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Deformable Model Retrieval Based on
Topological and Geometric Signatures

Gary K.L. Tam, Student Member, IEEE, and Rynson W.H. Lau, Senior Member, IEEE

Abstract—With the increasing popularity of 3D applications such as computer games, a lot of 3D geometry models are being created.
To encourage sharing and reuse, techniques that support matching and retrieval of these models are emerging. However, only a few of
them can handle deformable models, that is, models of different poses, and these methods are generally very slow. In this paper, we
present a novel method for efficient matching and retrieval of 3D deformable models. Our research idea stresses using both topological
and geometric features at the same time. First, we propose Topological Point Ring (TPR) analysis to locate reliable topological points
and rings. Second, we capture both local and global geometric information to characterize each of these topological features. To

compare the similarity of two models, we adapt the Earth Mover Distance (EMD) as the distance function and construct an indexing
tree to accelerate the retrieval process. We demonstrate the performance of the new method, both in terms of accuracy and speed,

through a large number of experiments.

Index Terms—Deformable geometry models, model matching/retrieval, geometry model processing.

1 INTRODUCTION

THE recent rapid development of computer graphics (CG)
animation and 3D games stimulates a dramatic growth
in the number of 3D models available on the Internet. Many
online 3D repositories store and share hundreds or even
thousands of models. Most of them categorize models into
groups to facilitate searching. However, because there are
discrepancies between text annotation and model content, it
may still be difficult for users to locate suitable models. Like
other media such as audio, images, and videos, there is a
need for an accurate and efficient content-based 3D model
search engine. Content-based methods typically comprise
two main processes: feature extraction and feature matching.
Feature extraction concerns the use of compact features to
represent a model, whereas feature matching computes the
similarity of the extracted features using some distance
functions. Since feature matching is time consuming when
the database is large, some indexing techniques may be
applied to speed up the retrieval process.

There is a substantial amount of work devoted to matching
and retrieving rigid geometry models efficiently and accu-
rately. Princeton University has developed a search engine [7]
where benchmarking is also available [25]. The method
presented here, however, targets another type of model: the
deformable model, that is, models with similar skeletons but
different postures. There are many tools and methods for
creating these models. Notable examples include [13] and
[24]. To support deformable models, a retrieval system
should be able to classify, for example, a sitting human
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model as similar to a standing one. There are only a few
methods proposed to do this. They typically extract graphlike
features to represent a model and local geometric features to
describe each node of the graph. However, graph matching is
computationally expensive.

In this paper, we propose a new matching methodology,
emphasizing accuracy and speed. It computes both topolo-
gical and geometric features to represent a model and uses
both features together for feature matching. To accelerate the
matching process, we intentionally throw away all skeletal
graph information and convert the matching problem to an
Earth Mover Distance (EMD) formulation, which measures
the energy transfer between two signatures. The contribu-
tions of this work can be summarized as follows:

e To avoid using slow graph matching algorithms and
to keep the feature size small, we propose to extract
topological points and rings as features to represent
the 3D models. This representation is compact and
can significantly reduce the matching cost.

e To discriminate models with similar or dissimilar
skeletons, we stress using both local and global
geometric features. These features help discriminate
different model groups that have similar skeletons,
like girls and babies. (We refer to these models as
similar-skeleton models hereafter.) Existing methods
use only local geometric features for matching. They
work best to discriminate model groups with dissim-
ilar skeletons, like dogs and men. (We refer to these
models as dissimilar-skeleton models hereafter.)

e  Weformulate the feature-matching problem as a flow
and transportation problem and propose a new
similarity measure based on EMD. As this similarity
measureis a metric, we can build a vantage point (VP)-
tree to answer retrieval queries efficiently by k-nearest
neighbor search. To the best of our knowledge, our
indexing scheme is the first to support matching of
both topological and geometric features in one pass.
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The rest of this paper is organized as follows: Section 2
summarizes the existing 3D model matching and retrieval
techniques. Section 3 presents an overview of our method.
Sections 4 and 5 discuss how we extract topological and
geometric features, respectively. Section 6 presents our
feature-matching scheme. Section 7 evaluates the perfor-
mance of our method through a number of experiments.
Section 8 briefly concludes this paper.

2 RELATED WORK

Classical 3D retrieval methods can be categorized into four
approaches: geometry-based, transform-based, image-
based, and topology-based. The first three methods can
only handle nondeformable models, whereas the fourth can
handle deformable models.

2.1 Methods for Nondeformable Geometry Models

Geometry, transform, and image-based approaches focus on
retrieving nondeformable 3D models only. The geometry-
based approach concerns properties related to the shape and
size of a model. In general, methods of this approach can be
classified into three types: methods based on extracting
physical properties [12], [5], methods based on computing
histograms or some distribution functions [18], [20], [10], and
methods based on computing energy for morphing a model
[2], [28], [30]. The transform-based approach analyzes
3D models in a different feature domain. Transformation
functions used include Fourier Transform [29], Wavelets
Transform [21], and Zernike Transform [17]. Funkhouser et
al.[7],Kazhdanetal. [11],and Novotni and Klein [17] propose
Spherical Harmonic for extracting rotation-invariant fea-
tures. The image-based approach captures features from
2D image views of a 3D model [1], [19].

Generally, the geometry-based approach is efficient and
easy to implement, but its matching accuracy is usually lower
than the other two approaches. The transform-based ap-
proach has several advantages such as supporting multi-
resolution analysis and having improved accuracy with the
recent development in concentric spherical harmonic. A
major advantage of the image-based approach is its indepen-
dence from 3D data representation. However, it typically has
a large feature size and, hence, high matching cost.

2.2 Methods for Deformable Geometry Models

The topology-based approach is the only approach that
supports matching of deformable models through analyz-
ing the model with skeletal or topological information. As
this approach is the focus of our work, we discuss these
methods in detail here. In [9], the Multiresolution Reeb
Graph (MRG) is proposed. It first partitions a model into
nodes using integral geodesic at different resolutions.
Unlike Euclidean distance, geodesic measures distances
on the surface and is not affected by model deformation.
Thus, integral geodesic indicates how far a point is from the
surface center. (We discuss this further in Section 4.1.) MRG
then constructs an MRG tree by analyzing the adjacency of
each node in the current and lower/higher resolutions. In
each node, it uses area and length as geometric features. To
match two MRG trees, a heuristic graph-matching algo-
rithm is applied in a coarse-to-fine manner, starting from

the root nodes of the two trees and traversing down the
trees following the child nodes with maximum similarity.
When all high-resolution nodes are exhausted, the matching
process traces back to the lowest resolution nodes again. All
similarity values computed are added up as the final
similarity value.

In [23], a voxel thinning method is proposed to extract
the skeleton from a voxelized model. In each skeletal node,
the radial distribution of edges is preserved for local shape
matching. To speed up the query process, a topological
feature vector is generated for each skeletal graph as an
index to the database. Nearest neighbor search is then
applied for model retrieval. To further verify the correctness
of the retrieved models, an enhanced maximum cardinality
minimum weight bipartite matching algorithm is used.
Instead of using the skeletal graph, [26] analyzes models
based on the component graph. A model is first split by
mesh decomposition with each component node described
by one primitive. An optimal error-correcting subgraph
isomorphism algorithm is then applied to match two
component graphs.

In [8], a pose-oblivious shape signature is proposed,
which supports deformable models. The shape descriptor is
a 2D histogram of two functions: local diameter and integral
geodesic (centricity). Experiments showed that the new
method could produce interesting retrieval results.

In summary, topology-based methods handle deform-
able models using skeletal information. However, several
research issues have still not been explored yet. First,
although most of these methods work well in discriminat-
ing dissimilar-skeleton models, none of them consider the
issue of discriminating similar-skeleton models as they use
only local geometric features. Second, due to the large
feature size or the use of slow graph matching techniques
[26], these methods are generally slow in practice and do
not scale well to large databases. Third, although [23]
proposes an indexing scheme for large databases, it may
still suffer from the accuracy problem when answering
nearest neighbor queries as it separates topological match-
ing and geometric matching into two processes. To improve
the recall rate, it needs to return a large number of models
in the first pass, causing a performance penalty to the
indexing scheme.

To address these problems, we proposed in [27] to use
both topological and geometric features simultaneously. It
extracts bounded regions as topological features using
saddle critical points from two source points. As will be
discussed later, these critical points may be unstable or
extraneous, leading to stability problems. Here, we improve
the work significantly to address this problem by proposing
to use topological points and rings as features. To support
fast retrieval, we further extend the matching algorithm to
support indexing search with both topological and geo-
metric features in a single pass.

3 MEeTHOD OVERVIEW

The focus of our method is on the use of both topological
and geometric features at the same time. We extract two
types of topological features: topological points and topologi-
cal rings. A topological point is defined as the salient point
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located at a protrusion tip, and a topological ring is defined
as the border that separates two significant components in a
model.

To capture topological points to represent protrusion tips,
we first derive our algorithm from a skeleton extraction
technique Level Set Diagram (LSD) [14]. However, LSD
suffers from two problems: extraneous critical points [16] and
slicing direction [15]. To alleviate these problems while
remaining fast and automatic, we propose two solutions:
Critical Point Analysis and Topological Point Selection, which
are described in detail in Sections 4.3 and 4.4, respectively.
These two steps produce the validated maximum critical
points, referred to as topological points. To reduce computa-
tion time, we further discuss how we select the minimum
critical points (source points) in Section 4.5. Our method also
use topological rings as features, which are first discussed in
[15]. However, this method has its own limitations that make
itimpractical for our use. To extract reliable topological rings
to represent joint locations, we propose Topological Ring
Extraction in Section 4.6. We name our approach for extracting
both topological points and rings as Topological Point Ring
(TPR) analysis.

After obtaining all topological features (points and
rings), we extract geometric features to characterize each
of them. There are two kinds of geometric features in our
method: local and global features. Local features include
normalized integral geodesic and effective area. They are
used to characterize the locations and importance of a
topological feature, as will be discussed in Sections 5.1 and
5.2, respectively. Global geometric features are used to
capture the surface information of a model. They help
discriminate similar-skeleton models like girls and babies, as
will be discussed in Section 5.3. Hence, our model signature
is defined by a collection of topological features and each of
them is characterized by a number of geometric features.

We formulate the matching of two models as the energy
transfer between two signatures by adapting the EMD,
which computes the minimum energy required to trans-
form one signature into another. We define our metric
distance function for the EMD matching framework in
Section 6. Since the function is a metric, we can construct a
fast indexing scheme by building a VP-tree. Such an
indexing scheme can support both topological and geo-
metric nearest neighbor searches in one pass.

4 TopPoLOGICAL POINT RING (TPR) ANALYSIS

In this section, we first briefly introduce integral geodesic
and LSD, which are fundamental to our method. We then
discuss the two problems of using LSD to extract maximum
critical points as the topological points and propose our
methods to tackle the two problems. Finally, we discuss
how topological rings can be extracted reliably based on
these topological points.

4.1 Integral Geodesic

Geodesic and integral geodesic are basic to our method.
As mentioned earlier, geodesic is the shortest distance
between two points on a surface. Hilaga et al. [9] first
suggest the use of integral geodesic, which is defined on
a surface as G(q) = fpe 5 94(p)0S. Given a vertex g, integral

Fig. 1. Integral geodesic on a surface. The brighter region is closer to the
surface center, whereas the darker regions are farther away from the
surface center.

geodesic is the integral of all geodesics g measured from
q to all vertices p on a surface S. In general, integral
geodesic gives a small scalar value if vertex ¢ is near to
the center of the mesh (brighter region in Fig. 1) and a
larger scalar value if ¢ is located away from the center
(darker region in Fig. 1). Hence, integral geodesic
indicates how far a vertex is from the points that have
minimum integral geodesic. Note that a point with
minimum integral geodesic is not the center of mass of
the model; the center of mass can be considered as the
minimum integral Euclidean distance of a point set. In
the following discussion, we refer to the points having
minimum integral geodesic as the surface centers. Fig. 1
shows the integral geodesic of a surface.

4.2 Level Set Diagram

The LSD [14], which is based on the Morse theory, is a
skeleton extraction technique. The Morse theory describes
how the differential geometry of a surface algebraically
relates to the topology. LSD applies the theory on
polyhedral surfaces to extract the skeletons. It uses
geodesics as the Morse function to build a scalar field on
the surface, which is then used to extract three kinds of
critical points (minima, saddles, and maxima) by tracing the
geodesic wavefront. A geodesic wavefront originates from a
minimum point, meets itself at a saddle point, and closes at
a maximum point. These critical points form an LSD tree
with the minimum, saddle, and maximum points forming
the root, the internal nodes, and the leaf nodes of the tree,
respectively. LSD also defines a level set C(l;) as a
polygonal contour of the same level [; on the surface,
where [, is a scalar field value and s is the origin of the field.
An edge (v;,v;) is called a cross-edge if it passes through
level set [, satisfying the condition: gs(v;) <5 < gs(vj),
where g¢;(v) is the scalar field at vertex v obtained by
calculating the geodesic from a minimum (source) point s.
LSD wuses the Dijsktra algorithm to approximate the
geodesic distance.

4.3 Critical Point Analysis

As mentioned, our topological features are composed of
topological points and rings. We choose the maximum
critical points from LSD as the topological points because
the location of maximum critical points matches the
definition of topological points discussed in Section 3.
Though it is easy to apply LSD, there are two problems that
hinder us from using it directly here: extraneous critical
points and slicing direction.

Shortest path algorithms usually suffer from getting
extraneous critical points when they are applied on meshes.
As LSD is based on computing shortest path distances
(geodesics), it also suffers from this problem. According to

Authorized licensed use limited to: University of Durham. Downloaded on October 8, 2008 at 09:22 from IEEE Xplore. Restrictions apply.



TAM AND LAU: DEFORMABLE MODEL RETRIEVAL BASED ON TOPOLOGICAL AND GEOMETRIC SIGNATURES 473

-

- -~ -
[ Cycle,

Fig. 2. C(I,)* and its three cycles, which are shown as dotted lines.

[16], extraneous critical points may result from noise,
precision errors, or the fact that geodesic distance is not a
good Morse function. Though [16] provides a method to find
the optimal number of critical points, it is not fully automatic,
making itless suitable for use in a 3D model search engine. To
alleviate this problem, we propose an efficient method based
on LSD. We observe that extraneous points arise during the
registration of saddles, producing critical points that are very
close to each other. As such, we apply a proximity-filtering
step before a saddle is registered. We refer to the modified
LSD as Critical Point Analysis.

Before we register a vertex v as a saddle in LSD, we
approximate the level set C(l;) by defining a vertex set
C(l;)" = Uv; such that I, < g,(v;) for all cross-edges (v;,v;)
related to I; = gs(v). The set contains the unvisited vertices
adjacent to the geodesic wavefront in LSD. It can be
obtained by a depth first search algorithm on the Dijsktra
heap. We do not compute C(l,) because of speed concerns.
As v is a saddle candidate, the geodesic wavefront meets
itself at v; so, the vertex set C(l;)" can be split into a
collection of cycles depending on the sign change around v,
C(ls)+ = Cycle; U Cycles ... U Cycle,. Fig. 2 shows an ex-
ample where C(l,,‘)+ has three cycles.

In our filtering step, we consider a cycle, Cycle;, as valid if
and only if the number of vertices inside is greater than a
number n, where n indicates how strong the filtering step is. If
the number is small, it allows a smaller distance between
adjacent critical points. In our case, we choose n = 1 because
we do not want to miss small features for our feature-
matching step. Then, by considering the number of valid
cycles around a saddle candidate, we further decide if the

TABLE 1
Summary of Critical Point Analysis during Saddle Registration
No. of
valid Explanation Action
cycles
Branching occurs at the current | Register as normal
| vertex if there is more than 1 | saddle.
valid cycle. This is a normal case
in LSD (case A of Fig 3).
No branching actually occurs — a | Disallow saddle
degenerate case. If the vertex in | registration.
1 the cycle is ignored, LSD does | Disallow all vertices
not consider the current vertex as | in C(k)" to become
a critical point (case B of Fig 3). critical points.
No branching occurs — not a | Register the saddle
good saddle. However, it may be | candidate as
a good maximum critical point as | maximum critical
0 all the surrounding vertices have | point and disallow
scalar field less than the current | all vertices in C(k)"
vertex if vertices in C(k)* are | to become critical
ignored (case C of Fig 3). points.

¥ A TNw 4 ’ Our method

White / Shaded Area: Visited / unvisited region

Dashed Line: Cycles under consideration

Frontier between White and Shaded Areas: Geodesic
Wavefront

Fig. 3. Selection of saddles in Critical Point Analysis.

registration is a success or not. Table 1 and Fig. 3 explain the
considerations and subsequent actions. Fig. 4 shows an
example to compare LSD and Critical Point Analysis. The two
diagrams are generated using geodesic as the scalar field.

4.4 Topological Point Selection

Another problem of LSD is the slicing direction problem.
When a different source point is chosen, a different set of
critical points may be extracted [15]. Consider Fig. 4, LSD
identifies a source point at the horse nose and extracts many
critical points from the back of the model. However, if the
source point were located at the bottom of one of the rear legs,
LSD would extract critical points from the front neck of the
horse. To tackle this stability problem, we introduce the idea
of using multiple source points and derive Topological Point
Selection as a process for selecting valid topological points.

Suppose that we have n source points, s;...s,, on the
surface. We apply Critical Point Analysis on each of these
n source points to obtain n critical points sets, each consisting
of three kinds of critical points: CriticalSet,, = Maz; U
Saddle; UMin;. Max; and Saddle; are the sets of maximum
and saddle points, respectively. The minimum point Min; =
s; is the source point.

Our Topological Point Selection then identifies valid
topological points by counting the number of different
maximum points in a region. First, for each maximum point
m in Max;, we search for the number of maximum critical
points nearby. The search radius is set to the geodesic
distance measuring from point m to the nearest saddle

Critical Point Analysis

LSD

Cube: Maximum or minimum
Sphere: Saddle
Green Region: Many critical points found close to each other

Fig. 4. Comparison of LSD and our method.
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]
Cube: Maximum (topological point) or minimum
_Sphere: Saddle __S: Source Point
Link: Relationship between critical points

Fig. 5. Selection of topological points.

which may exist in any Saddle;. If the number of maximum
points in the search region is higher than n/2, that is, more
than half of the source points produce maximum points in
the region, we consider it as a valid maximum point. We
repeat this for all unvisited m in Max;, i =1...n. Since
there may be many maximum critical points in a region, we
arbitrarily choose one of them as the topological point. Note
that the actual location of a topological point is not
important as it is used for feature representation only.

4.5 Source Point Selection

To perform Topological Point Selection, a number of source
points must be selected. We have found from experiments
that three source points, if selected appropriately, are
sufficient to identify all valid topological points with
minimal computational cost. We choose the two furthest
points in a 3D mesh as the source points. The first point can
be found by running Dijkstra on an arbitrary point on the
model to obtain the point with maximum geodesic. The
second point can then be determined by applying Dijkstra
again on the first point to obtain another point with
maximum geodesic [14]. However, since they are located
at the far end of a model, LSD may still favor a particular
direction and miss some critical points. Thus, we choose the
third source point near the center of a mesh. A good choice
is the surface center that we have discussed earlier in
Section 4.1.

In [9], an approximation method is proposed to find the
surface center, but it is too slow for a search engine as it
samples at least 120 points on the surface. We observe that
most deformable models are not perfectly symmetric after
deformation and, usually, there is only one point that
corresponds to the minimum integral geodesic. To speed up
the process, we apply a hierarchical search to locate the point.
(Note that our method still works even if there is more than
one such point in a mesh as we only need to find a reference
point.) In our hierarchical search, we first split the surface into
many patches. For each patch, we calculate the integral
geodesic at the patch center. We then identify the patch with
the smallest integral geodesic. We split it again into many
subpatches and calculate the integral geodesic at each
subpatch center. We apply this strategy recursively until the
change in the smallest integral geodesic is less than a
threshold or the patch area is too small. Fig. 5 shows the
topological points obtained from Topological Point Selection
and the LSD tree constructed using Critical Point Analysis
with the surface center s being the source point.

4.6 Topological Ring Extraction

The term “Topological Ring” is first mentioned in [15].
Given some initial points, the method applies topological
expansion of a l-ring neighborhood. When frontiers of
different topological expansions collide, a branching is
identified. Mortara and Patane [15] defines the borders of
these frontiers as topological rings. However, as its objective
is on skeleton extraction, the topological rings produced are
not suitable to be used as features here for two reasons.
First, the topological expansion in [15] depends on a 1-ring
neighborhood only. To extract topological rings reliably for
use as features, a regular tessellation of the mesh surface is
required. Second, the method processes all source points at
the same time and, thus, the locations of topological rings
greatly depend on the differences in branch lengths. For
general 3D models, these two requirements may be difficult
to satisfy. Hence, the method cannot ensure consistent
recovery of topological rings.

Here, we propose our Topological Ring Extraction to
address this problem. Our method features a multisource
point approach. It is modified from the Dijkstra algorithm,
which approximates geodesic distances. Since our topologi-
cal expansion is based on shortest path growing instead of a 1-
ring neighborhood, it does not require regular tessellation of
the mesh surface. In addition, different source points are
given different initial values. This allows more stable
extraction of topological rings with no regard for branch
lengths. Our method comprises three stages: initialization,
shortest path algorithm, and termination. The initialization
stage defines different initial values for different topological
points. Our shortest path algorithm then traces the geodesic
wavefronts from these topological points using the corre-
sponding initial values. When executing the algorithm,
different wavefronts merge and new wavefronts are formed,
which become the topological rings. When all frontiers merge
into one, the algorithm terminates. The details of these three
stages are discussed as follows.

4.6.1 |Initialization

In this stage, we determine an initial value for each
topological point such that topological rings may collide
near joint locations. We assign a smaller initial value to a
topological point that is far away from the mesh center and
a larger value to one that is near the mesh center. This initial
value is the starting time of the shortest path algorithm for
that point. Since all topological points are located far away
at protrusion tips, these initial values ensure that the
shortest path algorithm is always moving toward the center.
We use the surface center to approximate the mesh center.
Because integral geodesic is a good measure of the relative
distance from the surface center, o, we compute the initial
value of a topological point m based on the following:

MAXesG(q) — G(m)

MAX es90(q) * U
wes9(0) X TIAX G — MINesClg). )

This initial value of m is calculated by the maximum
geodesic MAXc59,(q) measured from o, which is the
longest possible distance that the shortest path algorithm
travels and is interpolated by integral geodesic G(m).
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Output

Length(Cll.g, 5. )7)
Region(C(l;, )')
W Region(ctl,, ))
Region(Cll.s, s3))

@ topological point <._.P geodesic wavefronts
growing direction | ".u.- . topologlcal rings

the vertex where two topological rings meet

Fig. 6. Shortest path growing and validation with three topological points.

4.6.2 The Shortest Path Algorithm

After defining the initial values for the topological points,
we put these points in the heap of a Dijsktra algorithm. By
using Dijsktra, the topological expansion is, in effect, a
shortest path algorithm. During the execution, the vertex
with the smallest initial value is removed from the heap one
at a time and its neighbors are updated. Hence, we may
consider that different geodesic wavefronts grow from
different topological points and are moving toward the
mesh center. When executing the algorithm, if two geodesic
wavefronts meet, a merge of geodesic wavefronts occurs

and a new wavefront is formed.
Without loss of generality, we consider here a typical

case where two geodesic wavefronts meet at vertex v. We
define two vertex sets C(l,,)” and C(l,,)” to represent them,
where [;, and [,, are the two level sets that originated from
two distinct source points s, and s;. If we let g (v) and
gs,(v) be the scalar fields that originated from s, and s,
respectively, we have g, (v) = g;,(v) at vertex v. We also
define C(l;)” = |Jv; such that I; > g,(v;) for all cross-edges
(vi,v;) related to I, where [, = g;(v) and s is the source
point. C(I5)~
wavefronts at v and are stored in the heap of the Dijsktra
algorithm. We further define C(l.,,,~) as the resulting
geodesic wavefront of merging C(l,,)” and C(l;,)” as
shown in Fig. 6. Note that, in practice, g, (v) may differ
slightly from g, (v) at v as the initial values are only
approximations. However, the small difference will not

affect the shortest path algorithm.
We mentioned earlier that topological rings are regis-

tered when geodesic wavefronts meet. However, redundant
topological rings may sometimes be created. For example,
in Fig. 6, we would expect to have three rings located at the
three joints between the arm and the fingers as shown
is redundant. To

refers to the vertices that form the geodesic

inside the square box. Hence, C(l<s, 5,>)"
detect this case, we check if a geodesic wavefront is a valid
topological ring by measuring the length of the region
formed. We first define Region() and Length() as follows:

B

Fig. 7. Topological rings (borders between different colored regions).
95.(q) < l<5u,v5h>
Region(C(l<s, s,>) q
g% < l<9u7%

— Region(C(l,,)") — Region(C(ls,) "),

(2)
where Region(C(l5)") = {qlgs(q¢) < s} for all ¢ in S. Here,
we define a region associated with a geodesic wavefront as
all the vertices that have scalar field g less than the level set
at the wavefront except those already registered in other
regions. The scalar field should be measured according to
all the possible source points s, and s,. Since a wavefront
may be originated from a merge of two rings, (2) is defined
as a recursive function. The length of a region is defined as
the minimum difference between the level set values of the
current geodesic wavefront and each of the originating
topological rings:

Length(C(les, 5>)") =

Minimum{(ls, 5> — ls,)s
- lsh)}'

To check whether a geodesic wavefront is a valid

3)

(l<5,“S[,>

topological ring, we simply check if the length of the region
is longer than a given threshold. All valid geodesic
wavefronts are marked as topological rings.

4.6.3 Termination of the Algorithm

The algorithm terminates when all geodesic wavefronts
have merged into one. However, we note that, when we
have visited all saddle points obtained from Critical Point
Analysis using the surface center as the source point, there
should be no more branching left and the algorithm may
end. The unvisited vertices or vertices that are visited but
not yet included in any region are grouped into one final
region (FR). Fig. 7 shows some example models with
various topological rings extracted using our algorithm.
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5 GEOMETRIC FEATURE EXTRACTION

After TPR analysis, we obtain a set of topological points and
rings together with a set of regions. These topological points
and rings are located at protrusion tips and articulated
joints. They provide skeletal information of the model,
independent of model deformation. We characterize each of
these topological features with three types of geometric
information: Normalized Integral Geodesic, Effective Area,
and Geometric Surface Vector.

5.1 Normalized Integral Geodesic—Spatial
Information

Integral geodesic is a function defined over the surface to
indicate how far a point is from the surface center. It maps a
point to a scalar value and is thus a good feature to describe
the spatial location of a topological point. To generalize this
function to any topological feature (point or ring), we need
to consider the case of the topological ring as well. To
compute the integral geodesic for a ring, we interpolate the
value from the integral geodesic of the surface center and
the value of one of the originating topological points of the
ring. Since a ring may come from many originating
topological points, we use the one that is furthest away
from the ring, which is the ancestor topological point as its
distance from each vertex on the ring has a smaller
deviation. The interpolation requires two distance values:
from the ring to the surface center and to the ancestor
topological point. To compute these distances, we use
geodesics with respect to a vertex set (vs). Such distance,
which is denoted as g,,, can be calculated by Dijsktra with
all the vertices in the ring as source points. The generalized
Integral Geodesic G'(U) of topological feature U is as
follows:

if U is a topological point :
GU)
if U is a topological ring : (4)
Gus (0,U) X G(w)~+gus(w,U) x G(0)
905 (0,0) +gus (w,0) ’

G(U) =

where G(v) is the integral geodesic of point v. g,s(0,U) and
gus(w, U) are the shortest distances measured from topolo-
gical ring U to surface center o and to ancestor topological
point w, respectively. Finally, we calculate the Normalized
Integral Geodesic as follows:

_ G'(U) - MIN,sG(g) -
MAqusG(q) — ]WIqusG(q) '

Grorm(U)

norm

5.2 Effective Area—Weights of Importance

We note that the importance of a topological ring located in
a finger, for example, should be smaller than that located in
the leg. This is intuitive as removing a leg from a 3D model
gives a larger perceptual impact than removing a finger.
Hence, we approximate the importance of topological
features by distributing the local surface areas among the
adjacent topological features. We denote such a redistrib-
uted area as the Effective Area.

To simplify our discussion, we first define some abbrevia-
tions. A Protrusion Region (PR) is a region bounded by a
topological point and a topological ring. A Segment Region
(SR) is a region bounded by topological rings only. An FR, as

Fig. 8. Models divided into 20 bands from topological rings (dashed
lines).

mentioned in Section 4.6.3, is the final extracted region. We
consider two cases in our method:

e PR. Simply divide the PR surface area into two and
associate half to the point and half to the ring.

e SR and FR. Distribute the local surface area to the
adjacent topological rings in proportion to
Region(C(l;)”) computed for each adjacent ring
C(l)".

Note that:

Z EffectArea(U)
_ > Area(PR)+ " Area(SR) + Area(FR) ) (6)
N Area(S) o

5.3 Geometric Surface Vector—Surface Distribution

In order to better discriminate similar-skeleton models, we
capture additional geometric information to describe the
global surface change. We consider three global geometric
features: curvature, area, and average distance. We con-
struct three vectors from these features by first dividing the
model into many bands according to their geodesic
distances from a given topological feature. Again, since
geodesic is calculated on the surface, the resulting feature
vector is stable toward mesh deformation. As an example,
we divide two dog models shown in Fig. 8 into geodesic
bands relative to a topological ring located at one of the
legs. Bands of the same color indicate that they are within
the same geodesic interval from the ring. We can see that,
although the two dogs have different poses, the locations of
the color bands are similar.

Sometimes, a single band may be composed of several
segments. For example, some color bands in Fig. 8 may
have segments at different locations like the body, the
limbs, and the tail. We apply depth first search to locate all
segments of each band. We then use the surface area of each
segment to compute the weighted average to be the final
value of that band. In our implementation, we use Gaussian
curvature to be the curvature information. The average
distance of a segment is defined as the average Euclidean
distance from its center of mass to all vertices in the
segment. In general, area and curvature are used to capture
the global surface change, whereas average distance
measures the thickness of individual segments.

6 FEATURE MATCHING

With a signature for each model, that is, a set of topological
features (points or rings) each described by three types of
geometric features, we may compare the similarity of
different models based on matching the signatures.
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Fig. 9. The 13 model groups in our model database.

6.1 Simliarity Measure

To compare the similarity of two signatures, we propose to
use EMD [22] as a distance measure. EMD computes the
minimum energy required to transform one point set to
another. Each point in the set has a mass (weight) and
requires some energy to transfer to another location. In our
approach, we consider a topological feature as an EMD
point and define Effective Area as weight. To describe the
energy transfer between two EMD points, we further define
a distance function Dist() based on geometric features as
follows:

DiSt(Uh UQ) |Gno1m(U1) nmm(UZ)‘
+ W2 X LZnorm( ( )7 K(U2)) (7)
+ W3 X L?,norm( ( 1)’ A(U2))
1)

+ W4 X L?,no’r'm( (

S ACENE

where G/, is the Normalized Integral Geodesic. K, A, and
H are the geometric surface vectors representing curvature,
area, and average distance, respectively, and they implicitly
capture different branch arrangements relative to a topolo-
gical feature. Hence, G/, ..., K, A, and H together describe
the spatial location of the topological feature. W;, Wy, W,
and W, are ratios such that W7 + Wy + W5+ W, = 1. We
use these weights to adjust the relative importance of G/, .,
K, A, and H. By using EMD, we can now avoid slow graph
matching algorithms by converting the matching problem
to a flow and transportation problem.

6.2 Indexing Scheme

In content-based retrieval, we typically expect the system to
return a given number of objects that are most similar to a
given query—k-nearest neighbor search (k-NNS). To speed
up the retrieval process, it is common to apply an indexing
scheme. Here, we discuss how our similarity measure can
be used for indexing retrieval.

Since our model signature is not a single k-dimensional
vector, but a set of topological features characterized by
many geometric features, we need to use a distance-based
indexing method. We use a VP-tree as it is such a method
and has been reported to have good performance over
others [6]. A VP-tree stores all the indexing data points in a
tree. By comparing from the root nodes and level by level
down the tree, it may return the nearest neighbors of a
given query. A distance-based indexing method generally
requires a distance function that satisfies metric properties.
Our method is based on the EMD framework, which can be
proven a true metric if it satisfies the following properties
under EMD formulation [22]:

TABLE 2
Mean Similarity of Dissimilar-Skeleton Models
man frog dolphin
man 1 0.414 0.002
frog 0.414 1 0.008
dolphin 0.002 0.008 1

e The sum of all feature weightings for each model

should be the same.

e The ground distance function used by EMD must be

a metric.

Our algorithm satisfies the first property because we use
the normalized Effective Area as the weight, as shown in (6).
It is also clear that Dist(), shown in (7), is a metric because it
only makes use of ratio combination of metric functions.

7 EXPERIMENTAL RESULTS

To evaluate the performance of the proposed retrieval
method for deformable models, we discuss a number of
experiments here. We have constructed a database from
150 models for these experiments. To test the invariant
properties of our method in rotation and scaling, we create
three additional sets by rotating the 150 models against the
xy-axis, random scaling between (1.0, 2.0], and rotating by
the yz-axis plus random scaling to produce a total of
600 models. We then manually categorize these models into
13 groups as shown in Fig. 9. Each group consists of similar
models but at different postures. All the experiments
presented here are performed on a PC with a Pentium 4
2.4-GHz CPU and 1-Gbyte RAM.

7.1 Performance on Model Discrimination

Tables 2 and 3 show some matching results, using all
models and normalized by maximum and minimum work
done. We can see that our method can distinguish models
based on their skeletons and shapes. In Table 2, man, frog,
and dolphin have dissimilar skeletons. Our method can
discriminate them as the similarity values among different
model groups are relatively small. In Table 3, man, girl, and
baby are model groups with similar skeletons. Our method
again can discriminate them as the similarity values among
different model groups, but are still comparatively small;
although, they are slightly larger than those in Table 2.
These two sets of results match human intuition well.

7.2 Performance Comparison with
Nontopology-Based Methods

Fig. 10 shows the precision-recall graph of our method

compared with some nontopology-based methods. It shows

TABLE 3
Mean Similarity of Similar-Skeleton Models
man girl baby
man 1 0.733 0.553
girl 0.733 1 0.458
baby 0.553 0.458 1
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Fig. 10. Performance comparison of TPR with other methods.

that our method outperforms the geometry-based D2
method [20] (feature size: 72) and the transform-based
Fourier method [29] (feature size: 21). From the plot, we
may conclude that our method is capable of handling
deformable models, whereas the D2 and Fourier methods
are incapable as their precisions drop dramatically when
the recalls rise over 0.1.

7.3 Performance Comparison with MRG
(Topology-Based Method)

Topology-based methods are generally difficult to imple-
ment as they require specific skeletal tree construction and
graph matching techniques. To study the performance of
the new method as compared to existing ones, we have
implemented the MRG method [9] for comparison. We have
chosen to implement MRG because both MRG and TPR
make use of geodesic distance, and we have all the
necessary information to reimplement MRG. In our experi-
ments, we compare the performance of TPR with MRG in
terms of accuracy and speed.

7.3.1 Accuracy Comparison

The similarity matrix can be used to serve as a measure of
matching performance among topology-based methods.
Because of the large number of models in our database
and due to page limitation, Fig. 11 only shows the mean
similarity matrices of TPR and MRG. Each cell in the matrix
indicates the similarity of two model groups—the darker a
cell is, the higher the similarity of the two corresponding
groups. The similarity values shown are normalized by the
maximum and minimum values of the corresponding
groups.

From the similarity matrices, we have the following
observations:

1. The diagonal lines of both matrices give the darkest
color. This means that both TPR and MRG perform
equally well in identifying models of the same
group.

2. TPR gives lower similarity values than MRG in the
two regions circled by solid lines. These regions
show the similarity among different model groups
with dissimilar skeletons. This means that TPR can
discriminate dissimilar-skeleton models better.

3. TPR also gives lower similarity values in the four
regions circled by dashed lines. These regions show
the similarity among different model groups with

TPR

Fig. 11. Mean similarity matrices for TPR and MRG.

similar skeletons. We can see that TPR can dis-
criminate hand from horse, wolf, dog, and cat with
higher similarity contrast. Although MRG considers
cat to be similar to dolphin and dino, TPR can
discriminate them better and considers cat to be
similar to dog and wolf, which matches human
inspection. This means that TPR can discriminate
similar-skeleton models better.

To explain these observations, we may analyze the
features used by TPR and MRG. First, though our database
contains many models of different postures, both methods
can identify models of the same groups with highest
similarity. This can be explained by the fact that they are
both topology-based methods.

Second, TPR gives a higher similarity contrast than MRG
to dissimilar-skeleton models. This can be explained by the
use of topological and geometric features in TPR. In MRG,
the models are partitioned into regular intervals and
matched. Since intervals are regular, it cannot tell how
important a branch or limb is when compared with others.
To match two nodes, only local geometric features like area
and length are used in MRG.

In our third observation, TPR can discriminate similar-
skeleton models better. For MRG, the similarity measure is
based on matching multiresolution reeb graphs. With
similar-skeleton models, the differences can only be captured
at the lowest level of the graphs using local geometric
features, area, and length. These features are local and do not
represent the overall shape of the model. As a result, MRG is
less effective on these models. Although TPR represents
similar-skeleton models by the same number of topological
features, it captures the overall shape of the models by the
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Fig. 12. Precision-recall graphs for some of the model groups.

global geometric features and weights. For example, dog,
wolf, cat, horse, and dino are four-legged animals with tails,
dolphin has four side fins and a back fin, and the hand has five
fingers. It is difficult to discriminate them if we consider only
topological and local geometry information, as in MRG.

Although the mean similarity matrix shows the relative
similarity among model groups, it cannot show the actual
retrieval performance. If the range of maximum and
minimum similarity values within one particular model
group overlaps with those of the others, the precision-recall
values may drop due to the increase in mismatches. This is
a general phenomenon when the database contains many
model groups. To compare the actual retrieval performance
of TPR with MRG, we have plotted their mean precision-
recall values. In Fig. 10, we can see that TPR and MRG have
similar performance when recall is below 0.3. When recall is
above 0.3, the precision of MRG begins to drop more
significantly compared with that of TPR. To further
compare the performance of the two methods, we have
also plotted the precision-recall graph for each model
group. Fig. 12 shows some of them. We observe that TPR
performs better than MRG for model groups like dog, wolf,
raptor, dinopet, baby, girl, man, dino, and dolphin or
equally well as MRG for model groups like hand, frog, cat,
and horse.

From these graphs, we notice that TPR outperforms
MRG particularly on similar-skeleton models such as
canines (dog, wolf), cannibal dinosaurs (raptors, dinopet),
and humans (baby, girl, man). These models have similar
skeletons that cause MRG to drop in performance. By also
considering the global geometric features, TPR performs
significantly better. For example, in the case of baby and
girl, the arms, legs, and bodies of girl are relatively longer
than those of baby, and in the case of dog and wolf, the
bodies and ears of wolf are fatter and sharper, respectively,
than those of dog. All of these differences affect the weights
and distributions of area, curvature, and average distance in
TPR. We also notice that both TPR and MRG perform well
on hand, frog, cat, and horse. This indicates that the range
of maximum and minimum similarity values of one model

TABLE 4
Complexity Analysis of TPR

Topological Feature Extraction
Selection of Source Points (3+)xO(nlogn+e)

3x[O(nlogn+e)+ 4, xO(n, +n,)],
n,+n,<<n

Critical Point Analysis

Topological Point Selection RxO(nlogn +e)
Initialization Stage (Ring
Extraction)

Shortest Path Algorithm
(Ring Extraction)

ux0O(nlogn+e)

O(nlogn+e)

Geometric Feature Extraction
Spatial Location (Integral
Geodesic)

Area Weighting, Area,
Curvature, AvgDistance
Geodesic Bands +

yxO(nlogn+e)

O(n)

(u+7)x[0(m)+O(n +e)|

Segments (DFS)
Overall Feature

T+R+y+u+y)x0(nlogn+e
Extraction ( pEptpxOalop )
Notations:
L, ¥ Numbers of topological points and rings found, respectively
W Number of integral geodesics calculated by hierarchical

partitioning. On average, = 20
n, e: Numbers of vertices and edges in the models, respectively
A : Number of saddles encountered in Critical Point Analysis
n,,n,: Numbers of vertices and edges visited during DFS traversal
in Critical Point Analysis, respectively
R: A constant for Topological Point Selection.
experiment, R =2

In our

group does not overlap with those of the other model
groups. This is because their shapes are comparatively
unique in our database. As a result, both TPR and MRG
perform equally well on them.

7.3.2 Speed Comparison
We have also compared the time complexity of different
processes between TPR and MRG as follows:

Feature Extraction: Table 4 shows all the steps and
computation complexities of the feature extraction process.
First, we apply LSD heuristics and hierarchical partitioning
to find three source points using the Dijsktra algorithm.
Second, we apply Critical Point Analysis on these three
source points to identify feature points of the model. Third,
we apply Topological Point Selection, which will stop as soon
as the search radius is reached. Hence, only boundary
vertices of each region may be visited more than once. The
selection process thus visits most of the vertices, and its
complexity is slightly higher than O(nlogn +e€), but
bounded by R x O(nlogn + e). Topological Ring Extraction
is a modified Dijsktra algorithm, and its complexity is the
same as Dijsktra. For integral geodesic calculation, it is
(n+7) x O(nlogn+e). Since (7+ R) is a constant, the
overall complexity of the algorithm depends on the number
of geodesic calculations, which is ¢ + p + 7.

Similar to TPR, MRG also requires the computation of
integral geodesics for interval partitioning. It first samples a
large number of seeds regularly over the model surface. It
then computes the integral geodesics and interpolates the
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TABLE 5
Time Analysis of TPR and MRG on Feature Extraction

TPR MRG
Average number of vertices / faces per 9241/
s 18478 9241 /18478
Average number of integral geodesic 50 131
calculated (per model)
Average time for all geodesic calculation
(per model) 27.51s 72.64s
Number of feature captured 30 555
Average total time required for feature
extraction per model i e

values over other vertices. In order to obtain a good
approximation for interval partitioning, the number of seeds
required is usually over 130 as shown in Table 5. TPR is
comparatively much more efficient as it does not require a
large number of seeds. Further, we limit the geodesic
calculations to topologically important locations only as they
dominate the overall feature extraction time. Hence, the
number of geodesic calculations, which is ¥ + ;1 + 7, has an
average value of 50. This significantly speeds up the whole
process. Table 5 compares the performance of TPR and MRG.
We can see that TPRis nearly two times faster than MRG to do
the geodesic calculations. However, the overall feature
extraction time of TPR is only about 40 percent faster. This
is mainly due to the higher computational cost of computing
the global geometric features.

Feature Matching: We apply the EMD to compare the
features of two models. A theoretical computation analysis on
the complexity of EMD is difficult as it is based on the simplex
algorithm. However, according to [22], if EMD is formulated
as a bipartite graph problem with signatures of the same size,
the time complexity is roughly O(n®logn), where n is the
number of topological features. As a comparison, the overall
complexity of MRGis O(n, x (m, + n,)), where m, and n, are
the numbers of r-nodes of the two matching models. Hence,
TPR has a higher complexity. However, as shown in Table 6,
matching one model using TPR is 15 times faster than MRG
because TPR has a much smaller number of topological
features, n;. On average, n; = 30 for TPR and n; depends on
the topology of the model. For MRG, the number of r-nodes,
n,. = 555.

7.4 Performance of the Indexing Scheme

We have created a VP-tree with two fanouts. It stores at
most two data points in each node. To build the indexing
tree for our existing database, it takes 778.7 s. To carry out
the retrieval test, we use all models in the database as input

TABLE 6
Time Analysis of TPR and MRG on Feature Matching
TPR MRG

Average number of topological features (per | 30 points | 555 r-
model) and rings | nodes
Average total time for matching one model 1ms 16ms
Average total time for one query (similarity
matrix calculations only) 0.6s 9.0
Total time for our retrieval experiments using
all 600 models gs |nput‘ queries ‘ 520s 5840s
(database parsing, retrieval score calculation
and other overheads included)

TABLE 7
Summary of K-Nearest Neighbor Search

Indexing Average query time
k | #EMD | Total time TPR (k-NNS) TPR MRG

1 261 233.56s 0.39s
2 282 250.75s 0.42s
3 315 284.06s 0.47s
4 357 322.95s 0.54s
5 479 439.50s 0.73s

6 | 483 | 444.00s 0.74s fggg 5,,3640%5

74 489 448.64s 0.75s =0.88s | =9.73s
8 492 450.13s 0.75s
9 504 458.48s 0.76s
10 | 505 459.16s 0.77s
25 | 536 480.86s 0.80s
600| 600 531.22s 0.89s

600

#EMD & Time(s)
8 _ 8

100 Average #EMD calculated
----- Total Time in seconds

100 200 300 400 500 600
Nearest K

queries and vary k for nearest neighbor search. Table 7
shows the results for the retrieval experiment.

The diagram in Table 7 shows the total time of the
k-Nearest Neighbor Search (using all 600 models as input
queries) against k (the number of returned models) in the
indexing scheme. From Table 7, we can see that if we perform
a similar experiment as in Table 6 (that is, £ = 600), the total
time required (531.2 s) is roughly the same as that in Table 6
(529.1s). However, as most users typically like to retrieve only
a few models that are most relevant to a given query, the
indexing scheme would certainly speed up the retrieval
process. In the extreme case, if a user just wants to find the best
match, the retrieval system can handle 1-nearest neighbor
search in 0.39 s on average, which is 44 percent of the original
full matching time of TPR without indexing or 4 percent of the
matching time of MRG. Table 7 also shows that the total
computation time is proportional to the total number of EMD
operations.

7.5 Summary

From the above experiments, we may conclude that TPR
outperforms MRG in both accuracy and speed. However,
TPR has some limitations. First, TPR currently cannot
support nonmanifold, nonclosed models, or works poorly
on models with genus number greater than zero. This is
because Critical Point Analysis is modified from LSD and
LSD performs poorly on such models. Second, because TPR
considers only neighboring vertices within the same
geodesic wavefront in Critical Point Analysis, the features
may still be affected by noise if they appear in finely
tessellated regions. Since our current focus is only on
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accuracy and speed, we have not explored multiresolution
or part matching.

Due to the unavailability of source codes and the
difficulties in implementing topology-based methods, we
have only implemented MRG for comparison. However,
our method also has advantages over the others. First, our
method avoids slow subgraph isomorphism matching and
is expected to be more efficient. Second, most existing
methods do not consider discriminating similar-skeleton
models. Their features are relatively local and may not be
adequate to distinguish these models. Third, our similarity
measure is a metric. By using spatial database techniques,
our algorithm supports an indexing tree that encapsulates
both topological and geometric features in one pass. It
outperforms [23], as we have discussed in Section 2.

Currently, we are targeting a faster and more accurate
method for feature extraction. One approach is to adapt
from mesh segmentation methods. However, since most
segmentation methods focus on segmenting meshes in a
very accurate way, they generally have a higher computa-
tional cost and are not suitable for use in search engines.
Another direction is to stabilize critical points by choosing
an optimal scalar field [4]. One of the implementations that
we can consider is to fix all maxima obtained from our
Critical Point Analysis as a Dirichlet boundary condition [3]
and calculate harmonic scalar field instead of geodesic.

8 CONCLUSION

In conclusion, we have introduced a novel and efficient
method for retrieving 3D deformable models. Unlike
classical topology-based approaches, we propose to use
topological points and rings to describe a 3D model. By
using additional global geometric features and weights to
describe the importance of features, the matching can be
modeled as a flow and transportation (EMD) problem. This
opposes traditional methods that require skeleton or graph
matching algorithms for matching topological entities. Our
experimental results show that the new method outper-
forms MRG [9] in both accuracy and speed. In addition,
since our similarity measure is a metric function, an
indexing tree can be constructed that encapsulates both
topological and geometric information in one pass.
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