5 research outputs found

    Functional requirements document for the Earth Observing System Data and Information System (EOSDIS) Scientific Computing Facilities (SCF) of the NASA/MSFC Earth Science and Applications Division, 1992

    Get PDF
    Five scientists at MSFC/ESAD have EOS SCF investigator status. Each SCF has unique tasks which require the establishment of a computing facility dedicated to accomplishing those tasks. A SCF Working Group was established at ESAD with the charter of defining the computing requirements of the individual SCFs and recommending options for meeting these requirements. The primary goal of the working group was to determine which computing needs can be satisfied using either shared resources or separate but compatible resources, and which needs require unique individual resources. The requirements investigated included CPU-intensive vector and scalar processing, visualization, data storage, connectivity, and I/O peripherals. A review of computer industry directions and a market survey of computing hardware provided information regarding important industry standards and candidate computing platforms. It was determined that the total SCF computing requirements might be most effectively met using a hierarchy consisting of shared and individual resources. This hierarchy is composed of five major system types: (1) a supercomputer class vector processor; (2) a high-end scalar multiprocessor workstation; (3) a file server; (4) a few medium- to high-end visualization workstations; and (5) several low- to medium-range personal graphics workstations. Specific recommendations for meeting the needs of each of these types are presented

    Design and development of an embedded flash memory integrated simulator for the automotive microcontroller firmware validation

    Get PDF
    Applicazioni automotive possono compromettere la sicurezza delle persone pertanto i componenti devono essere affidabili in qualsiasi condizione operativa. L'affidabilità può essere raggiunta testando i dispositivi dopo la produzione, progettare il test è un compito delicato in quanto non sono presenti fisicamente i primi prototipi del dispositivo. Realizziamo un simulatore di memorie flash integrate di un microcontrollore automotive per facilitare la progettazione dei tes

    Digital signal conditioning on multiprocessor systems

    Get PDF
    An important application area of modem computer systems is that of digital signal processing. This discipline is concerned with the analysis or modification of digitally represented signals, through the use of simple mathematical operations. A primary need of such systems is that of high data throughput. Although optimised programmable processors are available, system designers are now looking towards parallel processing to gain further performance increases. Such parallel systems may be easily constructed using the transputer family of processors. However, although these devices are comparatively easy to program, they possess a general von Neumann core and so are relatively inefficient at implementing digital signal processing algorithms. The power of the transputer lies in its ability to communicate effectively, not in its computational capability. The converse is true of specialised digital signal processors. These devices have been designed specifically to implement the type of small data intensive operations required by digital signal processing algorithms, but have not been designed to operate efficiently in a multiprocessor environment. This thesis examines the performance of both types of processors with reference to a common signal processing application, multichannel filtering. The transputer is examined in both uniprocessor and multiprocessor configurations, and its performance analysed. A theoretical model of program behaviour is developed, in order to assess the performance benefits of particular code structures and the effects of such parameters as data block size. The transputer implementation is contrasted with that of the Motorola DSP56001 digital signal processor. This device is found to be much more efficient at implementing such algorithms on a single device, but provides limited multiprocessor support. Using the conclusions of this assessment, a hybrid multiprocessor has been designed. This consists of a transputer controlling a number of signal processors, communicating through shared memory, separating tiie tasks of computation and communication. Forcing the transputer to communicate through shared memory causes problems, and these have been addressed. A theoretical performance model of the system has been produced. A small system has been constructed, and is currently running performance test software
    corecore