12,835 research outputs found

    Critical Infrastructure Protection Approaches: Analytical Outlook on Capacity Responsiveness to Dynamic Trends

    Get PDF
    Overview: Critical infrastructures (CIs) – any asset with a functionality that is critical to normal societal functions, safety, security, economic or social wellbeing of people, and disruption or destruction of which would have a very significant negative societal impact. CIs are clearly central to the normal functioning of a nation’s economy and require to be protected from both intentional and unintentional sabotages. It is important to correctly discern and aptly manage security risks within CI domains. The protection (security) of CIs and their networks can provide clear benefits to owner organizations and nations including: enabling the attainment of a properly functioning social environment and economic market, improving service security, enabling integration to external markets, and enabling service recipients (consumers, clients, and users) to benefit from new and emerging technological developments. To effectively secure CI system, firstly, it is crucial to understand three things - what can happen, how likely it is to happen, and the consequences of such happenings. One way to achieve this is through modelling and simulations of CI attributes, functionalities, operations, and behaviours to support security analysis perspectives, and especially considering the dynamics in trends and technological adoptions. Despite the availability of several security-related CI modelling approaches (tools and techniques), trends such as inter-networking, internet and IoT integrations raise new issues. Part of the issues relate to how to effectively (more precisely and realistically) model the complex behavior of interconnected CIs and their protection as system of systems (SoS). This report attempts to address the broad goal around this issue by reviewing a sample of critical infrastructure protection approaches; comprising tools, techniques, and frameworks (methodologies). The analysis covers contexts relating to the types of critical infrastructures, applicable modelling techniques, risk management scope covered, considerations for resilience, interdependency, and policy and regulations factors. Key Findings: This research presents the following key findings: 1. There is not a single specific Critical Infrastructure Protection (CIP) approach – tool, technique, methodology or framework – that exists or emerges as a ‘fit-for-all’; to allow the modelling and simulation of cyber security risks, resilience, dependency, and impact attributes in all critical infrastructure set-ups. 2. Typically, two or more modelling techniques can be (need to be) merged to cover a broader scope and context of modelling and simulation applications (areas) to achieve desirable highlevel protection and security for critical infrastructures. 3. Empirical-based, network-based, agent-based, and system dynamics-based modelling techniques are more widely used, and all offer gains for their use. 4. The deciding factors for choosing modelling techniques often rest on; complexity of use, popularity of approach, types and objectives of user Organisation and sector. 5. The scope of modelling functions and operations also help to strike the balance between ‘specificity’ and ‘generality’ of modelling technique and approach for the gains of in-depth analysis and wider coverage respectively. 6. Interdependency and resilience modelling and simulations in critical infrastructure operations, as well as associated security and safety risks; are crucial characteristics that need to be considered and explored in revising existing or developing new CIP modelling approaches. Recommendations: Key recommendations from this research include: 1. Other critical infrastructure sectors such as emergency services, food & agriculture, and dams; need to draw lessons from the energy and transportation sectors for the successive benefits of: i. Amplifying the drive and efforts towards evaluating and understanding security risks to their infrastructure and operations. ii. Support better understanding of any associated dependencies and cascading impacts. iii. Learning how to establish effective security and resilience. iv. Support the decision-making process linked with measuring the effectiveness of preparedness activities and investments. v. Improve the behavioural security-related responses of CI to disturbances or disruptions. 2. Security-related critical infrastructure modelling approaches should be developed or revised to include wider scopes of security risk management – from identification to effectiveness evaluations, to support: i. Appropriate alignment and responsiveness to the dynamic trends introduced by new technologies such as IoT and IIoT. ii. Dynamic security risk management – especially the assessment section needs to be more dynamic than static, to address the recurrent and impactful risks that emerge in critical infrastructures

    Electronic security - risk mitigation in financial transactions : public policy issues

    Get PDF
    This paper builds on a previous series of papers (see Claessens, Glaessner, and Klingebiel, 2001, 2002) that identified electronic security as a key component to the delivery of electronic finance benefits. This paper and its technical annexes (available separately at http://www1.worldbank.org/finance/) identify and discuss seven key pillars necessary to fostering a secure electronic environment. Hence, it is intended for those formulating broad policies in the area of electronic security and those working with financial services providers (for example, executives and management). The detailed annexes of this paper are especially relevant for chief information and security officers responsible for establishing layered security. First, this paper provides definitions of electronic finance and electronic security and explains why these issues deserve attention. Next, it presents a picture of the burgeoning global electronic security industry. Then it develops a risk-management framework for understanding the risks and tradeoffs inherent in the electronic security infrastructure. It also provides examples of tradeoffs that may arise with respect to technological innovation, privacy, quality of service, and security in designing an electronic security policy framework. Finally, it outlines issues in seven interrelated areas that often need attention in building an adequate electronic security infrastructure. These are: 1) The legal framework and enforcement. 2) Electronic security of payment systems. 3) Supervision and prevention challenges. 4) The role of private insurance as an essential monitoring mechanism. 5) Certification, standards, and the role of the public and private sectors. 6) Improving the accuracy of information on electronic security incidents and creating better arrangements for sharing this information. 7) Improving overall education on these issues as a key to enhancing prevention.Knowledge Economy,Labor Policies,International Terrorism&Counterterrorism,Payment Systems&Infrastructure,Banks&Banking Reform,Education for the Knowledge Economy,Knowledge Economy,Banks&Banking Reform,International Terrorism&Counterterrorism,Governance Indicators

    Impact of EU duty cycle and transmission power limitations for sub-GHz LPWAN SRDs : an overview and future challenges

    Get PDF
    Long-range sub-GHz technologies such as LoRaWAN, SigFox, IEEE 802.15.4, and DASH7 are increasingly popular for academic research and daily life applications. However, especially in the European Union (EU), the use of their corresponding frequency bands are tightly regulated, since they must confirm to the short-range device (SRD) regulations. Regulations and standards for SRDs exist on various levels, from global to national, but are often a source of confusion. Not only are multiple institutes responsible for drafting legislation and regulations, depending on the type of document can these rules be informational or mandatory. Regulations also vary from region to region; for example, regulations in the United States of America (USA) rely on electrical field strength and harmonic strength, while EU regulations are based on duty cycle and maximum transmission power. A common misconception is the presence of a common 1% duty cycle, while in fact the duty cycle is frequency band-specific and can be loosened under certain circumstances. This paper clarifies the various regulations for the European region, the parties involved in drafting and enforcing regulation, and the impact on recent technologies such as SigFox, LoRaWAN, and DASH7. Furthermore, an overview is given of potential mitigation approaches to cope with the duty cycle constraints, as well as future research directions

    Telecommunication Economics

    Get PDF
    This book constitutes a collaborative and selected documentation of the scientific outcome of the European COST Action IS0605 Econ@Tel "A Telecommunications Economics COST Network" which run from October 2007 to October 2011. Involving experts from around 20 European countries, the goal of Econ@Tel was to develop a strategic research and training network among key people and organizations in order to enhance Europe's competence in the field of telecommunications economics. Reflecting the organization of the COST Action IS0605 Econ@Tel in working groups the following four major research areas are addressed: - evolution and regulation of communication ecosystems; - social and policy implications of communication technologies; - economics and governance of future networks; - future networks management architectures and mechanisms
    corecore