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Abstract

In this thesis we look at some properties of the local Turing Degrees, as a partial

order. We first give discussion of the Turing Degrees and certain historical results,

some translated into a form resembling the constructions we look at later.

Chapter 1 gives a introduction to the Turing Degrees, Chapter 2 introduces the

Local Degrees. In Chapter 3 we look at minimal Turing Degrees, modifying some

historical results to use a priority tree, which we use in chapter 4 to prove the new

result that every c.e. degree has the (minimal) meet property. Chapter 5 uses

similar methods to establish existence of a high2 degree that does not have the meet

property.
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Chapter 1

Introduction

Turing [Tur36] created the truly convincing model of what it means for an algorithm

to be computable, by introducing the Turing Machine. Other sufficiently strong

notions of computability, such as the general recursive functions or Church’s lambda

calculus have been shown to be equivalent. Notions that are strictly stronger, such as

allowing ω calculations in finite time, would seem to be stronger than what a human

can accomplish. So for now we are comfortable accepting Turing computability as

the definition of computability.

Given a Turing machine we say that it decides or computes a set A of natural

numbers if given input x it outputs a 1 if x ∈ A and a 0 if x 6∈ A. A set A

is computable if there is some Turing machine that computes it. Turing’s great

discovery was that very few sets are actually computable. Only countably many

sets are computable, while there are uncountably many sets of natural numbers.

The construction of the Turing Machine leads naturally to a Gödel numbering

on all Turing Machines from which we order all Turing Machines {Ψe : e ∈ N}, by

ascending Gödel number.

Given that there are vastly more incomputable sets than computable sets, we

1



2 Chapter 1. Introduction

seek to put some structure to them, and then to study that structure. Turing [Tur39]

introduced the Oracle Turing Machine, which as well as the standard instructions

can query an oracle about membership of one set. We then say that a set A is

computable from B if A is computable by some Oracle Turing Machine with oracle

B. Post [Pos03] used this to define the structure of the Turing degrees by defining

a partial ordering ≤T where A ≤T B iff A is computable from B. If A ≤T B and

B ≤T A then we say A and B are Turing equivalent and write A ≡T B. This is

an equivalence relation and we denote the equivalence class containing A by a. If

there is A ∈ a and B ∈ b such that A ≤T B then we say a ≤ b in the structure D.

Studying the structure of D is a project that has continued since Kleene and Post

introduced it. Clearly there is a least element consisting of exactly the computable

degrees, which as the least element we denote 0.

Given our listing of Turing functionals {Ψe : e ∈ N} it is natural to ask if the

computation Ψe(x) halts or not. The set {(e, x) : Ψe(x) ↓} is a perfectly valid set

of pairs of natural numbers to consider, and it turns out to be Turing equivalent to

{e : Ψe(e) ↓}. This problem is known as the halting problem since each question is

whether a given Turing machine halts on a given input. The degree containing the

halting problem is known as 0′. The degrees that are below 0′ are known as the local

degrees and have certain properties that make them easier to study than a general

degree. For instance, every local degree, A, has a ∆2-approximating sequence, which

is a computable function A(s, x) with the property that lims→∞A(s, x) = A(x).

Some familiarity with the basic notions discussed so far will be assumed. Precise

definitions can be found in [Coo03] or [Odi92],[Odi99].
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1.1 Notation and Conventions

While Computability Theory is a relatively young discipline in mathematics some

notations have not yet been standardised. We therefore set out the notations we

shall use in this thesis.

We use lower case Roman letters from the end of the alphabet (n, x, y, z) to

denote natural numbers, and capital Roman letters to denote subsets of N. We

use lower case Greek letters (λ, γ, ν, µ, σ, τ) to denote finite strings, which will be

typically be members of 2<ω but instead may be strings in ω<ω. We let λ denote the

unique empty string, and given two strings σ, τ we let σ ∗ τ be their concatenation.

Given a string σ we write |σ| for the length of σ. We then write σ � n for the initial

segment of σ of length n, as long as n ≤ |σ|. We write σ− for σ � |σ| − 1, if σ is not

λ. We write σ† for the string identical to σ, except for the final bit. We write σ ⊂ τ

if τ extends σ. If σ 6⊂ τ and τ 6⊂ σ then σ is incompatible with τ , written σ|τ . We

write σ ∧ τ for the greatest lower bound of σ, τ , i.e. the longest initial segment of σ

and τ that is identical. This may be the empty string.

Possibly partial functions N → N shall have lower case Roman letters starting

from f . If f is defined on input n then we write f(n) ↓, otherwise we write f(n) ↑.

At times we will be considering functions as Turing functionals, and we use capital

Greek letters for Turing functionals. In particular we fix some standard listing of the

Turing functionals and write this list {Ψe : e ∈ N}. To make some arguments easier,

we will insist on Ψ0 being the identity functional. If the functional Ψ with oracle A

and input x halts in at most s stages and outputs y then we write Ψ(A;x)[s] ↓= y.

Extending this notation we write Ψ(A) for the possibly partial function which on

argument x is equal to Ψ(A;x). We identify subsets of N with their characteristic

functions, so we may say Ψ(A) = B. We extend the notation to strings and say
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Ψ(σ;x)[s] ↓ if the oracle computation converges where σ is used as an oracle, and

any oracle query greater than |σ| makes the computation diverge. A function is

total if for all x f(x) ↓. If a function is not total then it is partial. The use of

an oracle computation Ψ(A;x) is n + 1 where n is the largest number such that n

is queried in the oracle computation. We write u(A, e, x) for the use in computing

Ψe(A;x). Given a finite string σ then we may write Ψ(σ;x)[s] ↓= y if Ψ outputs y

after s stages with σ acting as an oracle, with use less than |σ|. If Ψe(A, x) ↓ for

x < l then we write Ψe(A) � l ↓.

Calligraphic letters (P ,Q) shall denote requirements within a priority argument,

or the node on a tree of strategies that is trying to satisfy that requirement. The

exception is D, which is the partial ordering of the Turing Degrees.

We fix some computable bijection N×N→ N and write it 〈x, y〉 = n. It has the

property that we can nest it if we require a bijection Nn → N by nesting the bijection

〈x0, · · · , 〈xn−2〈xn−1, xn〉〉 · · · 〉. We use the convention that 〈a, b〉 < 〈a, b+ 1〉.

A set A is computably enumerable (c.e.) if there is an effective process for

enumerating all members of A. Equivalently, there is some computable function f

such that A =range(f). The important point for c.e. sets is that once enumerated

into the set an element may never be removed from the set.

The Latin letter i will denote an element in {0, 1}, and ī will denote 1− i.

For all n ∈ N we denote the n-th prime by pn.

1.2 Trees

A binary tree is a possibly partial function T : 2<ω → 2<ω, subject to the following

conditions; for σ ∈ 2<ω and i ∈ {0, 1}. If T (σ ∗ i) ↓ then:

1. T (σ) ↓⊂ T (σ ∗ i);
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2. T (σ ∗ ī) ↓ |T (σ ∗ i).

If T is a total function then we describe the tree as perfect.

We identify T with its range. So we may say τ lies on T , meaning that τ is in

the range of T . We may write this τ ∈ T . Given a set A we say A is a branch of T ,

or A lies on T , if for infinitely many α ⊂ A, α ∈ T .

A tree T0 is a subtree of tree T1 if the range of T0 is a subset of the range of T1,

and we may write this T0 ⊆ T1. τ is of level n, or of height n, in a tree T if τ = T (σ)

where |σ| = n. The string τ is a leaf of T if τ ∈ T and no extension of τ is in T . A

tree is of height n if it has finite range and all leaves are of height n.

A tree is partial computable (p.c.) if T is partial computable. This means that

the range of T is c.e.. Given a p.c. tree T we let T [s] be the portion of the tree

enumerated by stage s. We shall require that T [s] is a tree for all s.

Within a tree T we call τ a successor of σ if σ, τ ∈ T and σ ⊂ τ . We also say

that σ is a predecessor of τ . If there is no string γ ∈ T such that σ ⊂ γ ⊂ τ then we

say τ is the immediate successor of σ and σ is the immediate predecessor of τ . If σ

is not the empty string then we use σ− to denote the immediate predecessor of σ.

1.3 Priority Arguments

Discovering anything about the Turing degrees usually requires building a set within

a Turing degree that demonstrates that a property does or does not hold. For ex-

ample in the Friedberg-Muchnik proof [Fri57],[Muc56] that there exist incomputable

c.e. degrees we create two c.e. sets A,B which are Turing incomputable. We do

not have an easy way of ensuring that two degrees be incompatible, so we break it

down into manageable chunks. Logically, saying that A and B are incompatible is

the same as saying that there is no functional Ψ such that Ψ(A) = B or Ψ(B) = A.
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Which is then to say that for all e, Ψe(A) 6= B and Ψe(B) 6= A. This only requires

one x for which Ψe(A;x) 6= B(x) and one x for which Ψe(B;x) 6= A(x), where we

consider the case Ψe(A;x) ↑6= B(x) for any value of B(x). We’ve now turned two

unwieldy requirements into two countable lists of manageable requirements. For

clarity, let’s label these requirements:

Pe : (∃x)Ψe(A;x) 6= B(x)

Re : (∃x)Ψe(B;x) 6= A(x)

Then as long as we satisfy {Pe : e ∈ N} and {Re : e ∈ N} we will satisfy the

theorem. We usually now look at how we can satisfy one requirement in isolation.

To satisfy an individual requirement Pe we fix a value x on A,B that we are

looking at, and set A(x) = B(x) = 0. If in some stage s we observe Ψe(A;x)[s] ↓= 0

then we set B(x) = 1 and satisfy the requirement. If we never observe this then we

leave B(x) = 0 and the requirement is satisfied. Requirement Re works the same

way with the roles of A,B reversed.

The problem emerges when there is more than one requirement. If we have

requirements P0 and P1 and both choose the same x, then we have the issue that one

might want to change B(x) and the other wants to leave it fixed. With requirements

P0 and R0 one might observe that Ψ0(A;x) ↓= 0 and change B(x), while at a later

stage R0 changes A so it is no longer the case that Ψ0(A;x) ↓= 0.

The solution is to prioritise the requirements. Cooper [Coo03] compares this to

a lunch queue where we place P0 ahead of R0 ahead of P1 in a queue for lunch.

R0 can take its lunch if P0 has already taken its lunch (has set B(x) = 1), or if

it accepts that at some later stage R0 might have to return to the lunch queue if

R0 takes its lunch and later P0 takes his lunch. In this case we give the priority
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ordering:

P0 <L R0 <L P1 <L · · · <L Pe <L Re <L · · ·

The problem as described is injury and through one method or another we

ensure that no requirement is allowed to injure a requirement of higher priority. So

no requirement is allowed to injure P0, if it chooses B(x) = 1 then nobody else is

allowed to say otherwise, and similarly nobody else is allowed to change A up to

the use of the computation P0 observes. R0 on the other hand, can only be injured

by P0. In this argument each requirement can injure lower priority arguments once,

and there are finitely many requirements of higher priority than any requirement.

So this argument is finite injury. Other arguments may involve infinite injury.

Traditionally we would consider the requirements ordered in a straight line and

enforce the priority ordering with a restraint function, which is essentially a function

that Pe tells is its section of A,B and lower priorities must know this. In this work

we are interested in the tree priority method introduced by Lachlan [Lac76] and

developed by Harrington [Har82] so we will not give Friedberg and Muchnik’s proofs,

but instead a modified proof using the tree method. We do this to illustrate the tree

method, and to give a template of how such proofs will be given.

1.4 Friedberg-Muchnik

Theorem 1. There exist incompatible c.e. degrees.

Proof. We build c.e. sets A,B, such that A 6≤T B and B 6≤T A. We do this by

satisfying the following requirements:

Pe : (∃x)Ψe(A;x) 6= B(x)

Re : (∃x)Ψe(B;x) 6= A(x)
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1.4.1 Construction

We set the requirements on a tree of strategies where the base node is P0 and every

node has two outcomes 0 <L 1. Node Pe will have two successors which are both

Re and node Re will have two successors that are both copies of Pe+1

P1 P1 P1 P1

R0

0
``

1
>>

R0

0
``

1
>>

P0

0

hh
1

66

Figure 1.1: Part of the tree of strategies

In this construction, when we say to pick “x large” we mean to take x larger

than any number yet considered in the construction.

We now define what a node does on its first action. A node Pe or Re picks x

large and sets A(x) = B(x) = 0. It then halts the stage.

At stage s where a node Pe is not acting for the first time, if it has ever played

outcome 1 then it plays outcome 1. Otherwise, if it has never acted before, or has

acted but never played outcome 1, it checks if

Ψe(A;x)[s] ↓= 0

If so then the node sets B(x) = 1, plays outcome 1, and then halts the stage. If not

then the node plays outcome 0.

At stage s where a node Re is not acting for the first time, if it has ever played

outcome 1 then it plays outcome 1. Otherwise, if it has never acted before, or has

acted but never played outcome 1, it checks if

Ψe(B;x)[s] ↓= 0
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If so then the node sets A(x) = 1, plays outcome 1, and then halts the stage. If not

then the node plays outcome 0.

At the start of stage s control is given to the P0 node at the base of the tree and

the stage continues until some node halts the stage, or we reach a node of length

s, at which point stage s + 1 begins. Each node passes control to its immediate

successor according to the outcome it plays. So the base node P0 passes control to

its 0 successor when it plays outcome 0, and passes control to its 1 successor when

it plays outcome 1.

1.4.2 Verification

First we verify that every stage halts, otherwise we will fail to enumerate infinite

sets A,B. Let the control path at a given stage be the nodes that receive control

during that stage. At stage 0 control is passed to P0 who performs the actions for a

node which receives control for the first time, finishing in halting the stage, as s = 0.

At stage s+ 1 control passes through the tree until some node plays outcome 1 for

the first time, or the control path reaches length s + 1. Clearly then, the control

path of stage s+1 is bounded in length by s+1. Therefore at stage s+1 the control

path is finite. All computations at stage s + 1 are given at most s + 1 ticks on the

Turing Machine to complete, so all computations at stage s+ 1 terminate, so every

stage terminates.

At no point do we remove any element from A,B so A,B are c.e..

In this tree of strategies outcomes may only change from 0 to 1. In general this

may not be the case. So let the true path be the path of nodes that are accessed

infinitely often. Then we examine requirement Pe on the true path, call it σ. (There

are 22e copies of Pe, but we are only interested in the one on the true path.) Either
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σ ∗ 0 or σ ∗ 1 is on the true path. In the former case in for each stage s that Pe

receives control it observes that Ψe(A;x)[s] ↑ or Ψe(A;x)[s] ↓6= 0, which then leads

to it playing outcome 0. In this case Pe is satisfied as Ψe(A;x) 6= B(x) = 0. If

instead σ ∗ 1 is on the true path then in some stage s Pe first plays outcome 1 (and

then in every stage beyond that it plays outcome 1). In which case Ψe(A;x)[s] ↓= 0,

and Pe changes B(x) = 1 and we observe that 0 = Ψe(A;x) 6= B(x) = 1. As in the

first action of a node x is chosen larger than any seen before no module that is a

successor of σ can injure σ. With the strict movement from outcome 0 to outcome

1, no module that is acting before σ can injure σ. The situation with Re and A is

entirely analogous.

It is easy to see in this construction how the priority ordering is enforced. If a

node of higher priority wishes to make a change to A,B then it also changes the

control path where new nodes of lower priority come into play. A new node must

pick x large to avoid injuring higher priority nodes. In a real sense the tree looks

after the priority for us. Of course, Friedberg-Muchnik is a very simple example

and moving it to a tree method does not make it much simpler, but it does nicely

illustrate the tree priority method.



Chapter 2

The Local Degrees

We shall be focussing on the degrees below 0′ which are stratified into the high/low

hierarchy and the Ershov hierarchy.

2.1 The High/Low Hierarchy

The High/Low hierarchy was developed by Cooper [Coo74] and Soare [Soa74] and

informally tells us how close to 0′ or to 0 a degree is.

Definition 1. Given a set A the halting problem relative to A is

A′ = {e : Ψe(A; e) ↓}. For a degree a containing A its jump is a′ equal to the degree

of A′. Its n+ 1-th jump is the jump of its n-th jump.

Thus we see that 0′ is the jump of 0, and the jump simply relativises the halting

problem. Informally, a local degree is high if its jump is as high as possible, and

low if its degree is as low as possible. The jump is (non-strictly) order preserving,

if a ≤ b then a′ ≤ b′. It is clear that the jump of a local degree must be between 0′

and 0′′, and that the 2-nd jump must be between 0′′ and 0′′′, and so on. This gives

us the next definition.

11
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Definition 2. A local degree a is highn if

an = 0n+1

A local degree a is lown if

an = 0n

A local degree is intermediate if there is no n ∈ N for which it is highn or lown.

0 is uniquely low0 and 0′ is uniquely high0. If a degree is high1 or low1 then we

simply call it high or low respectively.

It is natural to ask whether there is always a degree that is highn+1 but not

highn, or lown+1 but not lown, for each n. Another natural question is whether

intermediate degrees exist. Sacks [Sac63] answered these questions in the positive.

One of the original results in this work will focus on a high2 degree not having

a property that all high degrees have.

2.1.1 Generalised High/Low Hierarchy

One can extend the high/low hierarchy beyond the local degrees. The definition

of generalised high/low coincides with the definition of high/low when applied to a

local degree.

Definition 3. The join of two degrees a,b, written a ∨ b is the least upper bound

of a and b. As the set of Turing Degrees is an upper semi-lattice, this always exists.

The meet of a,b is written a ∧ b and is the greatest lower bound of a,b. This

does not always exist.

A degree a is generalised highn if:

an = (a ∨ 0′)n
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A degree a is generalised lown if:

an = (a ∨ 0′)n−1

A degree is generalised high if it is generalised high1 and generalised low if it is

generalised low1.

2.2 The Ershov Hierarchy

Recall that a set is c.e. iff it is the range of some computable function. We call a

degree a c.e. if there is a c.e. A ∈ a. One of the original results in this work will

focus on the c.e. degrees having a property, but it is useful to know that these form

a different stratification of the local degrees.

Definition 4. A local set A is n.c.e. if there exists a ∆2-approximating sequence

(As) : s ∈ N for A for which As(x) 6= As+1(x) at most n times, and A0 = ∅. We

abbreviate 1.c.e. as c.e..

Again, this hierarchy does not collapse and it alone does not cover the local

degrees. We shall see later that it does cover the local degrees when allowed to

extend into transfinite levels.

2.3 Natural Definability

A relationship R(x̄) in D is definable (in the language of partial orders) if there is

a formula φ(x̄) in the language of partial orders that holds for exactly the tuples x̄

such that R(x̄) holds.

The problem of natural definability is more hand-wavey. Slaman and Shore

[SS99] showed that 0′ is definable in D, which relativised to a proof of the definability
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of the jump function. Nies, Shore and Slaman [NSS98] used the definability of the

jump to prove that all the high/low classes except low are definable. The definability

of the class of low degrees remains an open problem. While these results showed

that these degrees and classes are definable in D there was the complaint that the

definitions were not natural. They all involve coding models of arithmetic into

D, which does not feel “natural”. Lewis-Pye [LP12] admits that “natural” is an

informal notion but would include the properties that the formula be relatively

short and contain few alterations of quantifier. Examples might include a is the

least degree with some simple property, or b is the greatest degree such that all

degrees above have some property. We now give some examples of properties that

are unarguably natural.

For two degrees a,b we denote their join, or least upper bound, by a∨b. Taking

A ∈ a and B ∈ b this is easily seen to always be equal to the degree of A ⊕ B :=

{2x : x ∈ A}∪ {2x+ 1 : x ∈ B}. We denote their meet, or greatest lower bound, by

a ∧ b. Spector [Spe56] proved that this does not always exist.

The following definitions are unarguably natural, but have not yet led to a defi-

nition of 0′ alone.

Definition 5. A degree a satisfies the join property if for all non-zero b < a there

exists c < a such that b ∨ c = a

A degree a satisfies the meet property if for all non-zero b < a there exists c < a

such that b ∧ c = 0.

Joining these together we get the complementation property. A degree a satisfies

the complementation property if for all non-zero b < a there exists c < a such that

b ∧ c = 0 and b ∨ c = a.

A degree m > 0 is minimal if b < m implies that b = 0.
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Short formulae in the language of partial orders can be given that capture these

definitions, so we may call them natural.

If the witness to a property is minimal then we prefix the property with minimal.

So for example a degree a has the minimal meet property if given b < a there exists

minimal m < a such that m ∧ b = 0.

A few results, presented without proof, in this programme are as follows. Lewis-

Pye, Slaman and Seetapun [LP04] established that 0′ satisfies minimal complemen-

tation. On the other hand, Cooper [Coo89] and independently Slaman and Steel

[SS89] established that there are c.e. degrees that do not satisfy join, so do not

satisfy the stronger complementation. Epstein [Eps79] conjectured that if a is a

c.e. degree, and b is an incomputable c.e. degree below a, then there is a minimal

degree that complements b below a. He then proved this for the case where a is high

[Eps81]. The full conjecture was refuted by Cooper and Epstein in 1987 [CE87], but

in that same paper it was shown that if a is low, one can find a minimal degree

m below a for which b ∧m = 0, establishing a weak version of the meet property

for a, as it requires b to be c.e.. It was conjectured in this paper that one can not

drop either the assumption that a is low, or that b is c.e.. Contradicting an earlier

claim by Li and Yang [LY98], Ishmukhametov established that one can drop the

requirement that a be low [Ish03]. We established that every c.e. degree has the

meet property, and the proof is presented in chapter 4. This chapter is from joint

work with Durrant, Lewis-Pye and Ng [DLPNR16].
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Chapter 3

Minimal Degrees

In this chapter we do not present any new results, but we introduce some historical

results using methods that we will be using in later chapters. We introduce these

methods with these simpler constructions to aid the understanding of the reader.

We start with simpler constructions, and add more complexity until we reach the

new results.

As we have seen, a degree is minimal if it is non-zero and strictly bounds no

non-zero degree. In this chapter we give some historical constructions that establish

the existence of minimal degrees, but modified to take place in a priority tree. We

first construct a minimal degree using a 0′′ oracle, then using a 0′ oracle, and finally

below any c.e. degree using full approximation.

Our requirements for building a set of minimal degree M are always the same

- M must be incomputable, and if Ψ(M) <T M then Ψ(M) ∈ 0. We break these

down into the countably infinite list of requirements:

Pe : Ψe 6= M

Me : If Ψe(M) is total then M ≤T Ψe(M) or Ψe(M) is computable.

Thanks to a trick by Posner the method we use to satisfy the Me requirements

17
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automatically satisfies the Pe requirements. The method we use is that of splitting

trees.

3.1 Splitting Trees

Definition 6. Two strings σ, τ e-split if Ψe(σ)|Ψe(τ). If two strings do not e-split

then they are e-nonsplitting.

If a tree T has the property that whenever σ|τ ∈ T then σ, τ e-split then T is an

e-splitting tree. If instead for all σ, τ ∈ T σ, τ are e-nonsplitting then the tree is an

e-nonsplitting tree.

Given a tree T we define the e-splitting subtree above σ ∈ T to be T ′ where

T ′(λ) = σ and T ′(σ ∗ i) = the left or right member of the first e-splitting found

above T (σ)according to some fixed search procedure, according to whether i is 0 or

1 respectively. This function may be partial, and the tree may be finite or empty.

It is possible for a tree to be neither e-splitting nor e-nonsplitting.

The following pair of lemmas give us the tools we need to satisfy the Me re-

quirements. We define a set A to lie on a tree T when there are infinitely many i

such that A � i is a string in T .

Lemma 1. If M lies on a partial-computable e-splitting tree T and Ψe(M) is total

then M ≤T Ψe(M).

Proof. We inductively build M from T and an oracle for Ψe(M). We know that

T (λ) ↓ and is compatible with M so we set µ0 = T (λ). We then know that one

of T (0) and T (1) must be an initial segment of M , so we compute Ψe(T (0)) and

Ψe(T (1)). One of these computations will converge as Ψe(M) is total. As T is

e-splitting exactly one of these must be compatible with Ψe(M), say it is T (i). As
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T is e-splitting, then T (i) is an initial segment of M and we set µ1 = T (i).

Inductively, if we have µs = T (σ) then we compute Ψe(T (σ∗0)) and Ψe(T (σ∗1)).

As T is e-splitting exactly one of these must be compatible with Ψe(M), say T (σ∗i).

We then know that T (σ ∗ i) is an initial segment of M , so set it to be µs+1.

Then M = lims→∞ µs, and we have computed M from T and Ψe(M).

Lemma 2. If M lies on a partial-computable e-nonsplitting tree T then Ψe(M) is

computable if total.

Proof. We give an algorithm for computing any given value of Ψe(M ;x) from T .

Search in some fixed exhaustive manner for σ ∈ T such that Ψe(σ;x) ↓. Since T is

e-nonsplitting Ψe(σ) must be compatible with Ψe(M), and so Ψe(σ;x) = Ψe(M ;x),

regardless of σ.

So if for all e we ensure that M lies on a e-splitting or e-nonsplitting tree we will

satisfy the Me requirement. We do this by nesting splitting or nonsplitting trees,

according to priority. So T0 will be the Ψ0 (non)splitting tree, and inside will be

T1 which will be a Ψ1 (non)splitting tree above some node, inside which will be T2,

and so on. Then M will lie on T0, T1, T2, · · · , Te, · · · and each Me requirement will

be satisfied. In fact we do not need to build Ts+1 ⊂ Ts to be a nonsplitting tree,

if above some initial segment of M no strings in Ts s + 1-split. In this case the

complete subtree of Ts above this node is a s + 1-nonsplitting tree, so we do not

need to go to the effort of constructing it.

Thanks to a trick by Posner if we construct M in this manner we do not need

separate Pe requirements. Simply having M on the nested (non)splitting trees

ensures that M is incomputable.

Lemma 3. For a set M , if for each e there is either:
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1. a partial computable tree Te that M lies on and is e-splitting,

2. an initial segment of M in Te above which there are no e-splittings in Te,

then M is incomputable.

Proof. Assume that M satisfies the conditions in the lemma, and for a contradiction

assume that M is computable. Then given a string σ we may computably test

whether σ ⊂M . Then Ψ as follows is a Turing functional;

Ψ(σ;n) =


σ(n) if σ 6⊂M ;

↑ if σ ⊂M.

If µ ⊂ M then Ψ(µ) ↑ so M does not lie on a Ψ-splitting tree. However, every

infinite tree must contain Ψ-splittings and any tree that M lies on must be infinite,

contradicting the hypothesis that M is computable.

The previous 3 lemmas give us all we need to build minimal degrees - we need

only ensure that M lies on nested e-splitting trees, or for some e − 1 there is an

initial segment of M for which there are no e-splittings above this initial segment in

Te−1.

3.2 A minimal degree below 0′′

Thanks to the high strength of the oracle provided there is no need to use a tree

priority construction. The proof that follows is essentially due to Epstein [Eps75]

following the original proof by Spector.

Theorem 2. There exists a minimal degree below 0′′.
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We build a minimal set M using a 0′′ oracle in our construction. Thanks to our

lemmas we have one set of requirements to satisfy:

Me : M lies on a e-splitting or e-nonsplitting tree.

The requirements are prioritised as follows:

M0 <LM1 <LM2 <L · · · <LMe <L · · ·

We define a sequence of perfect computable trees {Ts : s ∈ ω} with Ts ⊃ Ts+1,

and a sequence of finite strings {(µs) : s ∈ ω} such that µs ⊂ µs+1. For each s

we require that µs lies on Ts and that Ts is s-splitting or that µs has no s-splitting

extensions in Ts. The set M = ∪s∈ωµs then satisfies our requirements.

3.2.1 Construction

At stage 0 set µ0 = λ and T0 = 2<ω. (As Ψ0 is the identity functional, T0 is indeed

the complete 0-splitting tree above λ.)

At stage s + 1 we inductively have T0 ⊃ · · · ⊃ Ts and µs ∈ Ts. If all extensions

of µs in Ts have s+ 1-splitting extensions then let Ts+1 be the s+ 1-splitting subtree

of Ts above µs and let µs+1 be the left successor (arbitrarily) of µs in Ts+1. If there

is instead some extension of µs in Ts that has no s+ 1-splitting extensions then let

µs+1 be the least such and let Ts+1 be the complete subtree of Ts above µs+1.

3.2.2 Verification

It is clear that the requirement Ms is satisfied at stage s as we either build the

splitting or nonsplitting tree entirely in this stage. As the requirements {Me : e ∈

N} are satisfied, we can call on the lemmas to show that M is minimal.
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It only remains to establish the strength of oracle used during the construction.

We asked whether all extensions of a string have e-splitting extensions, which is

seen to be a Π2-question, i.e. it is “For all extensions of a string, there is a pair of

strings σ, τ and a stage s that extend this where Ψ(σ)[s]|Ψ(τ)[s]. Π2 questions are

answerable with a 0′′ oracle. As 0′′ is not itself minimal, M must be strictly below

0′′.

3.2.3 Remarks

During the construction it is arbitrary whether we take the left or right successor of

µs. We can (and will) use this freedom to add extra requirements to the minimality

requirements, such as diagonalising against a given set. This observation also means

that we can modify this construction to take both the left and right branches and

find ℵ0 many incompatible minimal degrees below 0′′.

3.3 A Minimal Degree Below 0′

Theorem 3. There exists a minimal degree below 0′

This time we do not get to ask any Π2 questions as we do not have an oracle as

strong as 0′′. As it was this oracle that gave us the strength to build the trees in one

stage we no longer build a tree in one stage, but instead add one branch at a time.

We can, however, ask the weaker question “Is there a e-splitting extension of µs?”.

If so then we search in a computable manner for this e-splitting and enumerate

it into our tree, keeping the tree computably enumerable. We work within this

limitation by guessing that if there is one more e-splitting that we can enumerate

into Te then there will always be another e-splitting that we can enumerate into

Te. In the limit this guess may be validated, or there will be some stage where we
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go from enumerating e-splittings into Te to declaring Te to be a nonsplitting tree

above some initial segment. However, this does mean that in this construction we

will have partial trees.

The requirements and the priority ordering are identical to the case for 0′′. This

time we place the requirements on a tree of strategies, not out of necessity, but out

of a desire to demonstrate the techniques we will be using. RequirementM0 will lie

at the base of the tree, and requirement Me will have two outcomes 0 <L 1 which

will both have aMe+1 requirement at the end of them. Outcome 1 will occur when

the node finds e-splittings to enumerate into Te, and outcome 0 will occur when

there are no e-splittings to enumerate into Te.

It would be pointless to try to build Te ⊂ Te−1 if Te−1 is going to be finitary. So

for a node σ we shall denote σ∗ to be the greatest τ ⊂ σ such that τ ∗ 1 ⊂ σ.

At stage s + 1 there will be two phases. One where the trees that are believed

to be e-splitting will be extended, and a second where µs is defined. In the first

phase, control is passed to Mλ and modules act according to the outcomes played

by its immediate successor node. The phase will end when the control path reaches

length s+ 1. AMe node, σ, that is given control will ask 0′ if there is an e-splitting

extension of µs among strings in Tσ∗ . If there is then the node will declare Te to

be the e-splitting subtree of Tσ∗ and perform a computable search for such a pair,

and enumerate this pair into Te, and play outcome 1. Otherwise the node will play

outcome 0.

In the second phase µs+1 will initially be set to λ. For each node σ that played

outcome 1 in the first phase, µs+1 will be extended to be the immediate successor

of µs+1 on Tσ.
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3.3.1 Construction

At stage 0 λ receives control for the first time, in phase 1 sets Tλ(τ) = τ for all

strings τ , and in phase 2 sets µ0 = λ. Then the stage is halted.

At stage s+ 1, phase 1, control is passed to λ and the stage continues until the

control path is of length s+ 1.

A node σ that is passed control for the first time at stage s+ 1 declares Tσ(λ) to

be µs. It asks if there is an e-splitting extension of µs among strings in Tσ∗ . If not,

then σ declares Tσ to be the complete subtree of Tσ∗ above µs and plays outcome 0.

If so, then σ declares Tσ to be the e-splitting subtree of Tσ∗ above µs and performs

a computable search for an e-splitting above µs among strings in Tσ∗ to enumerate

into Tσ. It then plays outcome 1.

A node σ, that is a Me node, that has ever played outcome 0 continues its

definition of Tσ as a complete subtree. If σ has never played outcome 0 then it asks

0′ if there is an e-splitting above µs among strings in Tσ∗ . If so then it continues

the definition of Tσ as an e-splitting subtree, and performs a computable search for

another pair to enumerate into this tree, and plays outcome 1. Else, it declares Tσ

to be the complete subtree of Tσ∗ above µs and plays outcome 0.

In phase 2, µs+1 is initially defined to be λ. For each node σ that played outcome

1 in phase 1, µs+1 is extended to be the immediate successor along the left path of

Tσ.

3.3.2 Verification

In this construction it is not as simple as declaring that at stage s requirementMs

is satisfied. As a node that ever plays outcome 0 will play outcome 0 in any stage it

receives control, we may let the true path be the path of nodes that receive control
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in infinitely many stages, as this is uniquely defined. Each node performs a standard

search for e-splitting strings, but only in the case where they are known to exist.

Therefore each node will pass control. The length of the control path is bounded by

the stage, so each stage will halt.

µs is well-defined in each stage, and we can see that M = lims→∞ µs is well-

defined.

To see that requirement Me is satisfied we must look at which node σ on the

true path is of level e, and which outcome it plays on the true path. If σ ∗0 is on the

true path, then in some stage s + 1, 0′ told σ that there is no e-splitting extension

of µs among strings in Tσ∗ . In this case σ correctly identifies the complete subtree

of Tσ∗ above µs as a e-nonsplitting tree. It is also clear that µs ⊂ M , so M lies on

Tσ. Else, if σ ∗ 1 is on the true path, then in the limit Tσ is built as a e-splitting

tree which M lies on. In either case, the requirement is satisfied.

We only ask a Σ1 question in establishing whether there is an e-splitting among

a given collection of strings, which is answerable by a 0′ oracle. Again 0′ is not

minimal so M < 0′ is minimal.

3.3.3 Discussion

It is not even necessary to ask 0′ whether there is an e-splitting among strings in

Tσ∗ . We can run a recursive search for e-splittings, bounding the search in each

stage. Of course, we may slow down the construction as we wait for a computation

to converge that will never converge, rather than having 0′ tell us immediately

whether it converges or not, but it does mean that we can push down further on

what bounds a minimal degree.

Traditionally this construction involves redefining Te finitely many times. We
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have had the priority tree take care of this detail for us by having 2e copies of Te

floating around in potential, but only one of them lying on the true path.

3.4 A Minimal Degree Below an Incomputable

c.e. Degree

This construction is originally due to Yates [Yat70], but is heavily modified here to

use the tree framework.

As we do not need to ask 0′ whether there is an e-splitting, and instead may

just search for them, we can push the sets that bound minimals further downwards.

However, if all we do is drop the oracle question then all we achieve is a ∆2 minimal

degree, which is just a minimal degree below 0′. To actually push the minimals

further down the hierarchy we need to deal with permission. Therefore, the result

of this section is:

Theorem 4. Every incomputable c.e. degree bounds a minimal degree.

Let A be an incomputable c.e. degree, with c.e. sequence (As)s∈N. The rough

idea with creating M with permission from A is that for M to change below some

bound, A must first change below that bound, i.e. to change M(x) in stage t we

want to see a change in A(x′) where x′ ≥ x, and we want to see this in stage

s > t. In this way if we wrote axioms for a functional that computed M from A

the axioms would be consistent. In this case we need to ensure that introducing

this delay in enumerating e-splittings into our trees does not incorrectly turn a e-

splitting tree into an e-nonsplitting tree. In this case we will be able to argue that

if this were to happen then we would have an algorithm for computing A. For if

we found e-splittings always after our approximation to A stabilised then we could
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simultaneously look for e-splittings and approximate A. Whenever we find a greater

e-splitting (say of height n) then we can declare A � n to be correct, and enumerate

larger and larger initial segments of A in this manner.

Apart from adding permission and removing the 0′ oracle this construction is

largely the same as the previous construction. The tree of strategies remains the

same, but in addition to the node σ containing a tree Tσ it contains a collection of

tuples t(σ) = ((τ0, τ1), · · · , (τl, τm)) of e-splitting pairs that are awaiting permission

to be enumerated into Tσ. We will consider these tuples to be ordered by the length

of the shortest element.

In this construction, a module that has previously played outcome 0 may later

play outcome 1, as it reaches the required length of time to find an e-splitting.

Therefore, we shall take the True Path to be the leftmost path of nodes that receive

control in infinitely many stages.

3.4.1 Construction

At stage 0 control is passed to λ which sets µ0 = λ and Tλ(τ) = τ , for all strings τ .

Stage 0 is then halted and stage 1 begins.

In phase 1, if a node σ receives control at stage s + 1 for the first time then it

sets Tσ(λ) = µs and halts the stage. Else, if the control path is of length s + 1 the

stage is halted.

In phase 1, if a node σ receives control at stage s+ 1 for a subsequent time then

if t(σ) is non-empty σ checks if As � |τi ∧ τi+1| 6= As+1 � |τi ∧ τi+1| for some shortest

(τi∧ τi+1) in t(σ). If so then enumerate τ0, τ1 into Tσ, empty t(σ), and play outcome

0. Otherwise t(σ) is empty or the condition fails, in which case σ searches for an

e-splitting (τ0, τ1) greater than any e-splitting in t(σ) extending µs among strings in
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Tσ∗ , where the meet of τ0 and τ1 is not the meet of any tuple in t(σ). If one is found

then σ enumerates them into t(σ). Then σ plays outcome 1.

Define µs+1 in phase 2 exactly the same as in the previous construction: initially

define µs+1 = λ, and extend it among immediate successors in trees of nodes that

played outcome 0.

3.4.2 Verification

We are working without an oracle, and clearly every node performs only computable

actions, with bounded searches. Therefore no node enters an infinite loop. The

length of the control path in stage s+ 1 is bounded by length s+ 1 so clearly every

stage halts.

We let the true path be the leftmost path of nodes that receive control in infinitely

many stages.

We need to establish that adding A-permission will not change a true path 0

outcome to a true path 1 outcome. Assume for contradiction that σ lies on the

true path and σ ∗ 1 lies on the true path despite in infinitely many stages σ finds

greater e-splittings among strings in Tσ∗ . In this case we have an algorithm for

computing A using the machine that computes M . Whenever node σ enumerates

a pair of strings µ0, µ1 into t(σ) at stage s then we know that m = min(|µ0|, |µ1|)

satisfies As � m = A � m. So to compute A(x) we simply wait for m > x such that

As � m = A � m and read off As(x). But we assumed that A is incomputable, giving

us the required contradiction.

To see that requirement Me is satisfied, again let σ be of level e on the true

path. If σ ∗0 is on the true path then we successfully enumerate greater and greater

e-splittings into Tσ and we ensure that M lies on Tσ, so Me is satisfied. If σ ∗ 1 lies
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on the true path then we have seen that it can not be the case that |t(σ)| → ∞ so

for some stage Tσ∗ above µs is an e-nonsplitting tree, and we again satisfy Me.

To see that M is A-computable we can write axioms at the end of stage s of

the form Ψ(As) = µs. As changing M below x requires first observing A to change

below x these axioms will be consistent and we see that as As tends to A, µs tends

to M and the axioms compute M from A.

3.5 A Minimal Degree Below a Generalised High

Degree

Cooper [Coo71] established that every high degree bounds a minimal degree, a result

that was strengthened by Jockush [JJ77] to every generalised high degree bounds

a minimal degree. We give the latter result because it is more general, despite it

taking us outside the local degrees.

Theorem 5. Every generalised high degree bounds a minimal degree.

A generalised high degree a has the property that a′ = (a ∪ 0′)′, and a′ is the

greatest degree computably enumerable in a. So a can approximate (a ∪ 0′)′, in

that there is a function f ≤T a such that lims→∞ f(x, s) = 1 iff x ∈ (a ∪ 0′)′. This

makes the construction of a minimal degree below a generalised high degree similar

to the construction below 0′ and so we give a construction that does not use a tree

of strategies.

So we may ask the question “Is there an e-splitting above every initial segment of

µ among strings in Wj”. Let f ≤T a be the function that approximates the answer

to this question, i.e. lims→∞ f(e, j, s) = 1 if there is an e splitting above every initial

segment of µ among strings in Wj, and 0 otherwise. Now we search to extend a tree
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Te whenever f gives us evidence that it will be an e-splitting tree, and we refuse to

extend Te whenever f suggests that it will be a e-nonsplitting tree. f is correct in

the limit, so beyond some stage it must be correct.

3.5.1 Construction

At stage 0 define T 0
0 to be the identity tree 2<ω → 2<ω and µ0 = λ.

At stage s+ 1 we act in two phases. In phase 1 we have a list of trees

T s0 ⊃ T s1 ⊃ · · · ⊃ T sk

together with an index ij that defines Tj as a c.e. set of strings Wij . We shall

identify ij with Tj. Firstly we need to check that we did not stop enumerating

strings into a tree too rashly. Define a tree Te for each e < k to require attention

at stage s′ > s+ 1 if Te was being built as a subtree of Te′ , f(e, e′, s) = 0 and some

fixed search procedure finds an e-splitting among strings in Te extending µt, where

t is the first stage Te was defined, in less than s+ 1 stages. For the least e such that

Te requires attention perform the following;

1. Define T s+1
e to be the e-splitting subtree of Te′ above µs.

2. Define T s+1
j to be T sj for j < e.

3. Make T s+1
j undefined for j > e.

4. Declare that Te has received attention.

5. Halt the phase.

If no Te required attention then for each e such that Te is defined to be the

e-splitting subtree of Te′ then search for the least t > s+ 1 such that either:

1. An e-splitting above µs is found among strings in Te′ in fewer than t stages.
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2. f(e, e′, t) = 0

If case 1 applies then we enumerate this e-splitting into T s+1
e . If case 2 applies then

we define Te to be the total subtree of Te′ above µs. Phase 1 is then halted, and

phase 2 begins.

In phase 2 define µs+1 to be a leaf of the last tree that is defined to be an

e-splitting tree. Finally halt the stage.

3.5.2 Verification

We verify that eventually every tree is accurately identified as a e-splitting or e-

nonsplitting tree, by induction. For the base step T0 is immediately defined to

be 2<ω which is indeed the total 0-splitting tree. Now inductively assume that Tf

is correctly identified as the f -splitting or f -nonsplitting tree for f < e. If Te is

identified as the e-nonsplitting tree in some stage, and Te never receives attention,

then Te was accurately identified as a e-nonsplitting tree. If Te does receive attention

then at some stage f must change its mind about Te being a nonsplitting tree, or

Te receives attention in finitely many stages. If, beyond some stage, f identifies Te

as a e-splitting tree, then f must be correct, as it is correct in the limit.
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Chapter 4

Every c.e. Degree has the Meet

Property

This is joint work with Durrant, Lewis-Pye and Ng [DLPNR16].

Theorem 6. Given an incomputable c.e. degree a and any degree b < a there is a

minimal degree m < a such that m 6≤ b

Corollary 1. Every c.e. degree has the (minimal) meet property.

4.1 Requirements & Notation

Given that a is c.e., we take A to be a c.e. set in a, with c.e. approximating sequence

{As : s ∈ N}. Since we have b < a we take B ∈ b and a Turing functional Γ such

that B = ΓA. By speeding up the enumeration of A as necessary, we let {Bs}s∈N be

a computable approximation of B, with Bs being a finite binary string of length s

such that Bs ⊆ ΓAs . While Bs is considered to be a finite binary string, we consider

As to be an infinite string, by having As(x) = 0 for any x greater than the greatest

value enumerated into As.
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Given these, we must construct M of minimal degree below a avoiding the lower

cone of b. We build M by specifying a computable approximation {µs}s∈N where

each µs is a finite binary string, and let M = lims µs. We have two classes of

requirements - forcing M to be minimal, and forcing M to avoid the lower cone

of b. We split this into two countably infinite sets of requirements {Pe : e ∈ N}

and {Me : e ∈ N} such that requirement Pe diagonalises M against Ψe(B), if the

evidence is that Ψe(B) is total. Requirement Me ensures that Ψe(M) is either

computable, or computes M , by constructing nested splitting trees.

4.1.1 The Construction Tree

We work on a construction tree that is a subtree of (ω + 1)ω. Each node of length

2e is assigned the requirement Me, with two outcomes ∞ <L f . The outcome ∞

indicates that the node believes that the splitting tree it is constructing is infinite,

and the outcome f indicates that the node believes that above some initial segment

of M there are no permissible e-splittings. Nodes of length 2e + 1 are given the

requirement Pe with ω + 1-many outcomes labelled 0 <L 1 <L 2 <L · · · <L f .

Outcome f will occur when there is some argument m for which Ψe(B;m) ↑, or else

the node successfully diagonalises M against Ψe(B), and hence only requires finite

action. Each of the other outcomes can be thought of as a guess as to the least m

for which there are infinitely many s with Ψe(Bs;m) ↓ with different uses, and hence

the observed uses are unbounded. In this case the use of Ψe(B;m) is not finite, so

Ψe(B;m) ↑ and the requirement is satisfied.

For nodes on the construction tree σ, τ we write σ <L τ to say that σ is strictly

to the left of τ . We then consider the nodes to be ordered lexicographically, so σ

has higher priority than τ if σ <L τ or σ ⊂ τ .
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At stage s we define TPs, which is our s-th approximation to the true path,

which indicates the s nodes visited by the construction at stage s.

If a node σ on the construction tree is assigned the requirement Me or Pe then

we shall write Ψσ for Ψe.

4.2 Outline of the Proof

4.2.1 Ensuring M ≤T A

This requirement does not get assigned a node on the tree of strategies. Instead,

each stage is broken into multiple phases, and this requirement is assigned one of

the phases.

We shall enumerate axioms for a functional Φ such that Φ(A) = M . These

axioms will be enumerated at the end of each state s, for arguments n < s. The

use for this computation will be as follows. Let s∗ be the maximum of n and s′− 1,

where s′ is a stage ≤ s where a number ≤ n has been enumerated into A. Let α be

the least initial segment of As such that Bs � s∗ ⊆ Γ(α). Then at the end of stage

s, we define Φ(α;n) = µs(n).

At any point during stage s we say that α is permissible if it is compatible with

Φ(As).

4.2.2 Satisfying Me

This requirement is satisfied in the same way as we saw in chapter 3.4, a minimal

degree below an incomputable c.e. degree.

For a node σ, that is not the base node, we let σ∗ be the greatest τ ⊂ σ that is

aM node such that τ ∗∞ ⊂ σ. Since we assume that Ψ0 is the identity functional,
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the base node will always play outcome ∞, so σ∗ is always well-defined. Then Tσ

will be built as a subtree of Tσ∗ .

4.2.3 Satisfying Pe

We would like to use the standard technique of diagonalisation: choose a value x and

wait until Ψe(B)(x) = M(x) = 0, and then change M(x) to 1. Unfortunately, this

simple technique does not work because we need to coordinate the diagonalisation

with A-permission. Instead, we can use the fact that A 6≤T B to wait for A-

permission.

Suppose we monitor Ψe(B) � n for a fixed n. If we find that Ψe(B) � n agrees

with µs � n, then we would like to modify µs � n, and could do so with a suitably low

A-change, then we would successfully diagonalise. While waiting for a suitable A-

change we can map the initial segment of B that computes µs to the initial segment

of A that we are waiting to change. Then we can look at a bigger n. If we never get

an appropriate A-change then we map all of B to all of A, contrary to A 6≤T B, so

we must eventually get an appropriate A-change to diagonalise, or we already have

M � n not an initial segment of Ψe(B).

That is how the Pe nodes would work if there were no Me nodes. Since we

need to coordinate both classes of nodes on the tree of strategies, we need to add

more complexity. The Pe module σ will build a functional Ψσ that will try to

compute A from B. It will do this by containing ω-many modules N0
σ , N

1
σ , · · · . The

module N i
σ is responsible for enumerating axioms for Ψσ(i), where we try to make

Ψσ(B; i) = A(i). For convenience, we build Ψσ as a c.e. set of strings, and ensure

that if i ∈ A then after i is enumerated into A no more strings are enumerated into

Ψσ(i). Then to compute Ψσ(X; i) one runs the enumeration of Ψσ(i) until either τ
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is found that τ ⊂ X, or else i enters A. In the former case, output 0, in the latter

case, output 1.

While i 6∈ As module N i
α waits until it sees a string ν ⊆ Ψe(τ) for some τ ⊆ Bs

and ν ⊆ µs where ν = Tα∗(ρ) for some ρ specific to the module. Then the module

enumerates τ into Ψσ(i) as well as the demand (τ, i, ν0, ν1) where ν0 = Tα∗(ρ
−) and

ν1 = Tα∗(ρ
†). This demand should be read as “If τ ⊂ B and i ∈ A then if ν0 ⊂ M

then ν1 ⊂M .

Some demands will be acted on, and some will be ignored at stage s. When one

is acted upon then we say it is implemented at stage s. This will be defined precisely

in the formal construction.

We would have preferred to issue demands of a simpler form - “if τ ⊂ B and

i ∈ A then νa ⊂ M” , or “if τ ⊂ B and i ∈ A, then ν 6⊂ M .” We can not do

this because of trickiness involving the tree of strategies. For A-permission to be

effective, nodes to the left of TPs are required to be able to issue demands at stage

s. The problem with the first of the proposed simplifications is that if i ∈ A then

we will have permission to change our mind as to whether νs ⊆ µs whenever we see

a change in τ ⊆ Bs as long as µ0 is an initial segment of µs. The second alternative

leads to more subtle problems with the interactions between P requirements.

4.3 Formal Construction

4.3.1 Initialisation

First, let us define what it means for a node σ on the construction tree to be

initialised, and when this takes place.

If σ is aMe node then to initialise it we make Tα(ρ) ↑ for all ρ. We also discard
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all splittings found. If σ is a Pe node then we discard all axioms enumerated for

Ψσ as well as all demands issued by modules of σ. We also discard all recorded

computations for σ, which will be defined later in the construction.

For either type of node we make zσ undefined, so that zσ can be a number chosen

to be large every time σ is first visited after being initialised. This will help make

sure that nodes don’t interfere with nodes of higher priority.

The conditions that will make σ be initialised are independent of its type. At

stage s the node σ is initialised as soon as any of the following conditions are met:

1. s = 0.

2. A node strictly to the left of σ is visited.

3. τ enumerates strings into Tτ at stage s, where τ ∗ f ⊆ σ, or τ <L σ.

4. A demand issued by a module N j
τ such that τ <L σ or τ ∗ i ⊆ σ for j < i is

implemented at stage s, but was not implemented at stage s−1, or vice-versa.

At any point of any stage, a module is active if it has been visited subsequent

to its last initialisation. We call a tree Tσ active if σ is active.

4.3.2 Phases of stage s

If s = 0 then all nodes are initialised, and the stage halts. If s > 0 the instructions

are broken into 4 phases, where the 3rd is where we visit nodes on the construction

tree.

1. This is the phase of tree enumeration. For each σ that is a M node, in order

of priority, consider σ’s list of splittings. If there is a first that is permissible

then enumerate it into Tσ and empty σ’s list of splittings.
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2. This is the phase of defining µs. We perform the following iteration, termi-

nating after a finite number of steps. At each step we redefine the string µ∗s,

initially the empty string, and finally µs takes the final value of µ∗s. The it-

eration defines a path through the nested splitting trees, taking the left or

right path according to issued demands, and taking the left path if no demand

exists. As we proceed we enumerate pairs of the form (µ, σ) to keep track of

the priority at which we have implemented demands.

At step 0, define µ∗s = λ. At step k > 0 check to see if there is a demand issued

by some module N i
σ of the form (τ, i, ν0, ν1) such that τ ⊆ Bs, i ∈ As, ν0 ⊆ µ∗s

and we have not yet enumerated a pair (µ, τ) during this iteration with µ ⊃ ν0

and τ of higher priority than β. If so, choose the demand such that ν0 is the

shortest, and declare this demand implemented at stage s, redefine µ∗s = ν1,

enumerate the pair (ν1, σ) and go to the next step. This simply finds the

demand of highest priority that desires to be implemented, and implements

it. If there is no demand that needs implementing, check to see if there is σ

such that µ∗s ∈ Tσ but is not a Tσ-leaf. If there is, redefine µ∗s to be the left

successor of µ∗s on Tσ and go to the next step of the iteration. Otherwise define

µs to be µ∗s.

Note that a demand may be implemented, then injured by a demand of higher

priority. Say node σ implements a demand causing µσ ⊂ µ∗s, and a node τ

of higher priority has a demand of the form (µσ, ∗, ∗, µτ ), where µτ |µσ. Then

µτ ⊂ µs, not µσ.

As at stage s there are only finitely many demands in existence, and only

finitely many splitting trees with finitely many elements, the iteration must

terminate.
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3. This is the priority tree visiting phase. We define TPs, the nodes visited at

stage s. Let σ = TPs � i be defined. We describe the actions taken by σ and

decide the outcome played. If |σ| ≥ s then σ performs no actions in this stage,

and we terminate phase 3 of stage s. If zσ is undefined then we choose it to

be a large odd number. Then we act according to what type of node σ is.

If σ is assigned requirement Me, then if Tσ(λ) ↑ then we set Tσ(λ) = Tσ∗(ρ)

where |ρ| = zσ, and Tσ∗(ρ) ⊆ µs. If ρ does not exist then we leave Tσ(λ) ↑.

Otherwise, if ν ⊂ µs for some Tσ-leaf ν, we search for Ψe-splittings above ν of

length ≤ s consisting of strings of odd level on Tσ∗ , and enumerate any found

into σ’s list of splittings. If strings have been enumerated into Tσ since the

last stage σ was visited, or σ is the base node λ, then σ plays outcome ∞.

Otherwise, σ plays outcome f .

If σ is assigned requirement Pe, then we find the least i < s that requires

attention, if any. This is the case if there is µ ⊆ µs such that µ = Tσ∗(ρ) for

ρ of length pizσ , and µ ⊆ Ψe(τ) for some shortest τ ⊆ Bs, but N i
σ has not yet

’recorded the computation Ψτ
e . If no N i

σ requires attention then σ performs no

action and plays outcome f . Otherwise, let i be the least such that N i
σ requires

attention. Declare Ψe(τ) to be a recorded computation. If i 6∈ A then issue

the demand (τ, i, ν0, ν1), where ρ is as above, ν0 = Tσ∗(ρ
−) and ν1 = Tσ∗(ρ

†),

and enumerate τ into Ψσ(i). Then σ plays outcome i.

4. This is the phase where we define Φ. For each n < s where µs(n) ↓, let s0 be

the maximum of n and s1− 1, where s1 is a stage ≤ s at which a number ≤ n

was enumerated into A. Let α be the shortest initial segment of As such that

Bs � (s0 + 1) ⊆ Γα. Define Φ(α;n) = µs(n).
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4.4 Verification

First we must verify that the instructions are well defined. The only part that is not

obvious is during phase 2 of stage s where the instructions for step k > 0 require us

to select the demand (τ, i, ν0, ν1) for which ν0 is shortest. We must ensure that there

is a unique such demand. After this has been verified it is clear that the instructions

for each phase of each stage are finite since:

1. At stage s, if the demand (τ, i, ν0, ν1) is implemented at step k of the iteration,

and (τ ′, k, ν2, ν3) is implemented at step k′ > k then ν2 ⊃ ν0.

2. At each stage, only finitely many demands are issued, and only finitely many

strings are enumerated into trees.

So we wish to ensure that at any point of the construction, if demands (τ, i, ν0, ν1)

and (τ ′, k, ν2, ν3) are both issued, and not discarded by initialisation, then ν0 = ν2

implies i = j and both demands were issued by the same module M i
σ.

Since zσ is chosen to be large whenever a node is visited for the firs time after an

initialisation, it follows that when µ ∈ Tσ ∩ Tσ′ for distinct nodes σ and σ′, we must

have σ ∗ ∞ ⊂ σ′ or vice-versa. That is, when a string belongs to two valid trees, it

must be the case that one of these trees was built as a subtree of the other. Then

the following three facts combine to give the requirement:

1. If σ is a M node, then strings of Tσ are of odd level in Tσ∗

2. If N i
σ issues a demand (τ, i, ν0, ν1) then ν0 is of even level in Tσ∗ .

3. If σ1, σ2 are P nodes, and Tσ∗1 = Tσ∗2 then since zσ1 6= zσ2 , if we have demands

(τ, i, ν0, ν1) and (τ ′, k, ν2, ν3) issued by M i
σ1

and M j
σ2

respectively, we must have

ν0 6= ν2.
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Therefore, the construction is well defined, and the instructions at each stage are

finite.

Lemma 4. At every stage s, µs is permissible. M is total and Φ(A) = M .

Proof. As A is incomputable, it follows that Tλ is infinite. As every tree is ultimately

built as a subtree of Tλ it follows that for every length l there is a stage s with |µs| > l.

In the construction of Φ the use on argument n is clearly bounded, so the second

statement of the lemma follows from the first. So we prove the first.

We proceed by induction on s. Since µ0 = λ, the lemma holds for stage 0. If

µs is compatible with µs−1, and µs−1 was permissible, then µs is permissible. So

assume that µs|µs−1, and consider the iteration that takes place during phase 2 of

stages s and s − 1. At each step of the iteration, either a demand is implemented,

or we find σ of lowest priority where µ∗s ∈ Tσ, but is not a Tσ leaf, and extend µ∗s to

be the left successor in Tσ, or we terminate the iteration. Therefore there must be

a step k where the iterations at stages s and s− 1 diverge. There are 3 possibilities:

1. Step k at stage s− 1 implements a demand (τ, i, ν0, ν1) and in step k of stage

s it is not the case that a demand (τ ′, k, ν2, ν3) with ν2 ⊂ ν0 is implemented.

In this case we see that i was enumerated into A at a stage > |τ |, and since

ν0 is of length > i, any α ⊂ As−1 such that ν0 ⊆ Φ(α) at the end of stage

s − 1, is sufficiently long that τ ⊆ Γ(α). Since the demand (τ, i, ν0, ν1) is not

implemented at stage s, τ 6⊆ Bs, and so any extension of ν0 is permissible.

2. At step k of stage s a demand (τ, i, ν0, ν1) is implemented, but during step k of

stage s− 1 no demand (τ ′, j, ν2, ν3) is implemented with ν2 ⊆ ν0. In this case,

as the demand (τ, i, ν0, ν1) was not implemented at stage s − 1 there are two

possible reasons for this. It could be that i was enumerated into A at stage s,
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in which case any extension of ν0 is permissible. Otherwise, there must be a

B-change so that τ 6⊆ Bs−1 but τ ⊆ Bs. Now we can argue as in the previous

case. We must have i enumerated into A at stage s′ > |τ |, and since ν0 is

of length > i, any α ⊂ As−1 such that ν0 ⊆ Φ(α) at the end of stage s − 1

is sufficiently long that τ ′ ⊆ Γ(α), where τ ′ is the initial segment of Bs−1 of

length s′. Again, we conclude that any extension of ν0 is permissible.

3. Neither of the two previous case hold, and at step k of stage s we find σ of

lowest priority such that µ∗s ∈ Tσ, but is not a Tσ-leaf, and set µ∗s to be the

left successor of its previous value in Tσ. In this case let µ = µ∗s before its

redefinition in step k. µ was a leaf of Tσ prior to stage s. The two successors of

µ in Tσ were enumerated into this tree at stage s, and must both be permissible.

Let µ′ be the longest string which is an initial segment of both successors of

µ in Tσ, and also of µs−1. We now have two cases to consider. If µ′ ⊂ µs,

then µs is permissible. Otherwise, there must be a demand (τ, i, ν0, ν1) such

that ν0 ⊂ µ′, implemented at step k + 1 of stage s. If this demand was also

implemented at step k + 1 of stage s − 1 then the two processes have not

diverged in a strong sense. We can say that the two iterations did not strongly

diverge at step k, since the same demand was implemented at the next step.

So we choose the next step k′ at which the two iterations strongly diverge.

Then we have a demand that was implemented at step k′+ 1 of stage s, which

was not implemented at step k′ + 1 of stage s − 1, so we reduce to the two

previous cases.

Lemma 5. For all n, there exists a leftmost node of length n which is visited in-

finitely often. Call it σn. This node satisfies the following:
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1. it is initialised only finitely many times.

2. if it is a Pe node then it ensures Pe is satisfied. There is some stage s such

that for all stages s′ > s, whenever σn receives control it plays outcome f , or

there is some least m such that σn plays outcome m.

3. if it is a Me node then it ensures the e-th minimality requirement is satisfied.

If σn plays outcome ∞ in infinitely many stages, then Tσn is infinite and

M ≤T Ψe(M). Otherwise Tσn is finite and Ψe(M) is partial or computable.

Proof. We proceed by induction on n. Since λ is the M0 node, and we assumed

that Ψ0 is the identity functional, the result for n = 0 is clear. So suppose n > 0

and that the result holds for all n′ < n. As M nodes have finitely many outcomes,

we look at the P nodes of length n′. (2) of the induction hypothesis states that all

these P nodes eventually play outcome f or m ∈ N, so each P node of length n′

effectively has finitely many outcomes, so there is a unique σn of length n. There are

only finitely many stages where nodes strictly to the left of σn are visited (otherwise,

they would be σn) so σn is initialised only finitely many times in that case. Point

(3) of the induction hypothesis implies that for τ that areM nodes with τ ∗f ⊂ σn,

Tτ is finite. So all M nodes to the left of σn are only visited finitely many times,

and so can only enumerate finitely many splittings into their lists. Now consider the

modules N j
τ where τ <L σ, or τ ∗ i ⊆ σ for j < i. They can only enumerate finitely

many demands. Consider a demand (τ, j, ν0, ν1) issued by N j
τ0

. If τ 6⊂ B,j 6∈ a or

ν0 6⊂ M then eventually this demand is never implemented. On the other hand, if

there is a stage s where τ ⊆ Bs,k ∈ As, and ν0 ⊆ µs then the only way in which

the demand could fail to be implemented would be the implementation of a demand

of higher priority (τ ′, k, ν2, ν3), such that ν2 ⊂ ν0 and ν3 ⊃ ν0. When two distinct

trees Tσ and Tσ′ are not nested, initialisation means that all the strings in one of
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the trees are of strictly greater length than all strings in the other, as we choose zσ

large after initialisation. Let σ′ be the node that issues the demand (τ ′, k, ν2, ν3).

Since ν2 ⊂ ν0 and ν3 ⊃ ν0 it must be the case that Tτ∗0 and Tσ′∗ are nested. Since

σ′ is of higher priority, Tτ∗0 must be equal to Tσ′∗ , or built as a subtree of it. This

contradicts the condition ν2 ⊂ ν0 and ν3 ⊃ ν0, given that ν3 is a success or ν2 in

Tσ′∗ . So in this list of demands there either a stage after which they are always or

never implemented. Thus σn is only initialised finitely many times.

Now suppose σn is a Pe node. We wish to show that any demand (τ, i, ν0, ν1)

issued by σn subsequent to its finial initialisation is met. That is, if τ ⊂ B, i ∈ A

and ν0 ⊂M , then ν1 ⊂M . i.e., there is a stage beyond which the demand is always

implemented and never injured. The argument above shows that σn only satisfies

the conditions for initialisation at finitely many stages, and suffices to show that the

demand will be implemented. Otherwise, if the demand were injured, there would

need to be another demand (τ ′, j, ν2, ν3) of higher priority, at a later step of the

iteration of phase 2 of that stage, where ν0 ⊂ ν2 ⊂ ν1. Initialisation means that the

node τ that issued this demand can not be to the left of σn, since we choose zσn

large. So we must have τ ∗ k ⊂ σn for some k < j. As ν1 is a finite string, there are

only finitely many possible value of j, and for one to be implemented, the demand

must be issued prior to the stage where j is enumerated into A. Thus there are only

finitely many demands of the correct form to cause injury to our demand. Since

the injuring demand (τ ′, j, ν2, ν3) is issued by N j
τ , and τ ∗ k ⊂ σn, with k ≤ j, there

is some stage beyond which τ ′ 6⊂ Bs, as otherwise τ would diagonalise and play

outcome f . So beyond this stage the demand is not implemented, and our demand

is not injured.

Now, if σn has outcome f eventually, or there is a least m such that σn eventually
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always plays outcome m, then we see that Pe is satisfied. So, assume towards a

contradiction that this does not hold, and we will show that B computes A. Then

Ψe(B) = M . For each i 6∈ A, there exists τ ⊂ B enumerated into Ψσn(i). If i ∈ A,

then for any τ ⊂ B enumerated into Ψσn(i) there is a demand (τ, i, ν0, ν1) issued

such that ν0 ⊂ Ψe(τ) and ν1 is compatible with Ψe(τ). Since Ψe(B) = M we have

ν0 ⊂M , and there must be a stage after which this demand is always implemented,

and not injured, giving the required contradiction. So (2) of the induction holds

Finally, suppose σn is assigned the requirementMe. We show that subsequent to

the last initialisation of σn, once Tσn is non-empty, µs extends a leaf of Tσn at every

stage for which σn is visited. Once this is shown, standard arguments involving the

construction of minimal degrees give (3) of the induction. Let s0 be the first stage

where σn is visited subsequent to its last initialisation. Let s1 > s0 be the stage

where we define Tσn(λ). Then at every stage s ≥ s1 where σn is visited, Tσn(λ) ⊆ µs,

and all demands that are implemented were either implemented at, or before, stage

s1, or are of the form (τ, i, ν0, ν1) were ν0, ν1 in Tσn . Then µs extends a leaf of Tσ,

as required, satisfying point (3) of the induction, and the lemma is proven.

By the two lemmas, M exists below A, is minimal, and is not below B, so the

theorem is proven.
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A High2 Degree That Does not

Satisfy the Meet Property

Theorem 7. There exists a High2 degree that does not satisfy the meet property.

We construct A,B such that B <T A, A is high2, and for all 0 <T C <T A there

exists 0 <T D <T B,C. This suffices to show that the meet of B,C is not 0.

We now insist on the restriction that strings that e-split are of equal length. This

is in reality no restriction, for if αi is shorter then αi ∗0k will still form an e-splitting

with αī.

We construct A = lims→∞ αs, B = lims→∞ βs and De = lims→∞ δe,s, for all

e ∈ N. The aim is that if Ψe(A) is total and incomputable then De is incomputable

and below B and Ψe(A).

We enumerate axioms for Turing functionals Φ, {Θe,Ξe : e ∈ N} with the aim

that Φ(A) = B, Ξe(B) = De, Θe(Ψe(A)) = De. With regard to the previous

paragraph this will only occur for e where Ψe(A) is total and incomputable.

We let Xe = {pne+1 : n ∈ N}, for each e ∈ N, be infinite recursive sets, where pe
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is the e-th prime. We then have the requirement that A be high2:

Pe : e 6∈ Tot(0′) ⇐⇒ ∃z∀x > z[x ∈ Xe → x 6∈ A]

Satisfying all Pe gives A to be high2 as a Σ2 question relative to A solves mem-

bership of 03, so A2 ≥ 03, and the reverse inequality is automatic.

There is no way to solve this requirement all at once, so we split each Pe into an

infinite collection Pe,l

Pe,l : Ψe(0
′) � l ↓ ⇐⇒ |Xe ∩ A| > l

Then if Pe,l is satisfied for all l, then Xe ∩ A is infinite, and Pe is satisfied. If, on

the other hand, Pe,l is not satisfied for some least l, then for all l′ > l Pe,l′ is not

satisfied, and Xe ∩ A is finite.

We also need to establish that B is actually a witness to A not having the meet

property. This becomes:

Qe : If Ψe(A) total and incomputable then ∃De >T 0, De <T Ψe(A), B

We split the Qe requirement across nodes {Qe,n : n ∈ N} and {Rd : d ∈ N}. A Qe,n

node searches for a piece of evidence that Ψe(A) is total and incomputable, and if

it finds such evidence it passes control to a Rd module that attempts to diagonalise

De against Ψd. Qe,n modules attempt to show that Ψe(A) is total and incomputable

by looking for an appropriate, possibly nested, e-splitting.

The result would be trivial if B ≡T A so we have one further requirement:

Se : A 6= Ψe(B)

This is the easiest requirement to satisfy, as it only requires a standard diagonalisa-

tion like we saw in the Friedberg-Muchnik proof.
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5.1 Isolated Modules

Before looking at how modules interact with each other, we first consider them in

isolation. As Q,R modules are both working to satisfy a single requirement we have

their interactions in this section.

5.1.1 Pe Modules

Each Pe requirement is split across nodes Pe,0,Pe,1, · · · ,Pe,l, · · · , though potentially

this sequence of nodes terminates. Node Pe,l waits for a stage s where Ψe(0
′) � l[s] ↓.

If this happens then this node enumerates x from Xe into A, and plays outcome

1, where there will be a node Pe,l+1. If this does not happen then the node plays

outcome 0, where there will not be a Pe node.

If, at some later stage the Pe,l node observes that Ψe(0
′) � l ↑ then the node

removes x from A and plays outcome 0 again, where there still will not be a Pe,l+1

module.

We will let the True Path be the leftmost path of nodes visited infinitely many

times. This is because if a Pe,l module plays outcomes 0 and 1 in infinitely many

stages, then it observes a value of Ψe(0
′) where the use goes to infinity - i.e. Ψe(0

′) ↑

and we actually want outcome 0 in this case. If for all l ∈ N there exists a Pe,l

module that plays outcome 0 in finitely many stages then each module sees Ψe(0
′) � l

converge, and enumerates x ∈ Xe into A. So A ∩Xe is infinite, and e ∈ Tot(0′), as

required. If instead there is some Pe,l module that plays outcome 0 infinitely many

times, then there is some n < l for which Ψe(0
′;n) ↑, but this module puts a block

on modules of lower priority enumerating x ∈ Xe into A, so A ∩ Xe is finite, and

e 6∈Tot(0′).
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5.1.2 Qe,n Modules

This module attempts to find evidence as to whether Ψe(A) is total and incom-

putable or not. It reserves a space on A and attempts to find an e-splitting above

this location. If one is found then outcome 1 is played which leads to a Rd module.

If one is not found ever then Ψe(A) is computable if total, and the module plays

outcome 0 which does not lead to a Rd module. If for all n the Qe,n module finds

an e-splitting then we have correctly identified Ψe(A) as total and incomputable.

5.1.3 Rd Modules

ARd module has been given evidence that Ψe(A) is total in the form of an e-splitting

α0 <L α1. The module reserves a location on De, call it x, initially set to zero. If

at some stage the module observes Ψe(λ;x) ↓= 0 = De(x) then the module changes

De(x) to 1. The module plays outcome equal to De(x).

When playing outcome 0 the module has α0 ⊂ A, βs ⊂ B and writes axioms

Θe(Ψe(α0)) = De � x, Ξe(βs) = De � x. If the module moves to outcome 1 then the

module changes α1 ⊂ A, and flips the last bit of βs from 0 to 1, and writes axioms

Θe(Ψe(α0)) = De � x, Ξe(βs) = De � x, which will be consistent with the previous

axioms written as the input strings have changed.

5.1.4 Se Modules

A Se module reserves a location x on A and sets it to zero. If the module observes

that Ψe(B;x) ↓= 0 = A(x) then the module changes A(x) to 1. The outcome the

module plays is equal to A(x). In outcome 0 axioms are written so that Φ(A) = B,

which are rewritten if we change A(x).

R,S modules are performing entirely standard diagonalisations, with the extra
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condition that they write axioms that are consistent. This extra condition is handled

in the S modules by encoding the outcome the module plays into A, and in the R

modules by choosing which member of a e-splitting will be a substring of A, thus

changing Ψe(A).

5.2 Interactions Between Modules

Any module that is not a Pe module will not be allowed to enumerate any member

of {x ∈ Xe : e ∈ E} into A, where E is the collection of indices for Pe modules of

higher priority. Then when a Q module searches for an e-splitting above α and fails

we can declare the complement of {Xe : e ∈ E} above α to be a partial computable

e non-splitting tree.

There is work to be done in ensuring that the axioms written are consistent.

We do this by having modules encode their outcomes into A,B. When a P module

reserves a space on A, it reserves a value, enough to write 0,1, opposite to outcome

it is playing. On B it reserves one bit, which will be 0 for outcome 0, but 1 for

outcome 1 .

A Re module does not code in A directly, but in Ψe(A). It has been handed a

pair of strings α0, α1 that are e-splitting. When R plays outcome 0, α0 ⊂ A and the

reserved spaces on B,De are 0. When it plays outcome 1 it ensures α1 ⊂ A and the

spaces reserved on B,De are 1.

An S module reserves a single space on A initially set to be 0. If S changes to

outcome 1 then this is changed to 1.

Q is the interesting case for consistent axioms as the only restriction we can

place on the search for an e-splitting is to avoid Xe of higher priority. We can not

insist that A(x) = 0 in outcome 0 and A(x) = 1 in outcome 1, as if we only search
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above A(x) = 1 and declare it to be the start of a nonsplitting tree then we have not

determined that A(x) = 0 is the start of a nonsplitting tree. Instead we have Q look

at existing axioms, and declare that if Q wishes to use a string that is a substring of

some axiom, then it must use the full string associated with the axiom. So say that

Q wishes to use α, which is extended by α∗ which already lies in an axiom, and it

has observed Ψe(α) ↓. The next issue is that Q has not observed Ψe(α
∗) ↓. In fact,

there is no guarantee that Ψe(α
∗) ↓. So this Q node can only declare that it has

observed Ψe(α) ↓, but it requires α∗ ⊂ A. A successive Q node will act, and will

search for an e-splitting extending (an extension of) α∗. So this successive node will

observe whether or not Ψe(α
∗) ↓. To ensure consistency of the axioms we therefore

see that Q nodes must work in concert, similarly to how the Pe requirement is split

over countably infinitely many nodes.

5.3 The Tree of Strategies

We work on a tree of strategies consisting of P ,Q,R and S modules. The con-

sistency requirement does not lie on the tree of strategies, but is considered to be

the requirement of highest priority - it may injure any requirement and may not be

injured itself. All modules each have 2 outcomes 0 <L 1. Every P module has 3

Q modules as immediate successors, every Q module has a S module at the end of

its 0 outcome, and a R module at the end of its 1 outcome, every R module has

two S modules as immediate successors, and every S module has two P immediate

successors.

At the start of stage s control is passed to the base node λ and continues until

some node halts the stage. We let the control path at stage s be the set of nodes

that receive control at stage s. We let the true path be the leftmost set of nodes
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Figure 5.1: Part of the tree of strategies

that receive control in infinitely many stages.

Subscripts used to describe modules earlier will be defined the first time that

a module receives control. This is because if a Pe,l module plays outcome 0 then

there is no requirement for there to be another Pe,l′ module on the control path, if

it plays outcome 1 then we eventually require there to be a Pe,l+1 module. We can

computably declare in advance what index any given node on the tree of strategies

will obtain, if it is given control, but it is easier to define it when it first receives

control.

5.4 Construction

At stage 0 α0, β0, δe,0 are all defined to be λ. In any stage s+ 1 where α, β or δe are

not redefined then we set γs+1 = γs, where γ is α, β or δe.

At the start of stage s > 0 control is passed to the base node λ and continues

until some node halts the stage.

We must now define what it means for a module to be initialised. Any module

that is initialised forgets any values that it has stored. Any module that is initialised

will initialise its immediate successors, if these modules have any stored values.
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5.4.1 First Action of a Module σ in Stage s

We split by case according to the type of module σ is.

First Action of a P Module

σ takes the least 〈e, l〉 such that for all P modules τ ⊂ σ the following hold: if τ is

a Pe,m module for some m 6= l then τ ∗ 1 ⊂ σ. σ is then a Pe,l module.

σ stores the least x > |αs−1| where x ∈ Xe as a. σ then sets:

αs(x) =



αs−1(x) if x ≤ |αs−1|

0 if |αs−1| < x ≤ a

↑ otherwise

βs = βs−1 ∗ 0

σ writes axioms for Φ(αs) = βs. σ then halts the stage.

First Action of a Q Module

σ takes the least 〈e, n〉 such that the following hold:

• If τ ⊂ σ is a Qf,m module then (e, n) 6= (f,m).

• If τ ⊂ σ is a Qe,n′ module for n′ 6= n then τ ∗ 1 ⊂ σ.

Let E be the set of values of e′ such that τ ⊂ σ is a Pe′,l node, for some l. Let

a be the least integer greater than |αs−1| that is not in any {Xe : e ∈ E}. Let

b = |βs−1|+ 1. σ sets:

αs(x) =



αs−1(x) if x ≤ |αs−1|

0 if |αs−1| < x ≤ a

↑ otherwise
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First Action of a R Module

σ takes the least f such that for all R modules τ ⊂ σ, τ is not a Rf module. Then

σ is a Rf module.

σ has been passed two triples which we may call (α0, α
∗
0, β0),(α1, α

∗
1, β1). σ also

asks σ− for its index e and stores that it is working with De. σ sets αs = α∗0 and

βs = β0. σ stores d = |δe,s−1|+ 1 and sets δe,s = δe,s−1 ∗ 0. σ writes axioms:

Φ(α∗0) = β0

Θe(Ψe(α0)) = δe,s

Ξe(β0) = δe,s

σ then halts the stage.

First Action of a S Module

σ takes the least f such that for all S modules τ ⊂ σ, τ is not an Sf module. Then

σ is a Sf module.

Let E be the collection of e such that τ ⊂ σ is a Pe module. Let a be the least

integer greater than |αs−1| and |βs−1| not in {Xe : e ∈ E}.

σ sets:

αs(x) =



αs−1(x) if x ≤ |αs−1|

0 if |αs−1| < x ≤ a

↑ otherwise

βs =



βs−1(x) if x ≤ |βs−1|

0 if |βs−1| < x ≤ a

↑ otherwise

σ then writes axioms for Φ(αs) = βs. σ then halts the stage.
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5.4.2 Subsequent Actions of a Module σ in Stage s

Again, we split by case according to what type of module σ is.

Subsequent Action of a P Module

σ tests if

Ψe(0
′) � l[s] ↓

If so, and σ last played outcome 1, then σ plays outcome 1. If not, and σ last

played outcome 0, then σ plays outcome 0.

If so, and σ last played outcome 0 then σ sets:

αs(x) =



αs−1(x) if x < a

1 if x = a

0 if x = a+ 1

↑ otherwise

βs(x) =



βs−1(x) if x < b

1 if x = b

↑ otherwise

Then σ plays outcome 1. If not, then σ plays outcome 0.

If σ has played outcome 1 but not outcome 2 then σ tests if

Ψe(0
′) � l[s] ↑
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If so then σ sets

αs(x) =



αs−1(x) if x < a

0 if x = a

1 if x = a+ 1

↑ otherwise

and plays outcome 2. If not, then σ plays outcome 1.

If σ has ever played outcome 2, then σ plays outcome 2.

Subsequent Action of a Q Module

If σ has ever played outcome 1 then it plays outcome 1. Otherwise, σ spends s

stages searching for an e-splitting above αs � a avoiding {Xe : e ∈ E}. If none is

found then outcome 0 is played. Otherwise, we let the e-splitting be α0 <L α1.

If there exist axioms of the form Φ(α′i) = β′i for some α′i ⊇ αi then let α∗i be

the greatest α′i, and let its axiom be Φ(α∗i ) = β∗i . This may be the case for both,

neither, or only one i ∈ {0, 1}. If α∗i does not exist then it is set to αi. If β∗i does

not exist then it is set to βs−1 ∗ i. If α∗i is shorter than α∗ī then pad the shorter string

with zeroes until they are of the same length. If β∗i is shorter than β∗ī then extend

it to be incompatible with β∗ī but of the same length.

σ then passes a pair of triples to σ∗1: (α0, α
∗
0, β

∗
0),(α1, α

∗
1, β

∗
1) and plays outcome

1.

Subsequent Action of a R Module

If σ has ever played outcome 1, then σ plays outcome 1. Otherwise σ tests if:

Ψf (∅; d)[s] ↓= 0
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If so then σ sets:

αs(x) = α∗1

βs(x) = β1

δe,s(x) =


δe,s−1(x) if x 6= d

1 if x = d

Then σ writes axioms for:

Ξe(βs) = δe,s

Θe(Ψe(α1)) = δe,s

Finally σ plays outcome 1. Otherwise σ plays outcome 0.

Subsequent Action of a S Module

If σ has ever played outcome 1, then σ plays outcome 1. Otherwise σ tests if:

Ψe(βs−1; a)[s] ↓= 0

If so then σ sets

αs(x) =



αs−1(x) if x < a

1 if x = a

↑ otherwise

βs = βs−1

σ then writes axioms for Φ(αs) = βs and plays outcome 1. Otherwise σ plays

outcome 0.
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5.5 Verification

As the stage halts when a node acts for the first time, the control path in stage

s can consist of at most s + 1 nodes. We let the True Path be the leftmost path

of nodes that receive control in infinitely many stages. Every search that a node

performs is bounded, and only uses already computed information. So every node

can perform its instructions, and every stage halts. Every P node extends α, β,

so A = lims→∞ αs, B = lims→∞ βs are well-defined. If there are infinitely many

suitable R nodes on the true path then each one extends δe, so De = lims→∞ δe,s is

well-defined.

To verify that the requirement Pe is satisfied we first observe that every node of

lower priority than a Pe node avoids Xe, so only finitely many nodes do not avoid

Xe, each of which can enumerate finitely many elements of Xe into A. So, provided

that the Pe modules are performing properly, the requirement Pe is satisfied.

For fixed e, if there is some node σ that is a Pe,l node on the True Path such

that σ ∗ 0 is on the True Path, then for every stage s where Ψe(0
′) � l[s] ↓, there is

some s′ > s where the computation diverges. Therefore Ψe(0
′) � l ↑, and A ∩Xe is

finite.

Otherwise, there are infinitely many Pe nodes that eventually only play outcome

1 on the True Path. Each of these nodes has a stage s such that for all s′ > s it

observes Ψe(0
′) � l[s′] ↓, from which we conclude that Ψe(0

′) � l ↓, and we require

Xe ∩ A to be infinite. Each of these nodes enumerates x ∈ Xe into A and never

removes it, so Xe ∩ A is infinite and the requirement is satisfied.

To see that requirement Qe is satisfied, we see whether there are infinitely many

Qe modules on the true path or not. If not then there is some Qe module σ that

always plays outcome 0. In this case Qe does not find an e-splitting above αs � a,
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avoiding {Xe : e ∈ E}, so there must not be such an e-splitting. Therefore the

complete tree above A � a of strings that avoid {Xe : e ∈ E} is a p.c. nonsplitting

tree that A lies on. Therefore Ψe(A) is computable, if total, and the requirement is

satisfied.

If otherwise there are infinitely many Qe modules on the true path, then each

one finds an e-splitting, possibly extends it to make axioms consistent, and passes

it to an R module. Each e-splitting extends a previous e-splitting, so Ψe(A) must

be total. Ψe(A) bounds De, which we will see is incomputable, so Ψe(A) must be

incomputable.

If there are infinitely many Qe modules on the true path, then for each f there

is a Rf module working immediately above Qe. If Rf plays outcome 1 on the true

path, then at some stage it observes Ψf (∅)(x) ↓= 0, but it sets De(x) = 1, so De

does not equal Ψf (∅). If Rf plays outcome 0 on the true path then Ψf (∅)(x) ↑

or ↓= 1. But in this case De(x) = 0 so De 6= Ψf (∅). In either case we have De

incomputable, as required.

The Se module on the true path does a similar diagonalisation - if it observes

some stage where Ψe(B;x) ↓= 0 then it changes A(x) to 1, otherwise it knows that

A(x) = 0 is distinct from Ψe(B;x). So Ψe(B) 6= A, for all e, and A is not computable

from B.

To establish consistency of the axioms for Φ(A) = B assume, towards a con-

tradiction, that nodes σ, τ write contradictory axioms. We now split by 3 cases:

σ = τ, σ ⊂ τ, σ|τ . If σ = τ then we split by case according to what type of node

it is. It can not be a Q as these never write axioms to Φ. If it is a P module then

one axiom must be of the form Φ(α ∗ 0) = β0, and the other Φ(α ∗ 1) = β1, where

α, β are some strings. But these axioms have incompatible strings as input, so are
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consistent. If it is a R module then one axiom is Φ(α∗0) = β0 and the other axiom

is Φ(α∗1) = β1. But σ− established that substrings of α∗0, α
∗
1 form an e-splitting, so

α∗0, α
∗
1 must be incompatible, and these axioms are consistent. If σ is a S module

then one axiom is of the form Φ(α ∗ 0) = β0 and one is of the form Φ(α ∗ 1) = β1,

so the input strings are incompatible and the axioms are consistent. So σ 6= τ .

Without loss of generality, let σ act before τ . Now consider the case σ ⊂ τ . By

the above reasoning we may consider the last axiom that σ wrote before τ writes

axioms. If σ writes an axiom of the form Φ(α) = β then τ writes an axiom of the

form Φ(α ∗ α′) = β′, so we only require β ⊆ β′ for consistency of axioms. But the

location τ works on B must be greater than the location σ works on B, so β ⊂ β′.

So if σ ⊂ τ then the axioms are consistent. So we move on to the next case.

Now consider the case σ|τ . Let ρ = σ ∧ τ . By earlier reasoning σ writes axioms

consistent with ρ, which changes outcome, and in changing outcome, keeps consistent

axioms, and ρ writes consistent axioms with τ . So, therefore, σ writes consistent

axioms with τ .

So we conclude that σ 6= τ, σ 6⊆ τ , τ 6⊇ σ and σ 6 |τ , giving our contradiction, so

the axioms for Φ are consistent.

We now verify consistency of axioms for Θe(Ψe(A)) = De and Ξe(B) = De.

Again, towards a contradiction, let σ,τ write inconsistent axioms for either of these

functionals. If σ = τ then one pair of axioms is of the form Θe(Ψe(α0)) = δe,s and

Ξe(β0) = δe,s and the other pair is of the form Θe(Ψe(α1)) = δe,s′ and Ξe(β1) = δe,s′ .

α0, α1 form an e-splitting, so Ψe(α0)|Ψe(α1), so the axioms for Θe are consistent.

β0, β1 disagree on final bit, so are incompatible, so the axioms for Ξe are consistent.

So σ 6= τ , so let σ act before τ .

Now consider the case σ ⊂ τ . Again, we may consider only the last axioms that
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σ writes before τ writes axioms. In that case, every string that τ is working with is

a proper extension of a string σ is working with, and the axioms are consistent. So

σ 6⊂ τ .

Now consider the case σ|τ , and let ρ = σ ∧ τ . By earlier reasoning ρ’s axioms

are consistent with itself, and with σ and τ . So σ and τ have consistent axioms. So

σ 6 |τ .

Therefore σ 6⊆6⊇ τ and σ 6 |τ , a contradiction. So our assumption that the axioms

are inconsistent was false, and the axioms for Θe,Ξe are consistent.

Therefore we have built A, B and De such that the requirements are satisfied,

and the theorem is proven.
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