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3D Indexing and Retrieval

Stefano Berretti, Mohamed Daoudi, Alberto Del Bimbo, Tarik Filali
Ansary, Pietro Pala, Julien Tierny, Jean-Phillippe Vandeborre

3.1 Introduction

This chapter introduces the problem of 3D retrieval by shape descriptors
and the criteria needed to evaluate the 3D retrieval algorithms. The role
of shape descriptors is to represent the original data in a very short way.
Intuitively, this means that the index should be invariant to some geometric
transformations of the object (translation, rotation, scaling), and should have
a certain robustness to noise.

This chapter also details different criteria commonly used to compare 3D
shape descriptors. We distinguish two main criteria: performance criteria
that evaluate quantitatively and objectively the performances of the 3D shape
descriptors, and algorithmic criteria that evaluate the algorithmic properties
of the 3D shape descriptors.

The use of 3D image and model databases throughout the Internet is grow-
ing in both number and size. Indeed, the development of modeling tools,
3D scanners (Figure 3.1), 3D graphic accelerated hardware, Web3D, high-
quality PDAs (Personal Data Assistants) and even cellular phones with a fast
CPU are powerful enough to visualize 3D models interactively. Recently,
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Figure 3.1 A 3D scanner

Acrobat 3D software proposed to insert and to publish 3D designs from
major computer-aided design (CAD) applications in Adobe PDF documents.

Exploiting the information contents of digital collections poses several
problems. In order to create value out of these collections, users need to
find information that matches certain expectations, a notoriously hard prob-
lem due to the inherent difficulties of describing visual information content.
Nowadays, people facing the problem of finding multimedia information
are typically using text-based search engines. The content of a multimedia
database is described using every day or – more or less – technical words
depending on the usage of the database. Hence, this kind of search engine
relies on human operators, with a certain expertise in the domain concern-
ing the multimedia database, who are manually describing the multimedia
content using keywords or annotations. The end-user is also experimenting
with the problem of language level depending on his or her technical skills
and expertise in the domain. Moreover, textual descriptions of multimedia
content are inherently subjective and consequently are not a reliable solution
to the problem of multimedia data indexing and retrieval.

In recent years, as a solution to these problems, many systems have been
proposed that enable effective information retrieval from digital collections
of images and videos (Del Bimbo 1999; Stamou and Kollias 2005).
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Figure 3.2 Example of a similarity search on a database of 3D models, showing a query
object and a set of relevant retrieval results

However, solutions proposed so far to support retrieval of images and
videos are not always effective in application contexts where the information
is intrinsically 3D. A similarity metric has to be defined to compute the visual
similarity between two 3D models, given their descriptions.

Figure 3.2 illustrates the concept of content-based 3D retrieval. The query
object is a 3D model of an aircraft (left side of Figure 3.2). The system is
expected to retrieve similar 3D models from the database as shown on the
right side of Figure 3.2.

Recent advances in 3D scanner acquisition technology and 3D graphics
rendering have boosted the creation of 3D model archives for several appli-
cation contexts. These include:

• Games/entertainment: The 3D models are used to enhance realism in
entertainment applications. Reuse and adaptation of 3D models by sim-
ilarity search in existing databases is a promising approach to reduce
production costs.

• Medicine: In medicine, the detection of similar 3D organ deformation can
be used for diagnostics.

• CAD: Technicians and engineers in manufacturing companies need to
exploit the large CAD mechanical parts database during the design of an
automobile, to update the documentary corpus, to exploit engineering data
and to create spare parts from original vehicle parts. Presently, many of
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these steps demand human intervention for manual and visual inspection.
Consequently, these processes are time consuming and very expensive. To
improve productivity it is important to develop CAD search algorithms so
as to automate significant parts of the process. Indeed, when a new product
is designed, it can be composed of many small parts that fit together to
form the product. If some of these parts are similar to one of the standard
parts already designed, then the possible replacement of the original part
with the standard part can lead to a reduction in production costs.

• 3D-face recognition: Automatic face recognition has been actively research-
ed in recent years, and various techniques using ideas from 2D image analysis
have been presented. Although significant progress has been made, the task
of automated, robust face recognition is still a distant goal. The 2D image-
based methods are inherently limited by variability in imaging factors such
as illumination and pose. An emerging solution is to use laser scanners for
capturing the surfaces of human faces, and use these data to perform face
recognition. Such observations are relatively invariant to illumination and
pose, although they do vary with facial expressions. As the technology for
measuring facial surfaces becomes simpler and cheaper, the use of 3D facial
scans will be increasingly prominent.

• Cultural heritage: One particular interest is the possibility of exploit-
ing 3D-based technologies to enable monitoring, cataloguing and remote
fruition (periodic acquisition and comparison to evidence for deformation
of masterpieces due to pollution, inadequate preservation, etc.).

• Bioinformatics: A 3D structural comparison and structural database search-
ing of proteins play important roles. In many cases, merely comparing the
amino acid sequences of the proteins cannot provide sufficient information
required by the biologist. In particular, one cannot detect the similarity of
two remotely homologous proteins by sequence comparison alone. Instead,
a comparison of their 3D structures needs to be made in order to determine
their similarity since the 3D structures are better preserved than the sequences
throughout evolution. Indeed, there are now more than 25 000 protein struc-
ture files in Protein Data Bank1 (PDB), with an additional 100 added every
week – hence the increasing necessity for protein structural retrieval.

A variety of retrieval methods have been proposed that enable the efficient
querying of model repositories for a desired 3D shape, many of which use
a 3D model as a query and attempt to retrieve models with matching shape

1 http://www.pdb.org/.
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By Shape

By color

3D Search Engine

Figure 3.3 Examples of visual query

from the database. As above, an example of such an application is shown in
Figure 3.2. The user specifies an aircraft as a query model (left). The system
then compares the query to every model in the database, returning pointers
to the models that are most similar (right).

In practice, the visual descriptor (shape, color) (Figure 3.3) is incorporated
into the search engine as shown in Figure 3.4. In this chapter, we will restrict
our discussion to an analysis of shapes to study their contribution in indexing.
In a pre processing step the shape descriptor of each model in the database
is computed (offline step). Then, at run-time, a query is presented to the
system, its shape descriptor is computed (online step), the query descriptor
is compared to the descriptors of the models in the database (3D search
engine), and the database models with descriptors that are most similar to
the query descriptor are returned as matches.

Figure 3.4 shows an overview of the 3D retrieval system:

• A subsystem for the manual annotation of the 3D data; in general, all the
concepts which cannot be extracted manually.

• A subsystem for the extraction of low-level features; 3D processing is used
to extract automatically descriptors of 3D data.

• An interface for browsing the 3D model database.
• A graphical query interface which permits retrieval of 3D models by a

drawing or sketch, by a photo or by a 3D model. Figure 3.5 shows an
example of the 3D retrieval graphical interface.
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Query by text

Human

Query by visual example Browsing Visualization

3D search engine
Visual feature extraction

Manual annotation

Offline Online

3D indexing

Figure 3.4 An overview of a 3D retrieval system

Figure 3.5 Examples from the Princeton Search Engine of 3D retrieval by sketch (2D
and 3D sketch)

3.1.1 3D Shape-invariant Descriptors and Algorithmic
Comparison Criteria of 3D Descriptors

Given 3D models, the goal now is to develop metrics and mechanisms for
comparing their shapes.

Definition 3.1.1 The shape is all the geometrical information that remains
when location, scale and rotational effects are filtered out from an object
(Kendall 1984).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39



Dugelay c03.tex V1 - 03/17/2008 12:10 A.M. Page 93

Introduction 93

Translation Scale Rotation

Figure 3.6 Some 3D models which have different locations, rotations and scales but
the same shape. Courtesy of M Misha

So, an object’s shape is invariant under the Euclidean similarity transfor-
mations of translation, scaling and rotation. This is reflected in Figure 3.6.

Definition 3.1.2 A sequence of scalars {Ik} is an invariant descriptor set with
regard to a group of transformations G if and only if , for two 3D models O1

and O2 having the same shape, Ik (O1) = Ik (O2) for all integer k.

Two objects have the same shape if they can be translated, scaled and
rotated to each other so they match exactly, i.e. if the objects are similar. In
practice, we are interested in comparing objects with different shapes and so
we require a way of measuring shape, some notion of distance between two
shapes. This distance should be relatively easy to compute. The 3D scans
of objects provide large amounts of data (approximately 20–30 000 vertices,
edges, and so on), and a successful method should be able to analyze these
data efficiently and compute the metric quickly.

It is important that the invariant descriptors fulfill certain criteria such as
real-time computation, completeness and stability which express the fact that
a small distortion of the shape does not induce a noticeable divergence. The
descriptors must be independent of similarity transformations.

Several invariant descriptors have been proposed in the literature (Bustos
et al . 2005). To compare the invariant descriptors, six algorithmic criteria
have been defined: complexity, invariance under transformations, concise-
ness, robustness to noise as shown in Figure 3.7, etc, as follows:

• Size, T, representing the size of the vector corresponding to the descriptor
of the 3D model.

• Extraction complexity, CE, representing the complexity of the algorithm
that extracts the 3D model descriptor.
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Figure 3.7 A 3D model from the Princeton Shape Benchmark with decimation and
different noise effects

• Comparison complexity, CMS, representing the complexity of the similar-
ity measure between two descriptors.

• Generality, G, specifying if the 3D model descriptor can be applied to
topologically ill-defined 3D models and polygon soup.

• Geometrical invariance, GI, specifying if the descriptor is invariant to
geometrical transformations (as illustrated in Figure 3.6).

• Topological invariance, TI, specifying if the descriptor is independent of
the polygonal representations.

3.1.2 Evaluation Criteria

The efficiency of a 3D retrieval algorithm can be evaluated by the following
statistics:

• Nearest neighbor: The percentage of the closest matches that belong to
the same class as the query. This statistic provides an indication of how
well a nearest neighbor classifier would perform. Obviously, an ideal score
is 100 %; higher scores are associated with good results.

• First tier and second tier: The percentage of models in the query’s class
that appear within the top K matches, where K depends on the size of
the query’s class. Specifically, for a class with |C| members, K = |C| − 1
for the first tier and K = 2 × (|C| − 1) for the second tier. The first-tier
statistic indicates the recall for the smallest K that could possibly include
100 % of the models in the query class, while the second tier is a little
less stringent (i.e. K is twice as big). These statistics are similar to the
Bull Eye Percentage Score K = 2 × |C|, which has been adopted by the
MPEG-7 visual shape descriptors (SDs). In all cases, an ideal matching
result gives a score of 100 %; again higher values indicate better matches.

• E -measure: A composite measure of the precision and recall for a fixed
number of retrieved results. The intuition is that a user of a search engine
is more interested in the first page of query results than in later pages. So,
this measure considers only the first 32 retrieved models for every query
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and calculates the precision and recall over those results. The E-Measure
is defined as:

E = 2
1
P

+ 1
R

The E-measure is equivalent to subtracting van Rijsbergen’s definition
of the E-measure from 1. The maximum score is 1.0, and higher values
indicate better results.

• Discounted cumulative gain (DCG): A statistic that weights correct results
near the front of the list more than correct results later in the ranked list under
the assumption that a user is less likely to consider elements near the end of
the list. Specifically, the ranked list R is converted to a list G, where element
Gi has a value of 1 if element Ri is in the correct class and 0 otherwise.
Discounted cumulative gain is then defined as follows:

DCG1 = G1; DCGi = DCGi−1 + Gi

log2(i)
, if i > 1

The result is then divided by the maximum possible DCG (i.e. that would
be achieved if the first C elements were in the correct class, where |C| is
the size of the class) to give the final score:

DCG = DCGk

1 + ∑|C|
j=2

1
log2(j)

where k is the number of models in the database. The entire query result
list is incorporated in an intuitive manner by the discounted cumulative
gain (Leifman et al. 2003).

• Recall vs. precision curves: These curves are well known in the literature
of content-based search and retrieval. The recall and precision are defined
as follows:

Recall = N/Q, Precision = N/A

where N is the number of relevant models retrieved in the top A retrievals,
and Q is the number of relevant models in the collection, which is the
number of models to which the query belongs.

Exercise 1 Figure 3.8 shows five models of the ant–insect class from the
Princeton Shape Benchmark classified by the user. The user provides the
request illustrated in Figure 3.8 (top left) and the 3D search engine gives
the first 16 results represented by Figure 3.9. Compute the statistics for nearest
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Figure 3.8 Insect class

Figure 3.9 The first 16 relevant retrieval results

neighbor, first tier, second tier, E-measure, and draw the recall/precision
curve.

3.2 Statistical Shape Retrieval

The 3D shape retrieval methods are not directly based on some measure-
ments of shapes, but on the distribution of those measurements. This kind
of distribution is generally represented by histograms of local or global
features. The features could be curvatures on the surface representing the
model, the Euclidean or geodesic distance between points on the surface,
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angle measurements, elementary volumes, and so on. Each 3D model is
then described as a distribution of such features. Therefore the principle of
comparing two 3D shapes is very simple because it is reduced to a simple
comparison of histograms.

In this section, we describe and analyze some methods for computing
statistical 3D shape descriptors and dissimilarity measures. The first part
introduces some differential geometry definitions. The second and third parts
of this section are respectively about local and global features used to com-
pute a histogram. The fourth part discusses the use of what we call hybrid
approaches that consist of mixing histograms of local and global features
to enhance the possibilities of these two kinds of features. The last part
reports on the experiments and results of these three families of methods on
a collection of 50 3D models.

3.2.1 Differential Geometries of Surfaces

Let S be a surface denoting a 3D model. Although in practice S is a trian-
gulated mesh with a collection of edges and vertices, we start the discussion
by assuming that it is a continuous surface. We recall the main surface
properties.

Definition 3.2.1 A subset S of R
3 is called a regular surface if for each point

p in S, there exists a neighborhood V of p in R
3 and a map φ : U → R

3 of
an open set U, subset R

2, onto V intersection S such that

1. φ is differentiable.
2. φ : U → V ∩ S is a homeomorphism.
3. Each map φ : U → S is a regular patch.

Any open subset of a regular surface is also a regular surface.

Property 1 If f : U → R is a differentiable function in an open set U of
R

2, then the graph of f, i.e. the subset of R
3 given by (x, y, f (x, y)) for

(x, y) ∈ U , is a regular surface.

Definition 3.2.2 Let S ⊂ R3, be a regular and orientable surface. The princi-
pal curvatures k1 and k2 are the eigenvalues of the Weingarten endomorphism
W defined by:

W = I−1 · II
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where I and II are the two fundamental forms (do Carmo 1976) defined as
follows:

I =
[ 〈Su, Su〉 〈Su, Sv〉

〈Su, Sv〉 〈Sv, Sv〉
]

, II =
[ 〈Suu, N〉 〈Suv, N〉

〈Suv, N〉 〈Svv, N〉
]

where the scalar 〈a , b〉 represents the scalar product of two vectors a and b.
The vector a ∧ b represents the cross-product of two vectors a and b:

Su = ∂S(u0, v0)

∂u
, Sv = ∂S(u0, v0)

∂v
, N = Su ∧ Sv

‖Su ∧ Sv‖ ,

Suu = ∂2S

∂u2
, Svv = ∂2S

∂v2
and Suv = ∂2S

∂uv

Exercise 2 The surface of the cylinder (see Figure 3.12) admits the para-
metrization:

S(u, v) = (cos u, sin u, v), U = {
(u, v) ∈ R

3; 0 < u < 2π, −∞ < v < ∞}
Compute the values Su, Suu, Suv, Svv, Su, Suu, Suv, Svv.

3.2.2 Local Approaches

The local feature histograms aim at using local feature measurements on the
surface representing the 3D shape. These features can be understood as infor-
mation from the 3D model when it is observed and analyzed very closely.

Many local features have been studied in the literature for use as local
descriptors for distribution: elementary volumes extracted from each face of
a 3D mesh (Zhang and Chen 2001), model area as a function of spherical
angles (Ankerst et al. 1999) or curvatures extracted at each vertex of a 3D
mesh (Zaharia and Prêteux 2001) are some well-known examples. It is also
important to note that the curvature histogram has been chosen as an MPEG-7
3D descriptor and has been called the 3D shape spectrum descriptor in this
context.

Shape index (Koenderink and van Doorn 1992)

The 3D shape spectrum descriptor aims at providing an intrinsic shape
description of 3D mesh models. The histogram is based on the shape index
introduced by (Koenderink and van Doorn 1992). The shape index is defined
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Figure 3.10 The curvature index values for some well-known curves. From left to right:
spherical cup, rut, saddle, ridge, spherical cap

as a function of the two principal curvatures of the surface. The main advan-
tage of this index is that it gives the possibility to describe the shape of the
object at a given point. The drawback is that it loses the information about
the magnitude of the surface shape.

Let us give more details about the computation of the curvature histogram.
Let p be a point on the 3D surface. Let us denote by k1

p and k2
p the principal

curvatures associated with the point p. The shape index at point p, denoted
by Ip, is defined as:

Ip = 2

π
arctan

k1
p + k2

p

k1
p − k2

p

with k1
p ≥ k2

p (3.1)

The shape index value belongs to the interval [0, 1] and is not defined
for planar surfaces. Special values, outside of the interval, can be chosen for
special surfaces like planes. Figure 3.10 illustrates some well-known surfaces
and their values over the interval of shape index definition.

The shape spectrum of the 3D mesh is the histogram of the shape indexes
calculated over the entire 3D mesh.

Estimation of the principal curvatures

Very often a surface is given as the graph of a differentiable function. Let
z = f (x, y) belong to an open set U ⊂ R

2, and S(u, v) = (u, v, f (u, v)),

(u, v) ∈ U , where x = u, v = y. A simple computation shows that:
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Su = (1, 0, fu), Su = (0, 1, fv), Suu = (0, 0, fuu), Suv = (0, 0, fuv),
Svv = (0, 0, fvv)

I =
[

1 + fu
2 fufv

fufv 1 + fv
2

]
, II = 1√

(1 + fu
2 + fv

2)

[
fuu fuv

fuv fvv

]

The estimation of the principal curvatures at a point p is the key step of
the shape spectrum extraction. Indeed, the spectrum extraction performances
strongly depend on the accuracy of the estimation. Computing these curva-
tures can be done in different ways, each with advantages and drawbacks.
Stokely and Wu (1992) proposed five practical methods to compute them:
the Sander–Zucker approach (Sander and Zucker 1990), two methods based
on direct surface mapping, a piece wise linear manifold technique, and a
turtle geometry method. All these methods are well adapted to specialized
uses (e.g. tomographic medical images).

Here, we choose to present a very simple and efficient method to compute
the curvature at each vertex of the 3D mesh by fitting a quadric to the
neighborhood of this vertex using the least squares method.

The parametric surface approximation is achieved by fitting a quadric sur-
face through the cloud of the m points {(xi, yi, zi)}mi=1 made at the centroids
of the considered face and its 1-adjacent faces. Here, f is expressed as a
second-order polynomial:

f (x, y) = a0x
2 + a1y

2 + a2xy + a3x + a4y + a5

where the ai coefficients are real values.
By denotinga = (a0, a1, a2, a3, a4, a5)

t andb(x, y) = (x2, y2, xy, x, y, 1)t ,
the previous equation can be expressed by using the standard matrix notation:

f (x, y) = at · b(x, y)

The parameter vector a = (a0, a1, a2, a3, a4, a5)
t is determined by apply-

ing a linear regression procedure. Given the data points denoted by
{(xi, yi, zi)}mi=1, the parameter vector corresponding to the optimal fit (in
the mean squared error sense) is given by the following equation:

a =
(

N∑
i=1

b(xi, yi)b
t (xi, yi)

)−1

·
(

N∑
i=1

zib(xi, yi)

)

From this quadric approximation, it becomes easy to compute the principal
curvatures k1 and k2.
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The curvature histogram

The shape index can now be computed by Equation (3.1) at each point of the
3D mesh. The different Ip values are put together in a histogram representing
the curvature distribution for the 3D model.

For more details on curves, surfaces and curvature, we refer the reader
to the reference book on differential geometry of curves and surfaces by
do Carmo (1976). Another very interesting reference book has been written
by Koenderink (1990) who introduced the shape index detailed in this part.

Invariance and robustness of the curvature histogram

Because the shape index (Ip value) used to compute the curvature histogram
is a local descriptor, it uses only the neighborhood of the point to be cal-
culated. This neighborhood is obviously invariant to rigid translations and
rotations.

The Ip value is calculated with a quotient of the principal curvatures.
Then the amplitude of a curve has no influence on the Ip value. Hence, the
curvature histogram is also invariant to scaling.

However, the curvature histogram is not robust to tessellation of the 3D
mesh. The computation of the shape index depends on the neighborhood of
a point. If the resolution of the mesh (i.e. the size of the polygonal faces) is
low, then the neighborhood will not be precise enough to approximate the
local curve accurately. One idea to fix this is to compute a new tessellation
of the 3D mesh with smaller and homothetic triangles.

We summarize the curvature histogram in Algorithm 1.

Algorithm 1 The curvature histogram
Given a surface S:

1. Compute the values a0, a1, a2, a3, a4, a5 of the quadric f on each point
of the surface.

2. Compute Su = (1, 0, fu), Su = (0, 1, fv), Suu = (0, 0, fuu), Suv =
(0, 0, fuv), Svv = (0, 0, fvv).
3. Compute the two fundamental forms I and II, and the matrix W.
4. Compute the eigenvalues of the matrix W , and the values of the curva-
tures k1 and k2.
5. Compute Ip.
6. Compute the curvature histogram.
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Figure 3.11 Curvature histogram for a 3D model cow (5804 faces)

Figure 3.11 shows an example of a curvature histogram for a 3D-model
made of 5804 faces, computed by the algorithm 1.

Exercise 3 Compute for the cylinder shown in Figure 3.12:

1. The first fundamental form.
2. The second fundamental form.
3. The curvatures k1 and k2.
4. The shape index Ip.

The right cylinder over the circle x2 + y2 = 1 admits the parameterization
φ : U → R

3, where:

φ(u, v) = (cos u; sin u, v),

U = {
(u, v) ∈ R

3; 0 < u < 2π, −∞ < v < ∞}
Let Rx,θ : R

3 → R
3 be the rotation of angle θ about the x axis. Compute the

new value of the shape index Ip of the cylinder.

The correlogram of curvature

The main limitation of using curvature histograms for the description and
retrieval of 3D models relates to the fact that any information about the
spatial distribution of curvature values on the object surface is lost. Correl-
ograms of curvature (Antini et al. 2005) have been proposed as a solution
to this problem. In particular, with respect to a description based on curva-
ture histograms, correlograms also enable encoding of information about the
relative localization of curvature values.
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Figure 3.12 Cylinder parameterization

To compute correlograms of curvature, values of the mean curvature are
quantized into 2N + 1 classes of discrete values. For this purpose, a quan-
tization module processes the mean curvature value through a stair–step
function so that many neighboring values are mapped to one output value:

Q(k) =




N� if k > N�

i� if k ∈ [i�, (i + 1)�)

−i� if k ∈ [−i�, −(i + 1)�)

−N� if k < −N�

(3.2)

with i ∈ {0, . . . , N − 1} and � a suitable quantization parameter (in the
experiments reported in the following, N = 100 and � = 0.15). Function
Q(·) quantizes values of k into 2N + 1 distinct classes {ci}Ni=−N .

To simplify the notation, v ∈ Si is synonymous with v ∈ S and Q(kv) = ci .
The correlogram of curvature is defined with respect to a predefined dis-

tance value δ. In particular, the correlogram of curvature γ
(δ)
cicj

of a mesh S

is defined as:

γ (δ)
ci ,cj

(S) = Pr
v1,v2∈S

[(v1 ∈ Sci
, v2 ∈ Scj

) | ||v1 − v2|| = δ ]

In this way, γ
(δ)
ci ,cj

(S) is the probability that two vertices that are δ far away
from each other have curvature belonging to class ci and cj , respectively.
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Ideally, ||v1 − v2|| should be the geodesic distance between vertices v1 and
v2. However, this can be approximated by the k-ring distance if the mesh S

is regular and triangulated.

Definition 3.2.3 (1-ring) Given a generic vertex vi ∈ S, the neighborhood or
1-ring of vi is the set:

V vi = {vj ∈ S : ∃eij ∈ E}
where E is the set of all mesh edges (if eij ∈ E there is an edge that links
vertices vi and vj ).

The set V vi can be easily computed using the morphological operator
dilate:

V vi = dilate(vi)

Practically, the dilation operator is obtained by using a 1-ring as ‘structure
element’. A set of mesh vertices is dilated by extending the set with the
1-ring of any vertex of the set (Rossl et al. 2000).

Through the dilate operator, the concept of 1-ring can be used to define,
recursively, a generic kth-order neighborhood:

ringk = dilatek ∩ dilatek−1

The definition of the kth-order neighborhood enables the definition of a true
metric between vertices of a mesh. This metric can be used for the pur-
pose of computing curvature correlograms as an approximation of the usual
geodesic distance (which is computationally much more time consuming).
According to this, we define the k-ring distance between two mesh vertices
as dring(v1, v2) = k if v2 ∈ ringk(v1).

Function dring(v1, v2) = k is a true metric. In fact:

1. dring(u, v) ≥ 0 and dring(u, v) = 0 if and only if u = v.
2. dring(u, v) = dring(v, u).
3. ∀w ∈ S, d(u, v) ≤ d(u, w) + d(w, v).

Based on the dring(·) distance, the correlogram of curvature can be rede-
fined as follows:

γ (k)
ci ,cj

(S) = Pr
v1,v2∈S

[(v1 ∈ Sci
, v2 ∈ Scj

)
∣∣dring(v1, v2) = k

]
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(a)

(b)

Figure 3.13 Correlograms of curvature extracted from sample 3D models: (a) statue;
(b) dinosaur

Figure 3.13 shows some 3D models belonging to two classes of objects:
statue and dinosaur. For each object the corresponding correlogram of curva-
ture is also shown. It can be noted that values of the correlograms extracted
from objects of the same class exhibit a common pattern.

Several distance measures have been proposed to compute the dissimi-
larity of distribution functions. In order to compute the similarity between
curvature correlograms of two distinct meshes γ

(k)
ci ,cj

(S1) and γ
(k)
ci ,cj

(S2), we
experimented with the following distance measures:

• Minkowski-form distance:

dLp =

 N∑

i,j=−N

∣∣∣γ (k)
ci ,cj

(S1) − γ (k)
ci ,cj

(S2)

∣∣∣p



1/p

• Histogram intersection:

dHI = 1 −
∑N

i,j=−N min
(
γ

(k)
ci ,cj

(S1), γ
(k)
ci ,cj

(S2)
)

∑N
i,j=−N γ

(k)
ci ,cj

(S2)

• χ2-statistics:

dχ2 =
N∑

i,j=−N

(
γ

(k)
ci ,cj

(S1) − γ
(k)
ci ,cj

(S2)
)2

2
(
γ

(k)
ci ,cj

(S1) + γ
(k)
ci ,cj

(S2)
)

• Kullback–Leibler divergence:

dKL =
N∑

i,j=−N

γ (k)
ci ,cj

(S1) log
γ

(k)
ci ,cj

(S1)

γ
(k)
ci ,cj

(S2)
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3.2.3 Global Approaches

Global descriptors are a means to handle the global nature of the object. This
means that, rather than the details of the object, more importance is given to
its general aspect. The moments (Lo and Don 1989; Sadjadi and Hall 1980)
here are the traditional mathematical tool. However, the moments present a
drawback: they rely on the object being described by a function, defined in
major 3D space, which could for instance associate 1 or 0 to each 3D point,
depending on whether it is inside or outside the object. Very few objects
are defined by or convertible to such a function, which makes the moments
method often impossible to use. To avoid this problem, it is also possible
to grab the Z-buffer of an object’s view, which consists of the 2D data that
could be used to generate the moments. But in this section we want to deal
with 3D space, so this method is not presented here.

Other global descriptor distributions have been studied in the literature. The
most interesting ones have been proposed and developed by Osada et al.
(2001). They are based on shape distributions. The main idea is to focus
on the statistical distributions of a shape function measuring geometrical
properties of the 3D model. They are represented as histograms, as in the
local approach. The range of possible functions is very wide. The authors
have proposed and tested five shape functions:

• A3: measures the angle between three random points on the surface of a
3D model;

• D1: measures the distance between a fixed point (e.g. the centroid of the
boundary of the model) and one random point on the surface;

• D2: measures the distance between two random points on the surface;
• D3: measures the square root of the area of the triangle formed by three

randomly chosen points on the surface;
• D4: measures the cube root of the volume of the tetrahedron formed by

four randomly chosen points on the surface.

These shape functions have been chosen for their computational simplicity
and invariance (see below for a discussion on the invariance and robustness
of the distance histogram). According to Osada et al. (2001), the distribution
of the distance between pairs of random points (D2) gives the best results
compared to other simple methods.

Other authors have investigated the D2 descriptor to enhance its already
very good performance. Ip et al. (2002) refined the D2 descriptor in the
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context of CAD models with a classification of the two random points used
to compute the descriptor. Ohbuchi et al. (2003a) also extended the D2
descriptor with a distribution called the Absolute Angle–Distance Histogram.
This histogram is parameterized by one parameter denoting the distance
between two random points (as in the original D2 shape descriptor) and
by another parameter denoting the angle between the surfaces on which the
two random points are located.

In the next sections, we give more details about the distance histogram
(D2), its computation and its properties.

Distance histogram (D2)

The computation of the distance histogram is based on a stochastic method
and is particularly simple.

Two random faces of the 3D model are taken, then two random points are
taken on those two faces. Finally, the Euclidean distance between those two
points is computed. The method is iterated N times, N being big enough
to give a good approximation of the distribution. Empirically, Osada et al.
(2001) found that N = 10242 is a good compromise between the computation
time and storage and the precision of the distribution.

Figure 3.14 shows an example of a curvature histogram for a 3D model
made of 5804 faces. Figure 3.15 shows distance histograms for some canon-
ical shapes.

Invariance and robustness of the distance histogram (D2)

It can be seen that all the shape functions proposed by Osada et al. (2001) –
including D2 – are invariant to rigid motions (translations and rotations).
They are also robust to tessellation of the 3D mesh, since points are randomly
selected on the surface of the 3D model. They are also relatively insensitive to
small perturbations due to noise, cracks, etc., since sampling is area weighted.

But one should notice that the Euclidean distance, and thus the D2 index,
are sensitive to scaling. This is obviously because the Euclidean distance is
not either. So, the histogram has to be normalized before using it. One way
to do this is to normalize the mean value of the distribution.

This value is first computed:

MV(f ) =
∫ ∞

0
x · f (x) · dx
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Figure 3.14 Distance histogram (D2) for the 3D model of a cow (5804 faces), O. Cro-
quette, J-P. Vandeborre, M. Daoudi, C. Chaillou “Indexing and retrieval VRML models”
SPIE Electronic Imaging 2002, in proceedings volume 4672, pp. 95–106. Reproduced by
permission of SPIE

Then the new histogram is defined by:

fnorm(x) = f

(
x

MV(f )

)

The fnorm is the new distribution, invariant to scaling.

3.2.4 Hybrid Approaches

The previously presented local and global methods have advantages and
drawbacks (see the conclusion of this section). Some authors proposed
hybrid – or mixing – approaches to enhance advantages and to reduce the
problems induced by these methods.

Paquet et al. (2000) proposed to use different descriptors: namely, bound-
ing boxes, cords based, moments based and wavelet based. Paquet and Rioux
(1997) also proposed, in the context of the Nefertiti project, to combine geom-
etry and color/texture appearance to describe a 3D-model and express a user
request.

More in keeping with the previously presented local and global approaches,
Vandeborre et al. (2002) described the 3D models with three distributions:
a curvature histogram, a distance histogram and an elementary volume his-
togram. In order to compare two 3D models, the authors compute three
distances between pairs of similar histograms (one distance for the cur-
vature histograms, one distance for the distance histograms and one dis-
tance for the elementary volume histograms) as shown in Figure 3.16. Then,
the rank of each object is calculated according to each descriptor, sort-
ing them by decreasing values (three integers between 1 and NbObjects,
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Figure 3.15 D2 distance histograms for some canonical shapes Osada et al . (2001).
 2001 IEEE

named Rankc for the curvature index, Rankd for the distance index and
Rankv for the volume index). Those values are merged into a single value,
using a formula. Intuitively, there are different strategies for merging these
values:

• Support the objects having satisfactory results with one approach, the other
ones having less importance. This is what the authors called the ‘OR’
method:

F = 1 −
(

(Ranks − 1) · (Rankd − 1) · (Rankv − 1)

NbObjects × NbObjects × NbObjects

)
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Figure 3.16 Comparison of two 3D models described by three histogram. O. Cro-
quette, J-P. Vandeborre, M. Daoudi, C. Chaillou “Indexing and retrieval VRML models”
SPIE Electronic Imaging 2002, in proceedings volume 4672, pp. 95–106. Reproduced by
permission of SPIE

• Use the mean of the three results, called the ‘MEAN’ method:

F = (Ranks + Rankd + Rankv)

3 · NbObjects

This way, they obtain one final real number, between 0 and 1, which
represents the confidence one could have in the result. Note that the same
kind of formula can be used to merge just two rank values.

3.2.5 Experiments and Results

The methods described in the previous sections (i.e. curvature histogram, dis-
tance histogram, mixing methods) have been implemented and tested on a 3D
model collection containing 50 models. Experiments and results are briefly
reported in this section to show the effectiveness, advantages and drawbacks
of the three families of approaches presented in the previous sections.

Before detailing the 3D model test collection and the results, let us explain
the way the histograms are compared.

Comparison of histograms

There are several ways to compare distribution histograms: the Minkowski Ln

norms, Kolmogorov–Smirnov distance, match distances, and many others.
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One of the most used is the L1 norm because of its simplicity and its accurate
results.

The Minkowski Ln norm is given by:

DL1(f1, f2) =
∫ +∞

−∞
|f1 − f2|

where f1 and f2 are the two functions to be compared.
The first step before calculating the Minkowski Ln norm on two histograms

is to interpolate them in a fixed number of linear segments by the least
squares method in order to circumvent some problems like quantization,
noise, etc. Then, a simple integration of these interpolations is done, giving
a real number as a result.

3D model test collection

The 3D model test collection contains 50 models which have been collected
from the MPEG-7 3D shape core experiments (Zaharia and Prêteux 2000) and
arranged into seven classes. This manual classification has only been done for
the purposes of our experiment. This classification is never used to improve
the retrieval task of the search engine. The classes are the following: A-class
(eight aircraft objects), M-class (considered just as noise, five misc. objects),
P-class (seven chess piece objects), H-class (eight human objects), F-class
(six fish objects), Q-class (eight quadrupede objects) and C-class (eight car
objects). The models are 3D meshes (‘soup’ of polygons) of approximately
500 to 25 000 faces. Moreover, the mesh levels of detail are very different
from one object to another.

Classification matrix

As the 3D model collection is classified, one can assume, for each request,
that objects from the same class as the request are relevant, and conse-
quently others are not. To evaluate the global performances of the different
stand-alone descriptors (curvature and distance histogram) and of the mixing
methods, classification matrices have been used.

Each column of a classification matrix (e.g. Figure 3.17) represents an
object of the database (the first column corresponds to the first object, and so
on) which has been used as a request in the search engine. Each small square
shows how the object of the given row was ranked: the darker the square, the
better the rank. For example, object 23 was ranked last when object 50 was
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Figure 3.17 Classification matrices for the curvature (left) and distance (right) His-
tograms. O. Croquette, J-P. Vandeborre, M. Daoudi, C. Chaillou “Indexing and retrieval
VRML models” SPIE Electronic Imaging 2002, in proceedings volume 4672, pp. 95–106.
Reproduced by permission of SPIE

requested, 50 the square at the intersection of column 50 and line 23 is white
in color. This also means that the diagonal is entirely black because each
object is always the best result of its own request. Moreover, the matrices
are not symmetric because the squares do not represent the distance between
two objects, but a rank.

Results

The classification matrices for the curvature and distance histograms are
shown in Figure 3.17. The first observation is that the two descriptors have
difficulties in retrieving some classes. For example, the curvature histogram
has no difficulty in classify the aircraft, but has many problems with the car
class. Similarly, the distance index gives an accurate classification for the
cars, but cannot give satisfactory results for the aircraft. Both curvature and
distance indices have advantages and drawbacks.

Firstly, one can see that the two mixing methods are quite equivalent in
terms of results. Figure 3.18 shows the classification matrices for the OR and
the MEAN methods with the curvature and the distance histograms. Compar-
ing these matrices (Figure 3.18) to the ones for the stand-alone histograms
(Figure 3.17), it is clear that the two mixing methods can correct some weak-
nesses of the stand-alone histogram methods. For example, the curvature
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Figure 3.18 Classification matrices for the curvature (left) and distance (right) His-
tograms. O. Croquette, J-P. Vandeborre, M. Daoudi, C. Chaillou “Indexing and retrieval
VRML models” SPIE Electronic Imaging 2002, in proceedings volume 4672, pp. 95–106.
Reproduced by permission of SPIE

histogram matrix shows some difficulties with the cars, and the distance
matrix shows some difficulties with the aircraft. Those problems no longer
exist when any of the mixing methods are used. On the other hand, the cur-
vature histogram is able to classify humans and fishes, whereas the distance
histogram has some problems with these classes. So, the mixing methods can-
not entirely organize these two classes correctly. Nevertheless, any mixing
methods give better results than any of the single histogram methods.

3.2.6 Conclusion on Statistical Methods

Statistical methods have the main advantage of reducing the 3D model sim-
ilarity measure to a very simple comparison of histograms. The previous
shape functions used to compute these histograms generally have the long-
awaited properties of invariance to rotation and to translation. Invariance to
scaling is generally a matter of histogram normalization. Local approaches
(such as the curvature histogram) are able to distinguish different classes
of objects, but are sensitive to noise. Global approaches are robust to noise
and can distinguish models in wide categories, but are not efficient at dis-
criminating objects that are globally similar but with different small details
in their shapes. Hybrid methods can be used to combine different statistical
descriptors and enhance the performance of 3D model retrieval.
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Figure 3.19 The method of 3D retrieval by parts

3.3 Structural Approaches

The aim of this section is to present structural methods for 3D retrieval. These
methods use high-level information to describe the structure of 3D objects.
We will mainly present the graph-based methods, as shown in Figure 3.19
illustrating a 3D retrieval system based on such information. The statistical
shape descriptors represent the geometry of the model and they can be used to
compare rigid body transformations and to compare whole models. However,
they cannot be used to compare articulated models and parts of a model. The
general approach proposes to construct graphs where nodes represent parts
and edges represent relationships between parts. The proposed algorithms
compare nodes and match graphs.

In this section, we are interested in the topology of the shape. Indeed,
the topology describes properties of shape that are invariant under articula-
tions. We can investigate topology by investigating critical points of Morse
functions.

Definition 3.3.1 (Morse function) Let p(u) ∈ M ⊂ R
3 be a point on a closed

embedded 2-manifold, in a neighborhood continuously parameterized by u =
(u1, u2). Let f : M → R be any smooth function on the manifold. A point
is critical if its gradient ∂f/∂u vanishes; otherwise, it is regular. A critical
point is Morse if its Hessian matrix H(p) is non-singular; otherwise, it is
degenerate. If and only if all its critical points are Morse, then the function
f is a Morse function.
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The Hessian of the function f at the point p is the matrix of second
derivatives defined by:



∂2f

∂u1∂u1
(p)

∂2f

∂u1∂u2
(p) . . .

∂2f

∂u1∂ud
(p)

∂2f

∂u2∂u1
(p)

∂2f

∂u2∂u2
(p) . . .

∂2f

∂u2∂ud
(p)

...
. . .

∂2f

∂ud∂u1
(p)

∂2f

∂ud∂u2
(p) . . .

∂2f

∂ud∂ud
(p)




Exercise 4 Compute the Hessian and, if defined, the index of the origin, which
is critical for each function in the list below:

1. f (u1, u2) = u2
1 + u2

2.
2. f (u1, u2, u3) = u1u2 + u1u3 + u2u3.

3.3.1 Introduction to Reeb Graph

A Reeb graph (Reeb 1946) is a topological structure that encodes the con-
nectivity relations of the critical points of a Morse function defined on an
input surface.

The Reeb graph is a schematic way of presenting a Morse function where
the vertices of the graph are critical points and the arcs of the graph are
connected components of the level sets of f , contracted to points. More
formally, Reeb graphs are defined as follows.

Definition 3.3.2 (Reeb graph) Let f : M → R be a simple Morse function
defined on a compact manifold M . The Reeb graph of f is the quotient space
of f in M × R from the equivalence relation (p1, f (p1)) ∼ (p2, f (p2)), if
and only if: 


f (p1) = f (p2)

p1 and p2 belong to the same connected
component of f −1(f (p1))

Figure 3.20 gives an example of a Reeb graph computed on a bi-torus with
regard to the height function and illustrates well the fact that Reeb graphs
can be used as skeletons.

Constructing a Reeb graph from a Morse function f computed on a triangu-
lated surface first requires identification of the set of vertices corresponding
to critical points. With this aim, several formulations have been proposed
(Edelsbrunner and Mücke 1990; Takahashi et al. 1995) to identify local
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Figure 3.20 Evolution of the level lines, using the height function as f (v), on a bi-torus,
its critical points and its Reeb graph, J. Tierny, J-P. Vandeborre, M. Daoudi “Invariant
high-level Reeb graphs of 3D polygonal meshes” IEEE 3DPVT 2006, 3rd International
Symposium on 3D Data Processing, Visualization and Transmission, Chapel Hill, North
Carolina, USA, June 14–16, 2006, pp. 105–112.  2006 IEEE

maxima, minima and saddles, observing for each vertex the evolution of f

at its direct neighbors. Several algorithms have been developed to construct
Reeb graphs from the connectivity relations of these critical points (Carr
et al. 2004; Cole-McLaughlin et al. 2003), most of them in O(n × log(n))

steps, with n the number of vertices in the mesh.
However, they assume that all the information brought by the Morse func-

tion f is relevant (Carr et al. 2004; Ni et al. 2004). Consequently, they
assume that all the identified critical points are meaningful, while in prac-
tice this hypothesis can lead to intractably large Reeb graphs. To overcome
this issue, (Ni et al. 2004) developed a user-controlled simplification algo-
rithm. (Bremer et al. 2004) proposed an interesting critical point cancellation
technique based on a persistence threshold. (Attene et al. 2003) proposed a
seducing approach, unifying the graph construction and simplification, but it
is conditioned by a slicing parameter.

Lemma 1 The Reeb graph of a Morse function on a compact, closed, ori-
entable 2-manifold of genus g has g loops.

Exercise 5 Consider the Morse function f : S → R whose level lines have
been drawn in Figure 3.21. Compute the Reeb graph for the following surface
(Figure 3.21).

3.3.2 Reeb Graphs for Shape Matching

A Reeb graph encodes the behavior of a Morse function on the shape and
also tells us about the topology of the shape. The main properties of 3D shape
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z

Figure 3.21 Example of geodesic distance

matching algorithms are the invariance to rotation and robustness to noise
and variability in model pose. However, the height function is not appropriate
for 3D shape matching because it is not invariant to transformations such
as rotation. In order to avoid these problems many authors propose to use
a geodesic distance: that is, the distance from point to point on a surface.
Figure 3.22 gives an example of geodesic distance computed between two

Figure 3.22 Example of geodesic distance
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points. Using geodesic distance provides rotation invariance and robustness
against problems due to noise.

Hilaga et al. (2001) presented an approach to describe the topology of
3D models by a graph structure and show how to use it for matching and
retrieval. They proposed the geodesic function µ defined by:

µ(v) =
∫

p∈s

g(v, p)ds

where the function g(v,p) returns the distance between v and p on s. The
discrete version of this function is defined by:

µ : µ(v) =
∑

g(v, bi) × area(bi)

In Tierny et al. (2007b), first the mesh feature points in Figure 3.23(a) are
automatically extracted, intersecting geodesic-based map extrema. Then, for
each vertex in the mesh, a mapping function fm is defined as the geodesic
distance to the closest feature point (Figure 3.22). Next, for each vertex
v ∈ S, an upper value approximation of f −1

m (fm(v)), denoted 	(v), is com-
puted along the edges of S. In particular, the connected component of 	(v)

containing v is identified and denoted γ (v). Analyzing the evolution of the
number of connected subsets of 	(v) as fm evolves enables the construction
of a Reeb graph (Reeb 1946) (Figure 3.23(b)). At this stage, each connected
component of the Reeb graph is modeled by an ordered collection of closed
curves γ (v). The next step consists of identifying constrictions (Hétroy 2005)
within these collections. For each connected component of the Reeb graph,
the average Gaussian curvature on each curve γ (v) is computed. Then, local

(a) (b) (c) (d)

Figure 3.23 Enhanced topological skeleton extraction Tierny et al . (2007b).  2007
IEEE
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(a) (b) (c) (d)

Figure 3.24 Segmentation of a hand surface model into its sub parts Tierny et al .
(2007a).  2007 Blackwell Publishing

negative minima are identified as constrictions (Figure 3.23(c)). Finally, the
connected components of the Reeb graph are subdivided using these con-
strictions as boundaries between sub parts (Figure 3.23(d)). As a conclusion
of this algorithm, the input surface is represented by an enhanced topologi-
cal skeleton (Figure 3.23(d)), which encodes the topological and geometrical
evolution of the contours of the mapping function fm.

Once the Reeb graph is computed, the surface is segmented to a set of sub
parts of the surface. Figure 3.24 shows an example of the results obtained
by this algorithm.

Tierny et al. (2007a) proposed a new idea to compare two surfaces. It is
based on the key idea that two surface models are similar if their sub parts
are similar. For each subpart its signature is computed as a function of the
distortion introduced by its mapping to its canonical planar domain.

They proposed to compare two subpart signatures by using an L1 distance.
Then, they computed the distance between two models by running a bipar-
tite matching algorithm (Tam and Lau 2007) that matches pairs of topology-
equivalent sub parts that minimize their distance, minimizing the overall sum
of distances, denoted d. Finally, the distance between the two models is given
by d.

Figure 3.25 shows a typical query and the results retrieved by the system.
Sub parts that have been matched together have been displayed with the same
gray level. Notice that, except in one case, the tail of the horse query model
has been matched by the tail of each retrieved result. Similar comments can
be made for the legs, or the neck, which demonstrates the efficiency of the
proposed signature. Moreover, this figure shows that the proposed signature
is clearly pose insensitive, since horses in different poses have been retrieved
as the top results.

Figure 3.26 zooms in on the subpart matchings between a hand and a
human surface model, displaying some of the sub parts that have been
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(a) Query (b) d = 0.89 (c) d = 1.13 (d) d = 1.30

(e) d = 1.47 (f) d = 1.61 (g) d = 1.77

(h) d = 1.85 (i) d = 1.86 (j) d = 1.99

Figure 3.25 Subpart similarity matchings between a horse query model and the retrieved
results Tierny et al . (2007a).  2007 Blackwell Publishing

(a) (b)

Figure 3.26 Subpart similarity matchings between a hand and a human model Tierny
et al . (2007a).  2007 Blackwell Publishing

matched together. Notice that the thumb has been matched with the correct
thumb of the humanoid and that the remaining fingers have been matched
with the fingers of the humanoid, despite their difference in pose. These
results can be extended using graph-based matching algorithms so that, for
example, the hand model can be matched by its corresponding hand in the
humanoid, achieving partial shape similarity (Funkhouser et al. 2004).

3.4 Transform-based Approaches: Spin Images
This section provides an overview of transform-based 3D shape descriptors.
These descriptors, such as spherical harmonics, spin images, Zernike 3D, etc,
are based on the transformation of the 3D shape from 3D Euclidean space
representation to another space representation.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39



Dugelay c03.tex V1 - 03/17/2008 12:10 A.M. Page 121

Transform-based Approaches: Spin Images 121

A description of 3D models based on spin images has been proposed by
Johnson and Hebert (1999) with the aim of supporting a view-independent
recognition of objects by capturing both their global and local features.

Such a description of 3D models based on spin images can be regarded as
a compromise between view-based and structure-based approaches to object
description. On the one hand, a description based on spin images shares rel-
evant common traits with view-based approaches. For instance, each spin
image is obtained by projecting information of interest according to a par-
ticular viewpoint on the object surface. On the other hand, information that
is projected on a spin image does not reflect just object parts that are visible
from a given viewpoint as is typical of view-based approaches. Rather, pro-
jected data encode geometric features of visible as well as cluttered object
parts.

Basically, spin images encode the density of mesh vertices projected onto
a 2D space: the 3D mesh vertices are first mapped onto a 2D space defined
with respect to one point in the 3D space; then, the resulting coordinates are
used to build a 2D histogram.

More precisely, let O = 〈p, n〉 be an oriented point on the surface of the
object, where p is a point on the surface of the object and n the normal of
the tangent plane in p. For a generic oriented point O, a spin map can be
defined, which maps any point x in the 3D space onto a 2D space according
to the following formula (see also Figure 3.27 for the notation):

SO(x) → [α, β] = [
√

‖x − p‖2 − (n · (x − p))2, n · (x − p)]

(a) (b)

n

p

x

So(x)

α

α
β

β

Figure 3.27 Given an oriented point 〈p, n〉 on the object surface, a generic point x

is mapped on to point [α, β] on the spin map, [α, β] being the radial distance and the
elevation of x w.r.t. to 〈p,n〉: (a) the object-centered 3D coordinate system, (b) the spin
map coordinate system, “Content-based Retrieval of 3D Models A. Del Bimbo, P. Pala
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 2,
No. 1, February 2006”, 2006 ACM, Inc. Reprinted by permission
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In other words, the oriented point defines a family of cylindrical coordinate
systems, with the origin at p, and with the axis along n. The spin map
projection of x retains the radial distance (α) and the elevation (β), while it
discards the polar angle. In so doing, the ambiguity is resolved, which results
from the fact that the oriented point does not define a unique cylindrical
coordinate system. This projection ensures that, for any given oriented point,
a unique spin map exists.

To produce a spin image of an object, a spin map is applied to points of
the object surface. Hence, given a mesh representation of the object, the spin
image is obtained by applying the spin map to vertices of the mesh. Since
several vertices can be mapped into the same (α, β) coordinates, the spin
image retains information about the number of vertices mapped onto each
(α, β) value. Hence, the spin image is a 2D histogram I (i, j) that is con-
structed by projecting coordinates α and β of each mesh vertex according to
a bilinear interpolation scheme. The purpose of the interpolation scheme is
to spread the contribution of each vertex over the nearest points on the grid
obtained by quantizing values of α and β. By spreading the contribution of
each vertex, a smooth representation is obtained in contrast to the ‘dotted’
map that would be obtained by simply accumulating indexed values of α

and β (see Figure 3.28).
Most relevant characteristics of spin images are invariance to rigid transfor-

mations (as a consequence of the adoption of an object-centered coordinate
system), limited sensitivity to variations in the position of mesh vertices
(which might result from the adoption of different sampling schemes), flexi-
bility (since no hypotheses are made on the surface representation) and ease
of computation.

(a) (b)

2D points

A

A

A
Spin images

B
B

BC

C

C

D D

D

Figure 3.28 A 3D object (a), together with 2D point images and spin images computed
from four distinct points on the object surface, 2006 ACM, Inc. Reprinted by permission
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Object description based on spin images entails a huge amount of informa-
tion which makes it difficult to use them for applications addressing retrieval
by similarity from large databases rather than object recognition in 3D scenes.
To overcome these limitations, spin image signatures have been proposed in
Assfalg et al. (2007). Spin image signatures make use of feature extraction
and clustering techniques to meet the storage and efficiency requirements of
content-based retrieval from large 3D model repositories.

3.5 View-based Approach

The human visual system has an uncanny ability to recognize objects from
single views, even when presented monocularly under fixed viewing condi-
tions. For example, the identity of most of the 3D models in Figure 3.29 is
obvious.

The issue of whether 3D model recognition should rely on internal rep-
resentations that are inherently 3D or on collections of 2D views has been
explored by Riesenhuber and Poggio (2000). They showed that, in a human
visual system, a 3D model is represented by a set of 2D views.

As shown in Figure 3.30, the process of 3D model comparison using views
can be broken into two phases: a phase of indexing and a phase of retrieval.
In the phase of indexing, for every 3D model of the database, we calculate the
characteristic views and their associated descriptors. In the retrieval phase,
the query undergoes a similar treatment as the 3D models of the database,
following which a descriptor (invariant to some deformations) is calculated

Figure 3.29 Some 3Dmodels from the Princeton Shape Benchmark. Reproduced from
Princeton Shape Benchmark
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Figure 3.30 The view selection process Filali Ansary et al . (2007).  2007 IEEE

Figure 3.31 A 3D model characterized by a set of 2D views and two types of 3D
retrieval. Courtesy of J Ricard

and compared to the descriptors of the database objects. Figure 3.31 shows
an example of a 3D model characterized by a set of 2D views and the two
types of realizable retrieval: 2D/3D by comparing the set of view descriptors
to a query image: and 3D/3D by comparing the two sets of views.
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(a) (b)

3 Views
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Figure 3.32 Three views created around the 3D model corresponding to three principal
axes. Courtesy of J Ricard

The process of comparing two 3D models using their views can be sepa-
rated in to two main steps:

• 3D model indexing: Each 3D model is characterized by a set of 2D views.
For each view, a 2D descriptor is calculated.

• 3D model retrieval: The same descriptor is applied to the 2D query views.
A matching process is then started to match the request 2D views to the
views representing the 3D models of the database.

The main idea of this type of method is to represent a 3D model by a
set of characteristic views. For that, the space of views of the 3D model is
discretized to N points of view distributed around the 3D model. For each
point, a view (2D image) of the 3D model is taken. Figure 3.32 shows three
views created around the 3D model by placing the cameras on the three
principal axes.

Each view is indexed using a method of 2D image analysis. In the retrieval
process, each view of the 3D model request is indexed and compared to
the N views of each 3D model. The two main points discussed in the 3D
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retrieval literature are the selection of the characteristic views and the choice
of the descriptor. The choice of the view descriptor will not modify the
principle of the view-based approach, but can modify the performance and
the effectiveness of it.

The main idea of view-based similarity methods is that two 3D models
are similar, if they look similar from all viewpoints. This paradigm leads
to the implementation of query interfaces based on defining a query by one
or more views, sketches, photos showing the query from different points
of view. Figure 3.30 shows an overview of the characteristic view selection
algorithm. The main difficulty in view-based 3D retrieval is to characterize
a 3D model by a set of 2D views.

One point which will have an impact on the effectiveness and the speed of
the view-based methods is the number and position of views used to describe
a 3D model. This number is directly related to the performance of the system.
Two approaches were used to choose the number of characteristic views:

• Using a fixed and restricted number of views.
• Using a dynamic number of views.

3.5.1 Methods with a Fixed Number of Views

To guarantee a low number of views and consequently quick retrieval, a class
of techniques can create a restricted number of views with fixed positions,
independently of the 3D model to be indexed. These methods select a fixed
number of views on a sphere surrounding the object and create images start-
ing from these points of view. To increase the similarity between views, the
3D models are aligned and scaled. For this, the principal axes of the objects
are calculated by analyzing the principal component (PCA), for example,
or by the calculation of the matrix of covariances. Figure 3.33 shows four
examples of views distributed on the viewing sphere.

Light-field descriptor

Chen et al. (2003) proposed a descriptor used for comparing the similarity
among 3D models extracted from 4D light fields, which are representations
of a 3D model. The light fields describe the radiometric properties of light
in space. A light field (or plenoptic function) is traditionally used in image-
based rendering and is defined as a 5D function that represents the radiance
at a given 3D point in a given direction. For a 3D model, the representation
is the same along a ray, so the dimension of the light fields around an object
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Figure 3.33 Example of views distributed on the viewing sphere

can be reduced to four. Each 4D light field of a 3D model is represented by
a collection of 2D images, which are rendered from a 2D array of cameras.
The camera positions of one light field can be put either on a flat surface
or on a sphere in the 3D world. The light-field representation has not only
been used in image-based rendering, but also in image-driven simplification
to decide which portions of an object to simplify.

The main idea comes from the following statement: ‘If two 3D models
are similar, they also look similar from all viewing angles.’ Accordingly,

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39



Dugelay c03.tex V1 - 03/17/2008 12:10 A.M. Page 128

128 3D Indexing and Retrieval

Figure 3.34 The main ideas for measuring similarity between two 3D models using a
Light-field descriptor. Reproduced from D Chen et al , 2003

the similarity between two 3D models can be measured by summing the
similarity from all corresponding images of a light field. However, what
must be considered is the transformation, including translation, rotation and
scaling.

The camera system surrounding each model is rotated until the highest
overall similarity (cross-correlation) between the two models from all view-
ing angles is reached. Take Figure 3.34 as an example, where (a) and (c) are
two different aircraft with inconsistent rotations. Firstly, for the aircraft in (a),
the cameras of a light field are placed on a sphere, as shown in (b), they are
put on the intersection points of the sphere. Then, the cameras of this light
field can be applied, at the same positions, to the aircraft in (c), as shown in
(d). By summing the similarities of all pairs of corresponding images in (b)
and (d), the overall similarity between the two 3D models is obtained. Next,
the camera system in (d) can be rotated to a different orientation, such as in
(e), which leads to another similarity value between the two models. After
evaluating similarity values, the correct corresponding orientation, in which
the two models look most similar from all corresponding viewing angles, can
be found, such as in (f). The similarity between the two models is defined by
summing the similarity from all corresponding images between (b) and (f):

1. Since each model has its own coordinate system, translation and scaling
are applied first in order to ensure that a model is entirely contained in
each rendered image. The input 3D model is translated from the center of
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the model to the origin of the world coordinate system, and then scales the
axis of maximum length to be 1. The translation T = (Tx; Ty; Tz) assigns
the middle point of the whole model to be the new origin:

Ti = MaxCoori + MinCoori

2
, i = x, y, z

where MaxCoori and MinCoori are the maximum and minimum coor-
dinate values of the i axis, respectively. The scaling is isotropic, and
normalizes according to the maximum distance from the x, y and z axes
of the whole model:

S = 1

mini=x,y,z(MaxCoori + MinCoori )

2. Images are rendered from the camera positions of the light fields, which
are on the surface of a larger sphere. There are 10 light fields for each
3D model, and the camera positions of each light field are set at the
20 vertices of a regular dodecahedron. The camera at each viewpoint is
directed toward the center of the sphere, and the up-vectors of the cameras
are placed uniformly. If two 3D models are of different orientations, their
proper corresponding viewing images will have different rotational angles.
This does not matter, since the image metric of the approach is also robust
against rotations.

3. An orthogonal projection is used in order to reduce the size of descriptors.
Therefore, in a descriptor of a light field, there are 10 images represented
from 20 viewpoints. For a 3D model, 10 descriptors of light fields are
created, so there are 100 images that should be rendered and extracted
for features.

4. The Zernike moment and Fourier descriptor are extracted from each
image. Descriptors for a 3D model are those features from the 100 images.

Depth buffer-based methods

Ohbuchi et al. (2003b) proposed a method which works on polygon soup
3D models (MODFD). The 3D models are made invariant to translation and
scaling. Then they compute N = 42 depth buffer rendered images (a kind of
range image) of the model. These sets of images discretely cover all possible
view aspects of the model.

Then for each image a Fourier-transform-based descriptor is computed (2D
descriptor). The set of these 42 descriptors comprises the multiple oriented
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shape descriptor for the 3D model. Let M1 and M2 be two 3D models to be
compared. The similarity measure is defined as follows:

D(M1, M2) = 1

N

N∑
i=1

minj∈1 ... Nd(M1i , M2j )

where M1i , M2j are the computed 2D descriptors and the distance d is the L1

norm. Since there is no ordering to the rotations, the similarity measure com-
pares all possible pairings and picks the one with the minimum L1 distance
to contribute to the sum over all the 42 views.

Vranic (2003) proposed a descriptor based on the buffer-based descriptor
(BBD) introduced by Heczko et al. (2002). To make the descriptor invariant
to rotation and scaling, each 3D model is oriented using continuous PCA
and normalized for scaling.

Using projections on the bounding box, six depth buffer images are used.
Each image is described using a 2D fast Fourrier transform (2D-FFT). The
3D model descriptor is based on the low-frequencies features of the 2D-FFT
of each depth buffer image.

Chaouch and Verroust-Blondet (2006) developed a new approach called
the enhanced depth buffer-based descriptor, based on the depth buffer images
and the continuous PCA to be geometrically invariant. This method uses the
same descriptor as Vranic (2003), but weights the buffer images used in the
descriptor, based on informational criteria.

The approach suggested by Vajramushti et al. (2004) also consists of
describing the 3D model using depth images. The surface and the volume
calculated from these projections constitute the characteristic features vector
of the 3D model. These vectors are then used in an iterative algorithm to
estimate the errors between the depth images while varying the six degrees of
freedom characterizing the 3D model position vector. This approach allows
us to find the best corresponding 2D depth images to overcome the PCA
problems.

Other methods

We can cite, for example, the work of Abbasi and Mokhtarian (2001), which
fixe the number of views associated with each 3D model to nine views: four
views corresponding to the top, side, front and back views, and five inter-
mediate views (Figure 3.33(d)). Chen and Stockman (1998) set the number
of views to eight views equally distributed on the viewing sphere of the
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3D model. The camera is placed on each viewpoint to obtain the views
(Figure 3.33(c)).

Nayar et al. (1996), as well as Mahmoudi and Daoudi (2007), considered each
3D model as a cloud of points. Principal axes of each 3D model are calculated
using the eigenvalues of the matrix of covariance. The 3D model cloud of
points is projected in 2D from according to the three principal directions thus
calculated. Seven characteristic views are created: three principal views along
the principal axes and four views according to the four directions corresponding
to 45◦ views between the principal views (Figure 3.33(b)).

3.5.2 Methods with a Dynamic Number of Views

Conventional multi-view representations are based on a large number of
views and cannot be used in many applications such as retrieval from large
databases. Multi-view representations have to deal with the following issues:

1. What is the optimal number of views?
2. How to select the optimal views?

To solve these problems some methods have been proposed for automatic
selection of optimal views of an object. In order to represent an object
efficiently, these methods eliminate similar views and select a relatively
small number of views using an optimization algorithm. This number varies
depending on the complexity of the object and the measure of expected
accuracy.

Aspect graphs

In aspect-graph-based methods, the main idea is that 3D shapes look different
when viewed from different viewpoints. For example, a cube looks like a
square when viewed from the top. Based on this idea, the space of views can
be partitioned into view classes or characteristic views. Within each class,
the views share a certain property. A clustering algorithm might be used to
generate the view classes.

A view class representation called an aspect graph was proposed by Koen-
derink (1990). The nodes of the graph represent the aspects, namely a class of
views, and the edges connect different nodes which have a certain change in
aspect. These appearance changes from node to node are called visual events.
Aspect graphs are complicated data structures, therefore their usage is limited.
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Using aspect graphs, Cyr and Kimia (2001) specified a query by a view
of 3D models. A descriptor of a 3D model consists of a set of views. The
number of views is kept small by clustering them and by representing each
cluster by one view, which is described by a shock graph. Schiffenbauer
(2001) presented a complete survey of aspect graph methods. Using shock
matching, Macrini et al. (2002) applied indexing using topological signature
vectors to implement view-based similarity matching more efficiently.

Adaptive views clustering

In the adaptive views clustering (AVC) presented by Filali Ansary et al.
(2007), the main idea is to generate an initial set of views from the 3D
model, and then reduce this set to only those that best characterize this 3D
model. This idea comes from the fact that not all the views of a 3D model are
of equal importance: there are some views that contain more information than
others. For example, one view is sufficient to represent a sphere because it
looks the same from all angles, but more than one view is needed to represent
a more complex 3D model such as an aircraft.

In the AVC method, every 2D view is represented by 49 Zernike moment
coefficients. To choose X characteristic views which best represent a set
of N = 320 initial views, the authors presented a derivative of the X-means
(Pelleg and Moore 2000) clustering algorithm, where, instead of using a fixed
number of clusters, they used the range [1, . . . , 40], in which they chose the
‘optimal’ number of clusters.

In essence, the algorithm starts with one characteristic view (K equal to 1),
and then adds characteristic views where they are needed. The authors took
the global K-means on the data starting with characteristic views as cluster
centers. They continued alternating between adding characteristic views and
taking global K-means until the upper bound for the characteristic view
number (40) was reached. During this process, for each K , they saved the
characteristic view set.

To add new characteristic views, they used the idea presented in the
X-means clustering method by Pelleg and Moore (2000). Firstly, for every
cluster of views represented by a characteristic view, they selected two views
that have the maximum distance in this cluster. Next, in each cluster of views,
they ran local K-means (with K = 2) for each pair of selected views. By
local, we mean that only the views that are in the cluster are used in this local
clustering (Figure 3.35). At this point, a question arises: ‘Are the two new
characteristic views giving more information on the region than the original
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(a) (b)

Figure 3.35 Local K-means on each part of the views cluster with K = 2

BIC(K=1) =3819

BIC(k=2)=2569
BIC(k=2)=4321

BIC(k=1)=2137

(a) (b)

Figure 3.36 Selecting the representations (with one or two characteristic views) that
have the higher Bayesian information criterion (BIC) score

characteristic view?’ To answer this question, the authors used a Bayesian
information criterion (BIC) (Schwarz 1978), which scores how likely the rep-
resentation model (using one or two characteristic views) fits the data. Note
that Figures 3.35 and 3.36 are just schematic examples, as we represent a
view in a 2D space.

3.6 Normative Aspect: MPEG-7
The MPEG-7 standard, also known as the Multimedia Content Description
Interface, aims at providing standardized core technologies allowing the
description of audiovisual data content in multimedia environments (Salem-
bier and Sikora 2002).

This is a challenging task given the broad spectrum of requirements and tar-
geted multimedia applications, and the broad number of audiovisual features
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of importance in such contexts. In order to achieve this goal, MPEG-7 will
standardize:

• Descriptors (D), representations of features that define the syntax and the
semantics of each feature representation.

• Description schemes (DS), schemes that specify the structure and seman-
tics of the relationships between their components, which may be both D
and DS.

• A description definition language (DDL), to allow the creation of new DS
and, possibly, D and to allow the extension and modification of existing
DS.

• System tools, to support multiplexing of description, synchronization issues,
transmission mechanisms, file formats, etc.

The description may include still pictures, video, graphics, audio, speech,
3D models and the information about how these elements are put together in
a multimedia representation. In the case of 3D data, the 3D shape spectrum
descriptor has been proposed as a description of 3D shape. A multiple-views
descriptor has also been developed to combine 2D descriptors representing a
visual feature of a 3D model seen from different view angles. The descriptor
shapes a complete 3D view-based representation of the object. Any 2D visual
descriptor, such as contour shape, region shape, color or texture, can be used.
The 2D/3D descriptor supports integration of the 2D descriptors used in the
image plane to describe features of the 3D (real-world) objects.

3.7 Summary

The use of 3D image and model databases throughout the Internet is grow-
ing in both number and size. Exploiting the information content of digital
collections poses several problems. In order to create value out of these col-
lections, users need to find information that matches certain expectations, a
notoriously hard problem due to the inherent difficulties of describing visual
information content.

In recent years, as a solution to these problems, many systems have
been proposed that enable effective information retrieval from digital col-
lections of images and videos. However, the solutions proposed so far are
not always effective in application contexts where the information is intrin-
sically 3D.
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An indexing algorithm is generally a two-process mechanism:

1. The off line process which consists of finding invariant – to certain trans-
formations – and robust – to noise, for example – descriptors for each 3D
model in the collection.

2. The on line process experimented by the end-user who is querying the
search engine to find a relevant 3D model in the collection.

Hence, the two key problems for 3D model indexing are to find performance
descriptors and to define a similarity metric in order to compute the visual
similarity between 3D models, given their descriptions.

Several approaches can be used to describe a 3D model and were presented
in this chapter:

• Statistical approaches focus on the distribution of local and global descrip-
tions of the 3D model surface: local curvatures, global distances, etc.

• Structural approaches aim at finding a high-level structure, such as a graph,
from a 3D mesh.

• Transform-based approaches use transformations of the 3D shape from a
3D Euclidean space representation to another space representation.

• View-based approaches defend the intuitive idea that a 3D model is well
represented by a set of characteristic views, and use well-known 2D
descriptors on these views.

But before presenting these approaches, some comparison and evaluation
criteria, so as to compare and evaluate the different 3D indexing methods,
have been presented and discussed.

Lastly, the normative aspects were briefly explored for the MPEG-7 stan-
dard, also known as the Multimedia Content Description Interface, and how
the 3D model domain is integrated in this standard for new multimedia
environments.
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