13 research outputs found

    First Order Theories of Some Lattices of Open Sets

    Full text link
    We show that the first order theory of the lattice of open sets in some natural topological spaces is mm-equivalent to second order arithmetic. We also show that for many natural computable metric spaces and computable domains the first order theory of the lattice of effectively open sets is undecidable. Moreover, for several important spaces (e.g., Rn\mathbb{R}^n, n≥1n\geq1, and the domain PωP\omega) this theory is mm-equivalent to first order arithmetic

    On the jumps of degrees below an recursively enumerable degree

    Get PDF
    We consider the set of jumps below a Turing degree, given by JB(a) = {x(1) : x <= a}, with a focus on the problem: Which recursively enumerable (r.e.) degrees a are uniquely determined by JB(a)? Initially, this is motivated as a strategy to solve the rigidity problem for the partial order R of r.e. degrees. Namely, we show that if every high(2) r.e. degree a is determined by JB(a), then R cannot have a nontrivial automorphism. We then defeat the strategy-at least in the form presented-by constructing pairs a(0), a(1) of distinct r.e. degrees such that JB(a(0)) = JB(a(1)) within any possible jump class {x : x' = c}. We give some extensions of the construction and suggest ways to salvage the attack on rigidity

    Structural properties of the local Turing degrees

    Get PDF
    In this thesis we look at some properties of the local Turing Degrees, as a partial order. We first give discussion of the Turing Degrees and certain historical results, some translated into a form resembling the constructions we look at later. Chapter 1 gives a introduction to the Turing Degrees, Chapter 2 introduces the Local Degrees. In Chapter 3 we look at minimal Turing Degrees, modifying some historical results to use a priority tree, which we use in chapter 4 to prove the new result that every c.e. degree has the (minimal) meet property. Chapter 5 uses similar methods to establish existence of a high 2 degree that does not have the meet property

    Definability in the Recursively Enumerable Degrees

    No full text
    this paper was presented to the Association at its annual meeting in Madison, March 1996 in a lecture given by the second author

    Definability In The Recursively Enumerable Degrees

    No full text
    this paper was presented to the Association at its annual meeting in Madison, March 1996 in a lecture given by the second author

    Parameter Definability in the Recursively Enumerable Degrees

    No full text
    The biinterpretability conjecture for the r.e. degrees asks whether, for each sufficiently large k, the # k relations on the r.e. degrees are uniformly definable from parameters. We solve a weaker version: for each k &gt;= 7, the k relations bounded from below by a nonzero degree are uniformly definable. As applications, we show that..
    corecore