23,007 research outputs found

    Mapping, Localization and Path Planning for Image-based Navigation using Visual Features and Map

    Full text link
    Building on progress in feature representations for image retrieval, image-based localization has seen a surge of research interest. Image-based localization has the advantage of being inexpensive and efficient, often avoiding the use of 3D metric maps altogether. That said, the need to maintain a large number of reference images as an effective support of localization in a scene, nonetheless calls for them to be organized in a map structure of some kind. The problem of localization often arises as part of a navigation process. We are, therefore, interested in summarizing the reference images as a set of landmarks, which meet the requirements for image-based navigation. A contribution of this paper is to formulate such a set of requirements for the two sub-tasks involved: map construction and self-localization. These requirements are then exploited for compact map representation and accurate self-localization, using the framework of a network flow problem. During this process, we formulate the map construction and self-localization problems as convex quadratic and second-order cone programs, respectively. We evaluate our methods on publicly available indoor and outdoor datasets, where they outperform existing methods significantly.Comment: CVPR 2019, for implementation see https://github.com/janinethom

    On the boundary and intersection motives of genus 2 Hilbert-Siegel varieties

    Full text link
    We study genus 2 Hilbert-Siegel varieties, i.e. Shimura varieties SKS_K corresponding to the group \mbox{GSp}_{4,F} over a totally real field FF, along with the relative Chow motives λV^\lambda \mathcal{V} of abelian type over SKS_K obtained from irreducible representations VλV_{\lambda} of \mbox{GSp}_{4,F}. We analyse the weight filtration on the degeneration of such motives at the boundary of the Baily-Borel compactification and we find a criterion on the highest weight λ\lambda which characterises the absence of the middle weights 0 and 1 in the corresponding degeneration. Thanks to Wildeshaus' theory, the absence of these weights allows us to construct Hecke-equivariant Chow motives over Q\mathbb{Q}, whose realizations equal interior (or intersection) cohomology of SKS_K with VλV_{\lambda}-coefficients. We give applications to the construction of motives associated to automorphic representations.Comment: 39 pages; comments very welcome! (v2): some typos fixed, minor changes in the text (v3): other typos fixed, some prerequisites shortened (now 36 pages), minor changes in the text (v4) final version, accepted for publication in Documenta Mathematica (40 pages

    Asymptotic Analysis of Inpainting via Universal Shearlet Systems

    Get PDF
    Recently introduced inpainting algorithms using a combination of applied harmonic analysis and compressed sensing have turned out to be very successful. One key ingredient is a carefully chosen representation system which provides (optimally) sparse approximations of the original image. Due to the common assumption that images are typically governed by anisotropic features, directional representation systems have often been utilized. One prominent example of this class are shearlets, which have the additional benefitallowing faithful implementations. Numerical results show that shearlets significantly outperform wavelets in inpainting tasks. One of those software packages, www.shearlab.org, even offers the flexibility of usingdifferent parameter for each scale, which is not yet covered by shearlet theory. In this paper, we first introduce universal shearlet systems which are associated with an arbitrary scaling sequence, thereby modeling the previously mentioned flexibility. In addition, this novel construction allows for a smooth transition between wavelets and shearlets and therefore enables us to analyze them in a uniform fashion. For a large class of such scaling sequences, we first prove that the associated universal shearlet systems form band-limited Parseval frames for L2(R2)L^2(\mathbb{R}^2) consisting of Schwartz functions. Secondly, we analyze the performance for inpainting of this class of universal shearlet systems within a distributional model situation using an â„“1\ell^1-analysis minimization algorithm for reconstruction. Our main result in this part states that, provided the scaling sequence is comparable to the size of the (scale-dependent) gap, nearly-perfect inpainting is achieved at sufficiently fine scales

    Multi-body Non-rigid Structure-from-Motion

    Get PDF
    Conventional structure-from-motion (SFM) research is primarily concerned with the 3D reconstruction of a single, rigidly moving object seen by a static camera, or a static and rigid scene observed by a moving camera --in both cases there are only one relative rigid motion involved. Recent progress have extended SFM to the areas of {multi-body SFM} (where there are {multiple rigid} relative motions in the scene), as well as {non-rigid SFM} (where there is a single non-rigid, deformable object or scene). Along this line of thinking, there is apparently a missing gap of "multi-body non-rigid SFM", in which the task would be to jointly reconstruct and segment multiple 3D structures of the multiple, non-rigid objects or deformable scenes from images. Such a multi-body non-rigid scenario is common in reality (e.g. two persons shaking hands, multi-person social event), and how to solve it represents a natural {next-step} in SFM research. By leveraging recent results of subspace clustering, this paper proposes, for the first time, an effective framework for multi-body NRSFM, which simultaneously reconstructs and segments each 3D trajectory into their respective low-dimensional subspace. Under our formulation, 3D trajectories for each non-rigid structure can be well approximated with a sparse affine combination of other 3D trajectories from the same structure (self-expressiveness). We solve the resultant optimization with the alternating direction method of multipliers (ADMM). We demonstrate the efficacy of the proposed framework through extensive experiments on both synthetic and real data sequences. Our method clearly outperforms other alternative methods, such as first clustering the 2D feature tracks to groups and then doing non-rigid reconstruction in each group or first conducting 3D reconstruction by using single subspace assumption and then clustering the 3D trajectories into groups.Comment: 21 pages, 16 figure

    Prescribing Gauss curvature of surfaces in 3-dimensional spacetimes, Application to the Minkowski problem in the Minkowski space

    Full text link
    We study the existence of surfaces with constant or prescribed Gauss curvature in certain Lorentzian spacetimes. We prove in particular that every (non-elementary) 3-dimensional maximal globally hyperbolic spatially compact spacetime with constant non-negative curvature is foliated by compact spacelike surfaces with constant Gauss curvature. In the constant negative curvature case, such a foliation exists outside the convex core. The existence of these foliations, together with a theorem of C. Gerhardt, yield several corollaries. For example, they allow to solve the Minkowski problem in the 3-dimensional Minkowski space for datas that are invariant under the action of a co-compact Fuchsian group

    Fermions in three-dimensional spinfoam quantum gravity

    Get PDF
    We study the coupling of massive fermions to the quantum mechanical dynamics of spacetime emerging from the spinfoam approach in three dimensions. We first recall the classical theory before constructing a spinfoam model of quantum gravity coupled to spinors. The technique used is based on a finite expansion in inverse fermion masses leading to the computation of the vacuum to vacuum transition amplitude of the theory. The path integral is derived as a sum over closed fermionic loops wrapping around the spinfoam. The effects of quantum torsion are realised as a modification of the intertwining operators assigned to the edges of the two-complex, in accordance with loop quantum gravity. The creation of non-trivial curvature is modelled by a modification of the pure gravity vertex amplitudes. The appendix contains a review of the geometrical and algebraic structures underlying the classical coupling of fermions to three dimensional gravity.Comment: 40 pages, 3 figures, version accepted for publication in GER
    • …
    corecore