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Abstract 

Electronic components for automotive purposes have to guarantee higher 

persistent reliability than electronic consumer ones. Compare, for example, a 

device which controls the airbag system in a vehicle with a MP3 reader: both have a 

flash memory embedded, but if a bit corruption occurs in the MP3, in the worst 

case the customer will have to waste the device with a little bit of disappoint. Much 

more damages occur, instead, if a bit corruption induces an erroneously airbag 

activation in a vehicle. 

In order to guarantee the necessary reliability and persistence in time of the 

electronic components for automotive purposes, the manufacturers have to spend 

many resources during and after the production process. Several researches have 

been carried out to characterize the components, in order to be able to predict 

their behavior for a long time, avoiding eventual malfunctioning. 

In the automotive microcontrollers’ scenario, the main effort required to 

guarantee the reliability is the test of the embedded flash memory. To accomplish 

this task, the devices are tested by programming the flash with data apparently 

with nonsense, just to the aim of verifying the correct operation. The way for 

achieving this goal consists in writing a particular firmware, denoted as “testware”, 

which is downloaded and executed on the microcontroller. Developing the testware 

is a complex operation, since the device is usually not available during the firmware 

designing. In this context, the availability of testing the firmware with a simulator 

would be helpful to verify the correctness while the device is not yet concretely 

produced. In this way, the testware engineers’ team would be able to provide the 

test application to the production centre promptly. 

The main goal of this thesis is the creation of a simulator of the TC27x 

Infineon® microcontroller’s unit, which embeds the flash memory. The simulator is 

dedicated to simplify the work of the engineer who has to design and perform the 

tests after the production and before the sale of the device. 
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SOMMARIO 

I componenti elettronici per uso auto motive devono garantire un’elevata 

rispetto ai componenti rivolti ad applicazioni di elettronica di consumo. 

Paragonando un lettore MP3 con un dispositivo dedito al controllo degli airbag di 

un veicolo, ad esempio, si osserva che entrambi sono dotati di una memoria flash, 

ma se un errore si verifica nel primo per un difetto della memoria del dispositivo 

stesso, nel peggiore dei casi si dovrà sostituire l’oggetto con uno nuovo, senz’altro 

con disappunto; se, invece, un errore si verifica anche su un singolo bit della 

memoria del secondo dispositivo potrebbero verificarsi danni estremamente gravi, 

come l’esplosione del’airbag in condizioni di normale funzionamento del veicolo. 

Per garantire la necessaria affidabilità dei componenti per applicazioni auto 

motive, i costruttori devono impiegare molte risorse durante e dopo il processo di 

produzione. Molti studi compiuti sulla caratterizzazione dei dispositivi hanno 

permesso di prevederne il funzionamento anche a lungo termine, evitando così 

malfunzionamenti dovuti a difetti di fabbricazione. 

Per i microcontrollori per uso auto motive, lo sforzo maggiore è richiesto per 

garantire l’affidabilità della memoria flash in essi integrata, per la quale è 

necessario un test accurato effettuato programmandola con dati che, di fatto, non 

hanno nessun senso se non quello di verificarne il corretto funzionamento. Tale 

programmazione è detta “testware” ed è scaricata ed eseguita nel microcontrollore 

in oggetto. Lo sviluppo del testware è un’operazione complessa poiché il dispositivo 

solitamente non è disponibile durante la progettazione del firmware. In questo 

contesto, la disponibilità di testare il firmware con un simulatore sarebbe molto 

d’aiuto per verificarne la correttezza, dato che il dispositivo non è ancora realizzato. 

In questo modo, la squadra degli ingegneri che sviluppano il testware sarebbero in 

grado di fornire tempestivamente l’applicazione di test al centro di produzione. 

L’obiettivo principale di questa tesi consiste nella creazione di un simulatore 

dell’unita che include la memoria flash dei microcontrollori Infineon® della famiglia 

TC27x, rivolto a semplificare il lavoro degli ingegneri che devono fornire il test da 

effettuare prima della vendita del dispositivo. 
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Chapter 1 Introduction 

This thesis has been realized in collaboration with the Product Test 

Engineering’s team of Infineon Technologies® Italia, located in Padua. 

The main goal of this work is the creation of an Infineon TriCore 27x 

microcontroller simulator dedicated to simplify the work of the engineer who has 

to design and perform the tests on the controller after the production and before 

the sale. 

1.1 Infineon Technologies® 

Infineon Technologies® is a German semiconductor manufacturer founded in 

1999, when the semiconductor operations of the parent company Siemens were 

spun off to form a separate legal entity. In the last years, Infineon Technologies has 

become a leader company in the design and manufacturing of electronic 

components. Its research activities and business have always been focused on the 

three central challenges facing modern society: energy efficiency, mobility and 

security, offering semiconductors and system solutions for automotive and 

industrial electronic and security applications [1].  

The Infineon’s automotive division supplies the automotive industry with 

sensors, microcontrollers, power semiconductors and power modules that 

contribute to a more sustainable mobility in terms of reduced fuel consumption and 

emissions, improved safety and affordability. 

Automotive products require much more reliability than consumer’s ones; 

therefore a great effort is made by all manufacturers of these devices, such as 

Infineon Technologies, to guarantee the proper operation in any condition. In this 

context, tests have a key role during the components’ production process, since the 

proper operation of a device must be verified under different kind of stresses (e.g. 

temperature, high voltage, etc.) to be imposed both for short and long terms. 

Since the correct design of the test phase has remarkable effects on the 

device final cost, Infineon Technologies spends many resources in the optimization 
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of its own test processes. In particular, the microcontroller’s (testware) team in 

Padua is focused on the design and improvement of the test concerning the flash 

memory of microcontrollers. 

The goal of this thesis is the creation of a tool which allows the testware’s 

team to validate the firmware they usually write to test the flash module, normally 

known as “testware”. This tool is based on software which imitates the behavior of 

a flash module of the microcontrollers belonging to a specific family. 

1.2 Introduction to Microcontrollers 

A microcontroller is a small computer on a single integrated circuit containing 

a processor core, memory, and programmable input/output peripherals. Program 

memory in the form of “NOR” flash or “OTP ROM” is often included on chip, as well 

as a typically small amount of RAM. Microcontrollers are designed for embedded 

applications, in contrast to the microprocessors used in personal computer or other 

general purpose applications. 

Microcontrollers are used in automatically controlled products and devices, 

such as automobile engine control systems, implantable medical devices, remote 

controls, office machines, appliances, power tools, toys and other embedded 

systems. By reducing the size and cost compared to a design that uses a separate 

microprocessor, memory, and input/output devices, microcontrollers make it 

economical to digitally control even more devices and processes. Mixed signal 

microcontrollers are common, integrating analog components needed to control 

non-digital electronic systems. 

Some microcontrollers are optimized for low power consumption (single-digit 

milliwatts or microwatts). They will generally have the ability to retain functionality 

while waiting for an event such as a button pressed or other interrupts; power 

consumption while sleeping (CPU clock and most peripherals off) may be just 

nanowatts, making many of them well suited for long lasting battery applications. 

Other microcontrollers may serve performance-critical roles, where they may 

need to act more like a digital signal processor (DSP), with higher clock speeds and 

power consumption. 

1.2.1 RISC Architecture 

The most common microcontrollers’ CPU design strategy is based on the 

insight that simplified (as opposed to complex) instructions can provide higher 

performance if this simplicity enables much faster execution of each instruction. A 
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computer based on this strategy is a reduced instruction set computer, also called 

RISC [2]. 

Various suggestions have been made regarding a precise definition of RISC, 

but the general concept is that of a system that uses a small, highly-optimized set of 

instructions, rather than a more specialized set of instructions often found in other 

types of architectures. Another common trait is that RISC systems use the 

load/store architecture, where memory is normally accessed only through specific 

instructions, rather than accessed as part of other instructions. 

Although a number of systems from the 1960s and 70s have been identified 

as being forerunners of RISC, the modern version of the design dates to the 1980s. 

In particular, two projects at Stanford University and University of California, 

Berkeley are most associated with the popularization of the concept. Stanford's 

design would go on to be commercialized as the successful MIPS architecture, while 

Berkeley's RISC gave its name to the entire concept, commercialized as the SPARC. 

Another success from this era was IBM's efforts that eventually led to the Power 

Architecture. As these projects matured, a wide variety of similar designs flourished 

in the late 1980s and especially the early 1990s, representing a major force in the 

UNIX workstation market as well as embedded processors in laser printers, routers 

and similar products. 

1.2.2 CISC Architecture 

The opposing architecture is known as “Complex Instruction Set Computing” 

(CISC). In computers designed following concepts of CISC architecture, single 

instructions can execute several low-level operations (such as a load from memory, 

an arithmetic operation, and a memory store) and/or are capable of multi-step 

operations or addressing modes within single instructions [2]. 

Before the RISC philosophy became prominent, many computer architects 

tried to bridge the so-called semantic gap, i.e. to design instruction sets that 

directly supported high-level programming constructs such as procedure calls, loop 

control, and complex addressing modes, allowing data structure and array accesses 

to be combined into single instructions. Instructions are also typically highly 

encoded in order to further enhance the code density. The compact nature of such 

instruction sets results in smaller program sizes and fewer (slow) main memory 

accesses, which at the time (early 1960s and onwards) resulted in a tremendous 

savings on the cost of computer memory and disc storage, as well as faster 

execution. It also meant good programming productivity even in assembly 

language, as high level languages were not always available or appropriate 
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(microprocessors in this category are sometimes still programmed in assembly 

language for certain types of critical applications). 

1.2.3 Infineon TriCore microcontrollers 

The Infineon’s product portfolio includes microcontrollers based on the 

TriCore architecture, which usually finds application in automotive and security 

fields. 

TriCore is a 32-bit microcontroller/DSP architecture optimized for “integrated real-

time systems”. It combines the outstanding characteristics of three different areas: 

the signal processing of DSP, real-time microcontrollers, and RISC processing power; 

and it allows the implementation of RISC load-store architectures. Fig. 1.1 shows a 

diagram summarizing the TriCore architecture, which offers an ideal system 

requiring fewer modules because more functions are integrated on the chip. This 

family of controllers is equipped with an optimal range of powerful peripherals for a 

wide spectrum of applications in power train, safety, and vehicle dynamics, driver 

information and entertainment electronics, and for body and convenience 

applications. 

 

The instruction set architecture (ISA) supports a global linear 32-bit address 

space with memory-oriented I/O. The operation of the core is superscalar, i.e. it can 

execute simultaneously up to three instructions with up four operations. 

Furthermore, the ISA can work in conjunction with different system architectures, 
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Fig. 1.1: TriCore: one architecture with a modular instruction set. 
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also with multi-processing architectures. This flexibility at the implementation and 

system level permits different cost/performance combinations to be created 

whenever required. 

TriCore contains a mixed 16-bit and 32-bit instruction set. Instructions with 

different instruction lengths can be used alongside each other without changing the 

operating mode. This substantially reduces the volume of code, so that even faster 

execution is combined with a reduction in the memory space requirement, system 

costs and energy consumption. 

The real-time capability is essentially determined by the interrupt wait and 

context switching times. Here, the high performance architecture reduces response 

times to a minimum by avoiding long multi-cycle instructions and by providing a 

flexible hardware-supported interrupt scheme. In addition, the architecture 

supports rapid context switching. [3] 

The basic features of the TriCore architecture are summarized in the following 

list: 

 32-bit architecture; 

 Unified 4-Gbyte data, program, and input/output address space; 

 16-bit/32-bit instructions to reduce code volume; 

 Low interrupt response times; 

 Fast, automatic HW context switching; 

 Multiplication-accumulation unit; 

 Saturation integer arithmetic; 

 Bit-operations and bit addressing supported by the architecture and 

instruction set; 

 Packed data operations (single instruction multiple data, SIMD); 

 Zero overhead loop for DSP applications; 

 Flexible power management; 

 Byte and bit addressing; 

 Little endian byte order; 

 Support for big and little endian byte ordering on the bus interface; 

 Precise exception states; 

 Flexible, configurable interrupt managements with up to 256 levels. 

In 1999, Infineon launched the first generation of AUDO (Automotive unified 

processor) which was based on TriCore architecture. The fourth generation of 

AUDO is called AUDO MAX and it has been the spearhead up to 2011. 
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Actually, the newest Infineon’s microcontrollers belong to AURIX generation 

which guarantee more relevant features than AUDOMAX, inasmuch are realized 

with newer CMOS technology. 

1.3 Motivations 

In Infineon’s microcontrollers the module which contains the flash memory is 

the largest unit of the device. It involves both digital and analog sub-circuits which 

allow every memory cell to be read, programmed and erased. 

Since 2002, the Infineon microcontrollers have adopted the System-On-Chip 

(SoC) technique to test the embedded flash memory. This technique makes use of 

the resources of the device under test to detect eventual breakdown of the device 

itself. In general, this is accomplished by loading a dedicated firmware on the 

microcontroller (testware), which has the only purpose of executing particular 

operations on the flash array. Any unexpected reaction of the microcontroller 

detects some non-compliance. If the faulty so revealed cannot be resolved, the 

microcontroller will not be sold. 

Typically, microcontroller flash memories are used to store both the program 

instructions that will be executed by the CPU, and the generic data which have to 

be maintained during the lack of power supply. Especially for the first one, it is very 

important to guarantee the proper functionality of each single bit. Consider, for 

example, an instruction which has to decide whether or not the command to an air-

bag’s explosion has to be given: any malfunction is not eligible. 

In this context, testing the flash memory is very important for each device 

produced, since the test phase is expensive inasmuch it takes a lot of time for any 

device. Hence characterization, validation and test have an important role to 

balance the quality and the cost of the provided device. 

The simulator developed in this thesis is intended to validate the firmware 

used during the test phase, thus facilitating the process of the test’s design: direct 

validation on the microcontroller is more expensive than using a simulator, because 

it requires hardware instruments that are not always available. Furthermore, some 

devices are still in the design stage while the engineers are writing the testware 

which could not be run on the device inasmuch is not physically available. Another 

reason of using the simulator to test the firmware is the easier way to monitor the 

flash module status during the programming and erase operation, which, instead, 

could be challenging if performed directly on the microcontroller. 

This simulator is intended to be interfaced with an existed CPU simulator 

which is provided by the Bristol team of Infineon. Therefore, the thesis’s output is a 
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whole microcontroller simulator which will be able to run some firmware which in 

turn will be able to compute operations on the flash module. Currently, the CPU 

simulator is already there, whereas the flash module will be implemented in this 

work. Next improvements will provide the enhancement of the simulator by adding 

other peripherals existing in hardware. 

1.4 Thesis navigation 

In Chapter 2, the flash memory technology will be introduced. Infineon makes 

use of the NOR-based architecture because it is more reliable than the AND one. 

Unlike other solid state non-volatile memories, a finite state machine is 

needed to handle a flash array. In Infineon’s microcontrollers the module which 

manages the flash array, through the combination of digital and analog sub-circuits, 

is called Program Memory Unit. The Chapter 3 will provide a brief description of the 

Infineon’s microcontroller family focusing on the Program Memory Unit whose 

function is imitated by the simulator object of this thesis. 

In Chapter 4, advantages and disadvantages of using a simulator will be 

described, and the technology used by the developed simulator will be explored. 

The union of two different kind of programming language has been adopted: 

Verilog and C++. The chapter will compare the features of each one. 

In Chapter 5, the implementation techniques will be explained. Each part of 

the simulator will be described, providing information about the algorithms which 

compute the reactions of the microcontroller.  

In Chapter 6, some test examples will be given for the PMU simulator and its 

interfacing with the CPU simulator, providing some tests computed by the whole 

microcontroller simulator which return the respective results. 

Finally, Chapter 7 will present and describe the possible next improvements 

and enrichments of the microcontroller’s simulator. 
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Chapter 2 Semiconductor Memories 

A memory is a device that is able to store information for more or less time, 

making it available, at least to be read. Since the 80’s the technology used to realize 

electronic memories is the complementary metal–oxide–semiconductor (CMOS) 

technology, which is also used to build most of the integrated circuits, such as 

microprocessors, microcontrollers, static RAM, and other digital and analog circuits 

or sub-circuits belonging to a more complex system. 

This technology is based on two networks, called pull-up and pull-down. They 

provide a path to either ground or VDD which can be complementarily active. The 

fundamental unit of CMOS is the MOSFET (metal-oxide-semiconductor-field-effect-

transistor), a field effect transistor which in general, in digital circuits is used as a 

switch, whereas in analog circuits is used as a transconductor. 

In order to get a mechanism able to store electric charge, the structure of the 

common MOSFET is modified by adding a floating gate. The device so obtained is 

the fundamental component to realize memories. 

The purpose of this chapter is to describe how the memories work. 

Description of different kinds of memories and the related issue to capacity, speed 

and reliability will be provided, focusing on the Flash memories. Flash technology, 

in fact, nowadays is the most common to realize memories that have to store data 

even if the power supply is missing. 

The two largest categories the memories are divided in are:   

 Volatile memories; 

 Non-volatile memories. 

The first ones are able to keep data as long as the power supply is provided; 

indeed, the data are lost as soon as the power supply gives out.  
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The Non-volatile memories are able to keep data during the absence of the 

power supply for a long time. However, in general after ten years that the device is 

not powered, the data is lost. The flash memories belong to this category. 

2.1 Volatile Memories 

Most types of random access memory (RAM) belong to volatile memories’ 

category. Random access memories can be divided into Static-RAM (SRAM) and 

Dynamic-RAM (DRAM). 

2.1.1 Static Random Access Memories 

The basic Static-RAM structure is a cell composed by six transistor connected 

to each other like shown in Fig. 2.1: 

 

The cell stores just one bit in transistors M1, M2, M3 and M4. These form two 

cross-coupled inverters. This storage cell has two stable states which are used to 

store “0” and “1”. Two additional access transistors control the access to a storage 

cell during read and write operations. In addition to such six-transistors SRAM, 

other kinds of SRAM chips use 4T (as shown in Fig. 2.2), 8T, 10T, or more transistors 

per bit. Four-transistors SRAM is quite common in stand-alone SRAM devices (as 

opposed to SRAM used for CPU caches), implemented in special processes with an 

extra layer of poly-silicon, allowing for very high-resistance pull-up resistors. 

    

  

     
    

   

   

   

   

   

   

   
   

Fig. 2.1: Static RAM 6T cell. 
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Access to the cell is enabled by the word line which controls the two access 

transistors M5 and M6 which, in turn, control whether the cell should be connected 

to the bit lines. They are used to transfer data for both read and write operations. 

Although it is not strictly necessary to have two bit lines, both the signal and its 

inverse are typically provided in order to improve noise margins. 

During read accesses, the bit lines are actively driven high and low by the 

inverters in the SRAM cell. This improves SRAM bandwidth compared to DRAMs. 

The symmetric structure of SRAMs also allows for differential signaling, which 

makes small voltage swings more easily detectable. Another difference with DRAM 

that contributes to making SRAM faster is that commercial chips accept all address 

bits at a time. By comparison, commodity DRAMs have the address multiplexed in 

two halves, i.e. higher bits followed by lower bits, over the same package pins in 

order to keep their size and cost down. 

2.1.2 Dynamic Random Access Memories 

A dynamic-RAM stores each bit of data in a separate capacitor within an 

integrated circuit. The capacitor can be either charged or discharged; these two 

states are taken to represent the two values of a bit, conventionally called “0” and 

“1”. Since capacitors leak charge, the information eventually fades unless the 

capacitor charge is periodically refreshed. Because of this refresh requirement, it is 

a dynamic memory as opposed to SRAM and others static memories. 

Fig. 2.2: Static-RAM 4T cell. 
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The advantage of DRAM is its structural simplicity: just one transistor and one 

capacitor are required per bit, compared to four or six transistors in SRAM. This 

allows DRAM to reach very high densities. Unlike flash memory, DRAM is a volatile 

memory, since it loses its data quickly when power is removed. The transistors and 

capacitors used are extremely small; billions can fit on a single memory chip. 

 

  
  

  
  

  

  

  

  

  

  

  
    

  

  
  

  

  

  

  

  

  

  
  

  

  

  

  

  

  

Fig. 2.4: DRAM Matrix. 

   

   

  

  

Fig. 2.3: Dynamic-RAM cell. 
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DRAM is usually arranged in a rectangular array of charge storage cells 

consisting of one capacitor and transistor per data bit. The Fig. 2.4 shows a simple 

example with a 3 by 3 cell matrix. Modern DRAM matrices are many thousands of 

cells in height and width. 

The long horizontal lines connecting each row are known as word-lines. Each 

column of cells is composed of two bit-lines, each connected to every other storage 

cell in the column, generally known as the bit lines. 

Typically, manufacturers specify that each row must have its storage cell 

capacitors refreshed every 64 ms or less, as defined by the JEDEC (Foundation for 

developing Semiconductor Standards) standard. Refresh logic is provided in a 

DRAM controller which automates the periodic refresh, that is no software or other 

hardware has to perform it. This makes the controller's logic circuit more 

complicated, but this drawback is outweighed by the fact that DRAM is much 

cheaper per storage cell and because each storage cell is very simple, DRAM has 

much greater capacity per unit of surface than SRAM. 

2.2 Non-Volatile Memories 

A non-volatile memory (NVM) is a computer memory able to store 

information even when not powered. Examples of non-volatile memory include: 

 Read-Only Memory (ROM); 

 Programmable Read Only Memory (PROM); 

 Erasable Programmable Read Only Memory (EPROM); 

 Electrically Erasable Programmable Read Only Memory (EEPROM) 

 Flash memory;  

 Most types of magnetic computer storage devices (e.g. hard disks, 

floppy disks, and magnetic tape); 

 Optical discs. 

Non-volatile memories are typically used for the task of secondary storage, or 

long-term persistent storage. Unfortunately, most forms of them have too many 

limitations to be used as primary storage. Typically, they either cost more or have a 

poorer performance than volatile RAMs. 

Read Only Memories (ROMs) are NVMs implemented by writing permanently 

the data in the memory array during manufacturing. Their drawback is that they 

cannot be programmed, so information is stored permanently. To solve, at least 

partially this issue, Programmable-ROMs (PROMs) were developed around the 

1970s. They offer the possibility to write just once the content data of the memory 
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by blowing fusible links or anti-fuses, changing permanently the cell content. The 

disadvantage of both ROM and PROM is that they cannot be erased, making them 

suitable for a limited set of applications. 

Over the years, non-volatiles memories have been improved, introducing the 

possibility to erase the stored data. The EPROMs (Erasable Programmable Read 

Only Memories) were the first memories which could be erased by exposing to 

Ultra-Violet (UV) radiation for about 20 minutes, whereas they could be electrically 

programmed. The long lead times required for erasure pushed the researchers to 

completely change the technology used to erase the memory content. In 1980s, 

thanks to the intuition of George Perlegos of using a charge pump to supply the 

high voltages necessary for programming, the EPROM memories were improved to 

offer the possibility to be electrically erased, giving rise to the “Electrically Erasable 

Programmable Read Only Memories”, EEPROMs. Their drawback was the larger 

used areas then EPROMs; therefore incrementing the cost and reducing the 

density.  

Flash memories – which nowadays are largely used in most of applications – 

combine the electrical in-system erase-ability of EEPROMs with the high density of 

EPROMs and an access time comparable to DRAMs. For this reason they are the 

most common technology used to store data permanently in different applications. 

2.2.1 The Floating Gate Device 

In order to obtain a memory cell having two logical stable states which is able 

to keep stored information independently of external conditions, the storage 

element must be a device having conductivity which can be altered in a non-

destructive way.  

Most of the solutions adopted over the years consist in a transistor with a 

programmable threshold voltage; i.e. an element able to change its state from a 

high to low impedance and vice versa. These states correspond to the states of a 

memory cell "erased" and "programmed" [4]. 

Considering a MOSFET, the threshold voltage can be derived using the 

following equation: 

       
 

   
 (2.1) 

Where   is a constant which depends on the material of the gate and bulk, 

channel doping and gate oxide capacitance,   is the charge in the gate oxide and 

    is the gate oxide capacitance. 
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It is clear that the threshold voltage can be altered by changing the amount of 

charge between the gate and the channel. The two most common ways to achieve 

this goal are: 

 Charge Trapping: the charge is stored in traps that are into the 

insulator or at interface between two dielectric materials. The most 

commonly used interface is the silicon oxide/nitride interface as 

shown in Fig. 2.5(b). Devices that store charge in this way are called 

MNOS (Metal-Nitride-Oxide-Silicon) [5] - [6]; 

 Floating Gate Device: the charge is stored in a conductive layer that is 

between the gate and the channel and is completely surrounded by 

insulator as shown in Fig. 2.5(a). This workaround is called Floating 

Gate (FG). 

 

MNOS devices are not used anymore in consumer electronics due to their low 

endurance and retention. FG devices are at the basis of every modern NVM, 

particularly for Flash applications. 

2.2.1.1 Floating Gate Device’s operation 

The basic concepts and the functionality of a floating gate device are easily 

understood if it is possible to determine the floating gate potential. The schematic 

cross section of a generic floating gate device is shown in Fig. 2.6; the upper gate is 

the control gate and the lower gate, completely isolated within the gate dielectric, 

is the floating gate (FG). The FG acts as a potential well. If a charge is forced into the 

well, it cannot move from there without applying an external force, so the FG stores 

charge [7].  

Floating gate Control gate 

SiO2 

(a) 

SiO2 

Gate 

Si3N4 

(b) 

Fig. 2.5: Two classes of non-volatile semiconductor memory devices: (a) 

floating gate devices; (b) charge-trapping devices (MNOS device). 
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The simple model shown in Fig. 2.6 helps in understanding the electrical 

behavior of a FG device.    ,   ,    and    are the capacitances between the FG 

and control gate, source, drain, and substrate regions, respectively. Consider the 

case when no charge is stored in the FG, i.e.    . 

                                                  (2.2) 

Where     is the potential on the FG,     is the potential on the control gate 

and   ,   , and    are potential on source, drain and substrate respectively. If we 

define                  the total capacitance of the FG, and          

the coupling coefficient relative to the electrode  , where   can be one among 

      and  , the potential on the FG due to capacitive coupling will be given by: 

                               (2.3) 

It should be pointed out that (2.3) shows that the FG potential does not 

depend only on the control gate voltage but also on the source, drain, and bulk 

potentials. If the source and bulk are both grounded, (2.3) will be able to be 

rearranged as: 

            
  

  
                    (2.4) 

Where: 

DRAIN 

CONTROL GATE 

FLOATING GATE 

SUBSTRATE 

CFC 

CS CB CD 
SOURCE 

Fig. 2.6: Schematic cross section of a floating gate device. 
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 (2.5) 

Device equations for the FG MOS transistor can be obtained from the 

conventional MOS transistor equations by replacing MOS gate voltage     with FG 

voltage and transforming the device parameters, such as threshold voltage and 

conductivity factor  , to values measured with respect to the control gate. 

Supposing to define for      : 

  
        

   (2.6) 

    
 

  
    (2.7) 

It will be possible to compare the current–voltage (I–V) equations of a conventional 
and a FG MOS transistor in the triode region and in the saturation region [8]. 

 Conventional MOS transistor 

o Triode Region:                

                   
 

 
    

   (2.8) 

o Saturation Region:                

    
 

 
        

  (2.9) 

 Floating gate MOS transistor 

o Triode Region:                      

                      
 

    
     

   (2.10) 

o Saturation Region:                      
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  (2.11) 

Where   and    of (2.10) and (2.11) are measured with respect to the control 

gate rather than with respect to the FG of the stacked gate structure. They are to 

be read as                      and                     
  . Several effects 

can be observed from these equations, many of them due to the capacitive 

coupling between the drain and the FG, which modifies the I–V characteristics of FG 

MOS transistors with respect to conventional MOS transistors. 

 The floating gate transistor can go into depletion-mode operation and can 

conduct current even when           . This is because the channel can be 

turned on by the drain voltage through the       term. This effect is 

usually referred to as “drain turn-on.” 

 The saturation region for the conventional MOS transistor is where     is 

essentially independent on the drain voltage. This is no longer true for the 

floating gate transistor, in which the drain current will continue to rise as 

the drain voltage increases and saturation will not occur. 

 The boundary between the triode and saturation regions for the FG 

transistor is expressed by: 

                        (2.12) 

Compared to the conditions valid for the conventional transistor, 

              . 

 The transconductance in SR is given by: 

        

    
 
          

                     (2.13) 

Where   increases with     in the floating gate transistor in contrast to the 

conventional transistor, where    is relatively independent of the drain 

voltage in the saturation region. 
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 The capacitive coupling ratio   depends on    and     only     
  

  
  

      , and its value can be verified by: 

        

    
 
          

 (2.14) 

in the saturation region. 

Many techniques have been presented to extract the capacitive coupling 

ratios from simple dc measurements [9]–[10]. The most widely used methods [11], 

[12] are: 

 Linear threshold voltage technique  

 Subthreshold slope method  

 Transconductance technique 

These methods require the measurement of the electrical parameter in both 

a memory cell and in a “dummy cell,” i.e., a device identical to the memory cell, but 

with floating and control gates connected. By comparing the results, the coupling 

coefficient can be determined. Other methods have been proposed to extract 

coupling coefficients directly from the memory cell without using a “dummy” one, 

but they need a more complex extraction procedure [13]–[14]. 

2.2.1.2 The Reading Operation 

In this section the case with charge stored in the FG will be considered, i.e. 

   . All the hypotheses made in 2.2.1.1 hold true, and the following 

modifications need to be included. Equations (2.4), (2.6) and (2.10) become: 

                  
 

  
 (2.15) 

  
   

 

  
   

   
 

     
 

 

  
  

   
 

   
 (2.16) 
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   (2.17) 

Equation (2.16) shows the    dependence on  . In particular, the threshold 

voltage shift     is derived as: 

            
 

   
 (2.18) 

Where     is the threshold voltage when    . This is the key result explaining the 

success of the FG device as the basic cell for nonvolatile memories applications. 

 

Equation (2.17) shows that the role of injected charge is to shift the I-V curve 

of the cell. If the reading biases are fixed (usually              ) the presence 

of charge will greatly affect the current level used to sense the cell state. Fig. 2.7(a) 

[15] shows two curves:  

 The one the left side represents the “Erased” state: it is assumed when 

no charge is trapped in floating gate.  

 The curve on the right side represents the same cell in the 

“Programmed” state: in figure is shown a case with        If the 

charge trapped in floating gate is greater than zero the curve will be 

shift on the left side. 

In the defined reading condition (Fig. 2.7(b)) an erased cell draws a significant 

current whereas the programmed cell does not draw any current. In the depicted 

case it will be assumed that an “erased” cell stores the “1” information, vice versa 

 
 

   

 

VCS 

IDS 

(a)  I-V Characteristics 

“1” “0” 

VCS 

IDS 

(b) Read Voltage 

Fig. 2.7: Trans-characteristic of a floating-gate device. 
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the “programmed” cell stores the “0” information. This assumption can be change 

in different applications. 

2.2.1.3 Charge Injection Mechanism 

There are many solutions used to transfer electric charge from and into the 

FG. For both erase and program, the problem is making the charge pass through a 

layer of insulating material.  

The channel hot-electron injection (CHE) mechanism generally is used in Flash 

memories, where a lateral electric field (between source and drain) “heats” the 

electrons and a transversal electric field (between channel and control gate) injects 

the carriers through the oxide. 

The Fowler–Nordheim (FN) tunneling mechanism takes place when there is a 

high electric field through a thin oxide. In these conditions, the energy band 

diagram of the oxide region is very steep; therefore, there is a high probability that 

electrons pass through the energy barrier. 

These two mechanisms have been deeply investigated for MOS transistors in 

order to avoid unwanted degradation effects. In Flash cells, they are exploited to 

become efficient program/erase mechanisms. 

2.2.1.3.1 Channel Hot Electron Injection 

The physical mechanism of CHE is relatively simple to understand 

qualitatively. An electron traveling from the source to the drain is powered by the 

lateral electric field and loses energy due to lattice vibrations (acoustic and optical 

phonons). At low fields, this is a dynamic equilibrium condition, which holds until 

the field strength reaches approximately           [16]. For fields exceeding this 

value, electrons are no longer in equilibrium with the lattice, and their energy 

relative to the conduction band edge begins to increase. Electrons are “heated” by 

the high lateral electric field, and a small fraction of them have enough energy to 

surmount the barrier between oxide and silicon conduction band edges. For an 

electron to overcome this potential barrier, three conditions must hold [17]:  

 Its kinetic energy has to be higher than the potential barrier; 

 It must be directed toward the barrier; 

 The field in the oxide should be collecting it. 

To evaluate how many electrons will actually cross the barrier, it should be known 

the energy distribution           as a function of lateral field  , the momentum 

distribution           as a function of electron energy   (i.e., how many electrons 



2.2 Non-Volatile Memories

 

 

30 Chapter 2: Semiconductor Memories  

 

are directed toward the oxide), the shape and height of the potential barrier, and 

the probability that an electron with energy  , wave vector  , and distance   from 

the Si/SiO2 interface will cross the barrier. Each of these functions needs to be 

specified in each point of the channel (see Fig. 2.8). 

 

A quantitative model, therefore, is very heavy to handle. Moreover, when the 

energy gained by the electron reaches a threshold, impact ionization becomes a 

second important energy-loss mechanism [18], which needs to be included in 

models. 
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Fig. 2.9: A schematic energy band diagram describing the three processes 

involved in electron injection. 
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Fig. 2.8: (a) Schematic cross section of a MOSFET. (b) The energy-distribution 

function at point X1, Y1. 
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Nevertheless, a description of the injection conditions can be accomplished 

with two different approaches. The CHE current is often explained and simulated 

following the “lucky electron” model [19]. This model is based on the probability of 

an electron is being “lucky” enough to travel with a ballistic conduction phenomena 

in the field   for a distance several times the mean free path without scattering, 

eventually acquiring enough energy to cross the potential barrier if a collision 

pushes it toward the Si/SiO2 interface. Consequently, the probability of injection is 

the lumped probability of the following events [20], which are depicted in Fig. 2.9. 

 The carrier has to be “lucky” enough to acquire enough energy from 

the lateral electric field to overcome the oxide barrier and to retain its 

energy after the collision that redirects the electron toward the 

interface (PΦb). 

 The carrier follows a collision-free path from the redirection point to 

the interface (PED). 

 The carrier can surmount the repulsive oxide field at the injection 

point, due to the Schottky barrier lowering effect, without suffering an 

energy-robbing collision in the oxide (POC). 

Although this simple model does not fit precisely with some experiments, it 

allows a straightforward and quite successful simulation of the gate current. A more 

rigorous model is based on the quasi-thermal equilibrium approach [21], [22]. It 

assumes that the electron can be treated as a gas in quasi-thermal equilibrium with 

the electric field. This electron gas is characterized by an “effective temperature,” 

which is different from the lattice temperature. The model establishes a non-local 

relation between the effective electron temperature and the drift field. Thus, the 

carrier probability to acquire certain energies depends on the complete profile of 

the electric field in the channel region [23]. 

2.2.1.3.2 Fowler-Nordheim Tunneling 

In the framework of quantum mechanics, the solutions of the Schrӧdinger 

equation represent a particle. The continuous nonzero nature of these solutions, 

even in classically forbidden regions of negative energy, implies an ability to 

penetrate these forbidden regions and a probability of tunneling from one 

classically allowed region to another [24]. The concept of tunneling through a 

potential barrier applies well to MOS structures with thin oxide. Fig. 2.10 shows the 

energy-band diagram of a MOS structure with negative bias applied to the metal 

electrode with respect to the p-doped silicon substrate. The probability of electron 
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tunneling depends on either the distribution of occupied states in the injecting 

material or the shape, height, and width of the barrier. 

 

Using a free-electron gas model for the metal and the Wentzel–Kramers–

Brillouin (WKB) approximation for the tunneling probability [25], it is obtained the 

following expression for current density [26]: 

where    is the barrier height,    
  is the effective mass of the electron in the 

forbidden gap of the dielectric,   is the Planck’s constant,   is the electronic charge, 

and   is the electric field through the oxide. 

2.2.1.4 EPROM Floating Gate Devices 

In the following sections a historical review of transistors based on floating 

gate used for EPROM applications will be provided. 
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Fig. 2.10: FN tunneling through a potential barrier in a MOS structure. 
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2.2.1.4.1 The floating gate avalanche-injection MOS transistor (FAMOS) Cell 

In 1967 D. Khang and S. M. Sze at Bell laboratories [27] proposed the first 

non-volatile memory device based on a floating gate in a Metal-Insulator-Metal-

Insulator-Semiconductor (MIMIS) structure. The lower dielectric had to be enough 

thin (< 5 nm) to allow quantum-mechanical tunneling of electrons from the 

substrate to the floating gate and vice versa. The MIMIS cell structure could not be 

manufactured reliably at that time because achieving a so thin oxide layer without 

defects was challenging. 

For this reason, the tunneling mechanism was initially abandoned and the 

first operating floating gate device was developed at Intel in 1971 by Frohman-

Bentchowsky [28]. This cell, without control gate, was programmed by applying a 

highly negative voltage at the drain to create a group of highly energetic electrons 

under the gate. To program the cell, the electrons were injected into the oxide 

reaching the floating gate. But, since the cell was devoid of control gate very high 

voltage was required, moreover the operation was extremely inefficient. In order to 

inject electrons in the floating gate, p-channel devices had to be used. 

Erasure was performed by providing externally the required energy to re-emit 

electrons from the floating gate. To achieve this goal, exposing the cell to ultra-

violet (UV) was needed. The FAMOS was developed into a double poly-silicon 

stacked gate n-channel device that constituted the basic cell of an EPROM. The cell 

was programmed by injection of channel hot-electrons into the floating gate and 

was erased using UV radiations (see Fig. 2.11). 

 

Nonetheless some problems existed: 

1. Hot electrons programming process was very inefficient, because 

needs both high voltage and high current; 

p p 

source drain Floating gate 

Fig. 2.11: First operating floating gate device: the FAMOS (Floating gate 

Avalanche injection MOS device). 
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2. Only the cell with control gate and drain at high voltage was 

programmed: it was a bit-selective operation; 

3. The bit selective programming mechanism and the UV erasure process 

were self-limiting: first of all, UV erasure could produce over-erased 

cells because it cannot remove all electrons from the floating gate. An 

over-erased cell is a cell with excessive source-drain leakage current 

when unselected due to its threshold which is lower than the applied 

control gate voltage. 

Moreover, if reprogramming was needed, an EPROM would have to be 

removed from the circuit board, UV erased and then reprogrammed. On the other 

hand, EPROMs could be implemented as a one-transistor memory cell, with the 

possibility to create extremely compact structures. 

2.2.1.4.2 Metal-Nitride-Oxide Semiconductor (MNOS) 

In 1967 Wegener introduced the MNOS cell [29], a standard MOS transistor 

wherein the oxide was been replaced by a nitride-oxide stacked layer (Fig. 2.12). 

The nitride is a charge storage element. Programming was achieved by inducing 

quantum-mechanical tunneling of electrons from the channel into the nitride traps 

and erasure by tunneling of holes from the semiconductor to the nitride traps when 

the gate potential was enough negative. 

 

2.2.1.4.3 Silicon-Nitride-Oxide Semiconductor (SNOS) 

In order to improve the charge retention of MNOS, the SNOS (Silicon Nitride 

Oxide Semiconductor) devices were developed (Fig. 2.13). These kinds of memories 

had an improved retention and a reduced thickness of the nitride. A top oxide layer 

p+ 

n-Sub 

p+ 

SiO2 

Si3N4 

Al gate 

Fig. 2.12: Cross section of the p-channel tri-gate MNOS device. 
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was used between the gate and the nitride to prevent holes injection to the gate, 

giving rise to SONOS (Silicon Oxide Nitride Oxide Semiconductor) structure. 

 

2.2.1.5 EEPROM Floating Gate Devices 

In the following sections a historical review of transistors based on floating 

gate used for EEPROM applications will be provided. 

The EEPROM cell is composed of two transistors connected as shown in Fig. 

2.14(a). A fulfillment on silicon is shown in Fig. 2.14(b), where the bit line metal 

layer is also depicted. The storage transistor has a floating gate which traps 

electrons. In addition, there is an access transistor, required for the erase 

operation. This is the main reason because the EEPROM cell takes a large area. 

 

Deposited Oxide Poly-silicon 
Control Gate 

Floating Gate 

n+ 

Diffused Drain Tunneling 
Region 

n+ n+ 

Metal Bit 
Line 

Poly-silicon 
Select Gate Diffused 

Source 
Fig. 2.14: EEPROM cell (a) schematic; (b) layout. 
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Fig. 2.13: Cross sections of the two transistors n-channel SNOS memory cell 

consisting of a MOS select transistor and a SNOS memory transistor. 
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2.2.1.5.1 The FLOating gate Thin Oxide (FLOTOX) Memory Cell 

Harari E. et al. proposed a non-volatile memory device called FLOTOX [30]: an 

electrically erasable and programmable cell which made use of Fowler-Nordheim 

tunneling mechanism [31]. It requires a “selection” transistor due to the non-

selectivity of the tunneling process. Fig. 2.15 shows the cross section of the whole 

cell, including the selection transistor.  

 

Programming is performed by applying a high voltage to the control gate, 

with the drain at low bias. By capacitive coupling, the voltage on the floating gate is 

also increased, and tunneling of electrons from the drain to the floating gate is 

initiated through the thin oxide grown on top of the drain. Erasing occurs when the 

drain is raised to a high voltage, and the control gate is grounded; the floating gate 

is capacitively coupled to a low voltage, and electrons tunnel from the floating gate 

into the drain. The drain bias is controlled by the select transistor. 

2.2.1.5.2 Textured Poly-silicon Cell 

A different way of using tunneling technique consists of employing the 

tunneling itself through oxides thermally grown on poly-silicon, instead of through 

the oxide between floating gate and drain. In this cell structure an enhancement of 

electric field exists although the used oxide layer is thick. This is due to the rough 

surface of poly-silicon. The cell consists in three transistors in series having poly 

gates partially overlapped as shown in Fig. 2.16. The floating gate is in the middle 

part of the structure (poly 2). Programming consists in injecting electrons from poly 

1 to the floating gate, whereas the erasing injects electrons from the floating gate 

to poly 3. The voltage applied on poly 3 is always high, so erasing or programming is 

selected with the voltage applied to the drain. The cell structure results compact 

Fig. 2.15: Schematic section of a FLOTOX cell including the select transistor. 
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and vertical and occupies less area than FLOTOX EEPROM cell, increasing the 

density. Furthermore, unlike the FLOTOX, this cell does not need to be programmed 

before selective erasure. 

 

On the other hand, quality and reliability of this technology strongly depends 

on the features of both the poly-silicon and the oxide thermally grown on it. 

Trapping in the poly oxide may result in device wear-out. 

2.2.1.5.3 Ferroelectric Memories 

In order to obtain a non-volatile memory element, some approaches adopting 

ferroelectric materials have been demonstrated.  

For non-volatile memories, ferroelectric materials serve not just a capacitors 

but as the memory element itself. Their main advantages are:  

 Low voltage (1.0 V) operation;  

 Small size (about 20% of a conventional EEPROM cell) and cost is 

proportional to size once high-yield production is achieved;  

 Radiation hardness (not just for military applications, but for satellite 

communication systems) 
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Fig. 2.16: Equivalent circuit (a), layout and schematic cross-section (b) of a 

textured poly EEPROM cell. 
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 Very high speed (60 ns access time in commercial devices, sub-

nanoseconds in laboratory tests on single cells). 

Ferroelectrics are pyroelectric1 crystals (include fine-grained ceramics) whose 

spontaneous electric polarization can be reversed by application of an external 

electric field that is smaller than the breakdown field [32]. 

 

Ferroelectric RAMs (FeRAMs) are structurally similar to dynamic-RAM 

discussed in 2.1.2, but the dielectric part of the capacitor is replaced by ferroelectric 

thin film Fig. 2.17. When the voltage applied to the capacitor exceeds a certain 

positive value       , the polarization becomes positive and increases up to a 

saturation value      (Fig. 2.18). The same applies for negative voltage lower than 

       , leading to a saturated polarization      . When the electric field is 

removed, the ferroelectric film maintains its state of polarization, but the value of 

polarization is somewhat reduced to a relaxation value      (or       if a negative 

voltage has been applied). Two logic states are therefore possible, corresponding to 

the      and       polarizations. When, during the read operation, a positive 

voltage is applied to the ferroelectric capacitor the polarization changes from      

                                                      
1
 Pyroelectricity (from the Greek pyr, fire, and electricity) is the ability of certain materials to 

generate a temporary voltage when they are heated or cooled. The pyroelectric materials are 
crystalline substances capable of generating an electric charge in response to heat flow [40]. 
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Fig. 2.17: (a) Schematic cross section of a ferroelectric nonvolatile DRAM. (b) 
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to     , thus requiring a low current (logic state “0”) or from       to     , which 

corresponds to a high current, or to the logic state 1. The difference in current 

between two memory states is sensed to generate the output. After reading the 1 

state, the       negative polarization must be regenerated by applying a negative 

voltage to the capacitor and vice versa. 

 

2.2.2 Flash Memories 

Flash memories inherit the EEPROM’s structure, introducing a mechanism 

which allows simultaneously electrical erasure of a large number of cells (block, 

sector or page) inasmuch do not include the selected transistor. Such mechanism 

improves the performance in terms of speed, inasmuch the whole memory can be 

erased at the same time. Hence, flash memories combine the electrical in-system 

erase-ability of EEPROMs with the high density of the EPROMs and an access time 

comparable to DRAMs, and for this reason they are the most common technology 

used to store data permanently in different applications (such as microprocessors 

or microcontrollers mainly to allow software updates and reconfigure the system). 

Programming is carried out selectively by means of the hot electron 

mechanism; erasing is based on tunneling, and is carried out in blocks of different 

sizes. The first cell based on this concept was presented in 1979 [33]; the first 

commercial product, a 256-K memory chip, was presented by Toshiba in 1984 [34]. 

Fig. 2.18: Typical hysteresis curve of a ferroelectric capacitor, identifying 

polarization states. 
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Fig. 2.19 shows the cross-section of an industry-standard Flash cell. It is 

derived from an EPROM cell, but a few meaningful differences exist:  

 The oxide between the substrate and the floating gate is very thin (~10 

nm);  

 If a high voltage is applied at the source when the control gate is 

grounded, a high electric field exists in the oxide, enabling electron 

tunneling from the floating gate to the source. This bias condition is 

dangerously close to the breakdown of the source-substrate junction.  

 The source diffusion is realized differently from the drain diffusion, 

which does not undergo such bias conditions.  

The cell is not symmetrical, but this is the only difference with respect to the 

standard EPROM process. This is a great advantage, since all the accumulated 

experience in process development can be used to produce these devices. 

2.2.2.1  Flash Architectures 

Different design approaches exist for flash memories. Each one exalts certain 

features that make each solution more suitable for a particular application. These 

approaches, give rise to different architectures of flash memories which, generally 

differ each other for [35]: 

 Cell architecture; 

 Cell functionality, i.e. voltages to be applied during program, erase and 

read operation; 

 Target device performance; 

 Array organization; 

Source Drain 

p-Substrate 

Floating gate 

Control gate 

Interpoly oxide 

Tunnel oxide 

Fig. 2.19: Schematic cross-section of an industrial Flash cell. 
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 Flash memory interface with the external world: communication 

protocol and I/O circuitry.  

Moreover, flash memories are divided into two families, according to their 

main applications: 

1. "EEPROM like" applications: telecommunications, automotive, hard disk’s 

drivers, printers, etc. The most common features are: 

 Low density; 

 High capacity; 

 Easy integration with other device.  

The market requirements for this kind of memory are:  

 Speed; 

 Low power consumption; 

 Low supply voltages; 

 Density and maximum number of cycles. 

2. Mass storage application, as multimedia card and palm-top. The market 

requirements for these applications are: 

 Profitability (cost/MB); 

 Density; 

 Number of cycles; 

 Low power consumption and speed.  

Architectures of flash-arrays can be also divided according to data access and 

data write organization. In fact, arrays which have random access and random 

program (parallel) are used for embedded applications, whereas arrays which have 

page read and page program (serial) accesses are consistent with mass storage 

applications. 

The device organization depends on the cell array architecture. Three 

implementations exist. They differ to each other for following features: 

 Sector size; 

 Read, program and erase performances; 

 Power supply requirements; 

 Cycling performance (Program / Erase); 

 Complexity of process manufacturing and device size. 
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These implementations are: 

 NOR:  is the most commonly used in a wide range of applications that 

require both medium density and performances. 

 NAND: is similar to the NOR, but the access to the matrix is different 

because the cells are arranged along the array in serial chains: the 

drain of a cell is connected with the source of the following one. The 

name comes from the way in which the read operation is performed. 

The access time is very slow and the high voltages needed to 

program/erase operation can cause some reliability problem. 

 EEPROMs: derive from the EEPROM cells but the contents inside the 

memory can be altered on a block rather than on a byte basis. The 

functionality is the same of an EEPROM cell. The reliability is the main 

problem due to the high voltages and thick oxide. 

Cells which use the CHE program and FN erase can be grouped into two main 

categories: 

1. one-transistor cells and their array architectures (NOR common ground) 

2. merged cells (split-gate triple poly, split-gate source injection) 

Cells which use FN tunneling for program and erase operation can be grouped 

as: 

1. NOR arrays (DINOR, asymmetrical contact less transistor, EEPROM like 

cells); 

2. AND arrays (AND, HiCR cells); 

3. NAND cells. 

The motivation to use Fowler-Nordheim tunneling to the channel for both 

programming and erase comes from the need to change the programming 

mechanism to simplify the supply scaling and to reduce the cell sizes. 

2.2.2.1.1 NOR Architecture 

The NOR organization is shown in Fig. 2.20: cells belonging to the same word 

share the same word line, while many bit lines as the word length, are activated 

simultaneously.  

For a read operation, the cell address has to be provided to the row and 

column decoders. The row decoder selects the corresponding word line by raising 
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its voltage while all the others are kept at ground. The addressed bit line, which is 

connected to the sense amplifier, will be flowed by a significant current if the 

addressed cell is erased (low threshold voltage). Otherwise, if the cell is 

programmed (high threshold voltage), the cell will not be “ON”, so no current flows 

through the bit line. The sense amplifier deals to detect a significant current to 

reveal the value of the bit stored in the addressed cell. Note that this solution 

requires a sense amplifier per bit. 

For both operations, programming and erasing, the word line is selected to 

activate the cell to be written. If the input data is “0” (a programming operation has 

to be performed), the bit line will be driven at high voltage, to allow the cell 

threshold voltage be incremented through channel hot electron injection (Fig. 

2.21). 

 

 

source drain 

+12 V 

0 V +5 V 

Fig. 2.21: Channel Hot Electron injection: voltage application for 

programming (writing value “0”). 

Fig. 2.20: Schematic structure of the read path in a NOR organization. Only 

one bit at a time is here considered as addressable. 
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After the application of the programming voltages, it is necessary to verify 

whether the cell has been correctly programmed, i.e. if the threshold voltage is 

larger than a minimum acceptable value pointed as     
. This task is carried out by 

reading the cell selecting the word line with voltage higher than that applied during 

normal reading and by comparing the read data with that to be programmed (some 

digital blocks are also necessary e.g. register to keep the value which has to be 

programmed). If the two values are equal, it will mean that the threshold voltage of 

the cell has risen from the erased value to the programmed one and that, since this 

read operation has provided a correct result with the more critical condition of a 

higher reading voltage, the correct value is expected to be detected even in a 

conventional reading. If the verification fails, another programming pulse is applied 

to the cell (always by raising both gate and drain voltages), until the cell is correctly 

programmed or a maximum number of pulses has been reached, so that a fail signal 

will be produced. 

For several reasons the erase procedure is even more complicated. First of all, 

it is performed on an entire sector, so that the verification process requires that all 

the cells of the sector are read in sequence. In addition, it is important to check the 

thresholds of some cells will not become too low and, in case, to raise their 

threshold to a higher value. A schematic behavior of the thresholds’ distribution for 

cells belonging to the same sector is shown in Fig. 2.22. 

Starting from a typical situation existing before erasing (Fig. 2.22(a)), once the 

erase procedure has been activated, all the cells of the sector are programmed with 

“0”, so that their thresholds are increased (Fig. 2.22(b)). This normalization task 

reduces the possibility of over-erasing cells written with a “1” (that could become 

leaky when unaddressed), and it allows for a more uniform distribution of the 

erased thresholds, since all the initial thresholds belong to the same range. 

To erase a single sector, a high electric field must be applied between the 

sources and the gates of the cells belonging to the sector, to allow Fowler-

Nordheim current to discharge the floating gates. This task is accomplished in two 

different ways: by applying a high voltage (in the range of 12 V) to the source of the 

cells to be erased while grounding their gates (source erase), or by splitting the 

biasing voltage between source (at 5 ÷ 7 V) and gate (at -8 ÷ -10 V) (negative gate 

erase) (Fig. 2.23). Both solutions present a drawback: the highly negative bulk-

source voltage drop can activate avalanche injection in the former case, while the 

generation of a negative voltage is required in the negative gat erasure. 
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Fowler-Nordheim tunneling current depends on many physical and 

technological parameters, so that even adjacent cells can discharge at different 

rates. After a single erase pulse has been applied, the threshold distribution may be 

source drain 

0 V 

12 V 

source drain 

-10 V 

7 V 

a) b) 

Fig. 2.23: Fowler-Nordheim voltage application for a) source erasing b) 

negative gate erasing (writing value “1”). 

Fig. 2.22: Schematic distribution of the threshold voltages during an erase 

operation: a) before erase; b) after a "program all-0" operation; c) after a single 

erase pulse; d) after the erase verify procedure has been successfully performed; 

e) after soft-programming. 
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similar to that depicted in Fig. 2.22 c. In particular, many cells are not fully erased 

(       
). Hence, as for the programming operation, it is mandatory to check for 

the correctness of the erase procedure, by reading the entire sector with a gate 

voltage lower than that usually applied during normal reading. If the data read is 

“1”, it means the threshold voltage of the cell has been lowered from the 

programmed value to the erased one and that, since this read operation has 

provided a correct result with a low reading voltage, the correct value is expected 

to be detected even in a conventional reading. If the verification fails for at least 

one cell, another erasing pulse is applied to the sector until all the cells are correctly 

erased or a maximum number of pulses has been reached, so that a fail signal is 

produced. After the erase verify procedure (see Fig. 2.22 d), it is important to check 

whether some cells are over-erased (“depletion verify”) and, in case, their 

thresholds must be driven to the correct range (“soft programming”). The former 

operation must check whether some cells feature low or even negative threshold 

(depleted cells), so that they would draw current even if not biased, thus 

preventing from a correct reading of cells belonging to the same bit line. With the 

latter operation, these cells are written with suitable gate and drain voltages that, 

lower than those used during the normal program procedure, allow for a slight 

increase of the threshold voltage. The final threshold distribution is then bounded 

between     
and     

 (see Fig. 2.22 e). 

2.2.2.1.2 NAND Architecture 

The elementary unit of a NAND architecture flash memory is not a single cell 

but a serial chains of more floating gate transistors connected to the bit line and 

ground through two selection transistors (Fig. 2.24). This organization permits to 

eliminate all contacts between WLs, reducing in this way the occupied area. The 

reduction of the matrix area, thanks to the scaling of the word line pitch, is the 

main advantage of this solution. This feature is possible because of: 

 Decrease of the number of contacts; 

 Scaled source and drain junctions with respect to the standard ETOX 

cell, made possible by the physical mechanism used for cell writing. 

Selection transistors are biased to connect the chain to the bit line and isolate 

it from the ground. If the memory is organized in a NAND array, both program and 

erase mechanisms are electron tunneling. Since tunneling is more efficient than 

CHE injection, currents are smaller and different supply voltages can be internally 

generated by charge pumping circuits implemented on the same die. NAND array 

are preferred for high-density Flash memories. 
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During reading operation the selected cell has the control gate at 0V while the 

other cells in series are driven at high voltage, thus acting as ON pass gates 

independently of their actual thresholds. The current will flow along the series only 

if the selected transistor shows a negative threshold. Such current will be detected 

by the sense amplifiers present at the end of each bit line. So this operation 

becomes slow. 

2.2.2.2 Reading Techniques 

A reading operation in flash memories consists in sensing the current which 

flows among the bit line and comparing with a given references. If the current 

provided by the selected matrix cell is greater than the reference the content cell 

will be read as “1”, otherwise as “0”. The issue involves analog circuitry, in 

particular for comparing the currents. 

The simplest sense circuit is show in figure Fig. 2.25 a. Transistors M2 and M3 

comes from row and column decoders, CBITLINE is the parasitic capacitor of the bit 

line and it is due substantially to the drains of all floating gate devices of the bit line. 

At the beginning of the read procedure, the transistor M1 charges the capacitor 

until about 1 V is reached, when the transistor is turned off by the negative 

feedback. The gate of the cell is biased to VDD, so if the cell is erased (e.g. its 

BL0 BL1 BL2 BL3 

WL0 

WL1 

WL3 

BSL 

GSL 

Fig. 2.24: NAND array architecture for flash memories. 
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thresholds is 2 V) the capacitor will discharge through the floating gate device, 

lowering the voltage VOUT. In the other hands, if the cell is programmed (threshold 

higher than VDD) the capacitor will not discharge and the output node remains at 

VDD. In a CMOS process the resistor denoted by “R” is replaced with a current 

generator. For a better comprehension of the circuit operation is useful keeping in 

mind the chart of the Fig. 2.7 which, as explained in 2.2.1, depicts the characteristic 

of the floating gate device when erased (read as “1”) and programmed (read as 

“0”).2  

 

Considering the current generator as ideal, two different situations can occur:  

 The cell is erased: if it is over-erased (i.e. the threshold voltage is lower 

than a minimum value,     
) it will not be able to sink the current 

supplied by the ideal generator, so the output voltage will erroneously 

rise up at VDD. If, instead, the threshold voltage is higher than the 

                                                      
2 In this context the voltage at the output node will be low when the cell is 

erased and high when programmed. An output stage will invert the signal according 

to the previous definition of programmed and erased cell. 
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Fig. 2.25: Biasing configuration for read mode: a) arbitrary V bias; b) self-

generated V bias. 
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minimum value     
, the reference current will be completely sunk 

by the floating gate, keeping the output voltage low. 

 The cell is programmed: if the threshold voltage of the floating gate 

device is greater than a maximum value     
the current supplied by 

the ideal generator will be completely sunk by the cell, so the output 

voltage will erroneously drop. If, instead the threshold voltage is less 

than the maximum value     
, the reference current will not be sunk 

by the cell and will charge the output capacitor increasing the output 

voltage. 

Therefore, the threshold voltage for a correct sensing of the cell is     
 

        
. The right choice of the reference current should also satisfy dynamic 

constraints; it should be large enough to charge CBITLINE quickly, but not so high as to 

prevent a erased cell from pulling down the output node. 

The way VBIAS is generated has also an effect on the dynamic behavior of the 

circuit: if the gate voltage of M1 is kept at a fixed value, when M2 and M3 are turned 

on, the VGS of M1 is equal to VBIAS, since node “A” (Fig. 2.25(a)) is dynamically 

grounded, therefore the charging of the CBITLINE is performed through M1 with a 

limited VGS. To overcome this issue, the bias voltage network is replaced by an 

inverter as shown in Fig. 2.25 b. When the node A’ is grounded, the bias voltage is 

at VDD therefore the VGS of M1 is the maximum available, and the charging of CBITLINE 

is as fast as possible. Calibration of the threshold voltage of the inverter – by 

designing the nMOS aspect ratio greater than the pMOS one – is needed to 

guarantee the M1 is turned off as soon as the A’ node reaches the voltage     
, of 

about 1 V. The main drawback of this solution is the power consumption: feedback 

needs current to work properly. 

The Fig. 2.26 depicts a differential current sensing. Its operation is based on 

comparing two voltages, VR and VM, which are proportional to the reference current 

and the current provided by the cell to be read respectively. 

The floating gate denoted as MR in the figure is a virgin cell, i.e. its threshold voltage 

is equal to an EPROM cell UV-erased, about 2 V; whereas the MM is the floating gate 

device which makes up the cell to be read. 

The circuit’s structure is symmetrical, so M4, M5 and M6 are identical to M1, M2 and 

M3 respectively. They convert the current supplied by the floating gate devices MR 

and MM into the voltages VR and VM respectively. 
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If MM is programmed, no current will be sunk in the matrix side and VM is at 

VDD, while MR is active and VR is pulled down: therefore a voltage difference exists, 

and the comparator switches its output. The problem with the structure arises 

when MM is virgin: of course, VR and VM have the same potential and the 

comparator is not able to decide what type of information it is reading. The 

parameters that can be changed to obtain a correct behavior in every conditions 

are the value of the loads, R1 and R2. VR node should always be between    
 (the 

potential due to a virgin matrix cell) and    
 (the potential due to a programmed 

matrix cell), and it should always have the same value, chosen according to dynamic 

considerations, independently of the matrix side cell. The relation is therefore the 

following: 

   
       

 (2.20) 

The upper limit is always satisfied, whereas two ways exist to obtain the lower one: 

 Decreasing R1, thus pulling up node VR 

 Increasing R2, thus pulling down the node    
. 

Fig. 2.26: Differential architecture. 
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In both cases, if the two branches sink the same current, node VR is higher 

than    
because voltage drop on R1 is lower than on R2 (R1 < R2). The optimal 

solution is the first one, since smaller load values mean higher current to charge 

CBITLINE quickly. As mentioned before, in a CMOS integrated process the resistor will 

be replaced by a transistor. Therefore R1 and R2 will be replaced by pMOS 

transistors in diode configuration as shown in Fig. 2.26, where R1 is composed by 

two pMOS in parallel to form a dynamic resistance half than R2. 

 

Fig. 2.27 depicts both reference and matrix cell characteristic, assuming that 

MR and MM have the same size. The reference characteristic (red curve in Fig. 2.27) 

starts at the same point of the erased cell one, but with half angular coefficient. It is 

clear that if the cell characteristic is above to the reference one, the cell will be 

recognized as erased; vice versa the cell will be recognized as programmed. 

Supposing that the characteristics are straight lines, the following relation holds: 

      
      

 
 

   
     (2.21) 

      
      

 (2.22) 

with   equals to the ratio between the size of the loads in the reference and in the 

matrix side. By choosing different values of  , it is possible to modify the current 

differences between the reference and the matrix sides thus giving more margin 

either to the virgin or to the programmed cell, as needed. 

The main problem related to current-voltage converter with unbalanced loads 

is that       
 fixes a maximum supply voltage for the device operation; in fact, if 

    becomes higher than       
, the read circuitry misinterprets a programmed 

Fig. 2.27: Read with unbalanced loads. 
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cell as erased. A typical solution to avoid this issue consists in realizing a reference 

whose characteristic is parallel to that of the matrix cells as shown in Fig. 2.28. 

 

By shifting rigidly the characteristics of both the programmed and erased cells 

upwards of a given offset current, as shown in Fig. 2.29, the reference characteristic 

will completely be on the right side of the erased one, whereas that of the 

programmed cell will be on the left side of the reference just up to a low voltage 

denoted as       
. Therefore for           

 the reference characteristic is 

always separated from that of the matrix; solving the problem related to       
 , 

but introducing a problem related to       
. 

 

The offset current has to be chosen by keeping in mind the compromise 

between the       
 and the separation of the reference and erased cell 

characteristics. Fig. 2.30 shows the circuitry used to obtain these characteristics: the 

VGS = VDD 
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Fig. 2.29: Characteristic separation using offset current. 
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Fig. 2.28: Parallel characteristics approach. 
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voltage generator consists in a network based on a mirror current fed by a current 

generator. 

 

This configuration is used in many devices obtaining good results even if 

paying particular attention to the shrink influence on the offset current value. 

Different structures exist in literature such as “Differential Semi-Parallel Sensing 

Technique” [35] and “Current Mode Analog Sense Amplifier” [36]. 

2.3 Conclusions 

In this chapter the issues related to the flash memories have been introduced. 

As discussed, they involve both digital and analogue themes. Many of them have 

been neglected, such as the generation of the voltages needed to either program or 

erase the cells’ content. Flash memories result one of the most complex units 

embedded in a microcontroller for both the generation and handling of the 

analogue signals, and the treatment of the disturbances in either reading, 

programming or erasing. The complexity of the flash memory makes the unit which 

contains the flash memory the largest in terms of area occupied in a 

microcontroller. For this reason a great effort has to be spent by the manufacturers 

to guarantee the flash operation both in terms of reliability and durability. 
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Chapter 3 TriCore® TC27x microcontroller 

One of the aims of this thesis is the development a simulator of the Program 

Memory Unit (PMU) included in the Infineon® “TriCore Aurix TC27x” 

microcontrollers. This simulator will be interfaced with the existing CPU simulator 

so that it is possible to have a complete simulator of the whole microcontroller. The 

goal of the user is to test the correct execution of the firmware application. In 

particular, for the Infineon’s Padua team, it is to test the firmware applications, 

which perform operations on flash memory unit. 

In this chapter, a brief presentation about the microcontroller will be given, 

focusing on the Program Memory Unit. 

3.1 TriCore® Aurix Device 

The Infineon TriCore® Aurix device is a 32 bit microcontroller DSP based on 

the Infineon TriCore architecture. It combines three powerful technologies within 

one silicon device, achieving new levels of power, speed and economy for 

embedded applications: 

 Reduced Instruction Set Computing (RISC) processor architecture; 

 Digital Signal Processing (DSP) operations and addressing modes; 

 On-chip memories and peripherals. 

DSP operations and addressing modes provide the computational power 

necessary to efficiently analyze complex real-world signals. The RISC load/store 

architecture provides high computational bandwidth with low system cost. On-chip 

memory and peripherals are designed to support even the most demanding high-

bandwidth real-time embedded control system tasks.  

The TC27x is a high-performance microcontroller with three TriCore CPUs, 

program and data memories, buses, bus arbitration, interrupts system, DMA 

controller and a powerful set of on-chip peripherals, such as serial controllers, timer 

units, and analog-to-digital converters. Within the TC27x, all these peripheral units 
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are connected to the TriCore CPUs / system via the System Peripheral Bus (SPB) and 

the Local Memory Bus (SRI). A number of I/O lines on the TC27x ports are reserved 

for these peripheral units to communicate with the external world. A block diagram 

is shown in Fig. 3.1. 

 

Fig. 3.1: TC27x block diagram. 
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The TC27x has two independent on-chip buses: 

 Shared Resource Interconnect (SRI) 

 System Peripheral Bus (SPB) 

The SRI connects the TriCore CPUs, the high bandwidth peripherals and the 

DMA module to its local resources for instruction fetches and data accesses. 

Further details about this bus will be treated afterward inasmuch it connects the 

CPUs with the Program Memory Unit which is the subject of this thesis. 

The System Peripheral Bus connects the TriCore CPUs, the high bandwidth 

peripherals and the DMA module to the medium and low bandwidth peripherals. 

3.2 Program Memory Unit 

The Program Memory Unit is the module which includes the flash memory. It 

is connected to other microcontroller’s peripherals through the “Shared Resources 

Interconnected” (SRI) bus. 

In Infineon® microcontrollers the silicon area is mainly taken up by the 

Program Memory Unit, therefore it is subjected to the highest probability of 

execution failure than any other peripheral. Thus great efforts are made to test, 

characterize and validate the PMU in order to reduce as much as possible the 

probability of an error. 

The Program Memory Unit, sometimes also referred as Flash Block, can be 

thought as a finite state machine which interfaces the actual flash memory with all 

other microcontroller parts. The Fig. 3.1 depicts some functional device blocks, 

including the PMU. The most important components are the three CPUs denoted by 

CPU0, CPU1 and CPU2. These CPUs execute the instructions which are stored into 

the program flash, involving all the needed subsystems via SRI bus. 

The Program Memory Unit contains some sub circuitries which handle the 

local memory, as shown in Fig. 3.2. The local memory presents the following 

features: 

 2 MBytes of program flash memory (PFlash) 

 128 kBytes of data flash memory (DFlash) 

 16 kBytes of boot ROM (8 kB boot code, 8 kB factory test routines) 

 Emulation memory interface for access to ECC SRAM in emulation 

device. 
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The whole flash block is composed by three modules as shown in Fig. 3.3: 

 Flash Array Module (FAM): contains cell arrays with all analogue and 

digital blocks needed to handle it. 

 Flash Interface and Control Module (FIM): provides an interface 

between the PMU and the remaining parts of microcontroller. 

 Flash Standard Interface (FSI): manages the flash operations. It is the 

most important PMU’s part as it manages all the operations to and 

from the Program Memory Unit. 
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Fig. 3.3: Program Memory Unit's sub circuitries. 
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Fig. 3.3 depicts all the PMU’s sub modules: data and program instructions are 

stored into Data Flash and Program Flash respectively. Some sense amplifiers and 

voltage controls handle analogue signals needed to write and erase flash arrays. A 

detailed description of the other parts will be given afterwards. 

Since TC27x microcontroller is designed for automotive purpose, all data are 

stored in flash array with some ECC and redundancy bits for safety reasons, 

therefore “ECC and Redundancy” block exists to calculate these fields. 

The simulator developed in this thesis focuses on the Data and Program Flash 

memory; whereas the boot ROM is not considered (it could be a next 

improvement). For the “Flash Interface and Control Module” and “Flash Standard 

Interface” just behavioral aspects are implemented. 

3.2.1 Pump Voltage 

Reduction of the device power supply voltage required the inclusion of an 

additional internal circuitry to obtain all the voltages necessary for the various 

operations such as erase and program. At the same time, the decrease of the 

device size emphasized the problems related to stress and, as a consequence, the 

sector organization had to be redesigned. 

The first generation of a single supply System-on-Chip with Flash memory 

with a VDD of 5V was created by Infineon in 2001. In the case of single supply, the 

voltages greater than VDD are produced on-chip by charge pumps. The current-

voltage characteristic of a charge pump realized with diodes and capacitors can be 

approximated to a line, the slope of which represents the pump output resistance ROUT. 

The ROUT value amounts to tens of KΩ, whereas the maximum current supplied 

amounts to mA.  

3.2.2 Sense Amplifier 

Another analog component of the Flash system is the sense amplifier connected 

to the bit lines for reading the corresponding bit.  

The sense amplifier is a comparator. In order to identify the information in 

the cell, the current is converted into voltage and the voltage of the cell addressed 

is compared with the reference cell by a differential amplifier. In this section the 

sense amplifier embedded in the Infineon microcontrollers will not be treated. General 

information about this task was provided in 2.2.2.2. 
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3.2.3 Flash Structure 

The flash memory is divided into different banks, physical sub-sectors and 

logical sub-sectors respectively. 

The flash module contains separate banks: one set for the program flash (PF0, 

PF1 and so on) and another one for data flash (DF0, DF1 and so on). This division 

exists to support concurrent operations, although some existing limitations due to 

the common logic. 

A flash bank is further divided into physical sub-sectors, which are 

independent memory areas. The sub-sectors are separated into logical sectors, 

which can be thought as groups of word-lines which share the same bit line.  

A logical sector is the smallest erasable memory unit, but after a bit of erasure 

the whole physical sub-sector has to be erased to avoid problems due to over-

erased and / or soft erased cells.  

3.2.3.1 Program Flash Structure 

Microcontrollers belonging to the TC27x family can have different size of the 

Program Flash banks, all based on the same sectorization: 

 2 MBytes bank implements logical sectors S0 to S26;  

 1.5 MBytes bank implements logical sectors S0 to S24;  

 1 MBytes bank implements logical sectors S0 to S22. 

The Fig. 3.5 shows the sectorization for a 2 MBytes program flash bank which 

is divided into four physical sub-sectors and more logical sectors. 
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Fig. 3.4: Sense amplifier basic block diagram. 
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A TC27x microcontroller can have at most two program flash banks (PF0 and 

PF1). 

In Program Flash, a word-line is an aligned group of 512 kBytes. It is divided 

into sixteen pages which are the smallest units that can be programmed. A page is 

an aligned group of 32 bytes. Fig. 3.6 gives a graphic word-line description where 

the pages are represented by rectangles. 

Logical sectors are groups of word-lines that share the same bit lines. 

Different physical sub-sectors have independent word-lines and bit-lines. The sub-

sectorizations of the physical sub-sectors are represented in figures Fig. 3.7, Fig. 3.8 

and Fig. 3.9. 
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Fig. 3.6: Graphic representation of a word-line. 
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the fourth flash physical sub-sectors. 
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program flash physical sub-sector. 
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3.2.3.2 Data Flash Structure 

The general structure of the 1 MByte Data Flash is chosen to support the 

emulation of an EEPROM, e.g. 384 kByte EEPROM. In this context the main 

difference between a flash memory and an EEPROM is the endurance. For EEPROM, 

an endurance of e.g. 120.000 write/erase cycles is required, that is not supported 

with the standard flash memory. 

For EEPROM emulation and thus for increasing the endurance, the data flash 

is used like a circular stack-memory: the newest data updates are programmed 

always on top of the actual region. When the top of sector is reached, all actual 

data (representing the EEPROM data) are copied to the bottom area of the next 

sector and the last sector is then erased. This Round robin procedure, using multi-

fold replication as the emulated EEPROM size, significantly increases the 

endurance. This method will allow emulating at least 120.000 write/erase cycles to 

a 16 kByte Flash-EEPROM by programming each virtual 16 kByte block only 1/8 of 

the total number of endurance (15.000 for Data Flash with retention of 5 years). 

The simulator will ignore this method because it is developed with the intent 

to execute a firmware application written for the purpose of testing the flash array. 

3.2.4 Flash Standard Interface 

When the CPU has to perform a flash operation, it has to send some 

appropriate commands to the Program Memory Unit which will take charge of the 

execution. These commands are called “Command Sequences” and are computed 

by the most important sub-module into the PMU: the Flash Standard Interface (FSI). 

The FSI is an 8 bit RISC processor, the firmware of which, called micro-code, is 

designed to define and execute these specific command sequences. The FSI has 

been implemented mainly to get the possibility of changing some parameters after 

the end of the silicon process. This achievement is very important because many 

differences exist between chips made in regions far apart from each other of the 

same wafer. These mismatches result in different performances and / or features, 

in particular for analogue sub circuits, which can be adjusted by the microcode. 

Some minor reasons exist such as the possibility of changing the command 

sequence definitions. 

The FSI is interfaced with the remaining PMU’s parts by Special Function 

Registers (SFRs) which could be thought as a kind of Application Program Interfaces 

(APIs). So SFRs plus microcode allow parameterization of erase and / or the 

programming algorithms. 



3.2 Program Memory Unit

 

 

64 Chapter 3: TriCore® TC27x microcontroller  

 

In the simulator object of this thesis, the FSI is replaced with an algorithm 

implementing a finite state machine, which means that only the behavior of the 

microcode is replicated. 

3.2.5 Register Set 

The Program Memory Unit contains a set of registers which control all 

functionalities of the PMU itself and the flash arrays.  

Some microcontroller belonging to the TC27x family is realized with reduced 

functionalities, removing some data flash sub-sectors and / or its functionalities. 

Anyway, registers which control these functionalities are implemented, but the 

contained values have no effect on the operation  of the Program Memory Unit. 

This section will provide a brief introduction to register set, focusing on the 

most important ones to handle the Program Memory Unit. For a complete 

description of all PMU’s registers, please refer to [37]. Note that not all registers 

have been implemented in the simulator object of this thesis. Many of them, could 

be introduced as next improvements.  

The register access conditions use the following abbreviations: 

 “U”: Access permitted in User Mode “0” or “1” (applicable to write and 

read). 

 “SV”: Access permitted in Supervisor Mode (applicable to write and 

read). 

 “E”: ENDINIT protected write. “E” means a write access is only allowed 

before ENDINIT or after disabling this protection with a password as 

described in the SCU chapter. 

 “SE”: Safety ENDINIT protected write. 

 “P”: The access is controlled by the master specific register access 

protection 

 “–” or “BE”: Access not permitted. 
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3.2.5.1 Flash Status Register 

 

Fig. 3.10: Flash Status Register definition. 

The most important Flash register is Flash Status Register, the definition of 

which is reported Fig. 3.10. 

In this context just some field explanations are provided:  

 D0BUSY / D1BUSY indicate the data flash 0 / 1 bank is busy: a flash 

operation such as erase or programming is running. 

 P0BUSY / P1BUSY indicate the program flash 0 / 1 bank is busy: a flash 

operation such as erase or programming is running. 

 PROG / ERASE: a program/erase operation is running or has been 

completed. 

 PFPAGE / DFPAGE: Program / Data Flash bank is in page mode. 

 OPER: an error has occurred during an operation. 

 SQER: some errors regarding command sequence have occurred. 

3.2.5.2 Flash Configuration and Control Register 

The Flash Configuration Register FCON reflects and controls the general Flash 

configuration functions. 
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Fig. 3.11: Flash Configuration and Control Register definition. 

 WSPFLASH / WSDFLASH: defines the number of wait states in number 

of FSI2 clock cycles, which are used for an initial read access to the 

Program / Data Flash memory area. 

 WSECPF / WSECDF: defines the number of wait-states for the ECC 

correction of Program / Data Flash in terms of FSI2 clock cycles. 

 SLEEP: defines if the Flash Module is sleeping or is active. 

 STALL: This field selects if reading from busy Flash banks causes a bus 

error or wait-states until busy is cleared again.  

o Stall, Reading busy Flash banks suppresses the SRI bus ready 

effectively causing wait states until busy is cleared. 

o Error, Reading busy Flash banks causes a bus error.

3.2.6 PMU Operations 

Since erasing and writing flash memory involve analogue circuits and the 

duration is longer than a simple RAM access, the dynamic of flash operation is 

different than a simple register access. Therefore, all flash operations, except 

reading, are performed through command sequences handled by the FSI. In other 

words, compliance with certain rules is needed to compute flash operations. The 

whole set of these rules makes it seem the flash module as a complex finite state 

machine, inside which other finite state machines exist to run single operations.  

Fig. 3.12 depicts the possible states of the flash module and the possible 

modes of the flash bank. 
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A Flash Module can be in one of the following state: 

 Active (normal) state. 

 Sleep. 

In sleep mode, write and read accesses to all flash ranges of the Program 

Memory Unit are refused with bus error. 

Flash 

Module 
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PF0 

Read Command 

Page 

PF1 

Read Command 

Page 

DF0 

Read Command 

Page 

DF1 

Read Command 

Page 

Fig. 3.12: Flash Module and Flash Bank states. 
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When the flash module is in normal mode a flash bank can be in one of the 

following modes: 

 Read mode. 

 Page mode. 

 Command mode. 

In order to either erase or write a flash location, the flash module which 

contains the location has to be in “Active State”, and the related flash bank has to 

be in “Command Mode”. To clarify, “state” and “mode” words are referred to Flash 

Module and Flash Bank respectively.  

In read mode a Flash bank can be read and command sequences are 

interpreted. In read mode a Flash bank can additionally enter in page mode which 

enables it to receive data for programming. 

In command mode an operation is performed involving all circuitry needed. 

During this time, the Flash bank reports BUSY on the Flash Status Register and it 

does not allow any access. In particular, a read access to a busy flash bank can be 

either refused with a bus error or put on hold, according to the “Flash Configuration 

and Control Register”. At the end of an operation the Flash bank returns to read 

mode, and BUSY is cleared. Only operations with a significant duration (i.e. all write 

and erase operations) set BUSY. 

In command mode, further command sequences in this flash module are not 

allowed, but refused with a bus error. 

3.2.6.1 Command Sequences 

A command sequence consists in more write accesses to Data Flash 0 bank 

which are called “command cycles”. Every write access to DF0 memory range is 

interpreted as command cycle belonging to a command sequence. On the other 

hand, write accesses to flash location outside the DF0 memory range will be 

refused with a bus error. 

Whenever a write access to DF0 memory range is executed, the Flash 

Standard Interface will run an algorithm in the microcode called “Command 

Interpreter” similar to a finite state machine which deals the identification of 

command sequence. The command interpreter checks whether a command cycle is 

correct in the current state of command interpretation, otherwise an error is 

reported by the SQER bit on Flash Status Register. 
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 When the command sequence is accepted the last command cycle finishes 

read mode and the Flash bank transitions into either command mode or page 

mode, depending on the given command sequence. 

As mentioned before, the command cycle is a write access addressed to the 

data flash bank 0, therefore two parameters are needed: 

 The Address (32 bit) 

 The Data (64 bit) 

These values are provided by the CPU via the SRI bus. The signals width is 

disposed by the SRI bus though not all bits of Data signal are used. In fact just one 

command sequence, the “Load Page” (see 3.2.6.3), makes use of whole signal. 

3.2.6.2 Reset to Read 

 In general, a command sequence is longer than one command cycle. When 

the command interpreter has detected some command cycles belonging to a 

command sequence, just three situations can occur: 

 Command interpretation fails because incorrect command cycle has 

been given, in this case sequence error will be reported on SQER bit of 

Flash Status Register; 

 Command sequence is accepted as soon as the last command cycle 

has been given, in this case the mode of the flash bank will change in 

read mode (or page mode if the command given is Enter in Page 

Mode); 

 Command interpretation is reset because the “Reset to Read” 

command has been given, in this case the bank mode will change in 

read mode and the first command cycle of any command sequence is 

expected. 

The “Reset to Read” command sequence resets all sequence errors clearing 

all error bits in the Flash Status Register; therefore the “Reset to Read” must be 

detectable in any state of the command interpreter. 

“Reset to Read” definition is reported in the Tab. 3.1. 

Address Data 

0xAF00_5554 0xXXF0 

Tab. 3.1: "Reset To Read" definition. 
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3.2.6.3  Enter in Page mode and Load Page 

To execute a programming operation, data have to be loaded in a dedicated 

SRAM called “Assembly Buffer” before they are stored in the flash memory. There 

are two assembly buffers: one for Program Flash and the other for Data Flash. The 

flash bank where the data is written has to set the assembly buffer in page mode to 

allow the loading of the data into the related assembly buffer. 

To change assembly buffer in page mode from read mode the “Enter in Page 

Mode” command sequence has to be given. This is one-cycle command sequence 

the definition of which is reported in table Tab. 3.2. 

Address Data 

0xAF00_5554 0xXX5”y” 

Tab. 3.2: "Enter in Page Mode" definition. 

The parameter “y” indicates which of the two assembly buffers, either 

program flash or data flash, has to enter in page mode: 

 Y = 0x0: program flash assembly buffer enters in page mode; 

 Y = 0xD: data flash assembly buffer enters in page mode. 

When one of the two assembly buffers is in page mode the related PFPAGE / 

DFPAGE bit of Flash Status Register is set depending on program and data flash. 

Just one assembly buffer can be in page mode. If the “Enter in Page Mode” is 

given when any buffer is still in page mode a sequence error will be reported on the 

SQER bit of Flash Status Register, and the existed page mode will be aborted. 

After the assembly buffer enters in page mode, data can be loaded through 

the “Load Page” command sequence. This command sequence loads either 64 bit 

or 32 bit data on the assembly buffer in page mode. Its definition is reported in 

table Tab. 3.3. 

Address Data 

0xAF00_55Fy “WD” 

Tab. 3.3: "Load Page" definition. 

Where “WD” is the data to load on assembly buffer, and the parameter “y” 

indicates its width. 
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The width of the assembly buffers depends on the microcontroller. For the 

most popular TC27x microcontrollers, the program flash assembly buffer is in-depth 

256 byte while the data flash 32 byte. To fill the whole buffer, more “Load Pages” 

have to be executed, all with the same data width. Otherwise, a sequence error will 

be reported. 

If “Load Page” is called more often than allowed by the available buffer space, 

the overflow data is discarded, but the page mode is not left. This overflow will be 

reported by the following Write Page/Burst command with SQER. 

3.2.6.4 Write Page, Write Page Once and Write Burst 

When the assembly buffer is full, three command sequences are available to 

store the data in the flash memory: 

 “Write Page”: transfers one page (32 byte for program flash, 4 byte for 

data flash) from the assembly buffer to the flash memory. 

 “Write Page Once”: it is the same of “Write Page” with the only 

difference that it checks if the related page is erased. If not the 

command will fail with PVER and EVER bits set on the Flash Status 

Register. 

 “Write Burst”: transfers a burst of page (8 pages: 256 byte for program 

flash, 4 pages: 32 byte for data flash) from the assembly buffer to the 

related flash memory. 

These command sequences contain an argument which indicates the address 

location on the flash memory whereon the data are stored. In order to correctly 

execute the command sequence, the following situation must occur: 

 The destination address has to point to the location within the flash 

bank range; 

 The address has to be a page start address; 

 The flash bank containing the address has to be in page mode. 

If just one of these conditions is not true, the command will fail with a 

sequence error. 

Since the programming operation takes a bit of time, the BUSY bit, related to 

the interested bank, is set on the Flash Status Register until the operation ends. 

If just one of the following conditions occurs, the command sequence will be 

performed completely, although a sequence error will be reported: 
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 The related assembly buffer is not completely full; 

 The related assembly buffer is overflowed. 

The command sequence definitions are reported in tables Tab. 3.4, Tab. 3.5 

and Tab. 3.6: 

Address Data 

0xAF00_AA50 “PA” 

0xAF00_AA58 0xXX00 

0xAF00_AAA8 0xXXA0 

0xAF00_AAA8 0xXXAA 

Tab. 3.4: "Write Page" definition. 

Address Data 

0xAF00_AA50 “PA” 

0xAF00_AA58 0xXX00 

0xAF00_AAA8 0xXXA0 

0xAF00_AAA8 0xXX9A 

Tab. 3.5: "Write Page Once" definition. 

Address Data 

0xAF00_AA50 “PA” 

0xAF00_AA58 0xXX00 

0xAF00_AAA8 0xXXA0 

0xAF00_AAA8 0xXX7A 

Tab. 3.6: "Write Burst" definition 

When an Erase operation begins, the PROG bit on Flash Status Register will be 

asserted. This bit will remain set after the end of the operation. There are two ways 

to clear it: 

 Writing directly the Flash Status Register; 

 Performing the “Clear Status” command sequence (see 3.2.6.7). 



Chapter 3 

 

 

Chapter 3:  TriCore® TC27x microcontroller 73 

 

3.2.6.5 Erase Logical Sector Range and Erase Physical Sectors 

As mentioned in “3.2.3 Flash Structure” the smallest erasable unit is the 

logical sector, but the whole physical sector can be erased as well. Microcode 

provides two dedicated command sequences to perform these operations: 

 “Erase Logical Sector Range”: erases some consecutive logical sectors; 

 “Erase Logical Sectors”: erases some consecutive physical sectors. 

The command sequences provide two arguments to the FSI needed to 

perform the operations: 

 The address of the first sector has to be erased; 

 The number of sectors which have to be erased. 

The command will fail with SQER set on the Flash Status Register if the 

address argument does not point to the base address of a correct sector. 

The “Erase Logical Sector Range” command sequence definition is reported in 

table Tab. 3.7. 

Address Data 

0xAF00_AA50 “SA” 

0xAF00_AA58 0xXX”nn” 

0xAF00_AAA8 0xXX80 

0xAF00_AAA8 0xXX50 

Tab. 3.7: "Erase Logical Sector Range" definition. 

The “Erase Physical Sectors” command sequence definition is reported in 

table Tab. 3.8. 

Address Data 

0xAF00_AA50 “SA” 

0xAF00_AA58 0xXX”nn” 

0xAF00_AAA8 0xXX80 

0xAF00_AAA8 0xXX5A 

Tab. 3.8: "Erase Physical Sectors" definition. 
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When an Erase operation begins, the ERASE bit on the Flash Status Register 

will be asserted. This bit will remain set after the operation ends. There are two 

ways to clear it: 

 Writing directly the Flash Status Register; 

 Performing the “Clear Status” (see 3.2.6.7) command sequence. 

3.2.6.6 Verify Erased Logical Sector Range 

After the “Erase Logical Sector Range” command sequence has been 

performed the “Verify Erased Logical Sector Range” command can be run to check 

if the erasing operation has been correctly executed. If not, the flag EVER on Flash 

Status Register will be asserted. 

Even if “Erase Logical Sector” has not been executed before, this command 

sequence can be performed.  

Address Data 

0xAF00_AA50 “SA” 

0xAF00_AA58 0xXX”nn” 

0xAF00_AAA8 0xXX80 

0xAF00_AAA8 0xXX5F 

Tab. 3.9: "Verify Erased Logical Sector Range" definition. 

3.2.6.7 Clear Status 

The flags FSR.PROG and FSR.ERASE and the error flags of the Flash Status 

Register (OPER, SQER, PROER, PFSBER, PFDBER, PFMBER, DFSBER, DFDBER, DFTBER, 

DFMBER, ORIER, PVER, EVER) are cleared. These flags can also be cleared in the 

status registers without any command sequences. 

Address Data 

0xAF00_5554 0xXXFA 

Tab. 3.10: "Clear Status" definition. 
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3.2.6.8 Operation Suspend and Resume 

The following operations can be suspended. 

 “Erase Logical Sector Range” 

 “Erase Physical Sectors” 

 “Verify Erased Logical Sector Range” 

 “Write Page” 

 “Write Burst” 

These operations take a bit of time so they set the related BUSY bit on Flash 

Status Register and can be suspended by asserting SPND bit on MARD register. 

After the MARD.SPND assertion, the FSI will check if one of these operations 

is still running and in this case it waits until that command sequence reaches a 

suspendable state; otherwise the request will be ignored, clearing the MARD.SPND 

bit. 

When an operation has been suspended, the SPND bit of MARD register will 

be automatically cleared and the SPND bit of Flash Status Register will be asserted. 

Also the BUSY bit on the Flash Status Register will be cleared because de facto, flash 

bank is not busy anymore. The Program Memory Unit will be able to execute other 

command sequences on different flash banks. When these have been completed, 

the suspended operation will be resumable giving the “Resume Prog Erase” 

command, the definition of which is reported on table Tab. 3.11. 

Address Data 

0xAF00_AA50 “PA/SA” 

0xAF00_AA58 0xXX”nn” 

0xAF00_AAA8 0xXX70 

0xAF00_AAA8 0xXXCC 

Tab. 3.11: "Resume Prog Erase" definition. 

This command sequence accepts two arguments which have to match with 

the suspended command ones, otherwise the sequence error will be asserted and 

the command will remain suspended. 

If the “Resume Prog Erase” command is accepted, the SPND bit of the Flash 

Status Register will be cleared and the related BUSY bit will be re-asserted. 
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In the suspended programming state: 

 Reading Flash is allowed. 

 New programming and erase commands are rejected with a sequence 

error. 

In the suspended erase state: 

 Reading Flash is allowed. 

 New erase commands are rejected with SQER. 

 Programming commands can be performed on any bank. 

 However programming in the target range of the suspended erase fails 

with SQER. 

 Suspending a programming command is not possible and fails by 

setting MARD.SPNDERR. 

3.3 Shared Resource Interconnect bus 

The “Shared Resource Interconnect” is the high speed system bus for 

TriCore1.6x CPU based devices. The central module of the interconnection is the 

XBar_SRI which connects all the components in one SRI system. 

The Shared Resource Interconnection Bus (SRI) is a synchronous, pipelined 

bus with variable block size transfer support. All signals are related to the positive 

clock edge. 

The protocol supports 8, 16, 32 and 64 bits single beat transactions and block 

beat transactions with a length of 2 or 4. 

The central block of the SRI-Bus implementation is the crossbar (XBar_SRI) 

managing and monitoring the whole SRI-Bus action. 

The elements which put together the SRI system are: 

 The crossbar (XBar_SRI); 

 The master interface (MIF_SRI); 

 The slave interface (SIF_SRI). 

The Program Memory Unit is interfaced with the SRI bus via three slave 

interfaces: 

 SCI6: for both of Data Flash banks, register set and BootROM; 

 SCI7: for Program Flash bank 0; 
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 SCI8: for Program Flash bank 1. 

 

The SCI6 is the only one which is enabled to execute “write transactions”, 

because, as told in section 3.2.6, the command sequences consist in write accesses 

to Data Flash bank 0. Moreover write accesses to register set access are allowed. 

The SCI7 and SCI8 interfaces are enabled just for reading transaction, to 

Program Flash bank 0 and Program Flash bank 1 locations respectively. 

In this context, the slave view will be presented, because it is the Program 

Memory Unit point of view. According to the SRI bus protocol the following kind of 

transactions are distinguished: 

 SRI Write Transaction: the master performs a write access, the slave 

reads; 

 SRI Read Transaction: the master reads data sent by the slave. 

All transactions are univocally identified by the “transaction id” parameter. It 

especially serves for transaction longer than one clock cycle, in order to allow either 

the master or slave peripherals to recognize the transaction the data of which is on 

bus. A transaction is composed by the following three phases: 

 Arbitration phase; 
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Fig. 3.13: XBar_SRI point to point connection scheme. 
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 Addressing phase; 

 Data phase. 

3.3.1 SRI Slave Signals 

The most important signals of an SRI Slave peripheral are the following: 

 “sri_clk_i”: input clock reference; 

 “sri_rd_n_i”: input which indicates if the transaction master is running 

is a read transaction; 

 “sri_wr_n_i”: input which indicates if the transaction master is running 

is a write transaction; 

 “sri_addr_i”: 32 bit input which indicates the location address the 

master would like either read or write; 

 “sri_wdata_i”: 64 bit input which indicates the data master would like 

write. It is used just for write transaction; 

 “sri_rdata_o”: 64 bit output which indicates the data slave sends to 

master. It is used just of read transaction; 

 “sri_wrdvalid_n_i”: input which indicates whether data present on 

“sri_wdata_i” input is  valid; 

 “sri_ready_n_o”: output which informs the master that the slave has 

sent the valid data on “sri_rdata_o” signal during a read transaction; 

 “sri_tr_id_i”: input which indicates the transaction identifier during 

the arbitration phase of transaction; 

 “sri_wr_tr_id_i”: input which indicates the transaction identifier 

during the data phase of a write transaction; 

 “sri_rd_tr_id_o”: output which indicates the transaction identifier 

during the data phase of a read transaction; 

 “sri_id_err_n_o”: output which will be asserted when a transaction 

mismatch occurs during the data phase of transaction; 

 “sri_err_n_o”: output which indicates a generic error has occurred 

during transaction; e.g. generic error can be due to address requested 

from master is out of the possible range of the slave peripheral. In 

case of the Program Memory Unit, a generic error can occur whether a 

transaction begins while the PMU is sleeping. 

 “sri_opc_i”: op code, 5 bit input which indicates how long the data 

phase is, in terms of clock cycles. There could be four six cases: 

o SDTB (Single Data Transfer Byte): data phase takes one clock 

cycle and just one 8 bits data are transferred; 
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o SDTH (Single Data Transfer Half-Word): data phase takes one 

clock cycle and just 16 bits data are transferred; 

o SDTW (Single Data Transfer Word): data phase takes one clock 

cycle and 32 bits data are transferred; 

o SDTD (Single Data Transfer Double-Word): data phase takes 

one clock cycle and 64 bits data are transferred; 

o BTR2 (Burst Transfer Request – 2 transfers): data phase takes 

two clock cycles where 64 bits data are transferred per 

everyone; 

o BTR4 (Burst Transfer Request – 4 transfers): data phase takes 

four clock cycles where 64 bits data are transferred per 

everyone;  

3.3.2 SRI Arbitration Phase 

The arbitration is the transaction’s phase during which the master requests to 

communicate with a slave. In this phase the master specifies the address, the op 

code and the transaction id parameters, while by the slave’s point of view no signal 

changes. 

The arbitration phase serves especially for the SRI crossbar to address the 

communication to the selected slave. 

3.3.3 SRI Address Phase 

During the address phase the slave peripheral receives the transaction 

request. In this phase, in fact, one of either “sri_rd_n_i” or “sri_wr_n_i” is asserted 

(set to 0) to indicate that a read or write transaction has started respectively. The 

transaction identifier and the op-code are also received by the slave during this 

phase. 

The slave pushes the transaction into a “queue”. So, during the next steps 

(data phase), it sends (or receives) the data associated to the corresponding 

transaction in the queue. 

More than one transaction could be in the queue at the same time. If the data 

phase is longer than one clock cycle the slave peripheral can recognize the 

transaction the sent or received data belongs to. 

3.3.4 SRI Data Phase 

In a read transaction, the data phase starts with the “sri_ready_n” assertion 

by the slave. The time passed while the address phase is completed and the ready 
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signal has not been asserted yet is measured in wait states. For a write transaction: 

no one, one or more than one wait states can occur. Instead, for a write transaction 

the address phase ends immediately after the master sends the address and 

transaction identifier information. 

During the data phase, the data is transferred between the master and the 

slave peripherals. The arbitration phase duration depends on the op code sent by 

the master during the arbitration phase. 
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3.3.5 SRI Transaction Examples 

The following figures give some example of write and / or read transactions. 

 

Fig. 3.14: Basic write block transfer 4 transaction, master view. 
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In Fig. 3.14 a write transaction is shown from the master peripheral point of 

view. The master during the arbitration phase asserts the “sri_req_n” signal to send 

a request to communicate with a slave. This request is forwarded to SRI crossbar 

which provides the interconnection with the selected slave. During this phase the 

master also sets the “sri_opc” signal which specifies the length of data phase 

(BTR4). During the arbitration and the address phases, the master asserts the 

“sri_wr_n” signal to indicate the transaction is a write. During the address phase 

the master receives the “sri_gnt_n” signal by the slave, thereafter data phase 

begins sending data on write bus. The master receives the “ready” signal by the 

slave at the end of the address phase. By the Fig. 3.14, it is clear that the first clock 

cycle of the data phase is lost. This phenomenon happens for all kind of transaction 

in the SRI bus. Fig. 3.15 shows the same transaction of Fig. 3.14 from the slave point 

of view. 

In Fig. 3.16, a read transaction is shown from the master peripheral point of 

view. The master during the arbitration phase asserts the “sri_req_n” signal to send 

a request to communicate with a slave. This request is forwarded to SRI crossbar 

which provides the interconnection with the selected slave. During this phase the 

master sets also the “sri_opc” signal which specifies the length of data phase 

(SDTD). During the arbitration and the address phases the master asserts the 

“sri_rd_n” signal to indicate the transaction is a read. During the address phase the 

master receives the grant signal by the slave. The data phase begins when the slave 

asserts the “sri_ready_n” signal such that the master can read the data on the read 

bus. Fig. 3.17 shows the same transaction of the Fig. 3.16 from the slave point of 

view. 
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Fig. 3.15: Basic write block transfer 4 transaction, slave view. 
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Fig. 3.16: Basic read block transfer, master view. 
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Fig. 3.17: Basic read block transfer, slave view. 

3.3.6 SRI Transaction Id Error 

During each cycle in the data phase of a write transaction, the slave receives 

the identifier of the transaction the data belongs to. It can happen that some 

received identifier does not correspond to any identifier in the “queue” of 

transactions. In this case, the slave peripheral will assert the “sri_id_err_n” bit for 

one clock cycle for each mismatch detected. 

Transaction id errors during read transactions are not treated in this context 

because they do not regard the slave peripherals. 
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Fig. 3.18 shows an example of BTR2 transaction with two cycles ID error. 

 

Fig. 3.18: Basic write block 2 transaction with two cycles ID error. 

Let’s suppose that the queue of transaction is empty, and that in the address 

phase a transaction with id equals to “xy” is pushed into the queue. During the data 

phase, two data cycles are received by the slave with transaction id equal to “xz” 

such that two ID mismatches are detected. After the data phase is completed, the 

slave asserts the “sri_id_err_n” signal in order to flag the master that an error 

occurred. 

3.4 Conclusions 

In this chapter, the general characteristics and behavior of the Program 

Memory Unit were explained. Some of the aforementioned theoretical notions are 



Chapter 3 

 

 

Chapter 3:  TriCore® TC27x microcontroller 87 

 

of crucial importance to better understand the content of the later chapters of this 

work. However, the reader is referred to [37], [38] for a complete and thorough 

description of this specific unit. 
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Chapter 4 Simulation theory 

Simulation is the process of modeling a proposed or real dynamic system and 

observing its behavior over time. A model is a representation of the real system 

that includes entities of the system, and the behavior and interactions of those 

entities [39]. A simulation environment must support some type of modeling 

framework to facilitate development and implementation of the simulator. The 

world view supported in a parallel simulation language should provide a framework 

for modeling the physical system. 

Simulation is used in many contexts, such as simulation of technology for 

training, education or, closer this thesis, performance optimization, safety 

engineering and testing. Simulation can be used to show the eventual real effects of 

alternative conditions and courses of action. Simulation is also used when the real 

system cannot be engaged, because it may not be accessible, or it may be 

dangerous or unacceptable to engage, or it is being designed but not yet built, or it 

may simply not exist. 

A computer simulation is an attempt to model a real-life or hypothetical 

situation on a computer so that it can be studied to see how the system works. By 

changing variables in the simulation, predictions may be made about the behavior 

of the system. It is a tool to virtually investigate the behavior of the system under 

study.  

Traditionally, the formal modeling of systems has been via a mathematical 

model, which attempts to find analytical solutions enabling the prediction of the 

behavior of the system from a set of parameters and initial conditions [40]. 

Computer simulation is often used as an adjunct to, or substitution for, modeling 

systems for which simple closed form analytic solutions are not possible. There are 

many different kinds of computer simulation; the common feature they all share is 

the attempt to generate a sample of representative scenarios for a model in which 

a complete enumeration of all possible states would be prohibitive or impossible. 
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Modern usage of the term "computer simulation" may encompass virtually 

any computer-based representation. 

The simulator developed in this thesis has to be intended as behavioral, i.e. 

many non-ideal effects such as problems related to the physical layer of flash 

memories, explained in Chapter 2 are not considered. The purpose is to create a 

tool which allows validating the firmware written to test the flash module. 

To reach the goal, two approaches have been analyzed: 

 Verilog® simulation; 

 C++ simulation. 

The main difference is that Verilog® is a hardware description language (HDL), 

whereas the C++ is a sequential language. One important difference between most 

programming languages and HDLs is that HDLs explicitly include the notion of time. 

HDLs form an integral part of Electronic design automation systems, especially for 

complex circuits, such as microprocessors. 

An HDL is a specialized computer language used to describe the structure, 

design and operation of electronic circuits, and most commonly, digital logic 

circuits. A hardware description language enables a precise, formal description of 

an electronic circuit that allows for the automated analysis, simulation, and 

simulated testing of an electronic circuit. It also allows for the compilation of an 

HDL program into a lower level specification of physical electronic components, 

such as the set of masks used to create an integrated circuit.  

4.1 Verilog® simulation 

The design of a very large scale integrated (VLSI) digital system commonly 

begins with a behavioral description of the system through a hardware description 

language, such as VHDL and Verilog®, and, subsequently to verify the functionality 

of the description. Modern digital system design strongly relies on simulation to 

ensure correctness of the design and to maximize system performances in terms of 

speed, power consumption, etc. [41]. 

The Verilog®3 Hardware Description Language (Verilog HDL) became an IEEE 

standard in 1995 as IEEE standard 1364-1995 [42]. It was designed to be simple, 

intuitive, and effective at multiple levels of abstraction in a standard textual format 

for a variety of design tools, including verification simulation, timing analysis, test 

                                                      
3
 Verilog® is a registered trademark of Cadence Design Systems, Inc. 
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analysis, and synthesis. It is because of these rich features that Verilog has been 

accepted to be the language of choice by an overwhelming number of IC designers. 

Verilog® contains a rich set of built-in primitives, including logic gates, user-

definable primitives, switches, and wired logic. It also has device pin-to-pin delays 

and timing checks. The mixing of abstract levels is essentially provided by the 

semantics of two data types: nets and variables. Continuous assignments, in which 

expressions of both variables and nets can continuously drive values onto nets, 

provide the basic structural construct. Procedural assignments, in which the results 

of calculations involving variable and net values can be stored into variables, 

provide the basic behavioral construct. A design consists of a set of modules, each 

of which has an I/O interface, and a description of its function, which can be 

structural, behavioral, or a mix. These modules are formed into a hierarchy and are 

interconnected with nets. 

Hardware description languages such as Verilog differ from software 

programming languages because they include ways of describing the propagation of 

time and signal dependencies (sensitivity). There are two types of assignment 

operators: a blocking assignment (=), and a non-blocking (<=) assignment. The non-

blocking assignment allows designers to describe a state-machine update without 

needing to declare and use temporary storage variables. Since these concepts are 

part of Verilog's language semantics, designers could quickly write descriptions of 

large circuits in a relatively compact and concise form. At the time of Verilog's 

introduction (1984), Verilog represented a tremendous productivity improvement 

for circuit designers who were already using graphical schematic capture software 

and specially written software programs to document and simulate electronic 

circuits. 

The designers of Verilog wanted a language with syntax similar to the C 

programming language, which was already widely used in engineering software 

development. Like C, Verilog is case-sensitive and has a basic preprocessor (though 

less sophisticated than that of ANSI C/C++). Its control flow keywords (“if”/”else”, 

“for”, “while”, “case”, etc.) are equivalent, and its operator precedence is 

compatible. Syntactic differences include variable declaration (Verilog requires bit-

widths on “net”/ “reg” types), demarcation of procedural blocks (“begin”/”end” 

instead of curly braces “{ }”), and many other minor differences. 

A Verilog design consists of a hierarchy of modules. Modules encapsulate 

design hierarchy, and communicate with other modules through a set of declared 

input, output, and bidirectional ports. Internally, a module can contain any 

combination of the following: net/variable declarations (“wire”, “reg”, “integer”, 
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etc.), concurrent and sequential statement blocks, and instances of other modules 

(sub-hierarchies). Sequential statements are placed inside a “begin”/”end” block 

and executed in sequential order within the block. However, the blocks themselves 

are executed concurrently, making Verilog a dataflow language. 

Verilog's concept of “wire” consists of both signal values (4-state: "1, 0, 

floating, undefined") and strengths (strong, weak, etc.). This system allows abstract 

modeling of shared signal lines, where multiple sources drive a common net. When 

a wire has multiple drivers, the wire's (readable) value is resolved by a function of 

the source drivers and their strengths. 

A subset of statements is synthesizable in Verilog language. Verilog modules 

that conform to a synthesizable coding style, known as RTL (register-transfer level), 

can be physically realized by synthesis software. Synthesis software algorithmically 

transforms the (abstract) Verilog source into a netlist, a logically equivalent 

description consisting only of elementary logic primitives (AND, OR, NOT, flip-flops, 

etc.) that are available in a specific FPGA or VLSI technology. Further manipulations 

to the netlist ultimately lead to a circuit fabrication blueprint (such as a photo mask 

set for an ASIC or a bit stream file for an FPGA. 

4.2 Simulator based on C++ 

The simulation based on C++ programming language is absolutely more 

flexible than a simulation based on hardware description language. In fact, since the 

simulation will be computed, in any case, by an electronic calculator, surely an HDL 

could be replaced by a sequential programming language like C/C++. This flexibility 

is paid back in terms of higher possibility to make mistake, especially to control the 

passage of time. 

4.3 Introduction to Verilator 

Verilator is a synthesis tool which is able to join both of advantages of C++ 

and Verilog languages. Precisely, Verilator is a tool which converts synthesizable 

Verilog code into C++, therefore the output system model is described in C++ but is 

obtained starting from a Verilog code, avoiding the high possibility of making errors 

by writing the C++ code manually [43]. 

Verilator is therefore not a complete simulator, just a compiler. It represents 

the technology used to develop the simulator.  

Code produced by Verilator contains a class which imitates the behavior of 

hardware described by the Verilog code. Around of C++ class made by Verilator we 

build simulation, writing other C++ classes linked to it. The main aim of these 
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classes is to connect signals and probes to the represented device. Moreover, they 

could be used to create a graphical user interfaces or any other feature to improve 

the whole simulator. 

 

The existed CPU’s simulator is written in Verilog code, so it is enabled to be 

compiled by Verilator tool. 

4.3.1 How to interface C++ with Verilog 

The simulator has a much different behaviour than the original device. 

Furthermore some flexibility is required such as: 

 Dynamic memory range; 

 Dynamic sectorization of the flash array; 

 Dynamic command sequence definitions. 

For this reason, most parts are developed directly in C++. Verilog code does 

not provide any possibility of resizing an array which represents the flash memory 

at run time. 

Verilator provides some techniques to interface the Verilog code with C++. 

The Fig. 4.2 depicts the architecture of the whole simulator. Whenever some SCIx 

inputs change the PMU class generated by Verilator, it will invoke evaluation 

method on PMU class written directly in C++. The latter replies with the SCIx output 

values to forward to the CPU simulator. 

Verilog 

VERILATOR 

C++ 
class from 
Verilator 
(Device) 

C++ 
Other class 
written by 

user 

C++ 
Other class 
written by 

user 

C++ 
Other class 
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Fig. 4.1: Files which compose the simulator. 
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The PMU Simulator is interfaced to the CPU Simulator in a single Verilator 

run, in order to produce a single TOP module which represents the whole 

microcontroller (obviously only the implemented parts, but it could be improved in 

the future). 

 

4.3.2 Unit of time 

The “Verilator” technology provides a function which gets back the simulation 

time at the moment it is invoked.  

This function is called “sc time stamp” and it is written in the C++ code, 

generally in the same file where the “main” function is.  

The distinctive trait of the “sc time stamp” is that it can be referred into the 

Verilog code by calling the directive “$time”, which in native Verilog language gets 

CPU 
PMU 
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Fig. 4.3: Microcontroller model architecture. 
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Fig. 4.2: System model architecture. 
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back the current simulation time at the moment it is invoked. It is certainly not a 

synthesizable function, just usable in the test bench. 

 

The class produced by Verilator represents the hardware. It provides a 

member variable for each input/output of the top module. To use this class the 

input signals have to be set and the method “eval”, which evaluates the outputs 

and all the needed internal states of the represented device, has to be invoked. 

 

Set Inputs 

Evaluate 

Read Outputs 

Fig. 4.4: Graphic representation of simulation cycle. 

module PMU( 
input  sri_clk_i, // Clock input 

 
/* INPUTS/OUTPUTS FOR DFLASH, BootROM, RegisterSet */ 
//  inputs 
Input  sci6 _sri_lock_n_i, // Slave Lock Request 
Input  sci6 _sri_rd_n_i, // Read Indication 
Input  sci6 _sri_wr_n_i, // Write Indication 
Input `ADDR_RANGE sci6_sri_addr_i, // Address Bus 
Input [3:0] sci6 _sri_opc_i, // Operation Code 
Input  sci6 _sri_svm_i, // Supervisor Mode 
Input `DATA_RANGE sci6_sri_wdata_i, // Data Bus 
Input [5:0] sci6_sri_wr_tr_id_i, // Write Transaction ID 
Input  sci6 _sri_wrdvalid_n_i, // Write Data Valid 
Input [5:0] sci6 _sri_tr_id_i, // Transaction Identifier 
//  outputs 
Output `DATA_RANGE sci6_sri_rdata_o, // Data Bus 
Output  sci6 _sri_ready_n_o, // Slave Ready Indicator 
Output  sci6_sri_err_n_o, // Error signal 
Output [5:0] sci6 _sri_id_err_n_o, // Transaction ID Error  
Output [5:0] sci6_sri_rd_tr_id_o, // Read Transaction 
… 

); 
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In general, the code which implements the simulator is a loop cycle wherein 

the inputs are set and the evaluation is performed as graphically represented in Fig. 

4.4. At the beginning of each cycle, a variable which represents the simulation time 

is incremented. The value of that variable is the same as provided by the “sc time 

stamp” to Verilog code. 

Fig. 4.5 gives an example of the temporal evolution of two signals: “clock” and 

“signal”. The first row represents the time axis, which is obviously discrete. The 

evaluation can be computed more than once per clock cycle, for example in Fig. 4.6 

it is performed twice. 

 

Fig. 4.5: Example of time variation of signals. The evaluation is performed 

once per clock cycle. 

 

Fig. 4.6: Example of temporal variation of signals. The evaluation is 

performed twice per clock cycle. 

The time is generally a floating point value, but sometimes it is used as an 

integer value. The user (simulator developer) has to take care the time value is 

correct (e.g. it is non-negative). 
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Chapter 5 Implementation 

In Chapter 3, the microcontroller features have been described focusing on all 

the aspects regarding the Program Memory Unit and its interface with the other 

peripherals, in particular the CPUs. 

These aspects will be taken into account again inasmuch the simulator has to 

imitate the PMU behavior, especially for the “Shared Resource Interconnect” bus, 

in order to guarantee the correct interface with the existing CPU simulator. 

This chapter describes the technical issues regarding the implementation of 

the Program Memory Unit, focusing on the code development.  

5.1 Program Memory Unit 

From the Central Processing Unit’s point of view (or other microcontroller’s 

peripherals), the Program Memory Unit can be treated as a black box which 

executes all the operations on its internal flash array memory. 

The management of the PMU passes through the Shared Resource 

Interconnect bus, which represents the communication media. The command 

sequences described in 3.2.6.1 are the high-level interfaces with the CPU. 

The next paragraphs will thoroughly analyze this “black box” to discover all 

the internal implementations. 

The Program Memory Unit, in this context, is represented by a C++ class 

wherein other classes are instantiated representing the internal modules.  

Fig. 5.1 depicts the SRI slave modules within the Program Memory Unit. They 

are just the classes which manage the communication with other peripheral using 

the Shared Resource Interconnect bus. A complete representation of the module is 

given by Fig. 5.2. 
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In Fig. 5.2 every rectangle represents a class instance, except for the “Register 

Set” which denotes a set of static variables emulating the PMU and Flash registers. 

Rectangles contained within other rectangles symbolize the instantiation made 

inside the respective class. The arrows represent the references to other class 

instances. By looking at the figure, it is apparent that all classes are built within the 

top class called PMU, hereinafter also referred to as FLASH MODULE. 

The top module is the class PMU which has to be interfaced with the Verilog 

code as explained in 4.3.1. 

REGISTER SET 
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SRI_Slave 
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ASB pFlashAssemblyBuffer 

ASB dFlashAssemblyBuffer 

Comm. 
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Fig. 5.2: Graphic representation of the whole Program Memory Unit. 

Fig. 5.1: Program Memory Unit as black box. 
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5.1.1 Error management 

Each method invoked on the various instances of the sub modules gets back 

an instance of a structure which provides information about eventual errors 

occurred during its execution. This structure is called “ERROR INFO”.  

For example, if the “Enter in Page Mode” command sequence is sent to the 

FLASH MODULE while an assembly buffer is already in PAGE MODE, the former will 

invoke the method “Enter in Page Mode” on the related assembly buffer. This has 

to produce a sequence error signaled by the SQER bit on the Flash Status Register, 

according to the command sequence definition explained, in 3.2.6.1.  

As already stated above, the Flash Module is the top level of the PMU 

simulator and it manages all the operations in the PMU. In light of this, all the 

methods invoked by the instances representing the sub-modules, will always return 

an instance of “ERROR INFO” in order to prevent the different classes from 

simultaneously accessing the same bits of the different registers. The FLASH 

MODULE is responsible for enforcing designated bits on the Flash Status Register 

and eventually for printing further information to the user. 

5.1.2 Shared Resource Interconnect slave port 

The “SRI_Slave” objects in Fig. 5.2 represent the “Shared Resource 

Interconnect” slave peripherals which will be connected to the SRI crossbar. Their 

goal is both the generation and the interpretation of the digital signals which come 

from and / or go to the SRI crossbar.  

The Program Memory Unit has three available ports, each enabled to read 

and / or write to different memory locations, as reported in Tab. 5.1. 

 WRITE READ 

SCI6 
DF0, DF1, Register Set, 

Boot ROM 
DF0, DF1, Register Set, 

Boot ROM 

SCI7 - PF0 

SCI8 - PF1 

Tab. 5.1: Memory range which slave ports are enabled for. 

In this context, it is important to remember that every write access to the DF0 

memory range is interpreted as a command cycle belonging to a command 

sequence, while a write accesses to Program Flash memory range will be refused 
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with a bus error. Therefore, the class representing the SRI slave port has to take 

into account this specific aspect embedding in its instance a set of writable and a 

set of readable ranges. 

As explained in paragraph 3.3, a SRI slave peripheral has to perform a write 

transaction, when the data sent by the master are received by the slave itself; and a 

read transaction one, when the master requires getting the data located at a 

specific memory address. All the SRI communications are divided into three phases: 

arbitration, address and data, but just the last two are affected by the slave 

peripheral. 

The code was developed to freely specify the range, so a specific structure has 

been created. This structure is called “AddressRange”, and it is visible in the 

fragment Code 5.1. 

 

Therefore two AddressRange arrays exist on the SRI slave to represent the 

writeable and readable address range. 

When the SRI Slave instance recognizes a SRI transaction a notification has to 

be sent to the top class, the PMU. This is realized by two member function pointers: 

one for the read transactions and the other for the write transactions as depicted 

by the. Their definition and declaration are reported in the fragments Code 5.2 and 

Code 5.3 respectively, whereas the Fig. 5.3 graphically represents the member 

function pointers from SRI_Slave to the PMU class. 

 

Code 5.2: Declaration of function pointers which notify to the PMU that a 

SRI transaction occurred. 

typedef void(PMU_Sim::PMU::*WRITE_DELEGATE)(IData, QData, unsigned); 
typedef QData( PMU_Sim::PMU::*READ_DELEGATE)(IData); 

typedef struct 

{ 

IData StartAddress; 

IData StopAddress; 

} AddressRange; 

Code 5.1: Definition of the structure which indicates an address range. 
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5.1.2.1 Read Algorithm 

As explained in section 3.3, the Shared Resource Interconnect bus supports 

multiple transactions, in the sense that a transaction is able to execute the 

arbitration phase, while another existing transaction is being performed. 

The read algorithm, which is graphically represented in Fig. 5.4, is based on a 

queue of “Read Transaction” to support multiple transactions and it is executed on 

every rise edge of the SRI clock system signal. In particular, a “Read Transaction” is 

a structure which contains the following parameters: 

 Address; 

 Transaction ID; 

 Value sent to SRI bus; 

 Data phase cycles computed; 

 Data phase cycles to compute; 

 A flag which tells if the transaction is in error. 

class SRI_Slave {  
WRITE_DELEGATE write_delegate; 
READ_DELEGATE read_delegate; 

 … 
}; 

 

Code 5.3: declaration of PMU's member function pointers which notify to 

the PMU that a SRI transaction occurred. 

PMU 

SRI_Slave 
 

 Write_delegate 

 Read_delegate 

Fig. 5.3: The SRI_Slave class invokes a method on PMU when a SRI 

transaction has been recognized. 
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When a new SRI read transaction is required from a master peripheral, a new 

transaction instance is pushed into the queue and it is signaled as “in arbitration 

phase”, because it is referred by a pointer called “arbitration_read”. 

If the oldest transaction in the queue is not in arbitration phase, a data phase 

cycle will be computed sending data to SRI read bus. The number in the transaction, 

that counts the computed data phase cycles, will be incremented. 

 

If all of the data phase cycles of the oldest transaction in the queue have been 

completed, this transaction will be removed from the queue and the algorithm will 

be executed for the next oldest transaction in the queue. 

In order to improve the readability of the code, this algorithm is divided into 

two sub algorithms: 

START 

arbitration_read = NULL 

sri_rd_n_i = 0 

send data to SRI bus 
increment data phase cycles computed on transaction 

some trans. are in queue 

trans. is not arbitration_read 

enqueue new transaction 
arbitration_read = new transaction 

all of data phase cycles of 
transaction have been sent 

dequeue transaction 

FINISH 

Y 

Y 

Y 

Y 

N 

N 

N 

Fig. 5.4: Flow chart of the read algorithm. 
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1. “Evaluate Read Arbitration Phase” which performs the arbitration 

phase; 

2. “Perform Read Data Phase” which computes the data phase of the 

transaction.  

Fig. 5.4, Fig. 5.5 and Fig. 5.6 show the flow charts representing the algorithm. 

In particular, Fig. 5.4 represents the whole algorithm in a single flow chart, Fig. 5.5 

and Fig. 5.6, instead, split the same algorithm in the two sub algorithms above 

mentioned. 



5.1 Program Memory Unit

 

 

104 Chapter 5: Implementation  

 

 

It is worth remembering that the read algorithm has also to manage the bus 

errors. Typically, a bus error occurs when the master requires reading an address 

Fig. 5.5: Read algorithm divided into "Evaluate Read Arbitration Phase" and 

"Perform Read Data Phase" sub-algorithms. 
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out of the possible range of SRI slave port. In this case the slave asserts the error 

clearing “sri_err_n_o” bit. 

The sub-algorithms have to change according to the flow charts shown in Fig. 

5.6. 

 

Observing the picture, it is clear that an if-statement is added to the previous 

version in order to check whether the address required by the master is out of 

range. 

It is worth noting that this is not the only case that a SRI bus error can occur. 

In fact, when the master executes a read access while the Program Memory Unit is 

sleeping, it should get a bus error. Actually, this aspect is not yet implemented 

Fig. 5.6: Flow chart which represents the "Evaluate Read Arbitration Phase" 

algorithm which takes into account the bus error. 
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because the Program Memory Unit’s simulator is not provided with the sleep 

mode. 

5.1.2.2 Write Algorithm 

Like the read one, also the write algorithm has to support multiple SRI 

transactions, therefore it is based on a queue of “write transactions” which are 

specific data structures containing the following parameters: 

 Address; 

 Transaction ID; 

 Number of cycles computed during data phase with a wrong 

transaction ID; 

 The number of data phase remaining cycles; 

 A flag which tells whether the ready signal has been sent to the SRI 

Port Master; 

 A flag which tells whether the transaction is in error. 

When a write transaction is started, a new instance of “write transaction” is 

pushed into the queue and is set as “in arbitration phase” by setting the specific 

“arbitration_write” variable to point to this new transaction. 

If the oldest transaction in the queue is not in arbitration phase, and write 

data present on the bus is valid, a data phase cycle will be performed invoking the 

relative PMU member function through the related pointer and the number of data 

phase remaining cycles on transaction will be decremented. 

If no data phase cycle remains on the oldest transaction, it will be removed 

from the queue. 

Fig. 5.7 reports what has just been outlined in a simple flow chart. It is a 

general description of the actual algorithm, since bus errors and transaction ID 

error have to be managed. In order to make it easier to understand, the algorithm 

description is divided into some sub-algorithms. 
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The “Evaluate Write Arbitration Phase” sub algorithm, which is graphically 

represented in Fig. 5.8, detects a new SRI write transaction and puts the new 

Fig. 5.7: Flow char which describes generally the write transaction 

algorithm. 
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instance of “write transaction” in the write queue. Thereafter, it detects if the 

address required by the master is out of range. In this case, it will assert a flag on 

the new transaction instance. 

 

The “Evaluate Write Data Phase” function works on the oldest transaction in 

the queue. It sends the ready signal on the bus if it has not been sent yet for that 

transaction; otherwise it will call the next method, “Perform Write Data Phase”, 

which will read the data from the bus. A graphical description of this specific sub-

algorithm is reported in the flow chart in Fig. 5.9. 

 

Fig. 5.9: Flow char which represent the "Evaluate Write Data Phase" sub 

algorithm. 

Ready sent for the 
oldest transaction 

Perform Write Data Phase Send Ready Signal 

FINISH 

Y N 

Evaluate Write Data Phase 

Evaluate Write Arbitration Phase 

FINISH 

arbitration_write = NULL 

enqueue new transaction 
arbitration_write = new transaction 

Is Address in Range 

sri_wr_n_i = 0 

set error on new transaction 

Y 

Y 

N 

N 

Fig. 5.8: Flow chart which represents the "Evaluate Arbitration Phase" sub 

algorithm. 
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The “Perform Write Data Phase” method, which is graphically described by 

Fig. 5.10, works on the oldest transaction in the queue. If it has a generic error, it 

will assert the related signal on the bus and resets the remaining data phase cycles 

(so in the next function the transaction will be removed from the queue); 

otherwise, if the data on the bus is valid and no transaction id error occurs, it will 

invoke the appropriate function on PMU. 

 

If transaction ID occurs the related counter in the transaction instance will be 

incremented. After a data phase cycle is computed, the remaining cycles counter 

will be decremented. 

“Check If Write Dequeue”, the flow chart of which is shown in Fig. 5.11, is the 

last sub method of the whole write algorithm. It controls whether all the data phase 

cycles of the transaction have been completed and, in this case, it verifies if the 

transaction ID errors occurred. If no Transaction ID error occurs, the instance will be 

correctly removed from the queue and the SRI transaction will end; otherwise it will 

assert the related output signal on the bus and decrement the counter which 

contains the number of mismatched cycles. 

The oldest transaction 
in the queue has error 

sri_err_n_o = 0 
decrement count of data phase 

cycles remaining 

increment transaction id 
mismatch cycle count 

FINISH 

Y N 

sri_wrdvalid_n_i = 0 

error on trans. ID 

invoke write func. pointer 

N Y 

Y 

decrement count of data phase cycles remaining 

Check If Write Dequeue 

Perform Write Data Phase 

Fig. 5.10: Graphic description of the "Perform Write Data Phase" sub 

algorithm which takes into account transaction ID error. 
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5.1.2.3 Test of SRI Port Slave 

The algorithms that have been presented so far make up the SRI port slave. In 

this section, the results of some tests that were carried out are reported.  

In Fig. 5.12, input and output signals of an SRI slave port are shown for a 

Single Data Transfer Double-Word read transaction. These can be compared with 

those reported in Fig. 3.17, to understand that the signals are compliant to the SRI 

bus protocol [38]. 

In Fig. 5.13, the signals are reported for a Single Data Transfer Double-Word 

write transaction. These can be compared with those of Fig. 3.15 to verify the 

compliance with the SRI bus protocol. 

In Fig. 5.14, an example of a Write Burst Transaction 4 is reported, while in 

Fig. 5.15 the same transaction reports an error because the address required by the 

master peripheral is out of the possible range of the slave port. 

Fig. 5.11: Flow chart which describes the "Check If Write Dequeue" sub 

algorithm. 

sri_wrdvalid_n_i = 0 

FINISH 

no data phase 
cycles remain 

transaction ID 
mismatch cycle 

count > 0 

decrement transaction ID mismatch cycle count 
sri_id_err_n_o = 0 

remove the oldest transaction from the queue 

Check If Write Dequeue 
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Fig. 5.12: Read transaction performed with SDTD op-code. 
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 Fig. 5.14: Burst Write transfer 4 transaction. 

Fig. 5.13: Write transaction performed with SDTD op-code. 
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5.1.3 Assembly Buffer 

In Fig. 5.2, two classes both named “Assembly Buffer” are depicted. They 

emulate the modules of the same name in the Program Memory Unit hardware. 

As explained in 3.2.6.3, to execute a programming operation the data, before 

being stored in the flash memory, has to be loaded in one of the two dedicated 

assembly buffers, depending on the destination: data or program flash. In the 

simulator, these buffers are represented by two instances of the ASB class.  

Inside the PMU module, two assembly buffers exist: 

 Data Flash Assembly Buffer: used during programming operations on  

Data Flash banks; 

 Program Flash Assembly Buffer: used during programming operations 

on Program Flash banks. 

Since a “Write Burst” operation programs eight pages of either data or 

program flash, the assembly buffers have to be designed large enough to contain all 

these pages. In this context, it is useful to recall that a program flash page is 32 byte 

Fig. 5.15: SDTD transaction with bus error occurred because address is out of 

range. 
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large, whereas data flash 8 byte, hence the size of the program flash assembly 

buffer is 256 bytes and the one of the data flash assembly buffer is 64 bytes. 

However, an assembly buffer size is determined during its instantiation, 

reading the parameters from a configuration file, so that it is possible to simulate 

different assembly buffer sizes without re-compiling the simulator, just changing 

the configuration file. 

The main goal of the assembly buffers is to keep the data while programming 

operation is running. An assembly buffer can be marked as: 

 “Page Full” 

 “Page Overflowed” 

 “Full” 

 “Overflowed”. 

When an assembly buffer is marked as “Page Full” enough data has been 

loaded to cover a page size. If the assembly buffer is not “Page Full” and a write 

page is performed, the SQER bit of the FSR will be asserted. 

When in the assembly buffer more data than a page size is loaded, it will be 

marked as both “Page Full” and “Page Overflowed”. In this case, if a “Write Page” is 

performed, the SQER bit of the FSR will be asserted. 

When an assembly buffer is completely full, i.e. the size of the data loaded is 

equal to the burst size, it is marked as “Full”. In this case a “Write Burst” operation 

will be correctly executed. 

If more than a burst size of data is loaded into the assembly buffer, the buffer 

will be marked as “Overflowed” and in this case both operations “Write Page” and 

“Write Burst” would be executed giving back a sequence error. 

The “Assembly Buffer” class can be thought as an array which can be read and 

filled through some methods according to the TriCore TC27x assembly buffer’s 

specifications. Consequently, an assembly buffer can be in one of the following 

states: 

 READ MODE: the assembly buffer can be read using either two 

dedicated methods: “Get 32 Bit Data” or “Get 64 Bit Data”. They are 

usually invoked more than once during a programming operation to 

get 32 bit data or 64 bit data respectively. Arguments passed to these 

methods are: 
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o An index which indicates the page index into the assembly 

buffer; 

o An index which indicates the word (or double-word in case of 

64 bit) inside the page indicated by the previous page’s index; 

 PAGE MODE: the command sequence “Enter in Page Mode” has been 

received by the PMU. The assembly buffer can receive either 32 bit or 

64 bit of data to load into the array which emulates the assembly 

buffer’s SRAM; 

 PAGE MODE (WORD): with the assembly buffer in PAGE MODE, a 

“Load Page 32 bit” has been received by the PMU. The next “Load 

Page” command sequences have to be in the form of 32 bit data, 

otherwise a sequence error will be asserted and the data will not be 

loaded; 

 PAGE MODE (DOUBLE-WORD): with the assembly buffer in PAGE MOE, 

a “Load Page 64 bit” has been received by the PMU. The next “Load 

Page” command sequences have to be in the form of 64 bit data, 

otherwise a sequence error will be asserted and the data will not be 

loaded; 

 FROZEN FOR PROGRAMMING: the assembly buffer cannot receive 

data to fill the array because a programming operation is still running. 

If a “Load Page” is sent, a sequence error will be asserted. 

Referring to Fig. 5.2, the FLASH MODULE class handles both assembly buffers. 

This concept emulates the same behavior of the actual Program Memory Unit. The 

difference is that in the hardware the assembly buffers are handled using digital 

signals, while in the simulator by invoking class methods. 

The FLASH MODULE invokes the method “Enter in Page Mode” on the 

assembly buffer when receives the command sequence of the same name. There 

are two “Enter in Page Mode” commands: one for the program flash and other for 

the data flash (see 3.2.6.3). The method will change the assembly buffer’s state 

from READ MODE in PAGE MODE. If the current state is not READ MODE, it will 

return a sequence error. After entering in page mode, the FLASH MODULE expects 

either “Load Page 32 bit” or “Load Page 64 bit” command sequences. When 

received, the method of the same name will be invoked on the assembly buffer 

which is in page mode. This method loads the data passed as an argument in the 

array that emulates the assembly buffer’s SRAM In hardware. 

When a programming operation begins, the involved assembly buffer has to 

change its state from PAGE MODE (WORD) or PAGE MODE (DOUBLE-WORD) to 
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FROZEN FORM PROGRAMMING. To accomplish this, the class provides the method 

“Freeze for Programming”, which is invoked by the “Flash Array” instance in the 

“Flash bank” involved in the programming operation. The “Flash Array” is able to 

invoke then either “Get 32 bit data” or “Get 64 bit data” method to obtain the data 

to store in flash memory. 

The last command provided by the assembly buffer is “Reset to Read”. It is usually 

invoked by the flash array after the programming operation ends, but it can be 

invoked also by the FLASH MODULE once the “Reset to Read” command sequence 

has been sent.  

Fig. 5.16 depicts the chronological sequence of how the assembly buffer is handled 

during a “Write Burst” operation. The “Enter in Page Mode” command produces 

the “Enter in Page Mode” invocation on the related assembly buffer. This method 

will change the PFPAGE / DFPAGE bit on the Flash Status Register (see 3.2.5.1). In 

figure the “Load Page” command is performed at 64 bit data. From Fig. 5.16 it is 

clear that the FLASH MODULE no longer needs to read the status directly by the 

assembly buffer, but it automatically recognizes which assembly buffer is in page 

mode only by using the PFPAGE, DFPAGE bit of the Flash Status Register. 

 
Fig. 5.16: Handling of the Assembly Buffer during write burst command. 



Chapter 5 

 

 

Chapter 5:  Implementation 117 

 

5.1.4 Flash Bank 

The flash bank class represents the “entity” containing the flash array 

memory. It is not a simple data container, but rather an actual digital module which 

provides all the methods necessary to perform the various operations. For instance, 

it has to simulate the passage of time during the programming or erasing and the 

possibility of suspending and resuming the operations. 

Two classes were realized to represent the flash banks: 

 Program Flash Bank 

 Data Flash Bank 

Since these two classes are very similar, the next pages will give a description 

valid for both of them. The main difference is that the “Write Page Once” command 

sequence is not implemented for the Data Flash Bank, inasmuch it is not provided 

by the hardware functionalities.  

Two instances of each class are used to simulate both the PF0 and the PF1 

program flash banks and both the DF0 and the DF1 data flash banks. 

The flash bank behavior is similar to that of a finite state machine; in fact, 

depending on the running operation, it can be in one of the states reported in Tab. 

5.2. 

State Description 

IDLE 
The flash bank can be read and it is 

ready for an eventual operation. 

WRITING PAGE 

The flash bank is busy for a “Write 

Page” command. No operation can be 

started unless the suspension is 

performed. 

WRITING PAGE ONCE 

The flash bank is busy for a “Write Page 

Once” command. No operation can be 

started unless the suspension is 

performed. 

WRITING BURST 

The flash bank is busy for a “Write 

Burst” command. No operation can be 

started unless the suspension is 

performed. 
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State Description 

ERASING LOGICAL SECTOR 

The flash bank is busy for a “Erase 

Logical Sector Range” command. No 

operation can be started unless the 

suspension is performed. 

ERASING PHYSICAL SECTOR 

The flash bank is busy for a “Erase 

Physical Sectors” command. No 

operation can be started unless the 

suspension is performed. 

WRITING PAGE SUSPENDED 

A “Write Page” command has been 

suspended. The flash bank cannot be 

read, neither a new operation can be 

started on the same bank, just the 

“Resume Prog Erase” command can be 

performed. 

WRITING PAGE ONCE SUSPENDED 

A “Write Page Once” command has 

been suspended. The flash bank cannot 

be read, neither a new operation can be 

started on the same bank, just the 

“Resume Prog Erase” command can be 

performed. 

WRITING BURST SUSPENDED 

A “Write Burst” command has been 

suspended. The flash bank cannot be 

read, neither a new operation can be 

started on the same bank, just the 

“Resume Prog Erase” command can be 

performed. 

ERASING LOGICAL SECTOR SUSPENDED 

An “Erase Logical Sector Range” 

command has been suspended. The 

flash bank cannot be read, neither a 

new operation can be started on the 

same bank, just the “Resume Prog 

Erase” command can be performed. 
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State Description 

ERASING PHYSICAL SECTOR SUSPENDED 

An “Erase Physical Sectors” command 

has been suspended. The flash bank 

cannot be read, neither a new operation 

can be started on the same bank, just 

the “Resume Prog Erase” command can 

be performed. 

VERIFY ERASED LOGICAL SECTOR 
A “Verify erased logical sector range” on 

the flash bank is running. 

Tab. 5.2: Status set of the flash bank. 

As already mentioned, the flash bank has to take into account the passage of 

time while carrying out an operation. In this context, the time is expressed through 

the function “sc time stamp” (see 4.3.2). To accomplish this target the constants 

reported in Tab. 5.3 are defined. 

CONSTANT DESCRIPTION 

PAGE WRITE TIME 

It indicates the time spent to program a 

page. The “Write Burst” command will 

spend eight times the “PAGE WRITE 

TIME”. 

ERASE LOGICAL SECTOR TIME 

It indicates the time spent to erase a 

whole logical sector. The “Erase Logical 

Sector Range” command will spend n 

times the “ERASE LOGICAL SECTOR 

TIME” where n is the number of logical 

sectors to erase. 

ERASE PHYSICAL SECTOR TIME 

It indicates the time spent to erase a 

whole physical sector. The “Erase 

Physical Sectors” command will spend n 

times the “ERASE PHYSICAL SECTOR 

TIME” where n is the number of 

physical sectors to erase. 
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CONSTANT DESCRIPTION 

VERIFY ERASE LOGICAL SECTOR TIME 

It indicates the time spent to verify that 

one logical sector is erased. The “Verify 

Erased Logical Sector Range” command 

will spend n times the “VERIFY ERASE 

LOGICAL SECTOR RANGE TIME” where n 

is the number of logical sector to verify. 

Tab. 5.3: Constant definitions to take into account the passage of time. 

Furthermore, the flash bank contains the following variables: 

 “Operation start time”: it is set at the moment an operation begins; 

 “Operation suspended time”: it is initially set at the moment an 

operation begins, then if this is suspended it will be updated at the 

suspension time. 

As explained in 4.3, for each clock cycle the evaluation method is invoked on 

the whole microcontroller’s simulator. This will call the evaluation method on the 

PMU which in turn will invoke the “Tick” method on the flash bank. The second 

method compares the difference between the current simulation time and the 

value kept by the “operation start time” with one constant among those reported 

in Tab. 5.3 depending on the flash bank state as explained in Tab. 5.2. So, the flash 

bank is able to detect whether enough time has elapsed to complete the operation.  

If enough time has elapsed, the operation will be really executed on the flash 

array and the current state of the flash bank will change in “IDLE”.  

The concept is graphically depicted by Fig. 5.17. 
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Fig. 5.17: Graphic representation of the duration of an operation. 
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For a “Write Burst” operation, the mechanism just expressed is a bit different: 

first of all another variable, called “page written during write burst”, is needed to 

keep in memory the number of pages written during the operation. For each 

evaluation of the PMU, the “Write Burst Tick” method is executed. It evaluates if 

the difference between the current simulation time and the “start operation time” 

is greater than the “PAGE WRITE TIME” constant, which means enough time has 

elapsed to program a single page. In this case, one page-size will be copied from the 

assembly buffer into the flash array; the “start operation time” will be updated to 

the current simulation time in order to allow controlling the passage of time for the 

next page; and the “page written during write burst” will be incremented. 

If eight pages are written, the current state of the flash bank will change into 

“IDLE”, so that at the next PMU evaluation no tick method will be executed on the 

flash bank. Instead, if the pages written are less than eight, the current PMU’s state 

will remain on “WRITING BURST”, so that at the next evaluation the same process 

will be executed again. The flow chart in Fig. 5.18 gives a graphic representation of 

the method which performs this mechanism: “Write Burst Tick”. 

 

For the “Erase Logical Sector Range” or the “Erase Physical Sectors” or the 

“Verify Erased Logical Sector Range”, the “Tick” method is similar to “Write Burst 

Tick”. A graphic representation of the “Erasing Logical Sector Range Tick” is given in 

Fig. 5.19. 

Fig. 5.18: Flow chart which describes the "Tick" method executed during a 

"Write Burst" command. 
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Fig. 5.19: Flow chart which describes the "Tick" method executed during an 

"Erase Logical Sector Range" command. 

The main difference with the “Write Burst Tick” method is that to detect if the 

whole command sequence has been completed, the number of erased sector has to 

be compared with the command sequence argument which tells how much sectors 

have to be erased. 

5.1.4.1 Flash array 

The flash bank instance contains the flash array which can be thought as the 

class containing the actual memory and its partition. Even though the Flash array 

and the flash bank could be developed as the same class, they have been created as 

two different classes to improve the readability and to make the code 

documentation easier to understand. The main objects composing the flash array 

are: 

 One array which emulates the actual memory and contains the stored 

data; 

 One array of sectors to subdivide the whole memory array into logical 

sectors; 

 One array of sectors to subdivide the whole memory array into 

physical sectors; 

 One array of sectors to subdivide the whole memory array into pages. 
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In this context the word “sector” is used with reference to the structure 

reported in the fragment Code 5.4. 

 

The flash array provides methods to control the address and data arguments 

of a command sequence needed to perform the operation4. These methods are 

generally indicated as “begins methods”, inasmuch they are invoked before a 

command sequence starts.  

For example: if the “Write Page” command sequence has been sent to the 

Flash Bank, the Flash Bank will invoke the “Begin Write Page” command on its Flash 

Array, passing the address argument received by the command sequence. The 

method controls no errors have occurred (e.g. the address is the first of a page) and 

in this case it will set the assembly buffer as “Frozen for programming” (see 5.1.3). 

At last it will get back an instance of “ERROR INFO” to the flash bank so the latter 

will be able to control whether it is possible to perform the command with the 

errors that eventually occurred 5. In this case it will change its state in “WRITING 

PAGE”. 

                                                      
4
 The argument of the command sequence “Write Page”, for example, is the address of the 

page. 
5
 If the “Write Page” command is given when the assembly buffer is not completely filled, or 

more data than one page size are loaded into the assembly buffer, a sequence error will be reported 

on the Flash Status Register, although the operation will be executed. 

Code 5.4: "Sector" structure definition. 

typedef struct Sector { 

/* The first address of the sector. */ 

unsigned StartAddress; 

/* The last address of the sector. */ 

unsigned StopAddress; 

/* The sector size (in Byte). */ 

unsigned Size; 

/* The data contained in the sector. */ 

CData*   Data; 

} Sector; 
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The same mechanism, which is graphically shown in Fig. 5.20 and Fig. 5.21, is 

repeated for the “Erase Logical Sector Range” or the “Erase Physical Sector Range” 

or the “Verify Erased Logical Sector Range”. 

 

Fig. 5.20: Sequence performed during a "Write Page" command on the Flash 

Bank. 

When a programming operation is performing, the data have to be copied 

from the assembly buffer into the flash array. A dedicated method called “Copy 

Assembly Buffer Page” is provided by the flash array. It takes care not to change the 

bits into the flash memory which are set to “1” because in a flash memory, as 

explained in Chapter 2, the erasing operation has to be performed separately by the 

program. Since the data into the assembly buffer cannot be directly copied into the 

flash memory, the logical “OR” operation has to be used between the existing data 

into the flash memory and the next value present into the assembly buffer to 

calculate the actual value to store into the flash array.  
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Fig. 5.21: Sequence performed during a "Write Page" command on the Flash 

Array. 

This method is represented in Fig. 5.22. First of all, the page to program on 

the flash array is calculated by the address argument, thereafter for each word into 

the selected page the data from the assembly buffer is got, and after being filtered 

by the OR operation (refer to Tab. 5.4), it will be written into the flash array through 

the “Data” pointer of the “page” structure. Note that every “Data” element is one-

byte so the word coming from the assembly buffer has to be divided into 4 bytes. 

Previous Value Next Value OR 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

Tab. 5.4: Logic-OR operation can be used to calculate the new value in the 

flash array. 
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Fig. 5.22: Flow chart which describes the "Copy Assembly Buffer Page Into 

Flash Page" method. 

A similar technique is adopted to erase the logical and the physical sectors. 

Obviously, the data have not to be read from assembly buffer (the sector of 

memory array has to be erased). The flow chart which describes the “Erase Logical 

(Physical) Sector” is reported in Fig. 5.23: each data into the selected sector, the 

reference of which is got by the sector address passed as argument, is set to “0”. 



Chapter 5 

 

 

Chapter 5:  Implementation 127 

 

 

Fig. 5.23: Flow chart which describes the "Erase Logical (Physical) sector" 

method. 

5.1.4.2 Save and read content on file 

When a simulation starts, every flash bank inside the PMU has to read the 

content of its flash array from a file using a dedicated method. 

This data is stored into the flash array before the simulation starts, and at the 

end it will be stored on the same file using another dedicated method. In this way 

manner the user is able to verify if any change on the memory content occurred. 

The file structure, show in the text box below, is the same treated by the 

“Jazz” tool used in Infineon®. 

 

5.1.5 Command Interpreter 

The “Command Interpreter” is a single object instantiated inside the PMU, as 

show in Fig. 5.2. Its purpose is to detect the command sequence coming from the 

SRI bus through the “SCI6 - SRI Slave Port”. 

<address>, <data> 
<address>, <data> 

… 
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After the communication of the command interpreter, the flash module will 

execute the command sequence, involving assembly buffers, flash banks, flash 

arrays, register set and all other parts needed. 

The flash module can recognize all the commands reported in the specs 

presented in 3.2.6.1, though with the following variants: 

 Reset to Read 

 Clear Status 

 Enter in Page Mode P Flash 

 Enter in Page Mode D Flash 

 Load Page 32 bit 

 Load Page 64 bit 

 Write Page 

 Write Page Once 

 Write Burst 

 Erase Logical Sector Range 

 Erase Physical Sectors 

 Verify Erased Physical Sector Range 

 Resume Prog Erase 

5.1.5.1 Command Sequence 

 

The command interpreter makes use of a “Command Sequence” class 

instance for each command sequence it is able to detect. The “Command 

Command Interpreter 

Command Sequence 

Command Sequence 

Command Sequence 

Command Sequence 

Command Cycle 

Command Cycle 

Command Cycle 

Fig. 5.24: "Command Sequences" contained into the "Command 

Interpreter". 
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Sequence” instance can be thought as a list of “Command Cycles” composing the 

definition of the Command Sequence. Fig. 5.24 depicts this structure. 

A “Command Cycle” contains the following parameters: 

 Address: specifies the value of the address signal coming from the 

SCI6 SRI port slave to match the command cycle; 

 Data: specifies the value of data signal come from the SCI6 SRI port 

slave to match the command cycle; 

 Data Mask: specifies the bits of the data signal that have to match 

with the Data variable above so that the command cycle will be 

recognized; 

 Data Type: specifies the meaning of the Data value: 

o CMD CYCLE: the data signal has to match with a certain 

constant value which depends on the command sequence 

definition; 

o CMD ADDR ARG: the data signal is an address argument (e.g. 

for Write Page specifies the address to which store data); 

o CMD DATA ARG: the data signal is a data argument (e.g. for 

Load Page specifies the data to put in assembly buffer). 

The set of all command cycles in a command sequence provides the command 

sequence’s definition. These parameters, for all the command cycles of all the 

command sequences, are loaded from a dedicated INI file before the simulation 

starts. 

5.1.5.2 Command interpreter’s operation 

The command interpreter is involved when SCI6 SRI Port receives a write 

transaction the address of which points in the data flash memory range. A 

dedicated method on PMU, called “SCI6 Sri Write”, will be invoked by means of a 

member function pointer by the SRI port, as explained in 5.1.2.2. This method (on 

the PMU) will invoke the “Give Command Cycle” method on the “Command 

Interpreter” passing the address and the data values coming from SRI bus. 

Therefore, the “Give Command Cycle” method is the first step computed to 

recognize a command sequence. It will invoke the method of the same name on 

each command sequence inside the command interpreter, which in turns deals to 

recognize whether the current command cycle belongs to that command sequence. 
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In order to explain the “Give Command Cycle” method on the “Command 

Sequence” object, it can be useful to keep in mind the variables that are defined 

within the cycle, which are: 

 Error: indicates if the command sequence is in error, i.e. some 

command cycles previously given do not match with the related 

command cycle definition of the command sequence; 

 Cycle Index: indicates the index of the last command cycle given; 

 Data Argument Caught: the data argument which the SRI master has 

sent to the slave; 

 Address Argument Caught: the address argument which the SRI 

master has sent to the slave. 

A command sequence can be reset, so that it is not in error and the “cycle 

index” variable is set to “0”. 

When a command cycle has been received, the “Give Command Cycle” 

method on the “Command Sequence” performs the algorithm depicted in Fig. 5.25 

to detect if it belongs to the command sequence. 

 

Fig. 5.25: Algorithm performed by the "Command Sequence" to recognize a 

command cycle. 
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If the command sequence is not in error (i.e. all the previous command cycles 

are recognized as belonging to that command sequence) and the number of cycles 

previously detected is less than the number of cycles belonging to the command 

sequence, and also if the current command cycle matches with the command cycle 

the command sequence is expecting, the data and / or address are eventually 

captured in the case they are arguments (“CMD CYCLE” in the cycle definition). 

Then the “cycle index” variable is incremented because a new command cycle has 

been recognized. Otherwise, if the current command cycle does not match with 

what the command sequence is expecting, the “error” flag will be asserted so that 

in the next steps the command sequence will not be able to be accepted.  

When a command sequence has been accepted, the command interpreter 

resets all the “Command Sequence” instances, so that they will be able to begin a 

new interpretation. 

The “Reset to Read” command sequence is the only one which is reset at the 

end of any given command cycle, so that it is always enabled to detect the “Reset 

to Read” command as provided by the specs (see 3.2.6.2). 

Fig. 5.26 shows the code flow for the execution of a command sequence. 

 

5.1.6 Flash Module 

The “Flash Module” is the manager of the whole PMU. Its purpose is to 

handle all the different classes described in this chapter in order to execute the 

command sequence. 

Even though the functionalities of the flash module could be added inside the 

PMU class, it has been chosen to implement them as a separate object in order to 

improve the code readability and to make documentation clearer. Hence, the PMU 

Fig. 5.26: Chronological execution of a command sequence. 

SRI PORT 
PerformWriteDataPhase(SRI Inputs) 

PMU 
Execute<cmd seq>(address arg, data arg) 

COMMAND INTERPRETER 
GiveCommandCycle(address, data) 

PMU 
SCI6_Write(address, data) 

COMMAND SEQUENCE 
GiveCommandCycle(address, data) 

FLASH MODULE 
Perform<cmd seq>(address arg, data arg) 

1 

3 

5 

4 

2 
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is just a simple container of all other instances, with the only feature to call the 

appropriate Flash Module methods when an operation has to be executed. 

The flash module provides a method for each operation the PMU is able to 

perform, that is: 

 Perform Reset to Read; 

 Perform Clear Status; 

 Perform Resume Prog Erase; 

 Perform Erase Physical Sectors; 

 Perform Erase Logical Sector Range; 

 Perform Verify Erased Logical Sector Range; 

 Perform Enter in Page Mode P Flash; 

 Perform Enter in Page Mode D Flash; 

 Perform Load Page 32 bit; 

 Perform Load Page 64 bit; 

 Perform Write Page; 

 Perform Write Page Once; 

 Perform Write Burst. 

These methods accept the arguments they need (e.g. the “Perform Write 

Page” method accepts the page address argument; the “Erase Physical Sectors” 

accepts both the address and the number of sectors to erase). 

These “performing methods” are invoked by the PMU through methods of 

the similar name: just the word “perform” is replaced with “execute”. They deal to 

recognize which instances have to be involved. 

To give an example, the flow chart in Fig. 5.27 describes what the Flash 

Module computes in order to perform the “Write Page” command cycle. 
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Fig. 5.27: Flow chart which describes the "Perform Write Page" method. 

As mentioned in 5.1.4, since the flash bank has to take into account the 

passage of time during an operation, the PMU provides an evaluation method 

executed whenever at least one input signal changes. 

 

This method accomplishes also the evaluation for the flash module, which 

currently has the only purpose of detecting if the suspension of an operation has to 

be performed. This feature is reached by the dedicated “Evaluate Suspension” 

method on the flash module. Specifically, it controls the SPND’s status of the MARD 

register: if asserted the suspension begins for the current operation, calling the 

if  (MARD.SPND) 
{ 

SUSPEND_REPLY _pf0Reply = pf0->Suspend(); 
SUSPEND_REPLY _pf1Reply = pf1->Suspend(); 
SUSPEND_REPLY _df0Reply = df0->Suspend(); 
SUSPEND_REPLY _df1Reply = df1->Suspend(); 
if ( _pf0Reply == NO_OPERATION_PENDING && 
 _pf1Reply == NO_OPERATION_PENDING && 
 _df0Reply == NO_OPERATION_PENDING && 
 _df1Reply == NO_OPERATION_PENDING) 
{ 
 MARD.SPND = 0; 
} 

} 

Code 5.5: Suspend evaluation in flash module. 
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“Suspend” method on the flash bank which is running the operation. The fragment 

Code 5.1 contains the instructions for the evaluation described above. 

The “Suspend” methods on the flash banks return an instance of the 

enumeration “SUSPEND REPLY” which can assume one of the following values: 

 NO OPERATION PENDING: suspension has not be performed because 

no operation is pending; 

 CANNOT SUSPEND CURRENT OPERATION: suspension has not be 

performed because the operation is running cannot be suspended; 

 OPERATION SUSPENDED: the operation was running has been 

suspended. 

The second value is actually not used, but it has been defined for possible 

future improvements.  

When an operation is suspended, the flash bank takes care to reset the SPND 

bit of the MARD register and to set the bit of the same name of the Flash Status 

Register. Moreover, it changes its own status depending on the current state: 

 WRITING PAGE → WRITING PAGE SUSPENDED 

 WRITING PAGE ONCE → WRITING PAGE ONCE SUSPENDED 

 WRITING BURST → WRITING BURST SUSPENDED 

 ERASING LOG SECTOR → ERASING LOG SECTOR SUSPENDED 

 ERASING PHY SECTOR → ERASING PHY SECTOR SUSPENDED 

If the flash bank is in a suspended state, its “Tick” method will perform no 

operation (see 5.1.4). Invoking “Resume” method on the flash bank the current 

state changes back and the suspended operation will start again. 

5.2 Interface between CPU and PMU simulators 

The interface between the two simulators consists in embedding the features 

of the Program Memory Unit into the project containing the CPU and the SRI bus. 

This can be accomplished by instantiating the PMU top module contained in the 

only Verilog file of the PMU project (see section 5.1) into the top module of the 

existing project.  

As explained in section 3.3, the SRI bus is endowed of a crossbar which 

provides an interface between all the master and slave peripherals connected to 

the SRI system. The PMU can be connected to the crossbar through the “SCI Port”, 

introduced in section 5.1.2.  



Chapter 5 

 

 

Chapter 5:  Implementation 135 

 

Since the “SCI Port” module is developed comply with the SRI bus protocol, 

the connection with the crossbar is made by assigning all input and output signals 

of the “SCI Port” to the related crossbar ones. This goal is achieved in the Verilog 

top module of the entire microcontroller simulator, by assignment instructions. 

The SRI bus protocol supports up to fifteen slaves and sixteen masters. At 

present only three masters are instantiated, the three CPUs of the TriCore®, and 

five slaves:  

 The default slave, which complying with the SRI bus protocol, receives 

all the transactions having address out of the ranges of all the other 

slaves. 

 An array memory used to test the CPU. 

 The SCI6, SCI7 and SCI8 ports of the PMU object of this thesis. 

Note that before this work was developed, the existed microcontroller was 

including a simple array memory which did not provide the PMU features. At 

present this memory has not been removed yet since it can be useful to test other 

features of the simulator.  

Hence, with this work, just the addition of the Program Memory Unit has 

changed the configuration of the SRI system. This addition needed to update some 

settings. First of all the number of the SRI slaves is incremented at five. This setting, 

which is represented by a constant number, establishes the length of the array 

which contains the slave ports of the SRI crossbar. Moreover, in a special Verilog 

file, the address range of each slave is specified. In that context, only one address 

range can be specified per slave peripheral. For this reason the forbidden write 

transactions at the address range of the SCI7 and SCI8 slave are handled by the 

peripheral themselves by asserting the SRI bus, as explained in section 5.1.2.2 and 

as reported as example by Fig. 5.15. 

 





Chapter 6 

 

 

Chapter 6:  Test and Results 137 

 

Chapter 6 Test and Results 

In this chapter some example are presented. In the first section, just the PMU 

simulator will be tested, whereas the examples of the PMU simulator interfaced 

with the CPU one will be explained in 5.2. 

6.1 Example of use of the PMU simulator 

The test bench provides to the device under test the same signals that the 

crossbar SRI would provide in a real scenario. 

 

 

Fig. 6.1: Test bench schematic. 

6.1.1 Example 1 

In the first example a “Write Page” command is performed at the address 

0xA000_0060 on the bank 0 of the Program Flash. According to section 5.1.4, 32 

bytes must be loaded into the program flash assembly buffer. The data has been 

chosen randomly: 

 0xABCD_EF01 

 0x2345_6789 

 0xA0B1_C2D3 

 0xF9E8_D7E6 

 0xAB01_CD23 

 0xFE98_DC76 
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 0xBA54_0101 

 0x34BE_56FC 

Before running the simulator, the program flash is erased at all addresses 

within the range from 0xA0000_0060 to 0xA000_0080, i.e. all the addresses within 

the page will be programmed. In this context is useful to remember that for the 

program flash a page is 32 byte wide and addresses are aligned to byte. 

The command sequences have to be executed are: 

 “Enter in Page Mode P Flash”: 

o Address: 0xAF00_5554 Data: 0x50; 

 “Load Page 64 bit”: 

o Address: 0xAF00_55F0 Data: 0xABCD_EF01_2345_6789;  

 “Load Page 64 bit”: 

o Address: 0xAF00_55F0 Data: 0xA0B1_C2D3_F9E8_D7E6;  

 “Load Page 64 bit”: 

o Address: 0xAF00_55F0 Data: 0xAB01_CD23_FE98_DC76;  

 “Load Page 64 bit”: 

o Address: 0xAF00_55F0 Data: 0xBA54_0101_34BE_56FC; 

 “Write Page”: 

o Address: 0xAF00_AA50 Data: 0xA000_0060; 

o Address: 0xAF00_AA58 Data: 0x00; 

o Address: 0xAF00_AAA8 Data: 0xA0; 

o Address: 0xAF00_AAA8 Data: 0xAA. 

At the end of the simulation, the file containing data stored into the program 

flash bank 0 reports the values specified in Tab. 6.1. The addresses are aligned to 32 

bit, so the first row reports the values for locations within the address range that 

goes from 0xA000_0060 to 0xA000_0063. The first two rows contain the values 

loaded into the assembly buffer by the first executed “Load Page 64 bit” command. 

This command is the same of the two “Load Page 32 bit” commands, in which the 

first has the least significant argument. For this reason, the values contained in the 

first two rows are swapped with respect to the command sequence’s data 

argument. 

Address Value 

0xA000_0060 0x2345_6789 

0xA000_0064 0xABCD_EF01 
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0xA000_0068 0xF9E8_D7E6 

0xA000_006C 0xA0B1_C2D3 

0xA000_0070 0xFE98_DC76 

0xA000_0074 0xAB01_CD23 

0xA000_0078 0x34BE_56FC 

0xA000_007C 0xBA54_0101 

Tab. 6.1: Data stored into the PF0 after the simulation was completed. 

The simulator prints some information during the simulation, regarding the 

executed actions. These are reported in Info 6.1. By looking at the last two 

messages, it can be appreciated the time spent by the simulator to complete the 

Write Page operation: 20.0 units. 

COMMAND SEQUENCE ENTER PAGE MODE P FLASH HAS BEEN RECEIVED: (Address: 0; Data: 0) 
PFLASH ENTERS IN PAGE MODE: 
        FSR: 0000_0200 
(Sim. time: 4.500000) 
COMMAND SEQUENCE 64 BIT LOAD PAGE HAS BEEN RECEIVED: (Address: 0; Data: ABCDEF0123456789) 
LOAD PAGE (64 bit): 
        FSR: 0000_0200 
(Sim. time: 8.500000) 
COMMAND SEQUENCE 64 BIT LOAD PAGE HAS BEEN RECEIVED: (Address: 0; Data: A0B1C2D3F9E8D7E6) 

LOAD PAGE (64 bit): 
        FSR: 0000_0200 
(Sim. time: 9.500000) 
COMMAND SEQUENCE 64 BIT LOAD PAGE HAS BEEN RECEIVED: (Address: 0; Data: AB01CD23FE98DC76) 

LOAD PAGE (64 bit): 
        FSR: 0000_0200 
(Sim. time: 10.500000) 
COMMAND SEQUENCE 64 BIT LOAD PAGE HAS BEEN RECEIVED: (Address: 0; Data: BA54010134BE56FC) 

LOAD PAGE (64 bit): 
        FSR: 0000_0200 
(Sim. time: 11.500000) 
COMMAND SEQUENCE WRITE PAGE HAS BEEN RECEIVED: (Address: A0000060; Data: 0) 
WRITE PAGE(Address: A0000060) 
        FSR: 0000_0088 
(Sim. time: 27.500000) 
WRITE PAGE COMPLETED ON PF0 AT ADDRESS 0xA0000060! 
        FSR: 0000_0080 
(Sim. time: 47.500000) 

Info 6.1: Information provided during the simulation. 
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6.1.2 Example 2 

The following example fills the page at address 0xA0000060 with the same 

data as  

Example 1. During execution of Write Page command the MARD.SPND bit will 

be set to suspend the operation. Write Page will be resumed after a few time 

through “Resume Prog Erase” command sequence. The command sequences have 

to be executed are: 

 “Enter in Page Mode P Flash”: 

o Address: 0xAF00_5554 Data: 0x50; 

 “Load Page 64 bit”: 

o Address: 0xAF00_55F0 Data: 0xABCD_EF01_2345_6789;  

 “Load Page 64 bit”: 

o Address: 0xAF00_55F0 Data: 0xA0B1_C2D3_F9E8_D7E6;  

 “Load Page 64 bit”: 

o Address: 0xAF00_55F0 Data: 0xAB01_CD23_FE98_DC76;  

 “Load Page 64 bit”: 

o Address: 0xAF00_55F0 Data: 0xBA54_0101_34BE_56FC; 

 “Write Page”: 

o Address: 0xAF00_AA50 Data: 0xA000_0060; 

o Address: 0xAF00_AA58 Data: 0x00; 

o Address: 0xAF00_AAA8 Data: 0xA0; 

o Address: 0xAF00_AAA8 Data: 0xAA. 

 After a bit of time the SPND bit of MARD register will be set 

 “Resume Prog Erase” (after a bit of time) 

o Address: 0xAF00_AA50 Data: 0xA000_0060; 

o Address: 0xAF00_AA58 Data: 0x00; 

o Address: 0xAF00_AAA8 Data: 0x70; 

o Address: 0xAF00_AAA8 Data: 0xCC. 
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The messages printed during the simulation are described in the following. 

The “Enter in Page Mode P Flash” command sequence switches the mode of 

the program flash assembly buffer, so that the PFPAGE bit of the flash status 

register is asserted. 

COMMAND SEQUENCE ENTER PAGE MODE P FLASH HAS BEEN RECEIVED: (Address: 0; Data: 0) 
PFLASH ENTERS IN PAGE MODE: 
        FSR: 0000_0200 
(Sim. time: 4.500000) 

Info 6.2: FSR.PFPAGE bit is set after "Enter in Page Mode". 

The four “Load Page 64 bit” command sequences fill the program flash 

assembly buffer with data passed as argument. The Flash Status Register does not 

change its value. 

COMMAND SEQUENCE 64 BIT LOAD PAGE HAS BEEN RECEIVED: (Address: 0; Data: ABCDEF0123456789) 
LOAD PAGE (64 bit): 
        FSR: 0000_0200 
(Sim. time: 8.500000) 
COMMAND SEQUENCE 64 BIT LOAD PAGE HAS BEEN RECEIVED: (Address: 0; Data: A0B1C2D3F9E8D7E6) 
LOAD PAGE (64 bit): 
        FSR: 0000_0200 
(Sim. time: 9.500000) 
COMMAND SEQUENCE 64 BIT LOAD PAGE HAS BEEN RECEIVED: (Address: 0; Data: AB01CD23FE98DC76) 
LOAD PAGE (64 bit): 
        FSR: 0000_0200 
(Sim. time: 10.500000) 
COMMAND SEQUENCE 64 BIT LOAD PAGE HAS BEEN RECEIVED: (Address: 0; Data: BA54010134BE56FC) 
LOAD PAGE (64 bit): 
        FSR: 0000_0200 
(Sim. time: 11.500000) 

Info 6.3: The assembly buffer is filled via "Load Page 64 bit" command 

sequences. 

When the command sequence “Write Page” is given the page mode ends so 

the PFPAGE bit of the Flash status register is cleared. The programming operation 

begins, so the BUSY bit is set for the program flash bank 0 and the PROG bit is set to 

flags a programming operation is running. 

COMMAND SEQUENCE WRITE PAGE HAS BEEN RECEIVED: (Address: A0000060; Data: 0) 
WRITE PAGE(Address: A0000060) 
        FSR: 0000_0088 
(Sim. time: 27.500000) 

Info 6.4: FSR.P0BUSY, FSR.PROG are set and FSR.PFPAGE is cleared then the 

"Write Page" begins. 
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In order to suspend the operation that is running, the SPND bit of the flash 

status register is set via the SCI6 port: a SRI transaction at MARD’s address writes 

the value 0x8. 

At the same time, the flash module evaluation method begins the suspension 

of the program flash bank 0. The MARD.SPND bit is automatically cleared and the 

SPND of the Flash Status Register is set by the flash bank. Furthermore, also the 

P0BUSY is cleared, because the flash bank is not busy again. 

Write value on register MARD: 0000_0008 
(Sim. time: 41.500000) 
 
SUSPEND REQUESTED: 
Write Page suspended for PF0 
        FSR: 0800_0080 
        MARD: 0000_0000 
(Sim. time: 41.500000) 

Info 6.5: FSR.SPND bit is set by writing data directly to SCI6 port. 

In this example, no other operations are performed during the suspension of 

the “Write Page”. Clearly, it is not a useful scenario, but it could happen. The 

P0BUSY bit is set again, because the flash bank is running the operation again. 

COMMAND SEQUENCE RESUME PROG ERASE HAS BEEN RECEIVED: (Address: A0000060; 

Data: 0) 

RESUME PROG ERASE: 
        FSR: 0000_0088 
(Sim. time: 67.500000) 

Info 6.6: The "Resume Prog Erase" will be given to resume the suspended 

operation. 

After a bit of time the write page ends. The actual time taken to perform the 

entire operation is 20.0 units as the previous example in which the suspension was 

not involved. In fact the operation has started at 27.5 units of time (uof) and it has 

been suspended at 41.5 uof. So in the first step the actual time taken is 14.0 uof. 

After suspension, the operation is resumed at 67.5 uof and definitively ends at 73.5 

uof so that the second step takes 16.0 uof. Therefore, the sum gives exactly 20.0 

uof.  

WRITE PAGE COMPLETED ON PF0 AT ADDRESS 0xA0000060! 
        FSR: 0000_0080 
(Sim. time: 73.500000) 
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Info 6.7: The "Write Page" is completed after 20.0 actual units of time. 

6.1.3 Example 3 

This example enhances the previous adding an “Erase Physical Sectors” 

command sequence on data flash bank 0 during the suspension of the “Write Page” 

command on the program flash 0 bank. 

The Command Sequence added during the time span when the MARD.SPND 

bit is set and the command “Resume Prog Erase” is given is: 

 “Erase Physical Sectors” 

o Address: 0xAF00_AA50 Data: AF00_0000; 

o Address: 0xAF00_AA58 Data: 0x01; 

o Address: 0xAF00_AAA8 Data: 0x80; 

o Address: 0xAF00_AAA8 Data: 0x5A. 

Indeed, it has to be expected an error since, as reported in 3.2.6.8, an erasing 

operation is not allowed while a programming operation has been suspended. In 

fact, as it can be appreciated in Info 6.8, the simulator replies with a sequence error 

on the Flash Status Register. 

COMMAND SEQUENCE WRITE PAGE HAS BEEN RECEIVED: (Address: A0000060; 
Data: 0) 
WRITE PAGE(Address: A0000060) 
        FSR: 0000_0088 
(Sim. time: 27.500000) 
Write value on register MARD: 0000_0008 
(Sim. time: 41.500000) 
SUSPEND REQUESTED: 
Write Page suspended for PF0 
        FSR: 0800_0080 
        MARD: 0000_0000 
(Sim. time: 41.500000) 
COMMAND SEQUENCE ERASE PHYSICAL SECTORS HAS BEEN RECEIVED: (Address: AF000000; Data: 1) 

        !*** DFLASH: Erase operation is not allowed while a command sequence is suspended. 
        FSR: 0800_1080 
(Sim. time: 67.500000) 
COMMAND SEQUENCE RESUME PROG ERASE HAS BEEN RECEIVED: (Address: A00000A0; Data: 0) 

RESUME PROG ERASE: 
        FSR: 0000_1088 
(Sim. time: 163.500000) 
WRITE PAGE COMPLETED ON PF0 AT ADDRESS 0xA0000060! 
        FSR: 0000_1080 
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(Sim. time: 169.500000) 
 

Info 6.8: A sequence error is given because the suspension is not allowed. 

6.1.4 Example 4 

In this example the “Write Page” and the “Erase Physical Sectors” commands 

in the previous Example 3 are swapped. 

Command sequences are not reported in order to focus the attention on the 

simulator’s behavior during the suspension of the erase command. 

COMMAND SEQUENCE ERASE PHYSICAL SECTORS HAS BEEN RECEIVED: (Address: AF000000; Data: 1) 

ERASE PHYSICAL SECTORS: 
        FSR: 0000_0302 
        FSR: 0000_0302 
(Sim. time: 27.500000) 
Write value on register MARD: 0000_0008 
(Sim. time: 71.500000) 
SUSPEND REQUESTED: 
Erase Physical Sector suspended for DF0 
(Sim. time: 71.500000) 
COMMAND SEQUENCE WRITE PAGE HAS BEEN RECEIVED: (Address: A0000060; 
Data: 0) 
WRITE PAGE(Address: A0000060) 
        FSR: 0800_0188 
(Sim. time: 127.500000) 
WRITE PAGE COMPLETED ON PF0 AT ADDRESS 0xA0000060! 
        FSR: 0800_0180 
(Sim. time: 147.500000) 
COMMAND SEQUENCE RESUME PROG ERASE HAS BEEN RECEIVED: (Address: AF000000; Data: 1) 
RESUME PROG ERASE: 
Erase Physical Sector resumed for DF0 
        FSR: 0000_0182 
(Sim. time: 163.500000) 
ERASE PHYSICAL SECTOR COMPLETED ON DF0. LAST SECTOR'S ADDRESS: 
0xAF000000 
        FSR: 0000_0180 
(Sim. time: 199.500000) 
 

Info 6.9: the programming operation is performed on the PF0 when an 

erasing operation has been suspended for DF0. 
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6.1.5 Example 5 

In this new example a four Load Page command sequences are sent while 

both assembly buffers are in read mode. 

COMMAND SEQUENCE 64 BIT LOAD PAGE HAS BEEN RECEIVED: (Address: 0; Data: ABCDEF0123456789) 

LOAD PAGE (64 bit): 
        !*** PFLASH: Load Page (64 bit) sent when assembly buffer not in page mode. 
        !*** DFLASH: Load Page (64 bit) sent when assembly buffer not in page mode. 
        FSR: 0000_1000 
(Sim. time: 4.500000) 
COMMAND SEQUENCE 64 BIT LOAD PAGE HAS BEEN RECEIVED: (Address: 0; Data: A0B1C2D3F9E8D7E6) 

LOAD PAGE (64 bit): 
        !*** PFLASH: Load Page (64 bit) sent when assembly buffer not in page mode. 
        !*** DFLASH: Load Page (64 bit) sent when assembly buffer not in page mode. 
        FSR: 0000_1000 
(Sim. time: 5.500000) 
COMMAND SEQUENCE 64 BIT LOAD PAGE HAS BEEN RECEIVED: (Address: 0; Data: AB01CD23FE98DC76) 

LOAD PAGE (64 bit): 
        !*** PFLASH: Load Page (64 bit) sent when assembly buffer not in page mode. 
        !*** DFLASH: Load Page (64 bit) sent when assembly buffer not in page mode. 
        FSR: 0000_1000 
(Sim. time: 6.500000) 
COMMAND SEQUENCE 64 BIT LOAD PAGE HAS BEEN RECEIVED: (Address: 0; Data: BA54010134BE56FC) 

LOAD PAGE (64 bit): 
        !*** PFLASH: Load Page (64 bit) sent when assembly buffer not in page mode. 
        !*** DFLASH: Load Page (64 bit) sent when assembly buffer not in page mode. 
        FSR: 0000_1000 
(Sim. time: 7.500000) 
 

Info 6.10: The simulator sets the sequence error because a "Load Page" 

command is requested when neither of the assembly buffers is in page mode. 

6.1.6 Example 6 

In this example a “Write Burst” command is executed after the assembly 

buffer has been completely filled.  

The “Load Page 64 bit” is executed 32 times to fill the whole Program Flash 

Assembly Buffer. 

COMMAND SEQUENCE 64 BIT LOAD PAGE HAS BEEN RECEIVED: (Address: 0; Data: ABCDEF0123456790) 

LOAD PAGE (64 bit): 
        FSR: 0000_0200 
(Sim. time: 57.500000) 
 
COMMAND SEQUENCE 64 BIT LOAD PAGE HAS BEEN RECEIVED: (Address: 0; Data: AB01CD23FE98E376) 
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LOAD PAGE (64 bit): 
        FSR: 0000_0200 
(Sim. time: 59.500000) 
 
… 
 
COMMAND SEQUENCE 64 BIT LOAD PAGE HAS BEEN RECEIVED: (Address: 0; Data: BA54010134C556FC) 

LOAD PAGE (64 bit): 
        FSR: 0000_0200 
(Sim. time: 60.500000) 

Info 6.11: "Load Page 64 bit" command sequences fill the program flash 

assembly buffer. 

COMMAND SEQUENCE WRITE BURST HAS BEEN RECEIVED: (Address: A00000A0; 
Data: 0) 
WRITE BURST: 
        FSR: 0000_0088 
(Sim. time: 76.500000) 

Info 6.12: Page mode is left when the "Write Burst" command begins. 

WRITE BURST COMPLETED ON PF0. LAST PAGE'S ADDRESS: 0xA0000180 
        FSR: 0000_0080 
(Sim. time: 236.500000) 

Info 6.13: At the end of the programming operation the P0BUSY bit of the 

Flash Status Register is cleared. 

6.1.7 Example 7 

This example is similar to the previous one, but the assembly buffer is 

overloaded before the “Write Burst” is given. The programming operation will be 

executed, but the SQER bit on the Flash Status Register is set. The simulator prints a 

message to inform the user on the reason why the sequence error has occurred. 

COMMAND SEQUENCE 64 BIT LOAD PAGE HAS BEEN RECEIVED: (Address: 0; Data: ABCDEF0123456790) 

LOAD PAGE (64 bit): 
        FSR: 0000_0200 
(Sim. time: 57.500000) 
 
COMMAND SEQUENCE 64 BIT LOAD PAGE HAS BEEN RECEIVED: (Address: 0; Data: AB01CD23FE98E376) 

LOAD PAGE (64 bit): 
        FSR: 0000_0200 
(Sim. time: 59.500000) 
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… 
 
COMMAND SEQUENCE 64 BIT LOAD PAGE HAS BEEN RECEIVED: (Address: 0; Data: ABCDEF0123456789) 

LOAD PAGE (64 bit): 
        FSR: 0000_0200 
(Sim. time: 64.500000) 

Info 6.14: The "Load Page 64 bit" command sequence is executed enough 

time to overload the assembly buffer. 

COMMAND SEQUENCE WRITE BURST HAS BEEN RECEIVED: (Address: A00000A0; 
Data: 0) 
WRITE BURST: 
        !*** PFLASH: Write operation with assembly buffer overflowed. 
        FSR: 0000_1088 
(Sim. time: 80.500000) 

Info 6.15: "Write Burst" is performed with data contained into assembly 

buffer but SQER is set. 

6.2 Example of use of the entire simulator 

The simulator, as mentioned in Chapter 1, is intended to verify the 

correctness of executions of the test applications developed by the testware team. 

A further example, which involves the whole microcontroller simulator, will 

be explained now.  

The simulation concern a source code in which just the command sequence 

“Reset To Read” is specified. The code can be compiled by choosing the memory 

segment of the microcontroller where the instructions have to be loaded at the 

boot before to be executed. The segment can be specified through special options 

on the before the compiler runs. 

The results of the simulation are reported in Info 6.16.  

SREC: store.sre 
SREC: Start: c0000000 
FlashWidth=8, HitLatency=0, Prefetch=0, ExtraDelay=0, AddrChangeLag=0, Image=store1.1.sre 
 
void PMU_Sim::SRI::SRI_Slave::EvaluateWriteArbitrationPhase(PMU_Sim::SRI::SRI_INPUTS) 
> SCI6 Arbitration Phase for Write Transaction at address: AF005554     OK 
> SCI6 SRIWriteTransactionParams enqueued(Address: AF005554; TransactionID: 0; 
DataPhaseLength: 1) 
 
void PMU_Sim::SRI::SRI_Slave::PerformWriteDataPhase(PMU_Sim::SRI::SRI_INPUTS) 
> SCI6 Data sent(Address: AF005554; Data: F0; Transaction Id: 0) 
> SCI6 Write transaction at address into the DF0 range. 
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void PMU_Sim::Command_Interpreter::CommandInterpreter::ExecuteResetToRead() 
COMMAND SEQUENCE RESET TO READ HAS BEEN SENT: (Address: 0; Data: 0) 
RESET TO READ: 
>       PFlash Assembly Buffer Reset To Read 
>       FSR: 0000_0000 
>       PFlash Assembly Buffer Reset To Read 
>       FSR: 0000_0000 
>       DFlash Assembly Buffer Reset To Read 
>       FSR: 0000_0000 
>       DFlash Assembly Buffer Reset To Read 
>       FSR: 0000_0000 
        FSR: 0000_0000 
(Sim. time: 55.000000) 
 
void PMU_Sim::SRI::SRI_Slave::CheckIfWriteDequeue(PMU_Sim::SRI::SRI_INPUTS) 
> SCI6 SRI Write dequeue. 
(Sim. time: 55.000000) 

Info 6.16: Simulation result of the "Reset To Read" command sequence. 

The section in Info 6.16 which is highlighted in green contains information 

provided by the simulator of the CPU. Precisely “Image = store1.1.sre” gives the 

name of the file which contains the assembly instruction (firmware or testware) 

which the simulation processes. The string “Start = 0xC000_0000” provides the start 

address of the program counter. This parameter can be set by an external file, to a 

value different of the default. 

The section in Info 6.16 which is highlighted in blue reports to the user that 

the “Evaluate Write Arbitration Phase” method (see the 5.1.2.2) is executed, so the 

arbitration phase is performed by adding into the “write queue” a transaction with 

address “AF005554” and the associated transaction identifier is “0”. 

The section in Info 6.16 which is highlighted in gray reports that the “Perform 

Write Data Phase” method (see the 5.1.2.2) is executed, so the “Data Phase” is 

performed for the transaction in the queue (which in this case is the only one) with 

the transaction identifier equals to “0”. The write transaction contains the data 

argument “0xF0”.  

The “Command Interpreter” (see section 5.1.5) decodes the received 

transaction and recognizes the command sequence “Reset To Read”. Hence it 

invokes the “Flash Module” (see the section 5.1.6) which perform the command. 

This information is reported in the yellow section in Info 6.16. 

In the brown section in Info 6.16 the simulator reports that the transaction is 

removed from the “write queue”. 
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6.3 Conclusion 

The ability of running a firmware which involves the Program Memory Unit 

has been demonstrated with the example in section 6.2. 

Nevertheless, the ability to analyze the entire testware is affected by a 

problem due to an instruction executed before the actual testware takes place. This 

instruction concerns an initialization of a microcontroller peripheral, which has not 

been implemented yet in the simulator. 

As will be explained in Chapter 7, the execution of this initialization, at 

present, is avoided in the simulation. However, a future improvement could be 

implementing the related peripheral, reaching so the actual ability of testing the 

testware. 
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Chapter 7 Future improvements 

The last step to achieve the goal of this thesis is the development of the 

interface between the PMU simulator with the CPU one. In this way, the ability of 

executing the firmware is achieved for the whole microcontroller simulator, in 

particular the Infineon’s Padua team will be able to test the testware. 

Nevertheless, a problem subsists to reach the actual ability to analyze the 

entire testware. In fact, some initializations of a part of the microcontroller, which 

has not been implemented yet, are computed by the testware interrupting its 

execution. 

The guilty microcontroller’s part is the System Control Unit (SCU), which 

contains several control registers associated with other system functions, such as: 

 External Request and Cross-triggering Unit (ERU) 

 CPU Lockstep Comparator Logic (LCL) 

 Die Temperature Sensor (DTS) 

 Watchdog Timers (WDTx) 

 Emergency Stop (EMS) 

 Logic Built-in-Self-Test (LBIST) 

 Overlay Control (OVC) 

 Miscellaneous System Control Registers 

 SCU register overview table 

In this context the features of these functions will not be treated. The 

execution of the simulation stops when the instructions involving the SCU have to 

be executed. At present, the technique adopted as a workaround consists in 

omitting these procedures, avoiding so the involvement of the System Control Unit 

while keeping the operations computed on the flash banks valid. 
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The first improvement of the whole microcontroller’s simulator could be the 

implementation of the System Control Unit, which, in the TC27x sub-units scenario 

represent the most important among the reminder. 

 

7.1 Watchdog timer 

The implementation of the System Control Unit would enhance the 

microcontroller’s simulator, such as enabling it to manage the Watchdog Timers. 

A watchdog timer – which in this context is the object responsible of the 

interruption of the simulations – is a typical feature in a microcontroller. It provides 

a mechanism able to reset the CPU (by resetting the program counter) if a fault of 

the software execution occurs. 

In principle the watchdog timer could be treated as a countdown timer which 

should not expire, otherwise a reset of the microcontroller will be performed. 

Therefore, an application has to avoid the timer expires by resetting its value 

periodically. 

A typical application of the watchdog timer is in a firmware which has to 

execute a loop for a long time. In general, in a firmware the actual application is 

contained into an infinite loop, so that it is permanently executed. The watchdog 

timer is typically enabled at the beginning of the infinite cycle by setting the relative 

registers, and within the loop it is reset. If an error occurs and the execution is 

broken, the watchdog timer expires and the microcontroller will be restarted. The 

user of the watchdog feature has to take care to calculate the duration of one cycle 

in order to avoid erroneously expire of the timer. 

Several microcontrollers enrich this basic mechanism by adding features, such 

as enabling the user to decide the timer frequency and change it at run time; or the 

CPU PMU 

SCU 

Fig. 7.1: Interface with the System Control Unit. 
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presence of more than one watchdog timer, which is very useful in all the 

applications executing parallel computing. 

7.2 Improvements of Program Memory Unit 

Presently, the most important features of the Program Memory Unit have 

been enabled. In fact, to achieve the goal of testing the “testware” and 

remembering that the goal of the testware is to discover possible malfunctioning of 

the Program Memory Unit, it can be asserted that the implementation of the PMU’s 

simulator is accurate enough. 

Nevertheless, some registers have not been implemented yet. A future 

improvement could be, certainly, the implementation of all the remaining features. 

7.3 Graphic User Interface 

The simulator provided is not equipped of a graphic user interface, so reading 

the state of the registers and giving commands to the simulator could be challenge, 

since the handles are represented by the command terminal. Therefore, a future 

improvement could be endowing the simulator of a graphic user interface. 
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