7 research outputs found

    Deformable Model Retrieval Based on Topological and Geometric Signatures

    Get PDF
    With the increasing popularity of 3D applications such as computer games, a lot of 3D geometry models are being created. To encourage sharing and reuse, techniques that support matching and retrieval of these models are emerging. However, only a few of them can handle deformable models, i.e., models of different poses, and these methods are generally very slow. In this paper, we present a novel method for efficient matching and retrieval of 3D deformable models. Our research idea stresses on using both topological and geometric features at the same time. First, we propose Topological Point Ring (TPR) analysis to locate reliable topological points and rings. Second, we capture both local and global geometric information to characterize each of these topological features. To compare the similarity of two models, we adapt the Earth Mover Distance (EMD) as the distance function, and construct an indexing tree to accelerate the retrieval process. We demonstrate the performance of the new method, both in terms of accuracy and speed, through a large number of experiments

    Similarity Assessment and Retrieval of CAD Models

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    H.: Deformable model retrieval based on topological and geometric signatures

    No full text
    To encourage sharing and reuse, techniques that support matching and retrieval of these models are emerging. However, only a few of them can handle deformable models, that is, models of different poses, and these methods are generally very slow. In this paper, we present a novel method for efficient matching and retrieval of 3D deformable models. Our research idea stresses using both topological and geometric features at the same time. First, we propose Topological Point Ring (TPR) analysis to locate reliable topological points and rings. Second, we capture both local and global geometric information to characterize each of these topological features. To compare the similarity of two models, we adapt the Earth Mover Distance (EMD) as the distance function and construct an indexing tree to accelerate the retrieval process. We demonstrate the performance of the new method, both in terms of accuracy and speed, through a large number of experiments. Index Terms—Deformable geometry models, model matching/retrieval, geometry model processing.
    corecore