX, VY, X, LAT, tON, H, NULL, E, Z, Ti 
INTEGER NMAX, CN, JLO, H, TNT, ES, CNNAX 
PARAMETER (NMAX = 300, CNMAX 51) 
DIMENSION XX)NMAX) YY)NMAX), LOCATIOH(CNHAX) COOD)MMAX) 
DIMENSION LAT)CNMAX), LON(CNMAX), E(CNMAX), IE)CNMAX) 
LOGICAL SUCCESS 
NULL -999.999 

t 
C -- do for files numbering 1 to 51 
C 

c print, 'efnaine=' , etname 
DO CN = 1, 51 

C -- load data 

CALL DATALOAD (XX, VY, NMAX. SUCCESS, 
4 GOOD, LOCATION tAT, tON, CN, N, JLO) 

C -- File slcn.dat found? 

IF (SUCCESS) THEN 

c -- look for points xx(jlo) xx)jlotl) on either side of desired x 

CALL HUNT)XX. X, RHAX, N, JLO) 

C -- it first c and y coords assume data gap end print no within range 

IF ((XX)JLO) EQ. 0) AND. 
+ (YY(JLO) .EQ. 0 Cl THEN 

Z(CN) = NULL 
GOTO 70 

ELSE 
COT 40 

ENOIF 

C -- write file number, location and coords x,y,z to file slpts.dat 

40 H )YY(JLO+l) - YY(JLO)) * X / (XX)JLO+l) - XX)JLO)) 4 YY)JLo) - + )3'Y)JLO+l) - YY(JLO) ) * XX(JLO) / (XX)JLO+1) - XX(JLO) 

51CM0 H I 1000 

ENDIF 

70 END DO 

2 
3 
4 
S 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

I 20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

t) 36 
C' 37 

38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 

no 

72 TMTX 
73 c 
74 C -- subtract eustasy? 
75 c 
76 
77 IF (ES EQ. 1) THEN 
78 c print*, 'so far so good - calling sus,  79 CALL RUE (EFMANE, X, El 
80 
81 IF CE EQ. NULL) THEM 
82 ESO 
83 GOTO SO 
84 END IF 
85 
86 C 
87 c-- subtract eustatic value e from relative sealevel values .(On) 
88 c 
89 DOCN3,, 51 
90 ó print*,  
91 
92 IF )Z(CN) EQ. NULL) THEM 
93 IE(CN) = NULL 
94 GOTO 12 
95 ENDIF 
96 
97 IZ)CN) Z(CN) - E 
98 c print*, 'iz*' , iz(cn) 
99 C print, 'z' , r(co) 
100 
101 
102 12 CONTINUE 
103 
104 END DO 
105 
106 
107 ELSE 
108 
109 GOTO 999 
110 
111 END IF 
112 C 
113 C-- if only relative sealevel is required write values to rs1.dat 
114 c-- otherwise write values to rsl.dat *and* isl,dat 
115 C 
116 
117 50 CALL L4RITEPOINTS(Z, IZ, CM, CNMAX, Es) 
118 
119 CALL ININFO (l, If,  CM, CNNAX, ES) 
120 
121 999 CONTINUE 
122 
123 RETURN 
124 END 
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SUBROUTINE FISOINTERPOL INENAME, OUTFNAME 
C 

to do limited area interpolation of al points 
C 

IMPLICIT NONE 
INTEGER C. R, ROWS, COLS 
PARAMETER (ROWS 215, COLS = 167) 
REAL XIRR(51( YIRR(51) ZIRR)51( 
REAL CRID(COLS, ROWS), BUFFER(COLS) 
INTEGER'2, RONSOUT, COLSOUT 
REAL CELLSIZE, XLLCORNER, YLLCORNER, NODATA_VALUE 
CHARACTER-80 INENANE, OUTFNANE 

read points 

OPEN (UNIT = 12, FILE INFNANE, STATUS OLD) 

DO C = 1, 51 
READ (12, ), XIRR(C). YIRR(C), ZIRR)C( 
XIRR(C) s XIRR(C) / 1000 
YIRR(C) YIRR(C( / 1000 

10 ENO DO 

CLOSE (12) 

CALL GROUTE ('S HPOSTA4 E H 

CALL GOPEN 
C Print-, 'gopan opened' 

do interpolation 

o set limits of rectangular grid and max,min(z( of input data prs 
0 

CALL GLIMIT (-703.415011,1112.233944,-816.060105,1401.920152 ,  
+ 999.999,999,999) 
XLLCORNER = -703.415011 
YLLCORNER -816.060105 

c print*, 'glimir opened' 
specify gridding interval in user units 

CALL GBLKSI (10.316187,10.316187, 0.0) 
print', 'gblksi opened' 

CELLSIZE = 10,316187 

c if no data found within radius value to be inserted as the 
c undefined value specified gundeflvalue, Colour) 

CALL GUNDEF (-999.999,0) 
NODATA_VALUE = =999,999 

C print', 'gundef opened' 
C where radius-search area given in user units 
C default = diagonal length of display area 

CALL GRADUS(500.0) 

c interpolates from a set of irreg distrib data points to rag grid 

CALL GINTPF (XIRR, YIRR. ZIRR, 51, GRID, COLS, ROWS) 
C print , 'ginrpf opened' 

OPEN (UNIT = 13, STATUS = 'NEW', 
+ FILE OUTFNANE( 

ROWSOUT = ROWS 
COLSOUT COLS 

WRITE (13, '( 'NCOLS', COLS 
WRITE (13, *) 'NROWS' , ROWS 

XLLCORNER XLLCORNER ' 1000 
WRITE (13, *( 'XLLCORNER' , XLLCORNER 

72 YLLCORNER YLLCORNER * 1000 
73 WRITE (13, *) 'YLLCORNER', YLLCORNER 74 CELLSIZE CELLSIZE ' 1000 
75 WRITE (13, ') 'CELLSIZE' , CELLSIZE 
76 WRITE (13, '( 'NODATA_vALUE', NODATA_VALUE 
77 
78 c print', file written' 
79 DO = 1, ROWS 
80 
81 OOC1, COLS 
82 BUFFER(C) GRID(C,R) 
83 END DO 
84 
85 WRITE (13,') BUFFER 
86 
87 END DO 
88 
89 CLOSE (13) 
90 
91 CALL GCLOSE 
92 
93 RETURN 
94 END 
95 
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C" 
U) 

SUBROUTINE HUNT XX, x, nisax, , ,Th0) 1 - 

2 SUBROUTINE ININFO ( 1, IZ, ON CNMAX, ES) 
INTEGER N NMAX, JLO 

3 C 

DIMENSION XX(NMAX( 4 C-- program to create file of values for input into INFO files  
LOGICAL ASCND 5 C 

REAL X 6 C-- output files are /hOBe/egeol7/ercfsea/work/isojnfo dat 
7 C and /home/e9e01715rc/sealwork/relinfoaat 
B C 

ASCND XX(NC CT, XX(I) 
9 
10 IMPLICIT NONE 

IF CXX(N).GT.XX(1) ANDXGTXX(N)) THEN 
11 
12 JLO--1  INTEGER CNMAX, ON, IS  

JHI0 13 REAL Z(CNMAX(, IZ(CNMAX(, NULL, OUTZ(51( 
3 14 CMARACTER*80 OUTFNANEGOTO 

ENDIF 15 NULL-999.999 
IF (XX(11 .GT.XX(N) .A}CD.X.CT.XX(1) C THEN 

16 
17 JLO-1 
18 

GOTO 3 19 OUTFNANE = '/home/egeo17/arC/sea/work/1jflf05  
ENDIF 20

21 IF (JLO .LE. 0 OR, JLO CT. N) THEN 
D0CNl, 51 

JLO 0 22 OUTE(CN) = Z(CN) 
JHI = N+1 

23 END DO  
GOTO3 24 

ENDIF 25 

INC = 1 26 10 OPEN (UNIT 12, FILE = OUTFNANE, STATUS = 'NEW') 
IF (X GE. XX(JLO) .EQV. ASCND( THEN 

27 
28 

JHI JLO + INC DO ON 1,51 
IF (JHI ,GT. N) THEN 

29 WRITE(12,12) cm, OUTE(CN) 
JHI11.-i 

30 END DO 

ELSE IF CX GE. XX (JNIC .EQV. ASCND( THEN 
- 

31 -  

32 3L03H1 WRITE (12, '(PC') END' 
INCINC+INC 

33 
34 GOTO1 CLOSE (12)  

ENDIF 35 

ELSE 36 12 FORNAT(X, 12, ' , ', f8.3(  
JHIJLO 37

38 ,JLOJNI-INC 
. IF (JLO LT, 1) THEN  -  39 IF (ES EQ. 1) THEN 

JLO=0 40 

. ELSE IF (X LT. XX(JLO( EQV, ASCND) THEN . 
41 OUTFNANE = '/hOrneIegeo17/arc/sea/ ork/j50jflf05' 

JHI JLO 42 

INC = INC * INC 
43 000N 1,51 

GO TO 2 44 OUTZ (CM) IE(CN( 
ENDIF 45 END DO  

ENDIF 46 IS = 0 
47 

-  IF (JHI - JLO .EQ. 1) RETURN 
48 48 GOTO 10 

JM (JHI + JLO)/2 
IF CX CT. XX(JM) ,EQV. ASCND) THEN 

50 END IF 

JLOJH 51 

ELSE  52 IS 1 

JHI 3M 53 

ENDIF 54 END 
- 

 

CO TO 3 
END 
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C" a 

C 
SUBROUTINE WRITEPOINTS)z Il, ON, CNMAX ES) 

c-- this program reads projected locations from file sill lccdae C-- and from each of file zdat and puts  
C 

each of the values together 

IMPLICIT NONE - - 

INTEGER CM, CNMAX, ES 
REAL Y)51( ,X(51( Z(CNMAX) IZ(CNMAX) 
CHARACTER-80 FUME - 

INANE = /horne/egeol7/arc/sea/Work/s1111 c.dl' 

OPEN(UNIT11 FILE = FNANE, STATUS=oLD') 

DO CN1.51 
READ) 11 )y eN) x (CM) 

END DO 

CLOSE (11) 

OPEN( UNIT=iI.FILE=/home/egeoi7/arC/sea/Work/rsldt, 
+ STATUS NEW' ) 

DO CNi,51 
WRITE)13,12) X)CN)1Y(CN(,z)CN( 

END DO 

CLOSE )13( 

IF (ES .EQ. LI THEN 

INANE '/homelege017/arc/seajwork/jsjdar 

OPEN (UNIT 12, FILE= FNANE, STATUS = 'NEW') 

DO CNl,51 

WRITE(12,12( X(CN),Y(CN),IZ)CN( 
END DO 

CLOSE (12) 

ENO IF 

12 FORMAT)XF13 4ixF134lxF8I( 

999 CONTINUE 

END 
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A SIGNIFICANT CHALLENGE: 
PREDICTION OF ENVIRONMENTAL CHANGES USING A TEMPORAL GIS 

Monica Wachowicz 
Marianne L Broadgate 
Department of Geography 

University of Edinburgh 

Abstract 

Prediction of environmental change requires an understanding of 
the principal mechanisms implicated in long-term large scale 
climatic variation. Uncovering these mechanisms can only be 
achieved by the analysis of past environment states as well as 
the recognition of patterns of change through time. These 
controlling factors and their causes are not fully understood and 
scientists are only beginning to centralise the related large data 
sets in national databases. 

A temporal GIS seems to be the key to handling distributed data 
sets at different scales for environmental change in terms of 
space and time. A wider scope of analysis will be offered by 
providing rules to maintain updating changes coherent with the 
former stored environment states. Moreover, the description of a 
lineage of data will produce historical information which will 
enable one to recognise patterns of environmental change in a 
more realistic way. Temporal Geographical Information Systems 
are as yet unavailable and only in the early stages of 
development. 

• Inherent challenges are involved in predicting environmental 
change using a temporal GIS. These challenges are mainly 
concerned with the availability of spatio-temporal tools for 
optimising our understanding of the data, synthesising data from 
different sources and updating large data sets more efficiently. 
This paper is concerned with the principles and problems 
involved in the development of a temporal GIS to meet these 
challenges. 

INTRODUCTION 

With the growing acceptance that GIS is capable of managing primary 
environmental data sets, a vast amount of interdisciplinary research is being 
carried out into how GIS can be integrated with environmental modelling. 
The term "environmental modelling" covers a huge spectrum of different 
sorts of modelling. It can be used for qualitative interpretative descriptions of 
environmental states, for qualitative and also empirical descriptions of 
processes operating in the environment and also for numerical models 
which describe physical processes in a mathematical sense and can be used 
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with input parameters as predictive dynamic models. Numerical modelling 
lends itself very well to linking with or incorporation within GISs, but not so 
the descriptive manually interpolative modelling process which is more often 
used and extremely valuable to environmental scientists. This process is the 
result of scientific intuition, background knowledge and experience which 
would be extraordinarily difficult, if not impossible, to emulate on an 
information system. 

Recently, a "3-pronged approach" has been recognised by the forthcoming 
Second International Conference Workshop on Integrating GIS and 
Environmental Modelling [1993], as follows: 

- environmental database and mapping 

- environmental modelling linked to GIS 

- building environmental models within GIS 

These three main approaches reflect concerns about the integration of GIS 
with environmental modelling. The available environmental databases have 
been implemented by local, regional, national and international organisations 
which have collected a diversity of spatio-temporal environmental data. Most 
of the environmental databases contain large data sets at many different 
scales, levels of accuracy, different times of acquisition and in different 
formats (Townshend 1991). These characteristics are very common for 
environmental data sets, therefore the establishment of more efficient 
mapping techniques are required for integrating environmental databases 
and current GIS. Among the most important is the development of improved 
methods of data capture and data visualisation. These methods should deal 
with the creation of space-time series for storing and portraying changes 
through time. 

In the Agenda 21 document from the UN Conference on Environment and 
Development, Din [1993] highlights some areas of environmental processes 
and future policy changes which are of particular relevance to GIS research. 
Data integration, dynamic modelling and spatial decision support systems 
are suggested as major priorities in GIS research for the implementation and 
development of concepts for sustainable living, long-term policy planning and 
management solutions. 

At present most environmental GISs concentrate on present day to near-
recent data (e.g. hydrological, remote sensing, vegetation, landslide hazard 
etc.) with short-term aims and modelling of present day processes (climatic 
General Circulation Models, valley glaciers in Norway Jacobsen). Long-term 
climate change has largely been left out, due possibly to the problems 
involved in getting data into such a system and the time involved in 
implementation. Current GISs are unsuitable when handling the spatial and 
temporal problems inherent in palaeoclimatic data. The problems include the 
management of large complex data sets which are poorly distributed in 
space and time. 

One project worth citing at this point (since it involves one of the authors), 
which would benefit from the employment of a temporal GIS, is an EEC 
Project presently running which is looking into the long-term safety of nuclear 

267 



waste repositories in Salt Domes in parts of North West Europe. This project 
involves the use of many spatial data sets pertaining to the last three 
glaciations including pollen (giving information about past vegetational 
conditions), glacial landforms (which can be interpreted to reveal something 
of how the Scandinavian glacier evolved through time), sea level (which is 
extremely important when considering groundwater flow and gives an 
indication of land uplift changes), and many others. Added to these 
palaeoenvironmental data sets is some present day data and two models, 
one for the Scandinavian glaciation and the other for the hydrological system 
in the area. Aspects of the glacial model are changed and tested according 
to past reconstructions of the environmental conditions which existed in NW 
Europe during past glaciations and then the model is run for the present 
situation to determine, amongst other things, the hydrological conditions 
which may exist in the future. Using the hydrological model the safety of 
nuclear waste in salt domes can then be assessed. 

Only by looking at long-term climatic oscillations (especially the 
glacial/interglacial cycles of the past) can the present estimates, forecasts 
and concerns about such topics as global warming be put into perspective. 
Is man affecting the climate to the extent that he is perturbing the natural 
oscillations to an alarming extent or is the climatic system merely following a 
pattern determined by much more fundamental processes? Indeed is the 
climate system robust enough to accommodate changes caused by man? 

WHY TEMPORAL GIS 

Since current research tends to focus on short-term changes, it is important 
to remember that factors which influence climate in the short-term are not 
necessarily those which determine the climate in the long-term. There have 
been periods in the past during which climatic extremes of both very hot and 
very cold temperatures have persisted for long periods. Recently, much of 
the effort put into looking at long-term climatic changes has been focused on 
the Milankovitch theory which searches for evidence of the earth's orbital 
oscillations in records from palaeoenvironmental indicators from the past 
800,000 years (Figure 1). Records such as the 5018 Specmap curve, which 
is an indicator of global ice volumes, reveal the same frequencies as the 
orbital variations cited by Milankovitch. Identification of such oscillatory 
sequences and patterns is fundamental in aiding our understanding of the 
processes affecting long-term climate change. Many of the problems 
involved in converting such work to a GIS lie in representing and tracking 
changes through time and cross correlating different sequences and different 
data types. A temporal GIS is an extremely important development which 
can greatly enhance the manipulation of paleoenvironmental data sets in 
terms of creating a more suitable tool for dealing with temporal uncertainties 
and correlation of events. There are often large temporal errors associated 
with this data and also large gaps which need to be filled by methods of 
interpolation in both spatial and temporal dimensions. A GIS with a temporal 
element which could handle these factors in a satisfactory way, would hugely 
improve our understanding of the data sets. A temporal 013 would support a 



multi-state data analysis capability and facilitate improved understanding of 
the relevant spatlo-temporal information. 

Langran (1992] cites that by knowing: 

- where and when change occurred 
- what types of change occurred 
- the rate of change 
- the periodicity of change 

a temporal GIS would assess: 

- whether temporal patterns exist 
- what trends are apparent 
- what processes underlie the change 

Although temporal GISs are in the early stages of development, these 
embedded aspects of space and time (discussed below) enhance the role of 
temporal GIS as a fundamental requirement for dealing with the elusive 
subject of environmental change prediction. 

First of all, there is an overwhelming acceptance that the basic aspects of 
time and space are both conceptualised in a more natural way through the 
dimensional representation. However, at the implementation level, there has 
been no consensus as to how to implement the concepts themselves into the 
different data structures of existing GlSs. Implementing hypermedia co-
ordination as well as multimedia functions will enable temporal GlSs to 
handle the dynamics of environmental changes in a more realistic manner 
with animated maps, images and special effects. 

Secondly, there is the unique value of a temporal GIS for generating 
hypotheses concerning cause and effect, through operation in both spatial 
and temporal dimensions. An effect manifested in the past time can be 
analysed using a temporal GIS to discover whether a possible cause exists 
or not. There is an enormous research scope for advancement of such a 
temporal GIS, mainly by incorporating it with knowledge-based research. 

Finally, there is a need for a temporal GIS with a capability to dynamically 
control very large data sets. The primary aspect here is recognising possible 
patterns in large data sets and facilitating their correlations since it is 
unrealistic to expect previous knowledge of environmental patterns and 
associations of potential interest to be readily available. This requires further 
research in new data capture mechanisms as well as the development of 
parallel processors. 

A CONCEPTUAL BASIS FOR HANDLING PALEOENVIRONMENTAL 
DATA WITHIN A TEMPORAL GIS 

Temporal GIS forms a wide scope within non-traditional applications 
especially because it offers the opportunity to manipulate environmental data 
sets available from different sources, epochs, resolution and of different 
qualities. The outstanding aspect of space and time in temporal GlSs is the 
possibility of exploring their similarities in such a way that time is 
conceptualised along a linear dimension to provide a sense of past, present 
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and future, while space is conceptualised along three linear dimensions 
(Figure 2). 

Therefore, space and time can be embedded within the semantics of 
objects and events. Temporal GISs would enable the capture of past 
environmental changes and projections to future states by exploring the 
derivation of events from the object states and vice versa due to their 
temporal interdependence. Events occur at specific points or intervals in 
time, although events that occurred in a pre-historic past cannot be dated as 
precisely as events that occur in the present. 

Events are used to describe the environmental changes (the change from 
one object state to another) and can be categorised in two ways: 

- effect: an environmental change which can be detected by 
experience or observation of the environment 

- cause: the circumstances acting over a period of time which 
produce an environmental change 

Objects and their interrelationships exist over time. An object composes two 
main parts which are denominated by descriptive (or interpretative) and 
geometric attributes. They represent three kinds of features: 

- discrete points, for example, height and date measurements at 
ancient sea level locations 

- definite features, such as eskers 

- indefinite features, such as end moraines 

The same event can affect one object or several objects at the same time, 
for example, two locations (discrete points) may be affected by the same sea 
level drop. By modelling time using the semantics of event, some main 
advantages can be highlighted: 

- events can have any duration 

- events can take place without necessarily invoking geometric 
attribute or significant descriptive attribute changes, 

- events can occur simultaneously 

Basically, in order to capture a history of changes to an object, the evolving 
states of that object would be described as conforming to the following: 

- an object cannot be in two places at once 

- an object can be in one place at two different times 

- two objects cannot be in the same place at the same time 

- two objects can be in the same place at different times 

These statements are critical for a temporal GIS because of their significant 
role in incorporating temporality in an information system. A temporal GIS 
might be able to differentiate between events which occur at different times 
affecting different objects. A temporal GIS would require the data 
management of two events which affect the same object at different times. 
For example, a global sea level change (due to a change in ocean volume) 
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and a localised seismic event (earthquake) will affect the position of a beach 
with respect to a datum level. 

THE TIME DIMENSION 

The time dimension ca6 assume two main forms of representation. These 
are database time and world time. A user-defined time may also be included 
if required.. All are important in a temporal GIS. The database time is the 
time at which the event was stored in the database, the world time is the time 
the event occurred in reality and user-defined time is a date denominated 
attribute data type which may be useful as a reference. 

The database time is mainly relevant to system domain developments for 
concurrency control and recovery to re-establish a consistent database state 
during a multi-user access or after a system failure. World time is used to 
capture the history of an object through time. Returning to the sea level 
change example, the database time would be the time at which the 
information was entered into the database, the world time would be the time 
at which the beach was at sea level (e.g. 8000 years before the present day) 
and the user-defined time might be the date on which this information was 
collected or published. 

It is important to note that for these sorts of ancient data, the most important 
time used for environmental analysis, reconstruction and prediction is the 
world time, and the database and user-defined times would be for reference 
only, although these are also very important. lrtiprovements in radiocarbon 
methods for example would often call for an adjustment to the world time of 
pre-improvement dated material which would affect subsequent 
interpretations. 

OBJECT AND EVENT RELATIONS 

Three main classes of object and event relationships can be identified: 

Conditional relationships act as a set of conditions which must exist in 
order for the event to occur. Conditional relationships are not necessarily 
directly responsible for the changes in the object states. This relationship is 
useful for future prediction in terms of an environmental GIS. 

Indirect relationships alter the resultant object state but there is no direct 
relationship. 

Direct relationships are the events which directly contribute to the resultant 
object state. 

Whenever an event becomes associated with a particular object change, it 
becomes a candidate for a particular type of relationship. Temporal GISs 
would be able to determine the probability of a relationship between an 
object and an event. A recursive analysis from event to event is necessary to 
determine the significance of a potential relationship between an event and 
an object, and thus the possibility of whether a relationship exists or not. 
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This is particularly exciting in terms of environmental data as it provides a 
temporal framework which can facilitate, more readily than a conventional 
GIS, the identification and interpolation of events linked with climatic change. 
In the sea level change example inferences can be made about sea level 
variation for areas where there is little or no data. This can be done by using 
knowledge of factors such as global sea level change and variation of sea 
level at neighbouring locations. 

DATA ACQUISITION AND CAPTURE 

It is important to distinguish between data acquisition which is the collection 
of data and data capture which is the entry of the data into the system. 
Development of data capture mechanisms in temporal GIS are dependent 
upon the data acquisition which are outwith the control of the GIS developer 
and depend on the type of data being collected. Data acquisition can be 
categorised as shown below: 

- periodic data acquisition, in which data is collected uniformly at 
regular intervals 

- aperiodic data acquisition, in which the data is collected on an 
irregular basis 

- random data acquisition, in which the data is collected in a disorder 
manner 

Random data capture is the major process at work in an environmental GIS. 
Ancient environmental data have a variable distribution in space and time 
and will not enter the GIS in chronological order since discoveries of records 
for any time in the past could occur in the present or at any time in the future. 
For example, when considering recordings of relative sea level positions in 
the past, a raised beach may be discovered in Northern Norway and dated 
at 7000 BP (Before Present) at a height of 5m above MSL (present day 
mean sea level). Subsequently another raised beach is discovered in that 
area at a height of 20m above MSL and dated at 10,000 BP. These are 
entered as two states linked by an event which is a sea level fall of 15m. 
Then another beach is found dating around 8000 BP at a height 2 metres 
above MSL. Thus the change between states is now a two event process 
with a sea level fall followed by a sea level rise (Figure 3). 

Careful examination and understanding of data acquisition are of particular 
importance when developing a temporal GIS. This acquisition presents a 
huge problem for a temporal GIS because a fully dynamic update procedure 
is required. The temporal GIS will need to be flexible enough to allow an 
efficient data capture without conflicting with the data acquisition. 

PREDICTION - ENVIRONMENTAL MODELS AND PATTERN RECOGNITION 

There are two methods which can be used together to predict environmental 
change. The recognition of patterns of change such as cyclical repeats in the 
past means that, by knowing the pattern, it can be extended and projected 
into the future. Linked to this is the investigation into processes which affect 

272 



climate change, and in attempting to understand these processes better, 
modelling them in an attempt to establish how influential they really are on 
climate. Pattern recognition can often lead to process modelling, as for 
example, similarities in frequency patterns will lead to the identification of the 
process causing the pattern (e.g. Milankovitch cycle). These patterns and 
processes operate in space and through time. Once a process has been 
identified, successfully modelled and found to be a significant factor in 
environmental change, then a model can be run for various times to produce 
scenarios of environmental conditions in the future. By knowing past patterns 
of change, parameter variations can be projected into the future and along 
with present conditions as start point used as model input. 

Environmental modelling, using ancient data, is a three stage modelling 
process. Often understanding processes, and producing environmental 
reconstructions never gets beyond stage one because of the complexity of 
the data and the interplay of many different parameters. These stages are 
summarised below: 

Descriptive Modelling is an attempt to reconstruct past environments using 
the fragmentary data to develop relationships between features and the 
processes which are altering them through time. It is necessary to have a 
temporal GIS to create these relationships for further pattern recognition and 
correlation.. 

Empirical Modelling is a qualitative description of the reconstructed 
environment and the parameters of the environment processes operating. In 
this case, a temporal GIS will be a tool for manipulating the relationships 
between features and processes as they interact through time. 

Dynamic Numerical Modelling where the processes operating on the 
environment are described using physics and mathematics with variable input 
parameters. The models are generally tested for past scenarios where 
something is known about the variation of input parameters and the resulting 
effects, and once a satisfactory agreement has been reached, it can be used 
as a predictive model. A temporal GIS will help in reaching this satisfactory 
agreement. 

On the basis of the conceptual model , some approaches can be identified as 
shown below: 

Descriptive Modelling - a possible approach utilises the correlation on an 
event by event basis. By counting a certain number of events of interest and 
correlating them in space and time with other locations which have 
experienced a similar number of the events at the same time. 

Empirical Modelling - in this case a correlation between event and object 
relations is a more suitable approach. 

Dynamic Numerical Modelling - the past patterns of variation and quantities of 
the parameters can then be used for model input and the past 
reconstructions for testing the good behaviour of the model for past 
environments. 
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The emphasis has been put on describing the concepts of time and space 
using the semantics of event and object in order to develop a temporal GIS 
for prediction of environmental changes. 

However, there is one major fundamental question which needs to be 
answered. How the necessary links could be implemented between events 
and object states in a temporal GIS? Should the links be created during the 
development of the user application or would it be possible to have a 
temporal GIS capable of creating those links automatically probably requiring 
the use of knowledge-based tools. The answer to these questions involves 
significant challenges to be conquered in the development of temporal GIS. 
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Figure 1 
Schematic representation of possible Quaternary mean temperature 
variations according to 300,000 (solid line), 43,000 (dotted line), and 24,000 
(dashed line) year cycles of Hays etaL (1976) 
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