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Summary 

With rapid globalization and highly competitive markets, mechanical design reuse has 

been recognized as an effective way for manufacturing enterprises to survive by 

revitalizing existing designs instead of creating new ones. However, existing 3D 

content-based retrieval algorithms and systems, which have only focused on 

geometrical representations (i.e., meshed or surface models), can hardly retrieve 

reusable results for reuse. An effective similarity assessment and retrieval mechanism 

for CAD model reuse, which also takes the mechanical reusability into account, has 

not been defined. Therefore, this research aims to develop a reuse-oriented retrieval 

mechanism to locate reusable CAD models effectively. 

A semantics-based feature directed acyclic graph (FDAG) representation has 

been developed to capture complicated modeling interdependency knowledge among 

feature constitutes of a CAD model. Based on modeling expertise captured by FDAG 

representation, complicated and implicit design precedence semantics are organized 

as a partially ordered set (POSET). Two knowledge-driven FDAG partitioning 

schemes have been proposed to extract reusable CAD components. With these 

partitionings applied on existing CAD models, the CAD model similarity is no longer 

assessed on rigid 3D shapes. Instead, details of models are progressively simplified by 

using the proposed horizontal FDAG partitioning; therefore, assessment on essential 

similarity becomes possible. On the other hand, reusable sub-parts are extracted from 

complete models by using the vertical FDAG partitioning.  
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An essential shape matching (ESM) method supporting CAD model retrieval 

based on their essential shape similarities has been presented. In ESM, complete CAD 

models are simplified, and their essential shapes are preserved for comparison. An 

essential shape aggregation (ESA) descriptor has been defined for comparing only 

essential shapes of CAD models while effectively tolerating trivial details.  

A partial shape matching (PSM) method has also been proposed to address the 

reuse-oriented retrieval of CAD partial components. In the PSM method, the vertical 

partitioning has been applied to find out disjointed sub-graph from the FDAG 

representation, by examining the reachability of a POSET data. The found disjointed 

sub-graphs are equivalent to reusable CAD partial components, which are further 

compared by the partial shape aggregation (PSA) descriptor.  

A prototype system has been implemented to demonstrate the feasibility of the 

proposed reuse-oriented retrieval method. The effectiveness has also been evaluated 

on more than six hundred realistic CAD models and multiple case studies. The 

proposed method brings more advantages: (1) it offers ease of reuse on retrieved 

results as the reusability is taken into account in the retrieval; thus, inflexibility to 

reuse can be greatly avoided, and (2) it maximally preserves design intelligence to 

reused parts. The prototype provides users the access to original modeling expertise 

embedded in existing models when reusing. As a result, design intelligence including 

parametric constraints will be inherently transferred to new designs and future reuse. 
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Chapter 1 Introduction 

1.1 Background 

Today’s manufacturing industry becomes highly competitive due to the increasing 

globalization of the economy and the rapidly changing demands from customers. 

Reducing costs and shortening time to market are key initiatives to survive for an 

enterprise in such intensive market competition. Reusing existing designs instead of 

building them from scratch will play a key role in helping enterprises succeed in the 

market competition. An effective design reuse, which maximally revitalizes existing 

designs, will significantly benefit manufacturing enterprises in the following aspects:  

• Reduction of development costs. Considering the cost of creating a new 

mechanical part from scratch, 48% of total expenses will be spent on design. 

This number means that every successful reuse can cut development cost by 

half [PSMC 2002]. Therefore, design reuse increases the return on investment 

(ROI) significantly. 

• Saving of product lead-time. A significant percentage (80%) of previous 

mechanical designs can be reused to facilitate new designs, either by selecting 

one existing part that directly meets new requirements or making minor 

modifications to them [Gunn 1982].  

Although many existing parts are theoretically available to be reused for new 

designs, accurately locating of a desired part from a large archival repository is not 
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straightforward [Jackson and Buxton 2007]. In an enterprise-level design repository, 

there are hundreds of thousands of archived parts. It will be an extremely compelling 

task for designers to find out the desired one among these innumerable parts, without 

a convenient retrieval tool. 

1.1.1 Manual classification and retrieval 

In early years, mechanical engineers had attempted to organize archived mechanical 

designs manually for future retrieval. Group technology (GT) [Mitrofanov 1966] is 

probably the first effort to analyze and manage 2D draft works in a systematic way. 

The philosophy of GT is that various mechanical parts having similarities are grouped 

together to achieve a higher level of commonality integration. Various mechanical 

attributes can be considered as GT similarity, such as design properties [Iyer and Nagi 

1994], manufacturing properties [Lee and Fischer 1999] and process planning 

properties [Herrmann and Singh 1997].  These attributes are encoded into a sequence 

of alphanumeric strings (i.e., GT codes). All parts are hierarchically classified into 

families according to the GT code similarity. If a user wants to retrieve a part with 

specific shape properties, he or she can generate the GT code of the desired part, and 

look into part families which have similar GT code because parts within a family have 

higher reuse significance. Moreover, retrieved parts within a family normally share 

similar manufacturing processes, and they can be manufactured in the same machine 

cell, thus facilitating cellular manufacturing.   
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Nevertheless, manual classification and retrieval works face the following 

problems: the manual process is slow, expensive, and error-prone. The GT approach 

also has the same issues. Firstly, building a GT database might not be automatic or 

programmable due to the fact that GT code generation is still repetitive work which 

heavily relies on eye-labeling. Even for experienced engineers, their speed of the 

manual coding rarely exceeds hundred parts per day. Secondly, plenty of manpower 

will be occupied to maintain a large-sized GT repository’s consistency and accuracy. 

Thirdly, manual coding involves individual interpretations, which are prone to errors. 

Last but not least, GT methods only work well for relatively simple parts, e.g., sheet 

metal or rotational ones. With these limitations, manual retrieval systems like GT 

approaches are unable to handle heavy amount of parts well as maintenance and 

running costs will be too high to be affordable if manual works are involved  [Love 

and Barton 2001]. 

1.1.2 Metadata based tagging and retrieval 

In recent years, with the emergence of affordable personal computers, new computer-

aided design (CAD) techniques and tools have been provided to help designers 

streamline mechanical design. Especially with the introduction of parametric and 

feature-based modeling (PFM) [Shah and Mäntylä 1995] in early 1990s, the PFM 

modeler allows users to intuitively build models by using semantic features, and 

flexibly adjusting geometric parameters of them.  
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PFM has significantly changed product design paradigm and enabled rapid 

creation and modification of variant instances [Mäntylä et al. 1996]. As a 

consequence, nowadays the magnitude of mechanical part variations is increasing at a 

staggering speed, and product data management (PDM) systems have been employed 

to organize such heavy amount of data [Miller 1998]. In most of commercial PDM 

systems [SmarTeam 2006, Windchill 2006], part management functions are realized 

by a metadata based tagging and retrieval mechanism. Metadata is a concept 

traditionally used in library catalogues to describe contents of books. In modern PDM 

context, metadata is a term to cover textual attributes that are assigned to product-

related documentation. A specific kind of metadata can be considered as a tag. With 

certain tagging during part creation or modification, prior designs can be organized as 

a multi-categorical model in PDM systems. Established categories with tags enable 

users to search for a needed design with exact or inexact keyword matching, such as 

filenames, profile classifications, materials, or other customized keywords.  

However, the accuracy of such metadata-based retrieval methods is subject to 

consistent perceptions of annotators. Although metadata-based retrieval works well 

for standardized parts, inconsistent naming issue will become significant, especially 

under complicated engineering contexts, in which the annotation process is prone to 

be ambiguous and incomplete [Min et al. 2004]. As a result, a recent industrial survey 

has pointed out that, 46% of manufacturing companies, even top performers on design 

reuse, had complained that “users cannot find models to reuse” is still a major 

challenge to them [Jackson and Buxton 2007].  
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Since conventional CAD model retrieval methods, either manual or metadata-

based, are laborious and less precise, the content-based automatic similarity 

assessment and retrieval technique has been proposed as an alternative solution, to 

retrieve CAD models in a more precise way [Gupta et al. 2006].  

1.2 Automatic Content-Based Similarity Assessment and Retrieval 

Positioned as an application of 3D graphics to the information retrieval (IR) problem, 

the automatic content-based 3D similarity assessment technique [Cardone et al. 2003, 

Bespalov et al. 2005, Iyer et al. 2005b] aims at retrieving 3D shapes by their actual 

contents instead of metadata-based annotations, which will not suffer from the 

inconsistent naming issue. 

In content-based similarity assessment, there are two different kinds of 3D 

object’s similarities [Veltkamp and Latecki 2006]: generic and partial shape 

similarities. The former assesses how visually similar 3D objects are, while the latter 

tries to find a shape of which a part that is similar to portions of another object. This 

division is also applicable to the similarity assessment of CAD models, and each 

similarity definition has corresponding applications in CAD model retrieval. The 

generic similarity assessment helps to retrieve general CAD models; while the partial 

shape similarity concentrates on the retrieval of partial CAD components. 

The following sections will investigate the applicability of previously reported 

automatic content-based methods on CAD model retrieval applications, and evaluate 

how effective they are for reuse-oriented retrieval. These sections will not serve as a 
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complete review on the content-based retrieval, as an extended literature review will 

be given in Chapter 2, where different types of automatic content-based retrieval 

methods will be reviewed and compared.  

1.2.1 Retrieval of general CAD models 

With the great convenience introduced by the PFM technique, designers are enabled 

to create a part family consisting considerable varieties to satisfy different 

functionality requirements. These varieties can be generated through design 

parameterization, which normally share a common overall shape with differential 

minor geometric variants. If designers are asked to create a new part with the same 

basic shape but having a slightly different variant, presenting existing varieties with 

similar shape will help them choose one of them to reuse. Therefore a common 

application of CAD model retrieval is to match parts based on their essential shapes 

because in the above scenario, the essential shape is a critical criterion in searching 

parts for design reuse. 

However, most of current 3D retrieval methods are rigid shape based, which 

only compare CAD models as a whole. They lack the ability to suppress insignificant 

details in the assessment, and therefore they cannot tolerate such minor variants to 

evaluate the overall shape similarity [Hou and Ramani 2008]. This would be a major 

gap to retrieve CAD models based on their essential shapes, eventually preventing 

part family retrieval and redesign.  
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Furthermore, most of current 3D retrieval methods work on geometric 

representations, such as meshed or surface models. It means that retrieved results 

from those methods are surface models, which are not easy to be manipulated for 

reuse. This is also confirmed in an industrial survey [Jackson and Buxton 2007]. The 

survey reports that even for results retrieved by content-based retrieval tools, the 

inflexibility to reuse and the failure after modifications are major obstacles to perform 

reuse successfully.  

To address the gap between retrieval and reuse, an ideal CAD model retrieval 

tool should take mechanical reusability into account, on top of other considerations, 

such as geometric similarity.  

1.2.2 Retrieval of partial CAD components 

Besides the above reuse scenario supporting general CAD model retrieval, there is 

another scenario that designers may want to retrieve all existing designs that share a 

particular CAD component. An example is illustrated in Figure 1-1, where five 

models share a common tapered head, which is a partial CAD component. However, 

complete models are dissimilar as they have considerably different locating bases. 

These partial CAD components normally are standardized sub-parts within an 

organization and therefore having high reusability for future design. In order to 

retrieve portions of CAD models, a partial matching method should be developed, to 

match only similar portions as opposed to a full object [Tangelder and Veltkamp 

2008].  
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Figure 1-1. Different locating pins sharing a similar tapered head 

In the partial matching problem, 3D segmentation plays a key role which splits 

the complete 3D objects into a set of pre-determined segments. Some researchers 

have summarized 3D segmentation techniques for CAD applications [Agathos et al. 

2007]. In the boundary mesh segmentation study [Suzuki 2004], the author detected a 

boundary between segments if there is a sharp change of curvature. Furthermore, 

partial shapes, in the form of segmented surfaces, were matched in a many-to-many 

manner [Bespalov et al. 2006]. Another group of methods apply the clustering 

technique on 3D volumes in which 3D objects are either segmented in a paralleled 

way  [Biasotti et al. 2006] or a symmetric way [Bespalov et al. 2003b]. However, all 

these previous works only adopted purely geometric attributes as the segmentation 

criteria, which are subject to minor changes of the shapes being segmented. More 

importantly, these methods may produce segmentations that are meaningless to CAD 

model reuse, e.g., surface patches or shape fragments. Such results are “dump” 

surfaces or solids, which are of little value in reuse as the direct reuse of freeform 

surfaces is still challenging [Zhao et al. 2009]. Therefore purely geometric criteria 

that are used in current segmentation algorithms appear to be an obstacle to realize 

effective partial shape retrieval. An ideal partial shape retrieval algorithm should be 
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able to extract reusable sub-parts from complex CAD models automatically, and 

effectively support direct reuse of extracted CAD sub-parts.  

1.3 Research Objectives 

The investigation in section 1.2 shows that current similarity assessment algorithms 

on 3D objects cannot support effective retrieval for design reuse. Several gaps are 

identified for two common retrieval scenarios: retrieval on general CAD models and 

partial CAD components. The objectives of this research are to address the identified 

obstacles, and to develop effective approaches to support reuse-oriented retrieval of 

CAD models. The research will be focusing on the following areas: 

(1) To elaborate a semantics-based representation for 3D CAD models. In order to 

have a semantic representation that can effectively support future CAD model 

similarity assessment and retrieval, the following need to be developed:  

• To identify related modeling knowledge that is most important to CAD 

model similarity assessment and retrieval. 

• To develop an automatic acquisition mechanism to extract the identified 

modeling knowledge, from multifaceted mechanical information of archived 

CAD models. 

•  To present a suitable representation to capture the extracted modeling 

knowledge. An organized and structural representation needs to be developed to 

provide better views on complicated modeling knowledge.  
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(2) To develop an approach to support CAD model retrieval based on essential shape 

similarity. In order to realize the essential similarity based CAD model retrieval, 

the following need to be developed: 

• In order to serve the assessment on essential shapes instead of complete 

models, significant modeling constitutions will be determined by using order 

theory’s definition of maximal and minimal elements on a partially ordered 

dataset. 

• To address the essential shape similarity assessment, a horizontal partitioning 

mechanism on the knowledge-based representation needs to be proposed to 

decompose the graph from minimal elements to maximal ones. 

• Corresponding to the horizontal partitioning, a multi-level simplification 

algorithm needs to be developed to simplify complex CAD models progressively 

while maintain the essential shapes of the models. 

• To define the essential shape similarity in CAD modeling context. Based on 

the similarity, an essential shape matching algorithm should be elaborated to 

perform essential similarity assessment and retrieval of CAD models.  

(3) Development of a method to support CAD model retrieval based on partial shape 

similarity. In order to realize mechanical sub-part retrieval, the following need to 

be developed: 

• In order to serve the assessment on partial shapes, a vertical partitioning 

scheme needs to be presented to find out disjointed portions from the modeling 

knowledge representation by studying the reachability on the representation.  
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• Corresponding to the vertical partitioning, a CAD sub-part decomposition 

algorithm needs be developed to segment reusable components from a complete 

mechanical design. 

• To define the partial shape similarity. Based on the similarity defined, a 

partial shape matching algorithm should be put forward to address similarity 

assessment and retrieval on partial CAD components. 

(4) Implementation of a reuse-oriented retrieval system framework to bridge the gap 

between retrieval and reuse. In order to realize a prototype system to prove the 

reuse-oriented retrieval, the following need to developed: 

• To provide a convenient interface for query composition. The interface 

should contain an intuitive method to compose 3D searching query in a user-

accustomed way. 

• In essential and partial shape matching stage, the matched CAD models 

should be proactively promoted to designers, to shorten the processing time from 

querying to retrieving.  

• In reuse stage, redesign suggestions should be automatically generated to 

help designers to consider most feasible re-design modifications.  

1.4 Organization of Thesis 

The aim of this chapter is to present the general background to the research work that 

will be described in the following chapters. It examines several common reuse cases. 

By analyzing the common reuse cases and existing 3D retrieval methods, it also 
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clearly identifies some gaps between what the design reuse wants and what existing 

retrieval methods can offer. Research objectives are determined to bridge the found 

gaps between the CAD model retrieval and reuse. 

Chapter 2 gives a comprehensive investigation of the previous works on 3D 

model retrieval. Chapter 3 presents the theoretical framework of this research, which 

consists of a knowledge-based representation of CAD models and its acquisition and 

construction approaches. In Chapters 4 and 5, two reuse-oriented CAD model 

retrieval methods are proposed to search for reusable CAD models based on their 

general and partial shape similarities, respectively. Chapter 6 describes experimental 

results using the proposed algorithms, and discussions. The last chapter presents the 

conclusions and recommendations for future work. 
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Chapter 2 Literature Reviews 

This chapter reviews previous works on 3D matching methods. According to the 

shape similarity classified by Veltkamp and Latecki [2006], there are two remarkably 

different kinds of 3D similarity which are widely studied: generic and partial shape 

similarity. The former assesses how visually similar 3D objects are, while the latter 

tries to find a shape of which a part that is similar to a part of another object. Section 

2.1 reviews previous works on 3D matching approaches based on generic shape 

similarity and section 2.2 reviews those on partial shape similarity.  

2.1 Generic Similarity Based 3D Model Retrieval 

CAD model retrieval is an important application of information retrieval. Traditional 

manual CAD model retrieval heavily depends on human perceptions of the 

mechanical part similarity. One of manual approaches is group technology (GT), 

which is known to the time-consuming and error-prone; thus, manual approaches can 

hardly manage hundreds of thousands of mechanical parts in an enterprise level.  

In recent years, automatic content-based 3D retrieval methods have emerged 

to search CAD models in large-scale databases [Gupta et al. 2006]. Shape descriptors 

in these automatic algorithms play a key role in enabling the search. A shape 

descriptor is a concise, mathematical representation of 3D objects to enable them 

searchable, and each algorithm has its own descriptor to represent the generic 
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similarity of 3D CAD models. Commonly used descriptors can be categorized into 

three main types: mathematics, visual, and knowledge-based. 

2.1.1 Generic similarity retrieval by mathematics based descriptors 

A direct way to characterize a 3D object is to capture its geometrical properties by 

mathematical representations. This section reviews these mathematics based 

descriptors.  

Global Feature Approach 

Global feature based descriptors have been proposed to extract feature vectors of 

global geometries of 3D models to characterize the shapes. Paquet et al. [2000] firstly 

proposed a search engine that characterizes 2D visual objects by bounding box 

descriptor, and compares 3D shapes using these global features: cords-based vector 

set, and wavelet transform-based volume occupancy. Some researchers [Elad et al. 

2001, Zhang and Chen 2001b] put forwarded 3D matching methods to take moments 

of 3D solids as characteristic descriptors. Lou et al. [2004] proposed a method to 

adopt invariable principal moments to assess 3D similarity. Zhang and Chen [2001a] 

further extended global feature based descriptor by putting volume-to-surface ratio, 

moments invariants, and Fourier transformation coefficients into the 3D similarity 

computation. Sun and Qamhiyah [2003] proposed a method to use discrete wavelet 

transforms to represent curvatures of face regions and radial distances of faces 

boundaries. Moreover, Kazhdan et al. [2004] especially studied a descriptor that 

represents the reflective symmetry of a 3D model, which shows strong robustness 
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against noises and sampling resolutions. A common pitfall of global feature based 

descriptors is that a type of feature vector can address one aspect of geometrical 

properties (e.g., moment invariants, surface area to volume ratio etc.); therefore, 

single feature vector based descriptor cannot capture shape contents comprehensively. 

As a valuable application in data and signal processing and recognition of 3D shapes, 

spherical harmonics functions which approximate 3D shapes with finer harmonic 

coefficients, thereby it might capture more shape contents. Many studies adopted 

spherical harmonics based methods to evaluate the geometric similarity between 3D 

shapes [Saupe and Vranić 2001, Vranić et al. 2001]. Vranic et al. [2001] proposed a 

3D shape descriptor based on spherical harmonics functions, where the functions are 

used to represent global feature vectors. In the method, feature vectors are extracted 

from normalized models using spherical Fourier coefficients, and compared to the 

spherical harmonic feature vectors of the query model. Similarly, Saupe and Vranić 

[2001] adopted both moments and spherical harmonic functions to assess the 

geometrical similarity of 3D models. Recently, the spherical harmonics based 

algorithm [Morris et al. 2005] has been extended to  biological macromolecules 

domain to determine protein structures which have no available biochemical 

characterization. The algorithm adopts spherical harmonics coefficients to 

characterize the shape of a protein's binding pocket, and the binding pocket shape 

similarity is assessed as the geometrical distance in coefficient space. In more recent 

years, Papadakis et al. [2007] presented a 3D shape descriptor which adopted 

spherical harmonic functions to compute scaling and axial flipping invariance of the 
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descriptor, and continuous principal component analysis (PCA) is used to achieve the 

rotation invariance of the analyzed models. 

Statistical Approaches 

Another group of mathematics based descriptors has been proposed to describe 3D 

geometries using statistical algorithms. The idea of statistics-based methods is “count 

and accumulate”, that is, statistics measures of 3D objects are sampled and counted 

into a fixed length histogram in an accumulative manner. The histogram is then used 

to assess 3D similarity. The method based on shape distributions was firstly reported 

in [Osada et al. 2001]. A shape distribution (SD) descriptor represents a probability 

distribution of the overall shape of a 3D model. The probability distribution is 

randomly sampled by a geometric function, e.g., A3 measures the angle among three 

random points on the model surface, and D2 stands for the distance between two 

random points on the surface. By comparing probability distributions between two 

models, similarity assessment is achieved. In order to increase discriminating 

capability for detailed parts, Ip et al. [2002] extended the original shape distribution 

algorithm by subdividing the D2 function into three types: IN, OUT, and MIXED. 

More recently, enhanced shape functions have been proposed in [Ohbuchi et al. 2005, 

Hou et al. 2007]. Another kind of 3D shape statistical function is the shape histogram 

(SH), which evolves from the section coding technique used to retrieve 2D polygons. 

The basic idea of SH is to partition the 3D space and encode on partitioned models. 

Three basic partition techniques were introduced by Ankerst et al. [1999], namely 

shell partitioning, pie partitioning, and spider-web partitioning. The shell partitioning 
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splits the space with concentric sphere with variable radius; while the pie-like 

segmentation projects planes passing the centre of a sphere. The spider-web one is a 

combination of the former two. Spatial percentages occupied by the model in each 

partition are encoded into a vector, which is used for similarity assessment. A variable 

SH method was reported in [Kriegel et al. 2003], which uses a voxelized 

representation instead of the original model. Because computing of whether a voxel 

resides in a partition or not is straightforward, the computational cost is reduced. 

Other statistics-based descriptors include a cord-based measure [Paquet and Rioux 

1999], scalar function distributions [Gal et al. 2007], sphere projection signature 

[Leifman et al. 2005], and density-based descriptor [Akgul et al. 2007].  

The mathematical descriptors investigated above, both statistical and global 

feature ones, are computationally efficient in comparison because the mathematical 

characteristics are represented by fixed-length vectors or histograms. In addition, 

statistical SD descriptor shows desirable invariance to rotation and translation, and 

has satisfactory discrimination for primitive shapes. Nevertheless, as characteristics 

are sampled discretely, 3D details of shapes might not be always sampled, which 

results in a fact that these descriptors cannot discriminate details effectively. Most 

importantly, the proposed mathematical characteristics do not include human 

perception on visual similarity. In other words, these pure mathematics based shape 

descriptors are only computer-understandable; however, they lack a straightforward 

explanation in human perception.  
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2.1.2 Generic similarity retrieval by visual based descriptors 

Compared with the shape descriptors reported in section 2.1.1, which are completely 

captured by mathematical characteristics, human beings may use a different 

perception to define 3D shape similarity. In human perception, two 3D objects are 

similar if they are looked alike from every side, or one bears a strong resemblance to 

another in terms of 3D visual structure.  

2D View Approach 

In the past decades, content-based image retrieval (CBIR) techniques have been 

extensively studied. CBIR algorithms have been developed to search for similar 2D 

images, in which the term content may refer to colors, textures or profiles that are 

derived from images [Veltkamp and Tanase 2002]. However, a number of CBIR 

algorithms have been adopted and extended to compare 3D models in the shape 

retrieval research. These image-based retrieval algorithms search similar shapes by 

comparing characteristic 2D views of 3D objects. The basic idea of image-based 

shape retrieval is that two 3D objects are similar if they look alike from all viewing 

angles. Various 2D views have been chosen to characterize shape models, and 

characteristic images are then used for similarity assessments. Some researchers 

[Funkhouser et al. 2003, Wang and Cui 2004, García et al. 2007] have adopted 

silhouettes as characteristic images. Chen et al. [2003] proposed an enhanced 

silhouette descriptor that is characterized from multiple projected silhouette views 

with light-fields, which are uniformly distributed on a bounding sphere. The light-

field descriptor might effectively filter out high-frequency noise. Furthermore, 
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orthogonal images of 3D models, where darker pixels indicate longer distances from 

viewing planes to the objects, are utilized to compare the shape similarity by Vranic 

[2004]. In 2005, Barton et al. [2005] adopted orthogonally projected profiles to enable 

mechanical model retrieval. The impacts of freehand sketch variability on the retrieval 

performance were also discussed. Pu et al. [2006] also represented mechanical 

drawings as a level of detail (LOD) based descriptor which consists of 2D 

characteristic on three distinct levels of details – silhouette, contour, and drawing. A 

combination of different LOD sectional images has then been adopted to compute the 

similarity between CAD models. Furthermore, Hou and Ramani [2008] introduced a 

divide-and-conquer method to match feature point correspondences of 2D contours in 

order to compare deformable models. The above image-based methods have naturally 

enabled designers to submit 2D views as search queries, which were reported by 

Funkhouser et al. [2003] and Love et al. [2004]. Pu et al. [2006, 2007] also adopted 

the freehand sketching as one of 3D query methods, which is quite straightforward.  

3D Graph Approach 

A graph is a natural choice for capturing 3D visual topology, and graph-based 

descriptors have been adopted to characterize structures of CAD models. In general, 

graph-based descriptors can be grouped into three types: boundary representation (B-

Rep), Reeb, and skeletal based. B-Rep graph based approaches compare CAD model 

similarity based on their boundary representations. B-Rep descriptors are represented 

by undirected graphs, and the similarity comparison is converted to the graph 

matching problem. El-Mehalawi and Miller [2003b, a] reported their work that used 



 

20 
 

B-Rep entities of a STandard for the Exchange of Product (STEP) model to construct 

an attributed graph. In their graph-based representation, graph nodes are converted 

from adjacent B-rep faces of a CAD model, and edges between the faces are links 

between the nodes. However, direct B-Rep graph comparison is impractical as a basic 

mechanical part may have a too complex B-Rep graph to compare within polynomial 

time as graph matching is a classical NP-complete problem. Instead, eigenvalues of 

B-Rep graphs are compared in [McWherter et al. 2001]. Another group of methods is 

to capture 3D models using Reeb graphs.  Hilaga et al. [2001] proposed the first 

method to capture 3D topology by a multi-resolutional Reeb graph (MRG). The basic 

idea of Reeb graph method is like follows. Firstly, a 3D model is faceted to prepare 

for the Reeb graph generation. Secondly, the faceted model is horizontally sliced into 

a number of partitions. Each sliced partition is regarded as one node in an MRG. The 

adjacency between partitions is mapped to the adjacent edge between Reeb graph 

nodes. More recently, Reeb graph methods have been extended to retrieve complex 

CAD models [Chen and Ouhyoung 2002, Bespalov et al. 2003a]. However, Reeb 

graph based technique is found to be sensitive to surface connectivity of the facet 

models. The third group of graph-based shape descriptor is using skeletal graphs. 

Skeletons are the simplified geometry representation of 3D shapes, which can be 

obtained by topologically preserved thinning algorithms [Xie et al. 2003, Klette and 

Pan 2005]. Skeleton graph based methods simplify 3D models in a topology 

preserving way. Skeletal graphs are built upon the simplified topologies (i.e., 

skeletons), and skeletal graph resemblance is used to assess 3D similarity. Lou et al. 
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[2005] assessed 3D similarity by comparing eigen-values of skeletal graph adjacency 

matrix; while the combinational assessment of geometric and graphical measures 

[Iyer et al. 2005a, Gao et al. 2006] have been proposed for 3D similarity comparison. 

In addition, both global similarity and local similarity of 3D shapes have been 

considered in several studies [Shokoufandeh et al. 2005, Zhang et al. 2005, Gao et al. 

2006]. In 2007, Ju et al. [2007] proposed a redundant feature pruning algorithm to 

generate better skeletal representation. Especially, comparison methods based on 

critical point correspondence have been studied using deformable 3D objects and 2D 

drawings [Tam and Lau 2007, Hou and Ramani 2008].  

The above structural descriptors are intuitive as they captured shape 

topologies, which is similar to human perception of visual similarity. Nevertheless, 

these descriptors cannot be directly adopted into CAD model retrieval because the 

CAD model similarity is not equivalent from the visual resemblance. In mechanical 

design domain, each CAD modeled design has specific mechanical properties. Shape 

descriptor may not be effective if these mechanical and design aspects of knowledge 

are not properly considered into CAD model retrieval. Moreover, these descriptors 

have specific limitations. In 2D view based descriptors, high-level 3D information can 

be lost during the conversion from 3D shapes to 2D images. Moreover, choosing 

characteristic 2D views for a 3D object is not deterministic. Several view clustering 

techniques reported by [Cyr and Kimia 2001, Ansary et al. 2007] attempted to 

determine optimally characteristic views. As for the 3D graph based algorithms, they 

have trade-off between the comparison accuracy and complexity: the accuracy of 
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comparison is highly dependent on the granularity of characterized graphs. A finer 

granularity graph requires more time to generate and compare, which might not be 

responsive; while coarser graphs cannot capture 3D topologies effectively.  

2.1.3 Generic similarity retrieval by knowledge based descriptors 

To address the lack of knowledge issue in purely geometrical retrieval, in CAD model 

retrieval domain, mechanical knowledge specific to the domain has been considered 

in several studies. In works of Cardone et al. [2004, 2006], a  manufacturing feature 

facilitating mechanism is employed to estimate costs of machining new parts, by 

analyzing machining alignment and orientation information of existing prismatic 

parts. The basic idea of the study is that visually similar parts share similar machining 

processes; thus, according to the expense on a known machining process, the cost for 

a new part can be estimated based on how similar the new and the known are. 

Furthermore, the mechanical design similarity is assessed using the sub-graph 

isomorphism of machining feature graphs [Cicirello and Regli 2002], where access 

directions, types, volumes, tolerances and group cardinality of machining features 

were used as similarity descriptors being compared. The aforementioned methods 

only took account of manufacturing semantics, while not considered design features 

that represent design-related semantics. 

In recent years, some researchers adopted recognized design features to enable 

CAD model retrieval. Hong et al. [2005] presented a multi-step method for CAD 

model retrieval. In the first step, detailed design features, e.g., concaves, blends, 
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passages are recognized and suppressed by wrap-out or smooth-out operations that 

were introduced by Kim et al. [2005]. With specific features suppressed, a coarse pre-

classification is applied to classify models because overall appearances after 

suppression are more differential. In the second step, feature information, e.g., delta 

volume and delta face number of features, are integrated into high-level similarity 

assessment. In their extended work [Hong et al. 2006], a semi-random sampling 

algorithm is introduced to have better pre-classification and find more similar designs. 

In the study of Chu and Hsu [2006], the design feature information is extracted from 

mechanical models. The extracted features are used to generate a colored graph where 

white nodes stand for additive features and black nodes stand for subtractive features. 

Both colored feature graphs and geometrical properties are compared to those of 

another model, to determine the CAD model similarity. Cheng et al. [2007] extended 

the work of Chu and Hsu by putting forward an artificial neural network (ANN) based 

method to provide guided feedbacks to the original knowledge-based similarity 

assessment algorithm and adjust on initial ranking inaccuracy. This series of research 

might have provided a direction for 3D search because it could effectively bridge the 

discrepancy between human perception and machine-learnt similarity.  

However, the aforementioned algorithms only take recognized design features 

into similarity consideration. Feature recognition results might be ambiguous and 

uncertain due to the multiple-interpretation issue. Compared with recognized features, 

design features created by designers during modeling are more valuable as it conveys 

the information that how models were built. The designer-defined modeling expertise, 
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such as modeling precedence and dependency, would have more significant impacts 

on instructing how to retrieve similar and reusable CAD models to serve reuse-

oriented retrieval purpose.  

2.2 Partial Similarity Based 3D Model Retrieval 

As opposed to generic similarity, partial shape similarity assesses at the portion level 

to match resembled parts of a complete 3D object. In reuse-oriented retrieval 

paradigm, designers may only want to search for a sub-part instead of a complete 

design as redesign reference. Therefore, partial similarity assessment should also be 

taken into account for practical CAD model retrieval.  

3D model segmentation plays a critical role in enabling partial shape retrieval 

by extracting meaningful sub-parts from 3D objects. For instance, if a user is 

searching the wings of a plane, segmenting wings from planes is a compulsory step. 

In early years, 3D segmentation techniques had been widely studied for medical 

volumes to address anatomical organ extraction [Lakare 2000]. Medical volume 

segmentation enables physicians to extract portioned views of human organs from 

complex scanned anatomical structures; in this way, doctors can only focus on regions 

of interest. In recent years, 3D segmentation has another application in the content-

based retrieval. Once all sub-parts are segmented, geometrical and structural 

characteristics of the segmented portioned can be captured by shape descriptors and 

compared with partial shape queries. It means that the attempt trying to retrieve 3D 

objects based on partial similarity will return to a basic retrieval problem if an 
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appropriate 3D segmentation method can be applied. In the following sections, 

previous works on 3D segmentation techniques and related applications in partial 

shape retrieval will be reviewed.  

2.2.1 Partial similarity retrieval by stochastic techniques 

Stochastic techniques are also applied on 3D volume segmentation. Common 

stochastic techniques used include classification and clustering. Classification is a 

supervised process similar to labeling, and tries to examine and categorize 3D 

segments based on known local geometry characteristics and hierarchical topology 

maps; while the term clustering is defined as the unsupervised process of grouping 3D 

data into segmentations whose members show strong spatial resemblance. The 

classification is extremely useful for anatomical structure extraction as anatomical 

structures are stable and unchanged. Some researchers proposed the classification 

based methods to perform automated classification and segmentation on scanned 3D 

brain models and label complicated cortical surfaces [Sandor and Leahy 1997, Jaume 

et al. 2002]. Shamir et al. [2003] proposed a classification based segmentation 

method on categorical models that have pre-defined topological hierarchy, such as 

fingers as ridges are always connecting to the hand palm that is like blob primitives. 

Therefore, partial correspondences are greatly facilitated by the known geometrical 

and topological characteristics. However, classification is not suitable for automatic 

segmentation of arbitrary 3D models which do not have pre-defined characteristics.  
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Clustering based methods come under the unsupervised class of 3D 

segmentation algorithms. Katz and Tal [2003] examined probabilistic clustering 

application on 3D model segmentation. In their research, a fuzzy k-means clustering 

algorithm was adopted to decompose 3D polygonal models, and the clustering 

probability (i.e., segmentation criterion) is the combination of angular and geodesic 

distance between faces. In the study of Bespalov et al. [2003b], the singular value 

decomposition (SVD) clustering scheme [Thomasian et al. 1998] was applied on the 

geodesic distance of surfaces to produce the scale-space representation of 3D models. 

Based on the bisectionally clustered scale-space tree, similarities between models are 

compared in a divide-and-conquer manner: the similarity of tree nodes could be 

estimated based on the resemblance of their sub-trees. Bespalov et al. [2006] extended 

their previous works to address partial shape retrieval problem. In their attempt for 

polyhedral model segmentation, a new distance function, namely maximum angle on 

angular shortest path is defined, to describe local surface smoothness. Once the 

smoothness of local surfaces is identified, the recursive bisectional decomposition 

segments models into surface patches with interactive control of the decomposition 

termination, and partial matching can be conducted on the segmented patches. Similar 

studies on clustering based segmentation include [Liu and Zhang 2004, Klasing et al. 

2008, Li 2010], which apply various 3D distance criteria and clustering techniques on 

3D model data.  

In the aforementioned approaches, stochastic segmentation techniques can 

generate superior results for certain models. For instance, classification based 
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methods work well on categorical models that have predetermined geometrical or 

topological characteristics; while the methods using bisectional clustering techniques 

will outperform others on segmenting symmetrical models. Moreover, clustering 

methods need a pre-defined parameter as algorithmic input, i.e., the number of 

clusters to be generated, which cannot be easily determined for all types of 3D 

models.  

2.2.2 Partial similarity retrieval by structural techniques 

Another popular 3D segmentation criterion of segmentation is 3D objects’ structural 

properties. Structural segmentation techniques try to find differentiating properties of 

structures. One of structural criteria is 3D boundary, which is the intersection of two 

surface regions that might have various features, such as curvatures or intensities. 

Suzuki [2004] reported a boundary based segmentation method in which a boundary 

can be detected if there is a sharp change of surface smoothness. The smoothness is 

defined as angular difference between adjacent mesh triangles in the method. Suzuki 

et al. [2005, 2006] extended their works to build a partial shape retrieval system based 

on mesh curvature. One advantage of the boundary detection technique is that it 

works well on datasets with obvious contrasts between different regions, e.g., linking 

vessels of a vessel tree. Moreover, convex hull is another structural segmentation 

criterion, which has important application in collision detection, and the same concept 

had been adopted for segmenting characters [Chang and Chen 1999] in 2D domain. 

Zuckerberger et al. [2002] proposed a convex hull flooding algorithm in 3D context, 
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which supports non-convex segment generation. A post-processing method was 

described to merge small segmented patches into bigger one, which can generate 

smaller amount of segmentations results. By using the proposed flooding and post-

processing, every 3D model can be decomposed into a small number of patches, and 

searching on patches instead of models is possible. The third segmentation criterion is 

the branch intersection of Reeb and skeleton graph structures. Reeb graph [Hilaga et 

al. 2001, Bespalov et al. 2003a]  and skeleton graph [Iyer et al. 2005a, Gao et al. 

2006]  have been studied as graph-based descriptors. Based on the graph 

characterizations, segmentation can be made crossing conjunctions of graph branches, 

and each segmented sub-part has its sub-graph as internal structural characterization. 

In 2006, Biasotti et al. [2006] presented a Reeb graph method to address the sub-part 

correspondence issue. The Reeb graph segmentation and the internal sub-graphs are 

adopted as the correspondence signature. On the other hand, Xie et al. [2008] 

employed a skeleton based criterion to find out sub-part correspondences with in 2D 

plane domain. Bai et al. [2007] also presented a hierarchical skeleton graph 

representation for local feature segmentation and comparison based on Dilation Based 

Multi-resolutional Skeleton (DBMS) generation on 3D volumes. The DBMS based 

local feature descriptor can capture both geometric and topological features of the 

segmented sub-parts.  

However, the above structural methods are sensitive to minor changes of 3D 

geometries, such as parametrically designed variants, scanned data noises, and 

polygonal mesh differences. More importantly, the aforementioned segmentation and 
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partial matching schemes only consider geometric and topological aspects. As a 

consequence, the produced segmentation results, such as surface patches or shape 

fragments are “dump” surfaces or solids, which are of little value in the reuse stage. In 

addition, effective reuse of any segmented patch in the form of NURBS surfaces is 

still an open challenge [Zhao et al. 2009]. Therefore, partial shape retrieval on CAD 

model components ideally requires a segmentation method, which is insensitive to 

geometrical or topological changes. And the partial matching methods should have 

ability to analyze the semantic data available in feature-based CAD models. The 

usage of semantic data can produce mechanically meaningful segments, which pose 

desirable reusability after retrieval.  

2.3 Summary 

The purpose of this chapter is to describe the related research background in the field 

of 3D content-based retrieval. It presents a meaningful literature review of existing 

3D matching methods based on generic and partial shape similarity, with an emphasis 

on retrieving CAD models. Meanwhile, some gaps existing in the current literature 

have been identified. 

From the above review, the gap between retrieval and reuse is the major issue 

for effective reuse-oriented CAD model retrieval. Most existing methods of generic 

shape matching are rigid shape based, and they work on geometric representation only, 

i.e., meshed or surface models. Retrieved results of such rigid shape matching are not 

easy to be manipulated, which causes the inflexibility to reuse after retrieval. Few 
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methods consider the design reusability into the similarity assessment criteria. The 

same drawback is identified in existing partial shape matching methods, which have 

been supported by stochastic or clustering techniques. Both techniques only consider 

geometric and topological aspects, eventually producing mechanically meaningless 

retrieval results which are hard to reuse. It is therefore desirable to develop a reuse-

oriented retrieval method that performs CAD model retrieval more effectively for 

better downstream design reuse. In the following chapters, two reuse-oriented CAD 

model retrieval methods based on respective essential and partial shape similarities 

will be proposed to achieve this. 
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Chapter 3 Knowledge Acquisition and Representation 

This chapter presents a design knowledge based method to acquire mechanical 

modeling knowledge from CAD models and represent the expertise in a hierarchically 

structured representation, which will facilitate the next reuse-oriented retrieval. 

In CAD domain, design is the means by which mechanical engineers can 

create manufactured parts using tools like computers. With the help of the CAD 

technology, a part can be represented as a digitalized computer model showing all the 

dimensions necessary to manufacture or assembly it. This digitalized design 

information makes it possible for designers to reuse the same knowledge to facilitate 

next designs as computers are suitable to store and replay massive data quickly.  

However, design related expertise is complicated to be fully understood by 

computer programs themselves. In a mechanical design, there are enormous core 

concepts, including mechanics, kinematics, thermodynamics, materials science, 

structural analysis etc. In this thesis, the design information pertinent to parametric 

and feature based modeling (PFM) is extracted for the reuse-oriented retrieval. The 

rational is that nowadays PFM is a dominating technique to create mechanical CAD 

models. Therefore, the PFM knowledge embedded in these models should be utilized 

to facilitate mechanical re-design.  

 In this chapter, the definition and properties of the PFM design knowledge 

will be introduced. Then the chapter will present the method to extract PFM design 

knowledge from feature-based CAD models. The method how to normalize and 
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represent the extracted knowledge in a structured way is also introduced, which 

enables the knowledge-based reuse-oriented retrieval algorithms. 

3.1 Modeling Dependency between Features 

In most CAD systems, the PFM technique is readily available today. PFM is popular 

not only because the created features are adjustable, which are easier to the end user, 

but also it provides the capabilities to embed the original designer’s knowledge into 

the PFM-created model. The embedded knowledge enables the next designer to 

understand the original design intents. The knowledge preservation and transfer 

ensure that the future modifications can be done easily and consistently. 

In PFM enabled modeling system, a CAD model is created using a series of 

design features. The design features have a semantically higher level than geometric 

primitives [Shah and Mäntylä 1995]. A design feature is defined as a parametric shape 

associated with design related attributes. The associated attributes include not only the 

information of itself, such as dimensions, orientations, tolerances, material properties, 

but also modeling references to other features [Mantyla et al. 1996]. Therefore, in 

PFM modeling, a feature will not be created alone, and the creation of one feature 

could depend on other features. For instance, an edge blend on the boundary of an 

extrusion is dependent on the extrusion. That means creation of the extrusion must be 

a preceding action before creating the edge blend. In the following section, the 

definition of feature modeling precedence will be given. 
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3.1.1 Feature modeling precedence relation 

The precedence between the extrusion and the blend can be defined as follows. Given 

two features f and g, we say g depends on f if the creation of g is referred to f by 

geometric constraints [Bettig and Shah 2001]. In other words, g will be built after 

creating f due to the modeling reference to f.  

The precedence defined in the aforementioned case is a partially ordered 

relationship, which can be denoted as: 

gf →  (3.1) 

In the equation, the arrow direction indicates a sequencing of the partially ordered 

pair, f and g. In PFM modeling context, the sequencing is the modeling precedence of 

feature f over feature g. A more complex modeling precedence will be given as 

follows. Figure 3-1 shows design feature constitutes of the CAMI-ANC 101 part 

[Shah and Mäntylä 1995].  

                  Base

         Block

BlindHole .               Pad

                         Double C-Bore

                                                        ThruHoles

                                 PinHoles

Boss .

                                                                   FrontPockets

 
Figure 3-1. The ANC-101 model and its design features 
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In the CAMI-ANC 101 model, the feature Pad is build upon features Base and 

Block by coplanar constraints. Therefore, modeling precedence from Base and Block 

to Pad will be many-to-one. Here, this many-to-one relationship is decomposed into 

two partially ordered pairs, say Base→Pad and Block→Pad, each of which represents 

the modeling precedence of Base over Pad and Block over Pad, respectively. The 

research annotates this decomposition as the normalization of multi-precedence.  

In the similar way, another one-to-many precedence relationship, i.e., Block is 

also the direct modeling reference for feature Boss, Pin-Holes and Double C-Bore. 

Consequently, three discrete partially ordered pairs are defined as Block→Boss, 

Block→Pin-Holes, and Block→Double C-Bore, which use the directed arrows to 

show modeling precedence between these features.  

3.1.2 Properties of feature modeling precedence 

The partially ordered relationship defined in section 3.1.1 satisfies these properties: 

irreflexivity, antisymmetry, and transitivity. The irreflexivity property prevents a 

feature from depending on itself; while the antisymmetry property ensures that two 

features must not mutually dependent on each other. Moreover, the transitivity 

property is satisfied as f will be the indirect reference for generating h if f→g and 

g→h in feature mechanical modeling. These three properties are formalized as 

follows.  
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For the feature set F(M) of a CAD model M, the following properties apply to all the 

features a, b, or c in F(M). The notation  stands for a transitive precedence. Since 

the irreflexivity, asymmetry, and transitivity properties apply to the feature modeling 

precedence, it is a strict partially ordered relation in order theory.  

3.2 Acquisition of Feature Modeling Precedence  

A PFM-created CAD model maintains two distinct representations. The geometric 

representation describes the shape of the CAD model in terms of B-Rep entities, and 

another feature representation includes design features and their relationships. The 

proposed method will extract the feature modeling semantics from the PFM-created 

model. 

The expertise to be extracted includes design feature constitutes and the 

modeling dependencies among them. The design feature information is extracted from 

the design history of the PFM-created models, where the names, geometries, and 

properties of the features can be obtained. Due to the use of feature information, the 

proposed method restricts its comparable objects to feature modeled CAD models. 

The rationale is that the PFM technique is acutely evident in current mechanical parts 

and assembly designs. Moreover, the PFM-created CAD model is feasible for variant 

and adaptive redesign for design reuse. 
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The modeling precedence between features can be deduced from the inter-

relationship between two features. For instance, if deletion of feature F causes 

removal of another feature G from the PFM-created CAD model, G has at least one 

modeling dependency on F. Therefore, every modeling precedence relation can be 

computed by the transversal of all design feature pairs in a PFM-created CAD model. 

The modeling precedence computed is a strict partially ordered relation between the 

corresponding design feature pairs; and these pairs of precedence put together will 

form a strict partially ordered set. 

3.3 Representation of Modeling Precedence Knowledge 

The aforementioned strict partially ordered theory provides a theoretic foundation to 

represent complicated feature modeling precedence in a structured way. In the order 

theory [Schröder 2002], a strict partially ordered set (POSET), such as the feature 

constitutes of a CAD model, can be represented by a directed acyclic graph.  

3.3.1 Directed acyclic graph 

A directed acyclic graph (DAG) is a directed graph with no directed cycles. It is 

formed by a set of nodes and a set of edges connecting pairs of vertices. The acyclic 

property ensures that there is no way to start at one vertex v and follow a sequence of 

directed edges that eventually loops back to v again. 

In a directed acyclic graph G= (V, E), where V is the vertex set and E is the 

directed edge set. An edge e = (v, w) is considered to be directed from vertex v to 

another vertex w. w is said to be a direct successor of v, and v is said to be a direct 
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predecessor of w. If a path consisting of one or more successive edge leads from v to 

w, then w is said to be a successor of v, and v is said to be a predecessor of w.  

A chain of successors forms a reachable path from a root to the rest of the 

vertex. If there is a path is started at vertex u and ended at vertex v, we say that v is 

reachable from u. In graph theory, reachability is the term to describe the relation that 

gets from one vertex in a directed graph to some other vertex. The reachability is 

defined as follows. For a directed graph G= (V, E), the reachability relation of G is the 

transitive closure of its directed edge set E, which is to say the set of all ordered pairs 

(v, w) of vertices in V for which there exist vertices v0 = v, v1, …, vn = w such that (vi, 

vi+1) is in E for all 0 ≤ i < n.  

The defined reachability is used throughout the thesis to prescribe the non-

immediate modeling precedence relation of feature constitutes. In feature modeling 

context, all successors in the reachable path of v means these successors have 

immediate or transitive modeling dependency on v.   

3.3.2 Feature directed acyclic graph (FDAG) 

The defined DAG is used to model partially ordered, feature modeling precedence in 

the proposed reuse-oriented retrieval method. This graph-based model is named as 

Feature Directed Acyclic Graph (FDAG). In an FDAG model, the vertices are design 

feature constitutes of a PFM-created CAD model; the edges of the DAG represent 

modeling precedence between design features.  
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An FDAG representation of a PFM-created CAD model M is constructed as 

follows: 

(1) Construction of vertices. For each design feature visited {f1, f2, …, fn}, vertices 

{vf1, vf2, …, vfn} will be put into an empty directed acyclic graph (called G) 

correspondingly. 

(2) Construction of edges. Traverse the vertices {vf1, vf2, …, vfn} of G in a pairwise 

way. When a pair <vfi, vfj> is visited, a directed edge is inserted from vfi to vfj if fi 

is a directly (not transitively) preceding design reference to fj in the model. 

Once all vertex pairs are visited, and the corresponding directed edges are inserted, 

the FDAG graph of the input CAD model has been constructed. The FDAG of the 

ANC-101 part is illustrated in Figure 3-2.  

Base

Pad

Block ThruHoles FrontPockets

BlindHole

PinHoles Double C-BoreBoss

feature modeling precedence  
Figure 3-2. FDAG graph of the ANC-101 part shown in Figure 3-1 

It is noted that the FDAG graph is not equivalent to the design history. A 

design history records the modeling process defined by designers. As the term history 

suggests, all feature constitutes present in a model are recorded chronologically. A 
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chronological order indicates a totally ordered set, where any pair of feature 

constitutes are comparable by their instantiation times. Dissimilarly to the totally 

ordered design history, the feature modeling precedence defined in the FDAG graph 

is a partially ordered relation, which means that only the pair having the precedence 

relation is comparable. In other words, a predecessor feature in the design history is 

not necessary to be a successor in modeling precedence, because there could be no 

geometric constraints between them at all. Therefore, the FDAG representation 

proposed in this research is not equal to the user defined design history.  

The differential ordering properties reveal marked difference between design 

history and FDAG. As the design history is a totally ordered set, in which a single 

design change would create a largely different design history. However, the FDAG 

graph is a partially ordered set, which only records the necessary precedence if it 

exists. Because of the top-down thinking of the production design in human beings, 

gradual modeling practices from coarse-to-fine are quite common in design activities, 

especially for a design is started from scratch. Therefore, compared with variably 

created design histories, the modeling precedence can be relatively invariable because 

a principle has to be followed - “minor details are always built upon major 

components”.  

Taking the ANC-101 part as an example, there are two kinds of possible 

design histories as illustrated in Figure 3-3, which are alternatives to build the part. 

This figure clearly shows that design histories may differ from person to person: one 

designer might create ThruHoles in the very first, while another user would like to 
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add it into the model in a later stage. These varieties exist in a totally ordered set. 

However, the variables illustrated in Figure 3-3 correspond to an invariable modeling 

precedence relationship, as shown in the partially ordered set (i.e., the FDAG graph of 

the Figure 3-2). This observation confirms that the proposed FDAG graph, which is 

based on partially ordered set, is able to capture relatively invariable essential of 

feature modeled CAD models. 

Base

Pad

Block

ThruHoles

FrontPockets

BlindHole

PinHoles

Double
C-Bore

Boss

design history

Base

Pad

Block

ThruHoles

FrontPockets

BlindHole

PinHoles

Double
C-Bore

Boss

feature dependency

(a) (b)

Legend:

 
Figure 3-3. Two design history alternatives for ANC-101 part 

The FDAG graph proposed in this chapter not only provides a hierarchically 

structured, easy to understand data structure for representing embedded knowledge of 

CAD models, but also accurately acquires relatively invariable modeling precedence 

essential instead of volatile design histories. The modeling precedence acquired will 
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be utilized to analyze the component dependency of mechanical parts, and further 

support the CAD model retrieval based on general or partial shape similarity. 
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Chapter 4 Retrieval Based on Essential Shape Similarity 

Chapter 3 has introduced a modeling knowledge acquisition and representation 

mechanism, which extracts partially ordered precedence from feature constitutes of 

CAD models for the reuse-oriented retrieval. All extracted partially ordered relations 

constitute a partially ordered set (POSET), which exactly corresponds to an acyclic 

graph structure. The graph can be equivalently transformed to a hierarchically 

structured knowledge representation. In this chapter, this hierarchical graph structure, 

namely Feature Directed Acyclic Graph (FDAG), will be used to implement CAD 

model analysis and similarity assessment for design reuse. 

Currently, 3D CAD model retrieval methods do not support design reuse well, 

especially with complicated mechanical designs (see Figure 4-1) and even more 

complicated modeling dependencies. In order to facilitate CAD model reuse activities, 

chapter 4 and chapter 5 describe two novel reuse-oriented retrieval approaches for 

essential and partial similarity assessment. In the approaches to be presented, a series 

of CAD model decomposition, i.e., essential component simplification and sub-part 

segmentation will be applied on complex feature modeled CAD models. The 

decomposed models are characterized and compared in the similarity and reusability 

assessment. Consequently, users are able to retrieve CAD model based on essential or 

partial shapes. Moreover, the decomposition information can be utilized as re-design 

reference to facilitate the design reuse stage. Therefore, design reuse activities are 

supported by the proposed CAD model retrieval algorithms, from beginning to end. 
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Figure 4-1. Examples of mechanical parts [Bespalov et al. 2005] 

An ideal reuse-oriented retrieval method is to match reusable CAD models 

based on the essential shape similarity between the user-specified query and parts in 

repositories. This kind of CAD model retrieval comes from a common reuse 

requirement: designers want to search for similar parts that were completed in the past 

for redesign reference. However, after a long time, only significant shape of past 

designs can be easily recalled. Therefore, using a query to fetch all previous parts that 

have similar overall shapes will be a necessity in the reuse-oriented retrieval 

paradigm. This retrieval on essential shape similarity also benefits the design reuse 

stage because design details normally are required to be adjusted according to 

differential design requirements. CAD model matching on the general similarity will 

return designers the most reusable major shapes, irrespective of trivial details 

attached. This chapter will describe this essential shape retrieval method that is shown 

in Figure 4-2.  
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Figure 4-2. Flow chart of the essential shape retrieval method 

4.1 Essential Shape Retrieval  

Real-world CAD models have highly complicated structures satisfying requirements 

from functional, assembly and structural aspects. Most research works on 3D shape 

retrieval focus on the mesh or surface representation. These methods are sensitive to 

geometrical details; therefore, they can barely obtain satisfactory results on realistic-

scale CAD models due to the complexity of their elaborate shape details.  

In order to address the aforementioned obstacles and retrieve CAD models 

based on their overall shapes, an essential shape similarity assessment method is 

proposed in this chapter. The method progressively simplifies CAD models from fully 
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detailed to less detailed, according to a horizontal FDAG graph partitioning algorithm 

proposed in following sub-sections. All simplified models are indexed into a concise 

representation, which is named as essential shape aggregation (ESA) descriptor. With 

the help of the ESA descriptor, essential similarity assessment can be done to search 

complicated CAD models, using some essential shapes as query models. As the 

semantic-driven CAD model simplification is conforming to original modeling 

dependencies, the proposed essential shape matching algorithm will significantly 

facilitate the design reuse as the reuse inflexibility would be maximally avoided. In 

addition, design intents of previous designers can be inherently preserved during the 

retrieval and reuse. 

4.2 Knowledge-Based Horizontal Partitioning  

The domain knowledge that is used to develop essential shape matching algorithm is 

the feature modeling precedence introduced in Chapter 3. The modeling precedence is 

a partially ordered relation, and each individual dependency forms part of a complete 

partially ordered set, which is corresponding to the whole CAD model.  

Given a pusher pad mechanical model as an example shown in Figure 4-3a, it 

consists of 9 modeling features. These features can be constructed in various design 

history sequences (the sign > here is the totally ordered chronological sequence), e.g., 

i. F1 > F3 > F2 > F4 > F5 > F8 > F9 > F6 > F7 

ii. F1 > F8 > F9 > F6 > F7 > F2 > F4 > F5 > F3 
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(a) The model (b) The FDAG graph 
 

Figure 4-3. The feature-based pusher-pad model and its FDAG graph  

No matter which sequence is used in final design, the following critical modeling 

precedence must be followed: {F1 > F2 >F4 >F5}, {F1 > F3}, {F1 > F8}, {F8 > 

F9}, {F1 > F6 > F7}. In fact these precedence sub-sequences correspond to the 

feature POSET of this pusher-pad model. These indispensable precedence relations 

can be visualized by its FDAG graph shown in Figure 4-3b. Due to the properties of 

partially ordered set, there is no loop in the graph.  

In order theory, for a vertex v, the number of direct predecessors adjacent to it 

is called the in-degree of it and the number of direct successors is its out-degree. The 

in-degree is denoted deg−(v) and the out-degree as deg+(v). There are elements having 

extreme in-degree and out-degree. They are maximal and minimal elements, notably: 

• Maximal element: An element a in a POSET S is a maximal element if there is 

no element b in S such that b → a in terms of the partial precedence. In a 
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directed graph, in-degree of each maximal element will be zero. A node v is a 

maximal element if and only if deg−(v) equals to zero, i.e. 

0  )(degDAG a ofelement  maximal a is - =⇔ vv  (4.1) 

• Minimal element: Similarly, an element c in the POSET S is a minimal 

element if there is no other element d in S such that c→d. In a directed graph, 

the minimal element v must be an element whose deg+(v) is zero. 

0  )(degDAG a ofelement  minimal a is =⇔ + vv  (4.2) 

Based on the definitions (4.1) and (4.2), the vertices of any POSET can be categorized 

into three groups: maximal elements, minimal elements, and normal ones which do 

not fall into any of the above two groups. It can be proven that in every acyclic 

directed graph G there is at least one vertex with zero in-degree (i.e., maximal 

element) and at least one vertex with zero out-degree (i.e., minimal element) [Deo 

1974]. A close observation at the FDAG shown in Figure 4-3b reveals that the 

maximal element group has only one vertex {F1}, and that the minimal element 

group has four members {F3, F5, F7, F9}. In feature-based modeling context, those 

maximal elements represent feature constitutes normally having most modeling 

significance. In CAD modeling, all others features are built upon the most significant 

constitute, e.g., F1 (Base) block in the pusher-pad model (Figure 4-3a). Conversely, 

the minimal element set containing feature constitutes has less modeling significance.  

Using the mechanical knowledge-based categorization of maximal and 

minimal elements of feature modeling constitutes, a re-organization can be made on 
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the original FDAG. In the re-organization, the maximal elements are placed in the top, 

and the minimal elements are arranged in the bottom. For example, the FDAG shown 

in Figure 4-3b is re-organized into the one shown in Figure 4-4. 

Maximum element

Minimal elements

F1

F7

F6F8 F4

F2

F9 F5F3

 
Figure 4-4. The re-organized FDAG graph from the FDAG shown in Figure 4-3b 

Figure 4-4 clearly shows a hierarchically ordered representation, in which all 

directed edges have a natural top-down orientation, from the maximum elements 

towards the minimum ones. These top-down orientations exactly correspond to the 

feature modeling precedence sequences between vertices of the FDGA. Based on this 

knowledge-based, hierarchical representation, we are able to analyze the 

simplification of complex feature modeled CAD models. The conversion process 

from a raw FDAG graph to this kind of hierarchically ordered representation is named 

as the FDAG normalization.  

After normalization, FDAG nodes in the bottom are all minimal elements 

without children, i.e., no succeeding nodes in terms of feature modeling precedence. 

Since feature modeling precedence relation is asymmetric, as referring to Eq. (3.2), 

for any leaf node g and its preceding vertex f, deleting f leads to the removal of g, but 

not vice versa. On the other hand, g can be removed without affecting f because 
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¬(g→f). Therefore, removing this kind of minimal elements from the FDAG will not 

violate any existing feature modeling precedence. For example, after the removal of 

minimal elements {F3, F9, F5, F7} from the FDAG shown in Figure 4-4, the 

simplified result is still a valid model, just being more general without a few 

decorating trivial features, as shown in Figure 4-5. 

F1

F2

F4

F6

F8

 
Figure 4-5. The simplified pusher-pad model after removing minimal elements from 

the corresponding FDAG. 

Such removal of minimal elements, without affecting modeling precedence 

relations of other vertices, is defined as a knowledge-based simplification of the CAD 

model. Considering the removed FDAG minimal elements {F3, F5, F7}, they are 

corresponding to minor features, such as flat edge blends. The main reason of the 

small volume of these minimal elements is that designers embody their designs in a 

coarse-to-fine way, and minor features are always built upon major components. 

Based on these analyses, we can deduce the geometric significance of feature 

constitutes from the FDAG representation. Therefore, the normalized FDAG 
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hierarchy can effectively reveal geometric significance of modeling features, based on 

the above-mentioned knowledge reasoning.  

From graph theory perspective, every round of simplification corresponds to a 

horizontal partitioning that splits leaf nodes from the normalized FDAG, which can be 

observed from the example shown in Figure 4-5. After the simplification of the 

pusher-pad model, another three nodes become the new minimal elements. They are 

{F8, F4, F6} as shown in Figure 4-6.  

Maximum element

Minimal elements

F1

F6F8 F4

F2

 
Figure 4-6. New minimal FDAG elements after one round of simplification on the 

pusher-pad model 

Based on the same procedure, the model can be recursively simplified further 

by removing new minimal elements. In the meanwhile, the corresponding CAD 

model is partitioned from full detailed to less detailed. This recursive procedure is 

named as multi-level simplification of CAD models, which can effectively simplify 

complex CAD models without violating existing modeling dependencies. The 

algorithmic details of the multi-level simplification will be given in the next section. 
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4.3 Multi-Level Simplification of CAD Models 

Because of the asymmetric modeling precedence, all minimal elements of the FDAG 

graph can be removed in a batch. From the feature modeling perspective, the batch 

removal is a simplification of insignificant feature constitutes in terms of feature 

modeling precedence, without violating any existing modeling dependencies. From 

another viewpoint of the graph, this removal is exactly mapping to a horizontal 

partitioning of leaf nodes from the complete FDAG graph. More importantly, the 

horizontal partitioning can be recursively applied on the partitioned FDAG graph to 

remove more insignificant feature constitutes from the original CAD model. This 

recursive procedure is defined as the multi-level simplification of CAD models, a key 

process of essential shape retrieval algorithm.  

The basic idea of multi-level simplification is to remove leaf nodes from a 

complete FDAG graph layer by layer, without affecting adjacencies of other vertices. 

By keeping the horizontal partitioning, a fully detailed CAD model is progressively 

simplified into less detailed ones. With details removed, essential shapes of CAD 

models can be obtained. The steps of the proposed multi-level simplification are listed 

as follows: 

(1) Traverse vertices of FDAG G of the CAD model M. For every vertex visited, 

mark it if the out-degree is zero. A nil out-degree indicates that the vertex is a 

minimal element of the FDAG and thus needs to be removed; 

(2) Traverse edges of the FDAG. Remove all edges pointing to the marked vertices; 
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(3) Delete all marked vertices. Remaining sub-graph Gi corresponds to a simplified 

shape Mi of the complete model M (i increments by 1 after every simplification). 

(4) The algorithm returns to the step (1) until a pre-defined termination criterion is 

reached. 

The pre-defined termination criterion is used to prevent an original CAD model from 

being changed too much. The criterion is a threshold of the bounding box discrepancy 

between the original and a simplified shape. In this research, the bounding box of a 

CAD model is computed by the axis-aligned method, where boxes are aligned with 

the axes of the world coordinate system (WCS) of the model. The choice of axis-

aligned bounding box (AABB) is due to the fact that the CAD model is hardly rotated 

during the design stage, and the AABB calculation is simple.  

If {M0, M1, …, Mi, …, Mn} represent the original model M0 and its n 

simplified shapes, AABB(Mi) stands for the axis-aligned bounding box of Mi, and 

ΔAABB(Mi) indicates the bounding box discrepancy between M0 and Mi (i = 1 to n). 

For any simplification, |ΔAABB(Mi)| ≤ δ×AABB(M0) should be satisfied. Based on our 

experiments, δ = 0.25 works well in all cases. 

The simplification is completely guided by vertex properties of FDAG; 

therefore it can also be automatically executed by a computerized algorithm. The 

algorithm is illustrated by the example shown in Figure 4-7.  Figure 4-7 shows that (a) 

is the feature constitutes of the part and (b) the normalized FDAG graph of the part.  
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(a) The model (b) The FDAG 

Figure 4-7. A feature-based model of a bracket part and its normalized FDAG 

In mathematics, an adjacency matrix is a means of representing which vertices 

of a graph are adjacent to which other vertices. An adjacency matrix A of an FDAG 

G = (V, E) is a matrix [aij] n × n where n is the total count of elements in the FDAG. 

The value aij indicates the adjacency between the vertex vi and vj (vi, vj∈V) as: 

aij = 


 →

othewise       0,
          1, ji vv

 (4.3) 

Because the FDAG is a finite acyclic rooted graph, either a depth-first search (DFS, 

visiting child nodes before sibling nodes) or breadth-first search (BFS, visiting sibling 

nodes before child nodes) can be used. Element sequence of an FDAG adjacency 

matrix is defined as the sequence of graph traversal which begins with the rooted 

node. In this research, DFS is adopted for graph traversal. If DFS is applied to the 

normalized FDAG in Figure 4-7b, the sequence is Extrude1, Fillet2, Extrude2, 

Extrude3, Cut-Extrude1, Extrude4, Cut-Extrude5, Fillet1, and Cut-Extrude4. Using 

this sequence for rows and columns, a readable adjacency matrix of it is shown in 

Table 4-1. The dimension of the matrix is equal to the number of features of the part 

as well as the vertex count in the FDAG. Based on the definition in the Equation 
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(4.3), the value 1 of ai=3, j=4 indicates that there is a directed edge leaving from vi=3 

(Extrude2) towards vj=4 (Extrude3).  

Table 4-1. The FDAG adjacency matrix of the bracket 

                vj  
 
      vi                        

j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8 j=9 

Extrude1 Fillet2 Extrude2 Extrude3 Cut-Extrude1 Extrude4 Cut-Extrude5 Fillet1 Cut-Extrude4 

i=1 Extrude1 0 1 1 0 0 1 0 1 1 

i=2 Fillet2 0 0 0 0 0 0 0 0 0 

i=3 Extrude2 0 1 0 1 0 1 0 0 0 

i=4 Extrude3 0 0 0 0 1 0 0 0 0 

i=5 Cut-Extrude1 0 0 0 0 0 0 0 0 0 

i=6 Extrude4 0 0 0 0 0 0 1 0 0 

i=7 Cut-Extrude5 0 0 0 0 0 0 0 0 0 

i=8 Fillet1 0 0 0 0 0 0 0 0 0 

i=9 Cut-Extrude4 0 0 0 0 0 0 0 0 0 

 

Using the adjacency matrix shown in Table 4-1, the out-degree of every 

FDAG vertex  deg+(vi) is calculated by accumulating all values of ai, j=1,…,n, as: 

deg+(vi) = ∑
=

n

j
ija

1
 (4.4) 

Similarly, the in-degree, deg-(vi) can be obtained by accumulating vertical values of 

certain column as: 

deg_(vi) = ∑
=

n

j
ija

1
 (4.5) 

All FDAG nodes are listed on the left-most column of Table 4-2, and using data in 

Table 4-1 and Equation (4.4), the corresponding out-degree of each node is listed in 

the second column. A total of five vertices are found to be the minimal elements. 
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They are Fillet2, Cut-Extrude1, Cut-Extrude5, Fillet1, and Cut-Extrude4, which are 

marked with (*) in Table 4-2.  

Table 4-2. Out-degree of FDAG vertices during the multi-level simplification 

FDAG vertices V Original Model After first level 
simplification 

After second level 
simplification 

v traversed by DFS deg+(v) deg+(v) deg+(v) 

Extrude1 5 2 1 

Fillet2 0 (*) N.A. N.A. 

Extrude2 3 2 0 (#, the termination 
criterion is reached) 

Extrude3 1 0 (*) N.A. 

Cut-Extrude1 0 (*) N.A. N.A. 

Extrude4 1 0 (*) N.A. 

Cut-Extrude5 0 (*) N.A. N.A. 

Fillet1 0 (*) N.A. N.A. 

Cut-Extrude4 0 (*) N.A. N.A. 
 

According to the multi-level simplification algorithm, the found minimal 

elements and their connected edges will be removed from the FDAG. The first round 

of simplification will purge five minimal elements, Fillet2, Cut-Extrude1, Cut-

Extrude5, Fillet1, and Cut-Extrude4. From the viewpoint of graph theory, these 

features are all constitutes upon which no other are constructed. From human 

perception, these are all minor features, such as corner edge blends and locating holes.  

After the first round of simplification, the multi-level algorithm recursively 

traverses the purged DFAG again to choose minimal elements for next removal, if the 

defined termination criterion is not reached yet. As shown in the third column of 

Table 4-2, the out-degree of Extrude3 and Extrude4 is nil, and therefore they are 
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marked as leaf nodes and will be simplified in this round. After the second round 

simplification, the remaining CAD model still has Extrude1and Extrude2, and 

Extrude2 becomes the new minimal element. The simplification will stop until the 

pre-defined termination criterion is reached.  

The same simplification process is also illustrated by the example shown in 

Figure 4-8, where FDAD leaf nodes are removed layer by layer, as illustrated by the 

dash lines. It can also be observed that from left to right, the resultant bracket part is 

progressively simplified from fully detailed to less detailed.  

Extrude1

Fillet1Cut-Extrude1

Extrude4

Extrude2

Extrude3

Cut-Extrude5 Cut-Extrude4Fillet2

Original After 2nd simplificationAfter 1st simplification

 
Figure 4-8. Multi-level simplification of the part shown in Figure 4-7 

Most importantly, every simplified CAD model is valid in terms of feature 

modeling, throughout the FDAG simplification. All mandatory modeling precedence 

of remaining features will be kept unchanged because the knowledge-based 

simplification is only applied on those minimal elements from FDAG perspective. It 
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can be clearly shown in Table 4-3 that during the same multi-level simplification 

process of Table 4-2, there are no changes on in-degree deg-(v) of any remaining node 

v, which exactly indicates the total number of mandatory modeling dependencies to 

build v. 

Table 4-3. In-degree of FDAG vertices during the multi-level simplification 

FDAG vertices V Original Model After first level 
simplification 

After second level 
simplification 

v deg-(v) deg-(v) deg-(v) 

Extrude1 0 0 0 

Fillet2 2 N.A. N.A. 

Extrude2 1 1 1 

Extrude3 1 1 N.A. 

Cut-Extrude1 1 N.A. N.A. 

Extrude4 2 2 N.A. 

Cut-Extrude5 1 N.A. N.A. 

Fillet1 1 N.A. N.A. 

Cut-Extrude4 1 N.A. N.A. 
 

The multi-level simplification described above has been implemented by an 

efficient algorithm based on linear transformation. In the algorithm implementation, 

an adjacency matrix representation is used, which is equivalent to the readable version 

of Table 4-1. The sequence of row and column in the matrix is defined by DFS 

sequence of FDAG graph traversal. The matrix representation of the original FDAG 

in Figure 4-7 is shown as follows (due to the irreflexivity property of FDAG nodes, 

the diagonal elements of the matrix are all zero): 
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In each round of simplification, the found minimal elements and any directed edges 

pointing to them are to be removed. This linear transformation can be archived by 

multiplying the current adjacency matrix Ai with diagonal matrix Di to remove the 

minimal elements from the original FDAG as Ai+1 = Ai ×Di, where i is the number of 

linear transformation applied. In this diagonal matrix Di, all entries outside the main 

diagonal are zero. But on the diagonal line, the elements from Boolean domain B = 

{0, 1}, where the diagonal node djj is 0 if and only if the vj  is an FDAG minimal 

element, according to the Eq. (4.4). The diagonal matrix Di is defined as: 

Di = 
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otherwise    ,1

element minimal is if    ,0  jv
 (4.6) 

Combined with the minimal element’s definition in Eq. (4.1) and the out-degree’s 

definition in Eq. (4.4), Eq.(4.6) can be elaborated into: 
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Taking A0 as an input, the diagonal matrix D0 is given as:  

D0 = 
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A linear transformation can be applied to compute A1 by computing the cross product 

between A0 and the defined diagonal matrix D0.  A1 is calculated as: 

  A1 =A0 ×  D0 = 
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Compared with A0, A1 has the following properties. First of all, in A1, every element 

in columns {2, 5, 7, 8, 9} has been mapped to zero compared with A0, after the linear 

transformation. It means that all edges pointing to the current minimal elements have 

been removed during the matrix transformation. Secondly, there is no new directed 
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edge added, which indicates that no feature modeling precedence is created in this 

transformation. 

Figure 4-9 displays a directed graph corresponding to the matrix A1. It shows 

that the computation of A1 is exactly equivalent to the result of the first FDAG 

simplification, as illustrated in Figure 4-8. 

v1

v6v4

v3

 
Figure 4-9. The directed graph corresponding to the adjacency matrix A1 

Based on Eq. (4.7), D1 is computed as:   

D1 = 
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The second linear transformation result A2 =A1 ×D1 is computed as: 
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  A2 =A1 ×  D1 = 
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4.4 Retrieval of CAD Models based on Essential Shapes 

The proposed knowledge-based multi-level simplifications enables retrieving reusable 

CAD models based on their essential shapes. Given a 3D query, the retrieval 

algorithm to be introduced in this section will compare the query with simplified 

shapes of archived CAD models to perform essential similarity assessment. By 

comparing principal shapes without unimportant details, essentially similar models 

can be chosen. This sort of essential shape retrieval will select CAD models that are 

essentially similar to the query model as the design reuse candidates, while effectively 

tolerating their differential modeling details.  

According to comparison results, CAD models with highest similarity are 

retrieved and presented to designers as reusable redesign references. Because all 

multi-level simplification are calculated based on feature modeling precedence, 

designers can easily manipulate details of the retrieved parts via feature-based 

modifications, without violating existing feature inter-dependency. The comparison 

and retrieval process is defined as essential shape matching (ESM). The details of the 

ESM algorithm will be described in the following sections.  
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4.4.1 Generation of essential similarity descriptors 

Prior to essential similarity assessment, the information of multi-level CAD model 

simplifications must be indexed by a concise mathematical representation for efficient 

comparison. The indexed information aggregates feature modeling expertise and 

geometric data of multi-level simplifications. Therefore, the compact mathematical 

representation is named essential shape aggregation (ESA) descriptor. An ESA 

descriptor captures modeling and geometric information of all simplified shapes of a 

CAD model. In the following paragraphs, the generation process of an ESA descriptor 

from a feature-based CAD model will be elaborated. 

Given a CAD model, its FDAG graph can be populated using the algorithm 

described in section 3.3.2. Based on the normalization of the populated FDAG graph, 

multi-level general shape simplifications is conducted using the matrix transformation 

algorithm described in section 4.3. Suppose that a CAD model M has an FDAG graph 

G, and the corresponding multi-level simplified shapes Mi (i = 1 to n), then each 

simplification Mi has a corresponding FDAG sub-graph Gi.  The ESA descriptor of M 

is generated as follows: 

(1) Aggregation of modeling expertise. As knowledge reasoned results, FDAG 

graphs characterize feature modeling precedence expertise of CAD models. In 

the generation of ESA descriptor, not only feature constitutes of simplified 

shapes, but FDAG structures of simplifications are also included in the 

knowledge aggregation.  
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• Generate an FDAG graph of the original CAD model as G0, in terms of the 

complete adjacency matrix as described in section 4.3. In G0, feature name and 

geometric properties of every FDAG node are also included, along with the 

adjacency relations.  

• Generate an FDAG sub-graph Gi (i = 1 to n) of each simplification Mi, based 

on the adjacency matrix transformation algorithm of section 4.3.  

(2) The geometry of a simplification Mi (i = 1 to n) is characterized by SD histogram 

[Osada et al. 2002]. The rational of choosing SD histogram is that calculation of 

SD histogram is efficient, and this geometric characteristic shows good 

discrimination power for principal shapes, compared against others 3D similarity 

characteristics [Bespalov et al. 2005]. 

• Compute the SD histogram Hi for Mi. The computation of  the D2 histogram 

is similar to [Osada et al. 2002]. 

• The computed histogram is a k-dimensional vector in the space Rk, where k 

is the slot count of the histogram.  

(3) Aggregate adjacency matrices and FDAG property graphs of the original CAD 

model and all simplifications into an ordered multi-dimensional representation, 

where the order is the sequence of multi-level simplifications (i = 0 to n, 0 means 

the original model) and dimension is the total count of simplification and the 

original model itself. The aggregation is the proposed ESA descriptor of the 

CAD model M.  
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An example visualizing the ESA descriptor generation with a mechanical part 

will be given in section 6.2.3. 

4.4.2 Essential shape similarity 

In a common mechanical design reuse scenario, if a designer wants to retrieve a 

particular part to reuse, he or she can sketch a 3D query that represents the basic 

shape of the desired model and search for all archived CAD models based on their 

essential similarity to the query model.  

By using the ESA descriptor generation algorithm, a feature-based mechanical 

design can be indexed by an ESA descriptor. In this section, the generated ESA 

descriptor of a CAD model M is used for assessing the essential similarity against a 

user-sketched query model Q. The essential similarity assessment process is as 

follows: 

(1) Calculate an SD histogram HQ for the given 3D query model. In order to 

accurately characterize Q, it is better to use a complete shape descriptor instead 

of the ESA descriptor. 

(2) Compare the ESA descriptor of the CAD model M with HQ. 

• Suppose that model M has n simplifications, its ESA descriptor will be a 

multi-dimensional vector aggregation, i.e., {<H0, G0>, <H1, G1>, …, <Hi, Gi>, 

…, <Hn, Gn>}. Dimension 0 means the original model M without any 

simplification.  
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• In this research, Manhattan distance is adopted to compute the distance 

between HQ and Hi (i = 0 to n), as it outperforms other metrics in the SD 

histogram comparison [Osada et al. 2002]. A k-dimensional histogram is a vector 

in the space Rk, and the Manhattan distance L1 between two vectors X <x1, x2, ..., 

xk> and Y <y1, y2, ..., yk> as ∑ −= =
k
i ii yxYXL 11 ||),( . 

• The essential similarity distance of the compared CAD model M to the query 

model Q is the shortest L1 distance between HQ and Hi. The corresponding Mi 

having the shortest distance is the representative essential shape most similar to 

Q. The essential similarity distance is defined as: 

 HHL = M, QL Qi
ni

),(min)( 1
],0[

min
1 ∈

 (4.8) 

The ESM similarity of the model M to the query Q can be defined as:  

 
L

 M, QLQMSimilarityESM max
1

min
1 )(

1),( −=  (4.9) 

   

where Lmax
1 is the theoretical maximum Manhattan distance between D2 

histograms. D2 is the function standing for the distance between any two 

random points on the surface of the 3D model, and D2 histogram is the 

probability distribution of all D2 distances. The ESM similarity is a real 

number. The theoretical lower bound of the similarity value of a CAD model to 

a query is 0, where the Manhattan distance of M to Q is equal to Lmax
1 ; while the 

upper bound is the 1 where the SD histogram of M is exactly same to the 

histogram of Q.  
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4.4.3 Essential shape matching 

The above-defined ESM similarity is the rank to choose the most essentially similar 

shapes. ESM algorithm compares the query model with every archived CAD model 

by computing the essential shape similarity value to the query. According to the 

comparison results, the models with the highest similarity will be retrieved, as they 

are CAD models that are most similar to the query in terms of overall shape. The 

ESM algorithm is given as follows: 

(1) Suppose in the design repository, there are N archived CAD models, for each of 

these archived model Mj (j=1 to N), we can compute its essential shape similarity 

as ),( QMSimilarity jESM .  

• A greater essential shape similarity means that the model is more similar to 

the query in terms of principal shape.  

• If all the archived CAD models are sorted by their similarities in descending 

order, the first ranked model, saying Mk, is the one most similar to Q. The 

similarity value of Mk is formalized as: 

[ ]),(max
],1[

QMSimilarity jESM
Nj∈

 (4.10) 

(2) All essential shape matching results from the most similar to the least similar, and 

a percentage of top ranked models are retrieved to designers to review, and 

suitable retrieved results are chosen for reuse.  

In the proposed ESM algorithm, not only the top-ranked model itself will be 

retrieved, but the attached modeling precedence knowledge will also be presented to 
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designers as re-design reference. The modeling precedence knowledge could help 

designer to adjust unnecessary or differential feature details without violating any 

existing modeling dependency. At the same time, new features could be easily put on 

as pre-defined geometric constraints have been preserved during the retrieval. 

Therefore, the retrieved models are easy to reuse to meet new design requirements, 

and reused models still keep parametrically constrained. Moreover, model failure after 

modification issue would be greatly prevented. 
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Chapter 5 Retrieval Based on Partial Shape Similarity 

As opposed to the essential shape retrieval, assessment on partial shape similarity 

matches similar portions of 3D objects. In order to assess the partial shape similarity, 

comparable portions should be extracted from complete CAD models. Previous 3D 

segmentation techniques may not perform well in mechanical part decomposition 

because these 3D segmentation methods only work on geometric representation. 

Therefore, the modeling expertise and the mechanical reusability are hardly 

considered in the segmentation. Without the modeling knowledge analysis, the 

retrieved sub-parts are mechanically meaningless patches, which are scarcely reused 

by mainstream CAD modeling software.  

This chapter will present a CAD model retrieval method on the partial shape 

similarity, which includes a sub-part decomposition algorithm, the definition of the 

partial shape similarity, and a process to retrieve partial shapes from archived CAD 

models. The process of the proposing partial shape retrieval is also illustrated in 

Figure 5-1. The top of the figure illustrates that the knowledge for sub-part matching 

is extracted from the partially ordered modeling precedence of feature-based models. 

The knowledge is extracted from a feature directed acyclic graph (FDAG) 

representation, which is same to the one used in the proposed essential shape 

matching (ESM) method. In partial shape retrieval, a key step is to extract reusable 

sub-parts from complete CAD models, instead of simplifying models to essential 

shapes. Therefore, this chapter will apply a different analysis and interpretation on the 
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same FDAG.  As shown in right-middle of Figure 5-1, in order to identify reusable 

and decomposable sub-parts, a vertical FDAG partitioning algorithm will be proposed 

to identify a reasonable sub-part. These identified sub-graphs can be extracted from 

completed models as reusable sub-parts. As shown in the bottom of the figure, once 

all sub-parts are extracted, these sub-parts will be compared with a query model in 

terms of partial shape similarity, and the most similar ones to the query will be 

presented to designers for further reuse. As the sub-part decomposition is conforming 

to the existing modeling dependency expertise embedded in original CAD models, the 

reuse of these sub-parts will be fairly easy.  

 
Figure 5-1. Flow chart of the partial shape retrieval method 
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5.1 Partial Shape Retrieval 

The retrieval on partial shape similarity requires a similarity assessment algorithm 

that can find out sub-part correspondence within a complete mechanical part. In 

addition to the retrieval, the found sub-part should be easily decomposed from the 

original complete model, and can be conveniently integrated into another mechanical 

part for reuse.  

Current partial shape matching algorithms do not work well for partial 

retrieval and reuse of mechanical CAD models. Typical 3D shape segmentation 

techniques, including fuzzy clustering, concavity detection, or topological critical 

point based, are all highly dependent on the geometric factors of compared models. 

Therefore, in a geometric segmentation algorithm, a small change in geometry will 

result in a large difference in segmentation results. Such geometry-sensitive 

segmentation might prevent subsequent sub-part matching algorithm from retrieving 

satisfactory results. Furthermore, after sub-part matching retrieves some partial shapes 

from complete models, the reuse of these retrieved results will become another 

difficult problem because merging two arbitrary freeform surfaces, i.e., stitching is 

still a challenging research topic. 

In order to address the aforementioned obstacles and retrieve reusable CAD 

partial models, a sub-part decomposition algorithm is proposed to extract reusable 

mechanical sub-parts from complex CAD models, by applying vertical partitioning on 

the FDAG representation. The designed vertical partitioning is to find out reachable 

sub-graphs, which are internally cohesive and externally decomposable from the rest 
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of the FDAG representation. All decomposed sub-parts are indexed into a concise 

representation, which is named the partial shape aggregation (PSA) descriptor. With 

the help of the ESA descriptor, partial similarity assessment can be done to search 

partial CAD models, using a sketched sub-part as the query.  

The knowledge-based partial shape matching algorithm is reuse-oriented as 

original design intents and expertise have been utilized for the proposed sub-part 

retrieval and migration; therefore, reuse inflexibility is avoided. In addition to the 

reusability, design knowledge is inherently preserved and transferred to the new 

design, which not only realizes functional shape reuse, but also maximally promotes 

the reuse of design knowledge. 

5.2 Knowledge-Based Vertical Partitioning 

The vertical partitioning algorithm developed for partial shape retrieval is based on 

the feature modeling precedence presented in Chapter 3. The modeling precedence of 

a CAD model is captured by the FDAG graph representation.  

Let us revisit the bracket shown in Figure 4-7a. The inter-dependency relations 

of all features can be illustrated by an FDAG graph shown in Figure 4-7b. In the 

figure, a directed edge between two nodes indicates that the source node can reach 

another sink node. In the graph theory, the reachability is a property, which starts 

from one vertex in a directed graph to travel to another vertex. For a directed 

graph D = (V, E), the reachability of the vertices is the transitive closure of its edge 
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set E. That is to say that for any transitively reachable vertex pair (x, y), there exist a 

chain of vertices x = v0, v1, …, vn = y where all (vi - 1, vi ) are also in E for all 1 ≤ i ≤ n.  

Since FDAG is a directed acyclic graph, the reachability in an FDAG is also a 

partially ordered relation on graph vertices. The partially ordered reachability is 

transitive; hence the transition closure (TC) can be computed on each node. For 

example, the reachability TC of node Extrude2 is the sub-graph {Extrude2, Fillet2, 

Extrude3, Cut-Extrude1, Extrude4, Cut-Extrude5}, in which three reachable chains 

are included.  The transition closure sub graph of Extrude2 is shown in Figure 5-2a. 

Similarly, the transition closures of the FDAG nodes Extrude3 and Extrude4 

are {Extrude3, Cut-Extrude1} and {Extrude4, Cut-Extrude5}, which are also shown 

in Figure 5-2b-c. 
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(a) Transition closure of Extrude2 (b) Transition closure of Extrude3 
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(c) Transition closure of Extrude4  

Figure 5-2. The transition closure sub-graph (shown in double-lines) of the FDAG in 

Figure 4-7b 
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The nodes in an FDAG are partially ordered, which means that only a pair of 

nodes having geometric constraint relations is ordered. In other words, some nodes 

without modeling relationship can be considered as unrelated. This means that within 

the same FDAG graph, there can be two nodes which are not reachable to each other. 

Also, multiple FDAG sub-graphs can be disjointed in terms of reachability. For 

example, in Figure 5-2(b-c), the figures shows transition closures of Extrude3 and 

Extrude4, respectively. At the same time, these two sub-graphs correspond to 

geometrically cohesive sub-parts, which are also functionally complete from a 

mechanical perspective. As illustrated in Figure 5-3, transition closures of Extrude3 

and Extrude4 represent the shaft housing and rib sub-parts, respectively. Using the 

reachability-based modeling independence deduced, the vertical partitioning of 

FDAG provides a way to segment CAD sub-parts. 

 
Figure 5-3. Reachability-based vertical partitioning on the normalized FDAG graph 

and their geometry correspondences 
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Unlike the horizontal partitioning proposed in Chapter 4.2 that simplifies 

FDAG hierarchies from minimal elements to maximal elements, the reachability-

based vertical partitioning can be adopted to decompose partial shapes from complete 

CAD models. The next section will introduce sub-part decomposition of CAD models 

based on the proposed FDAG vertical partitioning, including an algorithm of 

validation on reusable partial matching candidates. 

5.3 Sub-Part Decomposition of CAD Models 

A logical sub-part decomposition of a CAD model should identify 

decomposable CAD model portions which have reasonable geometry meanings. 

Furthermore, it will be better if the decomposed sub-part is easy to be relocated to 

another 3D design.  

In the previous section, the vertical FDAG partitioning is proposed to extract 

CAD sub-parts using the reachability of modeling dependencies. Using the 

reachability-based partitioning, a complicated CAD model can be decomposed into 

sub-parts. Taking a pusher pad part as example, its feature model is shown in Figure 

5-4. The FDAG of the pusher pad is illustrated in Figure 5-5a. As the reachability is a 

binary relation, all the reachability relationships can be captured by a binary matrix, 

where each matrix entry is either zero or one. The reachability is transitive because it 

is also a partially ordered relationship. Therefore, in Figure 5-5b, the transitively 

reachable relationships are computed and superimposed as double-lines, on top of 

Figure 5-5a.  
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Figure 5-4. A pusher pad and its feature model 
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(a) FDAG graph of the pusher pad (b) Highlighted transitive reachability 

Figure 5-5. The FDAG graph of the pusher pad shown in Figure 5-4 

Using the superimposed FDAG shown in Figure 5-5b, every FDAG sub-graph 

which is corresponding to a tentative CAD sub-part can be easily decomposed by 

applying the vertical FDAG graph partitioning. Taking vertex F2 as the example, its 

vertically partitioned sub-graph will be a vertex set, in which every node has a direct 

or transitive reachability from node F2. Especially, F2 itself is also included in the 

sub-graph as the root node because the partially ordered reachability is also reflective. 
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All vertical partitioned sub-graphs are listed in Table 5-1, and in the table, SG3 is the 

sub-graph whose root is F2. 

Table 5-1. Sub-graphs elements partitioned by the vertical FDAG partitioning 

Sub-Graph Sub-Graph Root  Sub-Graph Elements  

SG1 F1 F1, F3, F8, F9, F2, F4, F5, F6, F7 

SG2 F2 F2, F4, F5 

SG3 F8 F8, F9 

SG4 F4 F4, F5 

SG5 F6 F6, F7 
 

Every FDAG sub-graph corresponding to the Table 5-1 is illustrated in Figure 5-6.  
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Figure 5-6. FDAG sub-graphs partitioned by the vertical FDAG partitioning 

However, not every sub-graphs partitioned by the FDAG reachability is a 

reusable sub-part from the viewpoint of mechanical reuse. Ideally, a reusable sub-part 

can be easily decomposed from the original CAD model, and can also be conveniently 
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migrated to another target model. Moreover, the merged model ought to be not only 

geometrically watertight, but also well-constrained in terms of feature-based 

modeling. This requires that a reachability-partitioned sub-graph should meet certain 

domain knowledge related criteria so that it would be a reasonable sub-part candidate 

for mechanical partial shape retrieval. The problem with current feature modeled 

CAD parts is that a single design is composed of many features which have inter-

dependencies. Although these dependencies are powerful during the design phase, it 

becomes constraining for design reuse. Over complicated inter-dependencies between 

partitioned sub-parts and the rest of a complete CAD model would become an 

obvious obstacle for mechanical reuse. Therefore, a reusable sub-part partition ideally 

has limited external dependencies to the outside. This ensures that the subpart is 

independent from the rest of the model except having limited dependencies. 

The key to decompose a reusable sub-part with limited external dependencies 

is to find out articulation points of the FDAG graph. In graph theory, a vertex v of a 

connected graph G is an articulation point (AP) if the deletion of v produces a graph 

that has more connected components than the original G. In Figure 5-5, the nodes F1, 

F2, F4 and F6 are APs of the FDAG graph. In an FDAG graph, if an AP can be 

identified and the edges directed can be removed, a sub-graph sourcing from the AP 

will be separated from the complete FDAG as the only connection via the AP is 

broken. Correspondingly, a tentative sub-part is segmented from the CAD model. 

The tentative sub-part partitions can be evaluated using the aforementioned 

mechanical criteria. First of all, the root of the FDAG cannot be the AP, as shown in 
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Figure 5-6a, otherwise the complete part would be its accessible sub-graph. Therefore, 

SG1 is not a valid sub-part partition. On examining other partitioning among Figure 

5-6(b-e) by deleting all edges incident to each sub-graph root and the root itself, node 

F8 is identified as an invalid AP. Therefore, SG3 is not a valid sub-part. 

The aforementioned criteria will be used to evaluate the reusability of sub-

parts decomposed from vertical partitioning. As a valid sub-part is enforced to be 

geometrically connected, it will be more straightforward to designers, to understand 

modeling inter-dependencies and original design intents, hence facilitating the work-

in-process. Furthermore, a validated sub-part only has limited external dependencies, 

which makes it easy to decouple limited dependencies from the rest of the model, and 

relocate the sub-part to a new CAD model by resolving few dependencies. An 

example visualizing the migration of a matched sub-part will be illustrated in 6.3.2. 

The sub-part segmentation algorithm consisting of the vertical FDAG 

partitioning and meaningful sub-part validation is given as follows:  

(1) Identify APs {v1, …, vi, …, vn } of the FDAG G of a CAD model M. The variable 

i indicates the sequence of sub-graphs, ranging from 1 to the number of sub-

graphs n. Traverse every identified AP:  

• For an AP vi visited, compute the transitive closure of vi as its tentative sub-

graph. 

(2) Validate all tentative sub-graphs {G1, …, Gi, …, Gn}, which are  partitioned by 

APs { v1, …, vi, …, vn }, respectively. The sub-graphs {G1, …, Gi, …, Gn} 
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correspond to sub-parts {P1, …, Pi, …, Pn}. A valid sub-graph represents a sub-

part that is easy to extract and reuse. 

• If a tentative sub-graph Gi equals to the FDAG G, it is not valid because the 

corresponding sub-part Pi is the complete model M; 

• If Gi introduces more incoming edges than those pointing to vi, the sub-graph 

is not valid. The rationale is that more edges from the external means that 

additional constraints need to be resolved for relocating the partitioned sub-part. 

Assume D ─ ({vi}) and D ─ (Gi) are the set of external dependencies of AP vi and 

sub-graph Gi, respectively, the following must hold: 

})({)( ── vDGD ii ⊆  (5.1) 

Applying the proposed sub-part decomposition algorithm on the part in Figure 5-4, a 

total of 5 tentative sub-graphs are segmented, as listed in Table 5-1. After validating 

these tentative sub-graphs, SG1 and SG3 are identified as invalid sub-part 

segmentation, because of their inability to reuse. Three valid sub-graphs, SG2, SG4 and 

SG5 are listed in Figure 5-7a. These sub-parts are geometrically connected CAD 

components that have limited dependencies to the rest the model so that the desirable 

reuse properties, such as cohesiveness and decoupling are satisfied. Furthermore, the 

knowledge-based sub-part segmentation is not a simple geometrical division on CAD 

model shape. It can be clearly observed that SP4 is hierarchically contained in SP2, 

which cannot be easily obtained by geometric-based segmentation algorithms. 

Especially, SP5 shows a counter-bore sub-part only consisting of negative features (F8 
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and F9 are suppressed to show the complete counter-bore shape). Such subtractive 

component is hard to be extracted by purely geometrical segmentation algorithms. 

SG2 SG4 SG5
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(a) Valid sub-graphs 

SP4

SP2

SP5

 
(b) Reusable sub-parts 

Figure 5-7. The valid sub-graph segmentations and the corresponding sub-parts 

The knowledge-based sub-part segmentation method described above has been 

implemented by an efficient matrix computation algorithm. In the development of the 

algorithm, a key point is to identify articulation points (AP) of the knowledge-based 

FDAG representation.  A depth-first search based algorithm was proposed by Tarjan 

[1972] to determine strongly connected sub-graphs of directed graphs. Here the AP is 

the entry vertex of the depth-first search. However, the strongly connected property 

only exists in directed cycle graphs. For example, let G be a directed graph, and G is 

said to be strongly connected if and only if for each pair of vertices, v, w in G, v ≠ w, 

there are paths v→w, and w→v. Therefore, a strongly connected component contains 

at least one cycle. Obviously, this method is not suitable for FDAG representation, 



 

81 
 

which is an acyclic directed graph. In this research, an AP identification algorithm is 

proposed for acyclic FDAG graphs by determining APs of the un-directed 

approximation of FDAG representation. The rational is that the node adjacency in an 

un-directed approximated graph is symmetrical and cyclic, which is stronger than 

FDAG representation that is asymmetrical and acyclic. Therefore, once a node is 

identified as an AP on the equivalent un-directed approximation, the deletion of this 

AP vertex from the FDAG will also leave the FDAG disjointed. The proposed AP 

identification algorithm is based on the work presented by Hopcroft and Tarjan 

[1973], who developed an linear-time algorithm for finding out bi-connected sub-

graphs of an un-directed graph. Un-directed graphs are equivalent to bi-directed 

graphs if no negative edges are investigated [Schrijver 2003].  

An un-directed approximation of FDAG representation can be obtained by 

inserting missing reverse edges. Taking Figure 5-8a as an example, by inserting 

missing reverse edges, the corresponding un-directed approximation (equivalent to bi-

directed graph with directed edges combined) is shown in Figure 5-8b.  
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(a) Directed FDAG graph (b) Un-directed approximation 

Figure 5-8. An FDAG graph of the pusher pad and its un-directed approximation 
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The AP identification algorithm is presented as follows. Let an FDAG graph 

be G= {V, E}, then H= {V, EH} is the un-directed graph approximation of G. If in the 

context of G, EWV ∈∀ ),( , there will be an undirected edges HEVWWV ∈ ),( and ),(  

in the un-directed approximation, which are the union of forward and reverse edges of 

the directed graph instance. Let Hδ = {V, Eδ} be the depth-first spanning tree of the 

graph approximation H = {V, EH}, and a node Va∈  will be an AP of H if and only 

if: 

i. Node a is the root of Hδ , and a has at least two children in Hδ, or 

ii. Node a is a non-root element of Hδ, and there exist vertices v, w 

V∈ such that a directed edge (a,v) ∈  Eδ and LOW(v) ≥  DFN(a), and v 

is not an ancestor of w in Hδ 

 

The proof can be found in [Cormen et al. 2001]. In the definition, DFN(a) is the depth 

first number of traversing the depth-first spanning tree Hδ; while LOW(v) is the 

smallest depth first number which can be reached from v using a directed path 

containing descendents of v and at most one back edge.  

Let the graph approximation H = {V, EH} have a depth-first spanning tree Hδ = 

{V, Eδ} with back edge set B, the value LOW(x) where x V∈  is defined as: 

}),(|)({}),(|)({)}(min({)( ByxyDFNEyxyLOWxDFNxLOW ∈∪∈∪= δ  (5.2) 

First of all, an ordering on all graph nodes of Figure 5-8b is defined according to the 

DFS traversal sequence, which is given as: 

SeqDFS(H=(V, EH)) : F1,   F3,   F8,   F9,   F2,   F4,   F5,   F6,   F7  
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Secondly, according to these definitions, the values of DFN (Vi) and LOW (Vi) for a 

node Vi (1 ≤ i ≤ |V|) are given as: 

 DFN  [ 1:9 ]  = { 1, 2, 3, 4, 5, 6, 7, 8, 9 }  

 LOW  [ 1:9 ]  = { 1, 2, 1, 1, 5, 6, 7, 8, 9 }  

The APs of the approximated graph shown in Figure 5-8b can be identified as F1, F2, 

F4, and F6 using the above AP definition. It is easy to verify that the identified APs 

are also cut vertices that can split the FDAG graph into separated.  

Once APs of an FDAG graph are identified, reachable sub-graphs rooting 

from these APs can be computed by matrix calculations. The matrix representation is 

built to represent the reachable relationship among FDAG nodes. Analogous to the 

adjacency matrix defined in section 4.3, we define the reachability matrix R 

= [rij] n × n in which the rows correspond to source graph nodes of the reachability and 

the columns are sink nodes. In this reachability matrix R, every element rij has a 

Boolean value indicating the reachability between from a source node vi to a sink vj: 

rij = 








                      othewise.     0,      

  toreachable is       1, ji vv
 (5.3) 

Although the definition of reachability matrix is similar to Eq. (4.3), these two 

matrixes have different meanings and varying properties. For Eq. (5.3), it describes 

the binary reachability (or the accessibility) relationship of the FDAG representation. 

The adjacency matrix given in Eq. (4.3) corresponds to a directed acyclic graph, 

which corresponds to a strictly partial order set (i.e., ir-reflexitive, asymmetric and 
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transitive). However, from the viewpoint of the reachability matrix given in Eq. (5.3), 

the reachability is only a partial order relationship, which means that an FDAG node 

can be considered accessible to itself.  

 The sequence of row and column of the proposed reachability matrix is the 

same as the DFS traversal ordering of FDAG nodes. The reachability matrix is shown 

in Table 5-2. It can be seen that all diagonal elements of the matrix are 1 due to the 

fact that the reachability is partially ordered, instead of strictly partially ordered. 

Table 5-2. The reachability matrix of the pusher pad  

          vj  
 
  vi                        

j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8 j=9 

F1 F3 F8 F9 F2 F4 F5 F6 F7 

i=1 F1 1 1 1 1 1 0 0 1 0 

i=2 F3 0 1 0 0 0 0 0 0 0 

i=3 F8 0 0 1 1 0 0 0 0 0 

i=4 F9 0 0 0 1 0 0 0 0 0 

i=5 F2 0 0 0 0 1 1 0 0 0 

i=6 F4 0 0 0 0 0 1 1 0 0 

i=7 F5 0 0 0 0 0 0 1 0 0 

i=8 F6 0 0 0 0 0 0 0 1 1 

i=9 F7 0 0 0 0 0 0 0 0 1 
 
 

Using the reachability matrix given, the reachable sub-graphs of each FDAG 

APs can be obtained by computing the reachability transitive closure. In a directed 

graph G = {V, E}, the successor set of a vertex Ev∈ , denoted by Succ(v), is the set 

of vertices that are directly reachable from v. The vertex set adjacent to v in the 

transitive closure is the same as the Succ(v) in the original graph G. Therefore, 

http://www.boost.org/doc/libs/1_45_0/libs/graph/doc/graph_theory_review.html#def:reachable�
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computing the transitive closure is equivalent to recursively computing the successor 

set for every vertex in G. The recursive computation procedure can be constructed 

intuitively step by step. The first step of transitive closure is defined as: 

GG   =  0
 (5.4) 

and the reachability relation between a and b is defined as ab , the following steps can 

be given as: 

{ }111   and        where          =  −− ∈∈∃∪ iii-i GbcGabbabGG  (5.5) 

Each graph in the recursive procedure takes the reachability relation from the previous 

graph, and adds new reachability to make the final graph more transitively reachable. 

The Floyd-Warshall Algorithm [Floyd 1962, Warshall 1962] is a graph analysis 

algorithm for finding the shortest paths. This algorithm can be used to solve transitive 

closure (TC) problem as well as once a path is found between vertices u and v, the 

transitive reachability between them is also determined. Suppose |V| is the number of 

vertices in a graph, let an FDAG be G=(V, E), and take the reachability matrix R|V|×|V| 

on the G as input, the Floyd-Warshall Algorithm of TC computation is given as:  

Start with R*=R, for each k from 1 to |V| 

  For each i from 1 to |V| 

    For each j from 1 to |V| 

      If R*(i,k)=1 and R*(k,j)=1 

      Then compute AND value of row i and j, and replace row i by it. 

Go on to the next j 

  Go on to the next i 

Once processed each i, go on to the next k. 
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Using the above algorithm, the computation complexity will be O (|V|3); while 

the space complexity is O (|V|2) because the transitive reachability can be directly 

updated on the original matrix. The reachability matrix R is given as: 

  R = 



































100000000
110000000
001000000
001100000
000110000
000001000
000001100
000000010
010011111

  

By using the Floyd-Warshall Algorithm, the transitive closure R* can be computed 

as:  

R* = 



































100000000
110000000
001000000
001100000
001110000
000001000
000001100
000000010
111111111

  

It can be conventionally observed in R* that, all diagonal elements are 1 because of 

the reflexive reachability; and each row represents the transitively reachable relations 

from source nodes to sink nodes. Taking the row 5 for example, it represents all 

reachability relationships from element F2 (i=5). Three reachable nodes {F2, F4, F5} 

is the closure of node F2 in terms of the reachability.  



 

87 
 

In this research, the flow graph is chosen to be the data structure of a reachable 

sub-graph led by an AP node. A flow graph can be defined as F (s) = (V, E, s), where 

F a directed graph with a starting vertex (dominator) s V∈  such that every vertex in 

V is reachable from s. Taking the reachability closure of F2 as an example, the 

dominator vertex is F2, and the reachable sub-graph is represented by SG(F2) = ({F2, 

F4, F5}). All reachable sub-graphs shown in R* can be summarized in Table 5-3. 

Table 5-3. Reachable sub-graphs shown in R* 

Sub-Graph Dominator Nodes Reachable Sub-Graph Elements  

F1 F1, F3, F8, F9, F2, F4, F5, F6, F7 

F3 F3 

F8 F8, F9 

F9 F9 

F2 F2, F4, F5 

F4 F4, F5 

F5 F5 

F6 F6, F7 

F7 F7 
 

However, among these dominator vertices, only F1, F2, F4, and F6 are 

selected as APs of the FDAG. With further evaluation on the selected sub-graphs 

dominated by corresponding APs, it is easy to find that the reachable sub-graph 

dominated by F1 is the complete FDAG itself. Therefore, this sub-graph fails to meet 

the reusability criteria discussed in section 5.3. The final sub-graph segmentations 

evaluated are {F2, F4, F5}, {F4, F5}, and {F6, F7}. These results are consistent to 

the valid segmentations shown in Figure 5-7.   
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5.4 Retrieval of CAD Models based on Partial Shapes 

The proposed sub-part decomposition can enable CAD component retrieval based on 

their partial shapes. Given a 3D query of a sketched partial shape, the retrieval 

algorithm to be introduced in this section will match segmented sub-parts to perform 

partial similarity assessment.  

The proposed partial shape matching algorithm selects CAD sub-parts similar 

to the query model. According to the selected partial matching results, sub-parts with 

the highest similarity are presented to designers as reusable candidates. A retrieved 

sub-part can be conveniently decomposed from limited external dependency and 

relocated to another mechanical part as the matched CAD components are extracted 

based on the reachability of existing feature inter-dependencies. Most importantly, all 

modeling constraints within the relocated part will be preserved during the reuse 

process, therefore facilitating transfer of design knowledge and promoting further 

design reuse.  

Essentially, there are three steps in retrieving feature-based CAD models 

based on their partial shape similarity: extraction of sub-parts, generations of partial 

shape descriptors, and retrieval of partial shapes. In the following sections, these steps 

are described. 

5.4.1 Generation of partial similarity descriptors 

Prior to partial similarity assessment, the information of segmented sub-part must be 

indexed by a concise mathematical representation. The indexed information 
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characterizes not only geometric data of sub-part segmentation, but also captures the 

feature modeling dependencies of the sub-part. The concise representation is named 

as partial shape aggregation (PSA) descriptor. In the following paragraphs, the 

generation process of a PSA descriptor of an extracted sub-part will be elaborated. 

In this research, each feature-based CAD part has a corresponding FDAG 

graph representation for reuse-oriented retrieval purpose. By applying FDAG vertical 

partitioning on an FDAG graph, decomposable sub-graphs can be identified and every 

sub-graph corresponds to a cohesive and decoupling sub-part. Once a sub-part is 

extracted from the complete CAD model as a candidate partial shape, a PSA 

descriptor will be generated for this sub-part. The generation process of the PSA 

descriptor is given as follows:  

(1) Calculation of modeling and geometry information of the sub-part. The PSA 

descriptor not only indexes the geometry of the sub-part, but also captures the 

embedded modeling characteristics of the sub-part.  

• Compute the geometric characterization of a sub-part. The geometry of the 

sub-part is characterized by the SD histogram. Suppose that a CAD model M has 

an extracted sub-part, says P, the D2 histogram HP is the geometric characteristic 

of P. The computed SD histogram is a k-dimensional vector in the space Rk, 

where k is the slot count of the histogram.  

• Characterize the internal modeling dependencies of the sub-part. The internal 

modeling dependencies are characterized by a flow graph F (s) = (V, E, s), where 
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node s is the dominator of the graph, which is equivalently the AP node of the 

extracted sub-part.  

• Index the external dependencies between the sub-parts and the rest of the 

complete CAD model. External dependencies of the sub-part are indexed by the 

FDAG graph of the CAD model, and the external dependences are the 

adjacencies incident to the AP node. 

(2) Aggregating modeling and geometry information into the final PSA descriptor.  

5.4.2 Partial shape similarity 

By applying the vertical partitioning on the FDAG, cohesive and decoupling sub-parts 

can be extracted from complete CAD models. These extracted sub-parts are reusable 

partial shape candidates, which are characterized by PSA descriptors. In this section, 

all extracted sub-parts {P1, P2, …, Pn} from various complete CAD models are 

compared against a user-sketched query Q  to find similar partial shapes. The partial 

shape similarity is assessed as follows:  

(1) Calculate the SD histogram HQ for the given 3D query model Q.  

(2) Compare the PSA descriptor of sub-parts Pi with HQ (i ranges from 1 to n). 

• Compute the Manhattan distance between HQ and the histogram HPi of Pi, 

)(1 H,HL QPi , which represents the dissimilarity from Pi  to the query Q in terms 

of geometry.  

• The partial shape similarity of Pi to Q is defined as:  
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L

 H,HLQPSimilarity QPi
iPSM max

1

1 )(
1),( −=  (5.6) 

where value Lmax
1  is the upper limit of SD D2 histogram dissimilarity. The PSM 

similarity is a real number. The theoretical lower bound of the similarity is 0, 

where the Manhattan distance of Pi to Q is Lmax
1 ; while the upper bound is 1, 

which means that the SD histogram of Pi is exactly same to the histogram of Q.  

5.4.3 Partial shape matching 

The proposed partial shape similarity is adopted as the criterion to sort candidates in 

the partial shape matching (PSM) algorithm. PSM evaluates every extracted sub-part 

by computing their partial shape similarity to the one of the query model. Based on 

the outcome of the evaluation, sub-parts with the highest similarity will be retrieved. 

The PSM algorithm is described as follows: 

(1) In the design repository, there are total M sub-parts extracted from all archived 

CAD models. These sub-parts are labeled as Pi (i=1 to M).  

(2) The partial shape similarity of Pi (i=1 to M) to the query Q can be computed 

according to the algorithm proposed in section 5.4.2.  

• A greater partial shape similarity means that compared sub-part is more 

similar to the query, compared against those having less similarity.  

• If all the extracted CAD partial components are sorted by their partial shape 

similarities in descending order, the first ranked model, saying Pk, is the one most 

similar to Q. The similarity value of most similar model Pk is formalized as: 
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[ ]),(max
],1[

QPSimilarity kPSM
Mk∈

 (5.7) 

(3) Matched results from most similar to least similar will be retrieved to designers.  

In the proposed PSM algorithm, not only the top-ranked partial shapes are 

presented to designers for reviewing its geometrical reusability, but also their 

modeling expertise embedded in the PSA descriptor will be used as re-design 

references to evaluate its mechanical reusability. First of all, the modeling 

dependency between a sub-part and its host CAD model will help designers smoothly 

externalize the sub-part as a reusable component. Secondly, in the reuse of this sub-

part, the same external dependency knowledge will facilitate to find out a possible 

solution to re-locate the retrieved sub-part to a new CAD model. Finally, the internal 

modeling dependencies of the sub-part, another piece of domain knowledge 

embedded in the PSA descriptor, is serving as the media of knowledge transfer during 

the reuse, to preserve the original design intent of the reused CAD sub-part. 

Therefore, the reused sub-part is still fully constrained and well integrated with the 

target CAD model in a feature modeling manner, which makes future retrieving of the 

reused sub-part feasible and straightforward.  
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Chapter 6 Results and Discussion 

In this chapter, the reuse-oriented retrieval algorithms described in this research are 

implemented and evaluated using real-world CAD models. The evaluations are 

conducted using standard precision-recall curves to verify the algorithmic 

effectiveness, and experimental results are discussed as well. To build a realistic-scale 

evaluation dataset, over six hundred CAD models are collected from online part 

repositories and classified by experienced designers. 

Furthermore, a prototype system has been built upon a commercial modeling 

application. In the built prototype system, the power of the essential shape matching 

(ESM) and partial shape matching (PSM) algorithms is leveraged to effectively bridge 

the identified gap between current CAD model retrieval and reuse. Several case 

studies are discussed to prove that the proposed approaches are feasible to perform the 

reuse-oriented retrieval under the industrial settings.  

6.1 System Implementation 

A prototype system has been implemented to verify the effectiveness of the proposed 

algorithms. In the system implementation, it is vital to show that how the proposed 

approaches are facilitating 3D CAD model retrieval as well as downstream reuse 

activities, particularly under current industrial settings. In the following sub-sections, 

a use case diagram is shown to capture system-level requirements of reuse-oriented 

retrieval activities, and the architecture of the prototype system is presented.  
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6.1.1 Requirements of reuse-oriented retrieval 

Nowadays, mainstream mechanical design is still dominated by 3D parametric 

modeling systems. Designers generally need a 3D parametric modeling system 

seamlessly supporting retrieval functionality. Within the same modeling interface, the 

system is able to cover a complete process of model querying, retrieval, redesign 

analysis, and reuse realization. These requirements are consolidated into a use case 

diagram, which is illustrated in Figure 6-1. 

Database (DB) System
Boundery

Modeling System
Boundery

Create from
Scratch

Reuse on
Retreival

Browse
Archival in DB

Index New
Product to DB

Create
Model

DB Administrator

Designer

USE CASE DIAGRAM: REUSE-ORIENTED RETRIEVAL

Perform
ESM

Perform
PSM

<<extends>>

<<extends>>

<<uses>> <<uses>>

<<uses>> <<uses>>
<<uses>>

 

Figure 6-1. Use case diagram of reuse-oriented retrieval activities. 

In this use case diagram, the upper frame shows the system boundary of a 

CAD modeling interface, in which users can either create a new design from scratch 

or retrieve an existing design to reuse. Also in the same interface, the ESM and PSM 

algorithms have been implemented as an extension and integrated into the modeling 
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system. Therefore, the modeling system is able to support real-time sketch and search, 

enabled by the seamless integrated extension. Users can build a basic shape of a 

desired part; in the meanwhile, the implemented extension will compare the inputted 

query with archived models using ESM and PSM algorithms, and present the most 

similar ones to designers. This sketch and search mechanism maximizes reuse 

possibility as reusable candidates are proactively presented to users in a synchronous 

manner while they are designing, instead of opening a new window to search, which 

could be an obstacle to break design and reuse. 

No matter how a design is created, either building from scratch or re-designing 

an existing design, the newly created will be indexed again into design database, 

where all archived realistic-scale CAD models have been indexed by ESA / PSA 

descriptors, as proposed in sections 4.4.1 and 5.4.1, respectively. In this way, new 

designs will be characterized for future retrieval and reuse, and database consistency 

is also well-maintained.  

6.1.2 Implementation of the prototype system 

All these requirements have been implemented into the prototype system, and the 

high-level architecture of the prototype is illustrated in Figure 6-2. The CAD 

modeling function is provided by a traditional 3D modeler, which also serves as a 

platform to enable 3D query and variational reuse. The modeler is shown in the center 

of the figure. The outer tier is the reuse-oriented retrieval extension, which 

encapsulates knowledge-based CAD model retrieval functionalities based on a 3D 
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query input. Once a model is located by the retrieval extension, it will be presented to 

designers as a candidate redesign reference. 

Knowledge-based reuse

Traditional 3D
CAD Modeling System

3D Query

CAD Model
Retrieval

CAD Model
Database

Reuse-oriented Retrieval Extension

Designer

 

Figure 6-2. High level architecture of the prototype system 

The prototype system has been realized and integrated with an industrial CAD 

modeling system (i.e., SolidWorks) in this research. To load design files via this CAD 

system, CAD models are imported from native format files. Modeling knowledge and 

information used for ESM and PSM analysis is extracted from the CAD models by 

SolidWorks application programming interfaces (APIs). Geometric data can be 

directly obtained from the B-Rep representation of these models. Although current 

implementation is on a specific CAD system, the proposed approaches could be 

realized on any CAD systems using their own native formats, e.g., .PRT files in 

Pro/Engineer system, because the algorithm is platform-neutral.  

The workflow of ESM and PSM algorithms is illustrated in Figure 6-3. As 

shown in the center, the system consists of a native CAD model repository and two 

descriptor databases. These two descriptor databases store compact descriptor 

information for essential shape matching (ESM) and partial shape matching (PSM). 
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The top half of the figure shows the process of ESM and the bottom half illustrates the 

PSM process. 
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Figure 6-3. Process diagram of the prototype system 

With the facilitation of the extension implemented, designers are able to finish 

new design tasks expeditiously by searching reusable models, without building from 

scratch. The design-by-reuse process usually has the following four consecutive steps, 

which are all well supported in the prototype implemented:  

• Firstly, a designer composes a query representing what he/she wants. The 

prototype system allows the user to sketch basic shapes of a desirable part in a 

3D way, within a popular modeling interface.  

• Secondly, the designer submits the sketched query to search for similar 

redesign references. In this step, the prototype captures the inputted query and 

returns CAD models using the proposed ESM and PSM algorithms. The 

returned results have been assessed based on their geometric similarities and 
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mechanical reusabilities. The geometric similarities are compared during the 

ESM and PSM matching stages; and the proposed knowledge-based horizontal 

and vertical partitioning algorithms ensure that only the essential and partial 

shapes having appropriate reusabilities will be compared in matching stages.    

• Thirdly, the designer freely chooses any retrieved model for reuse. During this 

reuse process, the prototype will also provide redesign suggestions to help 

designers to choose appropriate re-design modifications, which preserve the 

reused model fully constrained after the reuse.  

• Finally, the redesigned part is automatically archived into an enterprise 

repository for future reuse. The system will analyze the newly reused part and 

generate essential and partial shape descriptors in real-time. In this way, any 

new part is incrementally indexed and immediately ready to future retrieval.  

6.2 Evaluations on the Essential Shape Matching Algorithm 

In a design repository, the parts in a design family usually share a common shape but 

have small detailed variants. Unlike rigid shape matching algorithms, the proposed 

essential shape matching (ESM) algorithm does not exactly match complete shapes. 

Instead, it addresses overall similarity of 3D objects while ignoring their insignificant 

variants. By this way, the ESM algorithm locates more reusable part varieties for the 

reuse-oriented retrieval. In the following sections, experiments will be conducted on 

realistic CAD models, to compare the retrieval effectiveness between rigid shape 

matching algorithms and the ESM.  
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6.2.1 Dataset and evaluation methods 

In this research, a dataset of 629 realistic-scale CAD models has been built to test the 

feasibility of the proposed algorithms. These models that are designed for industrial 

usage, have been collected from part providers [3DContentCentral 2006]. The models 

are manually classified into 32 categories based on their essential shapes. The 

classification is shown in Figure 6-4, and all categories are listed in Table 6-1. The 

column proportion is the ratio of the part count of each category to the sum (i.e., 629). 

 

Figure 6-4. Manually classified model categories with sequence numbers 
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Table 6-1. Descriptions of manually classified CAD model categories  

Seq Description Part count Proportion  

(1) Curved flat base models 6 0.95% 

(2) Models with a rectangle- or diamond-like base and a boss 7 1.11% 

(3) Flat straight block models 45 7.15% 

(4) L-shape profile swept models with medium sweep distance 12 1.91% 

(5) L-shape profile swept models with long sweep distance 14 2.23% 

(6) Models with a flat rounded base and a boss 32 5.09% 

(7) Models with a slim and long rail shape 24 3.82% 

(8) Rail models with L-shape sweep profile  13 2.07% 

(9) U-shape swept models with two long parallel wings 4 0.64% 

(10) Swept models with a round base and a boss on the plane 33 5.25% 

(11) Models with a round base and a boss on the curved side 4 0.64% 

(12) Models with a long, rounded base 28 4.45% 

(13) Models with a short, rounded base 19 3.02% 

(14) Square block shape models 17 2.70% 

(15) Long square shape models 26 4.13% 

(16) Plain square shape models 22 3.50% 

(17) Models with a T-shape profile and a long boss 6 0.95% 

(18) Models with a T-shape profile and a short boss 27 4.29% 

(19) U-shape swept models with two short parallel wings 25 3.97% 

(20) Long pin-like shape models with small step 20 3.18% 

(21) Long pin-like shape models with locating plate 33 5.25% 

(22) Long pin-like shape models 46 7.31% 

(23) Pin-like shape models with L-shape intersection 14 2.23% 

(24) Pin-like shape models with T-shape profile 48 7.63% 

(25) Rectangle plate shape models 50 7.95% 

(26) Rounded plate shape models 6 0.95% 

(27) Rectangle plate models with holes 9 1.43% 

(28) Slim ring shape models 11 1.75% 

(29) Thin wall models with L-shape profile 7 1.11% 

(30) Tube models with an intersection 4 0.64% 

(31) Curved tube models 7 1.11% 

(32) Straight tube-like models 10 1.59% 

  SUM  629 100.00% 
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6.2.2 Testing results and discussions  

Precision (P) and recall (R) have been used regularly to measure the performance of 

information retrieval systems. In the experiments, precision-recall (P-R) curve is 

adopted for comparing the effectiveness of shape retrieval algorithms.  

Recall is a measure of the ability of an algorithm to retrieve all relevant items, 

while precision is used to measure the ability to match only relevant items. In the 

manual categorization of Table 6-1, models falling into the same category are 

considered relevant in terms of essential resemblance. If }{relevant  and }{retrieved  

represent the set of 3D objects relevant to a query and the set of 3D objects retrieved 

by the query respectively, the recall and precision measures are defined as: 

}{
}{}{

relevant
retrievedrelevant

Recall
∩

=  (6.1) 

}{
}{}{

retrieved
retrievedrelevant

Precision
∩

=  (6.2) 

The evaluation was made between the ESA and SD descriptors. A precision-recall 

curve is generated by plotting precision and recall values on a 2D graph. The 

precision-recall curves of different algorithms have been superimposed on the same 

graph to determine which algorithm is superior. The curve closer to the upper right-

hand corner of the graph (where precision and recall values are maximized) indicates 

a better performance. 

Figure 6-5a shows a sketched 3D query for searching archived locating slots. 

The top 5 models retrieved by ESM, shown in Figure 6-5b, are all relevant to the 

locating slot category; among the top 5 models retrieved by the SD D2 algorithm (see 
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Figure 6-5c), two are irrelevant (the second and fourth). A consequence of such 

irrelevancy is reflected by the P-R curves shown in Figure 6-5d: the ESM algorithm 

obviously outperformed the SD one as the former only evaluates the essential shape 

similarity while tolerating geometrically insignificant portions, consequently bringing 

more essential shape similar parts in its top search results. The irrelevancy brought by 

the SD descriptor can be explained that complex geometries of real-world models 

negatively affect discrimination ability of the SD descriptor, while the ESA copes 

with the complexity well.  

 

(a) query model 

 

(b) top 5 retrievals (ESM) 

ESM
SD

 

(d) P-R curves 

 

 

 

(c) top 5 retrievals (SD) 
Figure 6-5. The top retrievals of ESM and SD, and the superimposed P-R curves 

(ESM: solid, SD: dashed) 

The overall accuracy for all CAD categories is benchmarked by an average P-

R curve, precision of which is an arithmetic mean of precision rates of all plotted P-R 

curves. The average precision mean is the sum of precisions at specified recall levels 
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(i.e., ∑Pλ, where Pλ is the precision at the recall λ, and λ is a real number of [0, 1]) 

divided by the count of averaged curves m (in our experiments, one P-R curve is 

plotted for a model category, thus m is 32) as: 

∑= =
m
i iPm

P 1average
1 λ          }1.0 0.3,..., 0.2, 0.1, 0.0,{=λ  (6.3) 

Figure 6-6 shows the average P-R curves of all the 32 categories, respectively. The 

higher curves of the ESA descriptor provides clear evidence that it performs better in 

retrieving broader model categories than the SD method. 

 
Figure 6-6. Average P-R curve comparison of ESM and SD 

However, if the number of models in each category is not balanced, the simple 

mathematical average may be distorted because a small category of fewer models has 

the equivalent proportion to the average value as large categories do. To eliminate this 

distortion, weights of categories are introduced into the average computation as: 

∑= =
m
i ii Pwm

P 1weighted
1 λ    }1.0 0.3,..., 0.2, 0.1, 0.0,{=λ  (6.4) 

The weight (wi) of a category is the model count of the category over the total number 

of CAD models evaluated, as listed in Table 6-1. Comparisons are further made in 



 

104 
 

three recall ranges: 0 to 20%, 20 to 80%, and 80 to 100%, which correspond to high 

precision, middle recall, and high recall performance, respectively. Figure 6-7 reveals 

that the ESA descriptor is superior to the SD one in both high precision and middle 

recall ranges. When the recall is 10%, the ESA (73%) outperforms the SD (54%) by 

19% in terms of retrieval precision. The outperformance confirms that in early search, 

the ESA descriptor is more efficient in relevant CAD model retrieval than rigid shape 

matching methods do. Discussions can also be made in the high recall range (0.8 to 

1.0) as the curves of ESA and SD are more or less the same. A possible explanation is 

that in this range, almost all relevant models have been retrieved; therefore, the 

precision, which is the proportion of the relevant items of the retrieved, is expected to 

flatten out if the remainder is purely irrelevant models. 

      
Figure 6-7. Weighted average P-R curve comparison of ESA and SD 

6.2.3 Case study of essential shape matching 

In this section, a case study of retrieval-oriented reuse on essential shapes is illustrated 

and discussed. In Figure 6-8, the process of matching a complex CAD model by a 
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simple query is shown, which is enabled by the ESM algorithm. The figure shows a 

pin-connector part M and some of its simplified shapes {M4, M7, M10}. The 

progressive simplification is driven by the knowledge-based horizontal FDAG 

partitioning algorithm. The simplified shapes are characterized by ESA descriptors, in 

which the geometric information is captured by a series of SD D2 histograms of the 

multi-level simplifications, e.g., {H4, H7, H10} in the figure. During the essential 

shape matching, the D2 histogram of the query Q is compared with histograms of 

ESA descriptors, and the similarity (M10, Q) = 0.96 is selected as the essential shape 

similarity of M to Q. The similarity 0.96 is also the highest similarity of all archived 

CAD models to the query Q.  

3D query

M(M0) M4 M7 M10

H4H0 H7 H10

Q

HQ

Essential shape simplifications

Essential Shape Matching (ESM)

Retrieved
models

#1

#2

#3

#4

#5

similarity(M0,Q) = 0.83
similarity(M4,Q) = 0.82
similarity(M7,Q) = 0.79
similarity(M10,Q) = 0.96

 
Figure 6-8. Case study of realistic CAD model retrieval enabled by ESM 

Conversely, even using the same dataset and query, rigid shape matching 

methods cannot retrieve the M with such a simple query Q in early search. For 

instance, the SD D2 similarity between Q (i.e., HQ) and M (i.e., H0) is 0.83 only. A 
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possible consequence could be that designers have to spend more time in detailing the 

3D query to find out a desirable model. 

Figure 6-9 illustrates more retrieval examples enabled by the proposed ESM 

algorithm. In the retrieval results shown on the right, all CAD models retrieved by the 

proposed algorithm are relevant to the sketched query. Moreover, it can be clearly 

observed that most of retrievals are part varieties of a same part family, which proves 

that retrieval and reuse by referencing another design in a part family are greatly 

facilitated by ESM. 

3D Query Retrieved #1 Retrieved #2 Retrieved #3 Retrieved #4

 
Figure 6-9. More retrieval examples enabled by the proposed essential shape 

matching (ESM) algorithm 

6.3 Evaluations on Partial Shape Matching Algorithm 

There will be a great amount of opportunities in design reuse, to create a new part by 

not only searching essentially similar shapes, but also migrating partial CAD 

components from existing parts. In Chapter 5, a knowledge-based partial shape 

matching (PSM) algorithm has been proposed to find out similar portions within 

complete CAD models. Enabled by the PSM algorithm, reusable correspondences can 

be recognized and located by sketched 3D query, and eventually reused in a new 
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design. In the following sections, experiments will be conducted on real world CAD 

models, to compare the effectiveness of the proposed PSM algorithm in the reuse-

oriented retrieval context.  

6.3.1 Testing results and discussions 

With the partial shape retrieval enabled by PSM algorithm, designers can easily 

sketch a 3D query to represent a partial shape they are looking for, and the 

decomposable CAD model components will be retrieved and highlighted as re-design 

reference. Figure 6-10 shows an example that several CAD sub-parts are located by a 

user-sketched query.  

Similarity(P1, Q) = 0.9823

Similarity(P2, Q) = 0.9789

Similarity(P3, Q) = 0.9770

Similarity(P4, Q) = 0.9767

 

 

 

 

P1 HP1

Q

3D query

Retrieved sub-parts

P4 HP4

P3 HP3

P2 HP2

 

HQ

Partial

Shape

Similarity

Assessment

#1

#2

#3

#4

#5

#6

#7
 

Figure 6-10. Sub-part retrieval enabled by the partial shape similarity (PSM)  

In this example, the user conveniently sketched a 3D query, which specifies a 

desirable partial shape, shown as Q at middle-bottom of the figure. This query model 

is compared with sub-parts which are extracted archived complete CAD models. The 
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partial shape similarity is assessed between Q and the segmented sub-parts to find out 

most similar ones. The similarity assessment is illustrated at the top-right of Figure 

6-10. The highest ranked sub-parts {P1, P2, P3, P4} (rendered in opaque) are shown on 

the left. The top-retrieved sub-parts closely resemble Q as their similarities to Q are 

all larger than 0.97; however it can be observed complete models of these sub-parts 

are apparently different. This example clearly demonstrates the PSM method’s ability 

to retrieve desirable CAD components based on the partial shape similarity.  

The modeling expertise embedded in archived models has also been analyzed 

to determine reusability of segmented sub-parts. An advantage of this knowledge-

based analysis is that determining sub-parts is no longer affected by geometric factors, 

that is, the determination is invariable to minor changes of the shape being segmented, 

no matter whether surfaces have salient points, or how boundaries are surrounded by 

concavity. Moreover, sub-parts segmented by knowledge-based FDAG vertical 

partitioning are mechanically meaningful feature constitutes. Meaningful sub-parts 

extracted by the proposed semantic-based decomposition are shown in Figure 6-11. 

Dissimilar to the PSM, other methods [Bespalov et al. 2006, Biasotti et al. 2006] can 

barely obtain meaningful sub-parts. A possible reason is that they only extract partial 

shapes in a geometric way. Figure 6-12a shows sub-part correspondences determined 

by Reeb graph based method [Biasotti et al. 2006], where identical colors indicate 

matched partial shapes. In Figure 6-12b, partial shapes matched by a many-to-many 

comparison [Bespalov et al. 2006] are surface patches (highlighted in green colors). 

Such shape fragments and surface patches are meaningless in mechanical design; 
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therefore, they are hard to edit and even harder to reuse owning to a total lack of 

engineering semantics. 

    
Figure 6-11. Mechanically meaningful sub-parts (colored in yellow) extracted by the 

proposed semantic-based decomposition 

 
(a) Partial shape correspondences  

[Biasotti et al. 2006] 
(b) Partially matched surfaces  

[Bespalov et al. 2006] 
Figure 6-12. Less meaningful partial shapes matched by other methods 

Two more examples of PSM retrieval are shown in Figure 6-13, where it can 

be observed that most retrieved sub-parts highlighted on the right are similar to user-

specified queries shown on the left.  

3D query Result #1 Result #2 Result #3 Result #4

 
Figure 6-13. More PSM queries and retrieved results 
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The results appear to confirm that the proposed PSM algorithm can effectively 

retrieve similar sub-parts among complex CAD models. However, although the SD 

D2 histogram adopted in the PSA descriptor is fast in generation and comparison, it is 

still subject to moderate insensitivity to details. For instance, as shown in the first row 

of Figure 6-13, the third retrieved sub-part is not in accordance with our expectations. 

A possible reason of the discrepancy may be that details of this wrongly matched sub-

part weaken the discriminative ability.  

Furthermore, the proposed PSM algorithm provides flexible methods to 

compose a 3D query. The bottom row of Figure 6-13 shows a sub-part query 

composed of B-Rep surfaces which are specified by users (highlighted in green). This 

query and retrieval case clearly demonstrates that not only manifold models but also 

discrete surface collections can be used for finding out similar sub-parts with the 

proposed PSM algorithm. 

6.3.2 Case study of partial shape reuse 

In addition to the meaningful sub-part segmentation discussed in the last section, 

another advantage of the proposed PSM algorithm in reuse context is that the 

retrieved sub-part are feasible to externalized as a reusable components and easily 

portable to a new mechanical design. Once a desirable sub-part is located by the PSM 

algorithm, designers can reuse this sub-part easily because the knowledge analyzed in 

the PSM process also benefits the downstream reuse activities. In this section, a 

retrieval and reuse case study of a tapered head sub-part is illustrated. A design task is 
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to create a 3D model of a locating pin based on a 2D drawing. The drawing is shown 

in Figure 6-15, which has a new rectangular base, but shares a standard tapered head 

with other existing parts. The standard sub-part will be located and reused with the 

facilitation of the proposed PSM algorithm, within the same CAD modeling interface. 

 
Figure 6-14. 2D drawing of a locating pin part 

Because the standard tapered head sub-part can be directly copied from 

existing parts, designers would intuitionally create 3D sketched query similar the 

tapered head and perform PSM on the design repository. Figure 6-15 illustrates this 

sub-part reuse process. Enabled by the proposed PSM method, one can easily create a 

3D query to search for desirable tapered pins (the top-middle screenshot) by a few 

steps of sketching. Searched by the sketched query, a number of similar sub-parts are 

retrieved and presented to designer, and the designer chose a retrieved sub-part as the 

reuse reference. The chosen model containing the sub-part is loaded within the CAD 

modeling system (the right middle screenshot). Figure 6-16 illustrates the major 

features of the loaded model in the SolidWorks modeling interface. Moreover, the 

matched sub-part is also automatically highlighted by the implemented prototype 

extension for convenient navigation and reuse.  
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Sketch a partial
3D query

 Externalize the
matched sub-part

Migrate the externalized sub-part
by re-configuring its dependency

on a new target

Design is accelerated by
reusing the existing CAD

components

Retrieved by partial shape matching

Partially reuse

New locating pin

A new design  task

Matched sub-part

 
Figure 6-15. Partial shape reuse of a tapered head sub-part using PSM 

 
Figure 6-16. The matched sub-part and its major features.  
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In the meanwhile, feature modeling dependency has also been presented to the 

designer to facilitate decision making of the sub-part reuse. The feature modeling 

dependency is extracted and captured by DOT format [Dot Language  2009], The 

graph visualization in the format of Portable Network Graphics (PNG) image is 

automatically generated by Graphviz [2009]. The complete PNG image generated by 

Graphviz is shown in Figure 6-17. The highlighted feature Extrude5 is the AP of an 

FDAG sub-graph, which corresponds to the retrieved sub-part, i.e., the standard 

tapered head. 

 
Figure 6-17. Automatically generated PNG image of the FDAG graph of the retrieved  

mechanical model and matched sub-part shown in Figure 6-15 
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The proposed sub-part partitioning algorithm analyzes external dependency of 

the sub-graph and deduces that the only dependency of this sub-graph is the location 

plane of the sub-part. Because of the limited external dependency, the matched 

tapered head can be conveniently externalized as a user-defined feature (UDF). Figure 

6-18 highlights the externalized FDAG sub-graph. 

 
Figure 6-18. Highlighted sub-graph corresponding to the matched sub-part 

On a new rectangular base, the externalized UDF can be relocated by re-

configuring its locating dependency (shown at the right bottom of Figure 6-15), and 

eventually the retrieved sub-part is reused and becomes a part of the target design (the 

left bottom of the same figure). Therefore, reuse of the new locating pin is effectively 

accelerated by the PSM algorithm. Moreover, the reused sub-part is fully constrained 

and well integrated with the target; therefore, this sub-part can also be extracted, 

retrieved, and reused in the future. 
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Chapter 7 Conclusions and Recommendations 

This chapter concludes the approaches presented in this thesis, discusses the 

contribution of research, and proposes several recommendations for future work. 

7.1 Conclusions 

The research investigated issues associated with the challenge of CAD model retrieval 

for effective design reuse. In this thesis, the modeling knowledge of CAD models has 

been effectively incorporated into the similarity assessment. Moreover, reuse-oriented 

retrieval methods have been proposed and implemented to bridge the gap between 

CAD model retrieval and reuse. The contributions of the research are mainly in the 

following areas. 

(1) Elaborated a semantics-based representation for 3D CAD models to facilitate 

assessments on both mechanical similarity and reusability. 

• An effective semantics-based FDAG representation has been proposed to 

capture complicated modeling interdependency among feature constitutes. 

Design interdependency has been examined and partially ordered modeling 

precedence relations have been identified for future similarity and reusability 

assessments. An acquisition mechanism has been put forward to extract the 

identified knowledge. As the extracted knowledge is a partially ordered set 

(POSET), a Feature Directed Acyclic Graph (FDAG) representation has 

been presented to convey inter-dependent structures of extracted expertise. 
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The FDAG representation is an organized structure that provides better 

views on complicated and implicit nature of design semantics. 

(2) Proposed knowledge-driven FDAG partitioning schemes to extract reusable CAD 

components for future retrieval based on essential or partial similarity.  

• Two knowledge-driven FDAG partitioning schemes have been proposed to 

extract reusable components. With these partitioning schemes applied on 

every existing model, CAD model similarity is no longer assessed as rigid 

3D shapes. Instead, using the horizontal FDAG partitioning, details of 

models are progressively simplified; therefore, assessment on essential 

similarity becomes possible. On the other hand, reusable sub-parts are 

extracted from complete models by vertical FDAG partitioning. The 

partitioning schemes conform to predefined modeling constraints. Hereby, 

extracted components are highly reusable in terms of variant and adaptive 

design, and inflexibility to reuse can be greatly avoided. 

(3) Proposed an approach to support effective retrieval of CAD models based on 

their essential shape similarities.  

• An approach supporting CAD model retrieval based on their essential shape 

similarities has been presented. In order to compare model similarity on 

essential shapes, a horizontal partitioning scheme has been put forward to 

decompose FDAG graph from minimal elements to maximal ones. With the 

FDAG decomposition, a full-detailed CAD model will be simplified 

progressively. Each simplification has fewer details compared with the 
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previous one while maintaining the essential shape of the model. 

Furthermore, generation algorithms of essential shape descriptors have been 

formalized in CAD modeling context, and essential shape similarity has also 

been defined. Based on the defined similarity, the essential shape matching 

(ESM) has been given to perform essential similarity assessment and 

retrieval. 

(4) Put forward a method to support effective retrieval of reusable CAD model 

components based on their partial shape similarities.  

• A method to support effective retrieval of reusable CAD model components 

based on their partial shape similarities has been put forward. In order to 

serve partial similarity assessment, a vertical partitioning scheme has been 

applied to find out disjointed sub-graph from FDAG representation, by 

examining the reachability of a POSET data. The found disjointed sub-

graphs are equivalent to sub-parts of a mechanical design. Furthermore, 

partial shape descriptors have been defined, and partial similarity was 

compared with sub-part level. Based on the partial similarity, a partial shape 

matching (PSM) algorithm has been presented to address partial similarity 

assessment and retrieval. 

(5) Developed a prototype system to support the proposed reuse-oriented retrieval, 

which can locate reusable CAD models on their essential or partial similarity. 

• The reuse-oriented retrieval system requirements have been examined to 

ensure the gap between retrieval and reuse is fulfilled. A prototype system 
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has been successfully implemented to demonstrate the feasibility of the 

proposed methods. The effectiveness has also been evaluated using over six 

hundred realistic CAD models. The results showed that the proposed method 

outperforms other methods. In addition, a query interface is embedded in a 

modeling system, which allows users to seamlessly compose query when 

designing. Moreover, query results can be proactively promoted to designers 

based on the 3D query sketched by designers, to significantly shorten the 

process from querying to retrieving. Lastly, in retrieval stage, redesign 

suggestions can be visualized to help users choose the most feasible re-

design options. This keeps the reused design still parametrically constrained, 

which is also assessable for future similarity comparison.  

The research also clearly demonstrates several desired advantages of the 

proposed reuse-oriented retrieval. Firstly, the reuse-oriented retrieval paradigm allows 

designers to retrieve reusable models by specifying an essential or partial shape query. 

In this way, designers can retrieve essentially similar parts (e.g., a part family) or 

meaningful sub-parts as redesign references at any time of design process.  Secondly, 

it offers ease of use during reuse of retrieved results, because modeling dependency 

analysis is done in the retrieval stage to ensure the reusability of the retrieved. 

Therefore, design reuse inflexibility can be effectively avoided. Thirdly, it helps 

preservation of design intelligence to newly reused design. The implemented 

prototype system provides designers access to original design expertise embedded in 

CAD models by visualizing FDAG graphs during the reuse stage. As a result, the best 
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design practices in original parts, including but not limited to modeling precedence 

and parametric constraints, are inherently transferred to new designs. 

7.2 Recommendations for Future Work 

While the reuse-oriented retrieval method developed in this thesis can assist 

engineering designers in retrieval reusable CAD models in the development of new 

products, there are still several research opportunities for further improvement and 

investigation. 

7.2.1 Extension to support cross-system retrieval 

Cross-system retrieval possibly is required as designers sometimes need to retrieve 

CAD models from a system consisting of heterogeneous CAD file formats. In this 

research, the FDAG extraction is system-specific as it involves reading modeling 

knowledge and implications from native file formats. However, the subsequent 

algorithms, i.e., the FDAG decomposition, and shape descriptor generation, are both 

neutral to CAD systems. In order to deal with models sourcing from heterogeneous 

CAD systems, more studies need to be conducted on a neutral feature modeling 

knowledge representation. For instances, representing feature dependency in a neutral 

way could be a possible research direction. In a study on heterogeneous CAD data 

exchange [Chen et al. 2006], procedural models of different CAD systems are 

exchanged via a series of neutral modeling commands [Li et al. 2007]. The NMC-

based models can be used to extract a neutral representation of feature dependency, 

which then can be converted to an FDAG representation for cross-system retrieval. 
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This can integrate more design reference sources into prototype system and revitalize 

more existing mechanical parts for future design. 

7.2.2 Extension to support cross-system reuse 

Another possibility is that a retrieved model in the format of one CAD modeling 

system could be reused in another CAD system. This is the cross-system reuse. 

Although our implementation can be devised for cross-system retrieval, it is difficult 

to reuse one retrieved component on another heterogeneous model as constrained B-

rep entities may be missing in the target model. Differences in modeling kernels could 

cause that the same feature has identical shapes but differs in B-rep topologies and 

definitions among heterogeneous CAD systems [Rappoport et al. 2005]. This is a 

limitation of history based modeling. In order to address this gap, direct modeling, 

which allows direct geometry modification instead of feature modeling, could be 

adopted in the stage of redesign, especially for reuse of complex aerospace parts 

[Jackson and Buxton 2007]. Therefore, more studies should be conducted in this area 

about how to effectively support the direct modeling on retrieved models. 

7.2.3 Integration of part classification view 

A classification view of all existing part could be integrated into the reuse-oriented 

retrial framework to accelerate selection of redesign references. In this thesis, one-

dimensional view of all CAD models can be obtained based on the general or partial 

shape similarity to the sketched query model. However, without inputting a sketched 

query, designers may need to have an overall navigation view of all parts and choose 
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the desirable one. In the navigation that could be a two or three-dimensional view, the 

distance between pairs of displayed part corresponds to the proposed shape similarity 

metrics. Moreover, for a database with thousands of 3D models, clustering technique 

could be implemented to provide hierarchical views.  
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