493 research outputs found

    Deeply-Supervised CNN for Prostate Segmentation

    Full text link
    Prostate segmentation from Magnetic Resonance (MR) images plays an important role in image guided interven- tion. However, the lack of clear boundary specifically at the apex and base, and huge variation of shape and texture between the images from different patients make the task very challenging. To overcome these problems, in this paper, we propose a deeply supervised convolutional neural network (CNN) utilizing the convolutional information to accurately segment the prostate from MR images. The proposed model can effectively detect the prostate region with additional deeply supervised layers compared with other approaches. Since some information will be abandoned after convolution, it is necessary to pass the features extracted from early stages to later stages. The experimental results show that significant segmentation accuracy improvement has been achieved by our proposed method compared to other reported approaches.Comment: Due to a crucial sign error in equation

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    An Adaptive Sampling Scheme to Efficiently Train Fully Convolutional Networks for Semantic Segmentation

    Full text link
    Deep convolutional neural networks (CNNs) have shown excellent performance in object recognition tasks and dense classification problems such as semantic segmentation. However, training deep neural networks on large and sparse datasets is still challenging and can require large amounts of computation and memory. In this work, we address the task of performing semantic segmentation on large data sets, such as three-dimensional medical images. We propose an adaptive sampling scheme that uses a-posterior error maps, generated throughout training, to focus sampling on difficult regions, resulting in improved learning. Our contribution is threefold: 1) We give a detailed description of the proposed sampling algorithm to speed up and improve learning performance on large images. We propose a deep dual path CNN that captures information at fine and coarse scales, resulting in a network with a large field of view and high resolution outputs. We show that our method is able to attain new state-of-the-art results on the VISCERAL Anatomy benchmark

    Learning Deep Neural Networks for Enhanced Prostate Histological Image Analysis

    Get PDF
    In recent years, deep convolutional neural networks (CNNs) have shown promise for improving prostate cancer diagnosis by enabling quantitative histopathology through digital pathology. However, there are a number of factors that limit the widespread adoption and clinical utility of deep learning for digital pathology. One of these limitations is the requirement for large labelled training datasets which are expensive to construct due to limited availability of the requisite expertise. Additionally, digital pathology applications typically require the digitisation of histological slides at high magnifications. This process can be challenging especially when digitising large histological slides such as prostatectomies. This work studies and addresses these issues in two important applications of digital pathology: prostate nuclei detection and cell type classification. We study the performance of CNNs at different magnifications and demonstrate that it is possible to perform nuclei detection in low magnification prostate histopathology using CNNs with minimal loss in accuracy. We then study the training of prostate nuclei detectors in the small data setting and demonstrate that although it is possible to train nuclei detectors with minimal data, the models will be sensitive to hyperparameter choice and therefore may not generalise well. Instead, we show that pre-training the CNNs with colon histology data makes them more robust to hyperparameter choice. We then study the CNN performance for prostate cell type classification using supervised, transfer and semi-supervised learning in the small data setting. Our results show that transfer learning can be detrimental to performance but semi-supervised learning is able to provide significant improvements to the learning curve, allowing the training of neural networks with modest amounts of labelled data. We then propose a novel semi-supervised learning method called Deeply-supervised Exemplar CNNs and demonstrate their ability to improve the cell type classifier learning curves at a much better rate than previous semi-supervised neural network methods

    Segmentation of the Prostatic Gland and the Intraprostatic Lesions on Multiparametic Magnetic Resonance Imaging Using Mask Region-Based Convolutional Neural Networks

    Get PDF
    Purpose: Accurate delineation of the prostate gland and intraprostatic lesions (ILs) is essential for prostate cancer dose-escalated radiation therapy. The aim of this study was to develop a sophisticated deep neural network approach to magnetic resonance image analysis that will help IL detection and delineation for clinicians. Methods and Materials: We trained and evaluated mask region-based convolutional neural networks to perform the prostate gland and IL segmentation. There were 2 cohorts in this study: 78 public patients (cohort 1) and 42 private patients from our institution (cohort 2). Prostate gland segmentation was performed using T2-weighted images (T2WIs), although IL segmentation was performed using T2WIs and coregistered apparent diffusion coefficient maps with prostate patches cropped out. The IL segmentation model was extended to select 5 highly suspicious volumetric lesions within the entire prostate. Results: The mask region-based convolutional neural networks model was able to segment the prostate with dice similarity coefficient (DSC) of 0.88 ± 0.04, 0.86 ± 0.04, and 0.82 ± 0.05; sensitivity (Sens.) of 0.93, 0.95, and 0.95; and specificity (Spec.) of 0.98, 0.85, and 0.90. However, ILs were segmented with DSC of 0.62 ± 0.17, 0.59 ± 0.14, and 0.38 ± 0.19; Sens. of 0.55 ± 0.30, 0.63 ± 0.28, and 0.22 ± 0.24; and Spec. of 0.974 ± 0.010, 0.964 ± 0.015, and 0.972 ± 0.015 in public validation/public testing/private testing patients when trained with patients from cohort 1 only. When trained with patients from both cohorts, the values were as follows: DSC of 0.64 ± 0.11, 0.56 ± 0.15, and 0.46 ± 0.15; Sens. of 0.57 ± 0.23, 0.50 ± 0.28, and 0.33 ± 0.17; and Spec. of 0.980 ± 0.009, 0.969 ± 0.016, and 0.977 ± 0.013. Conclusions: Our research framework is able to perform as an end-to-end system that automatically segmented the prostate gland and identified and delineated highly suspicious ILs within the entire prostate. Therefore, this system demonstrated the potential for assisting the clinicians in tumor delineation

    Robust Resolution-Enhanced Prostate Segmentation in Magnetic Resonance and Ultrasound Images through Convolutional Neural Networks

    Full text link
    [EN] Prostate segmentations are required for an ever-increasing number of medical applications, such as image-based lesion detection, fusion-guided biopsy and focal therapies. However, obtaining accurate segmentations is laborious, requires expertise and, even then, the inter-observer variability remains high. In this paper, a robust, accurate and generalizable model for Magnetic Resonance (MR) and three-dimensional (3D) Ultrasound (US) prostate image segmentation is proposed. It uses a densenet-resnet-based Convolutional Neural Network (CNN) combined with techniques such as deep supervision, checkpoint ensembling and Neural Resolution Enhancement. The MR prostate segmentation model was trained with five challenging and heterogeneous MR prostate datasets (and two US datasets), with segmentations from many different experts with varying segmentation criteria. The model achieves a consistently strong performance in all datasets independently (mean Dice Similarity Coefficient -DSC- above 0.91 for all datasets except for one), outperforming the inter-expert variability significantly in MR (mean DSC of 0.9099 vs. 0.8794). When evaluated on the publicly available Promise12 challenge dataset, it attains a similar performance to the best entries. In summary, the model has the potential of having a significant impact on current prostate procedures, undercutting, and even eliminating, the need of manual segmentations through improvements in terms of robustness, generalizability and output resolutionThis work has been partially supported by a doctoral grant of the Spanish Ministry of Innovation and Science, with reference FPU17/01993Pellicer-Valero, OJ.; GonzĂĄlez-PĂ©rez, V.; Casanova RamĂłn-Borja, JL.; MartĂ­n GarcĂ­a, I.; Barrios Benito, M.; Pelechano GĂłmez, P.; Rubio-Briones, J.... (2021). Robust Resolution-Enhanced Prostate Segmentation in Magnetic Resonance and Ultrasound Images through Convolutional Neural Networks. Applied Sciences. 11(2):1-17. https://doi.org/10.3390/app11020844S117112Marra, G., Ploussard, G., Futterer, J., & Valerio, M. (2019). Controversies in MR targeted biopsy: alone or combined, cognitive versus software-based fusion, transrectal versus transperineal approach? World Journal of Urology, 37(2), 277-287. doi:10.1007/s00345-018-02622-5Ahdoot, M., Lebastchi, A. H., Turkbey, B., Wood, B., & Pinto, P. A. (2019). Contemporary treatments in prostate cancer focal therapy. Current Opinion in Oncology, 31(3), 200-206. doi:10.1097/cco.0000000000000515Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84-90. doi:10.1145/3065386Allen, P. D., Graham, J., Williamson, D. C., & Hutchinson, C. E. (s. f.). Differential Segmentation of the Prostate in MR Images Using Combined 3D Shape Modelling and Voxel Classification. 3rd IEEE International Symposium on Biomedical Imaging: Macro to Nano, 2006. doi:10.1109/isbi.2006.1624940Freedman, D., Radke, R. J., Tao Zhang, Yongwon Jeong, Lovelock, D. M., & Chen, G. T. Y. (2005). Model-based segmentation of medical imagery by matching distributions. IEEE Transactions on Medical Imaging, 24(3), 281-292. doi:10.1109/tmi.2004.841228Klein, S., van der Heide, U. A., Lips, I. M., van Vulpen, M., Staring, M., & Pluim, J. P. W. (2008). Automatic segmentation of the prostate in 3D MR images by atlas matching using localized mutual information. Medical Physics, 35(4), 1407-1417. doi:10.1118/1.2842076Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, 234-241. doi:10.1007/978-3-319-24574-4_28He, K., Gkioxari, G., Dollar, P., & Girshick, R. (2017). Mask R-CNN. 2017 IEEE International Conference on Computer Vision (ICCV). doi:10.1109/iccv.2017.322Shelhamer, E., Long, J., & Darrell, T. (2017). Fully Convolutional Networks for Semantic Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(4), 640-651. doi:10.1109/tpami.2016.2572683He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). doi:10.1109/cvpr.2016.90Milletari, F., Navab, N., & Ahmadi, S.-A. (2016). V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation. 2016 Fourth International Conference on 3D Vision (3DV). doi:10.1109/3dv.2016.79Zhu, Q., Du, B., Turkbey, B., Choyke, P. L., & Yan, P. (2017). Deeply-supervised CNN for prostate segmentation. 2017 International Joint Conference on Neural Networks (IJCNN). doi:10.1109/ijcnn.2017.7965852To, M. N. N., Vu, D. Q., Turkbey, B., Choyke, P. L., & Kwak, J. T. (2018). Deep dense multi-path neural network for prostate segmentation in magnetic resonance imaging. International Journal of Computer Assisted Radiology and Surgery, 13(11), 1687-1696. doi:10.1007/s11548-018-1841-4Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely Connected Convolutional Networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). doi:10.1109/cvpr.2017.243Zhu, Y., Wei, R., Gao, G., Ding, L., Zhang, X., Wang, X., & Zhang, J. (2018). Fully automatic segmentation on prostate MR images based on cascaded fully convolution network. Journal of Magnetic Resonance Imaging, 49(4), 1149-1156. doi:10.1002/jmri.26337Wang, Y., Ni, D., Dou, H., Hu, X., Zhu, L., Yang, X., 
 Wang, T. (2019). Deep Attentive Features for Prostate Segmentation in 3D Transrectal Ultrasound. IEEE Transactions on Medical Imaging, 38(12), 2768-2778. doi:10.1109/tmi.2019.2913184LemaĂźtre, G., MartĂ­, R., Freixenet, J., Vilanova, J. C., Walker, P. M., & Meriaudeau, F. (2015). Computer-Aided Detection and diagnosis for prostate cancer based on mono and multi-parametric MRI: A review. Computers in Biology and Medicine, 60, 8-31. doi:10.1016/j.compbiomed.2015.02.009Litjens, G., Toth, R., van de Ven, W., Hoeks, C., Kerkstra, S., van Ginneken, B., 
 Madabhushi, A. (2014). Evaluation of prostate segmentation algorithms for MRI: The PROMISE12 challenge. Medical Image Analysis, 18(2), 359-373. doi:10.1016/j.media.2013.12.002Zhu, Q., Du, B., & Yan, P. (2020). Boundary-Weighted Domain Adaptive Neural Network for Prostate MR Image Segmentation. IEEE Transactions on Medical Imaging, 39(3), 753-763. doi:10.1109/tmi.2019.2935018He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. 2015 IEEE International Conference on Computer Vision (ICCV). doi:10.1109/iccv.2015.123Pan, S. J., & Yang, Q. (2010). A Survey on Transfer Learning. IEEE Transactions on Knowledge and Data Engineering, 22(10), 1345-1359. doi:10.1109/tkde.2009.191Smith, L. N. (2017). Cyclical Learning Rates for Training Neural Networks. 2017 IEEE Winter Conference on Applications of Computer Vision (WACV). doi:10.1109/wacv.2017.58Abraham, N., & Khan, N. M. (2019). A Novel Focal Tversky Loss Function With Improved Attention U-Net for Lesion Segmentation. 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019). doi:10.1109/isbi.2019.8759329Lei, Y., Tian, S., He, X., Wang, T., Wang, B., Patel, P., 
 Yang, X. (2019). Ultrasound prostate segmentation based on multidirectional deeply supervised V‐Net. Medical Physics, 46(7), 3194-3206. doi:10.1002/mp.13577Orlando, N., Gillies, D. J., Gyacskov, I., Romagnoli, C., D’Souza, D., & Fenster, A. (2020). Automatic prostate segmentation using deep learning on clinically diverse 3D transrectal ultrasound images. Medical Physics, 47(6), 2413-2426. doi:10.1002/mp.14134Karimi, D., Zeng, Q., Mathur, P., Avinash, A., Mahdavi, S., Spadinger, I., 
 Salcudean, S. E. (2019). Accurate and robust deep learning-based segmentation of the prostate clinical target volume in ultrasound images. Medical Image Analysis, 57, 186-196. doi:10.1016/j.media.2019.07.005PROMISE12 Resultshttps://promise12.grand-challenge.org/Isensee, F., Jaeger, P. F., Kohl, S. A. A., Petersen, J., & Maier-Hein, K. H. (2020). nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nature Methods, 18(2), 203-211. doi:10.1038/s41592-020-01008-
    • 

    corecore