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Scientific Article
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Abstract
Purpose: Accurate delineation of the prostate gland and intraprostatic lesions (ILs) is essential for prostate cancer dose-escalated
radiation therapy. The aim of this study was to develop a sophisticated deep neural network approach to magnetic resonance image
analysis that will help IL detection and delineation for clinicians.
Methods and Materials: We trained and evaluated mask region-based convolutional neural networks to perform the prostate gland and
IL segmentation. There were 2 cohorts in this study: 78 public patients (cohort 1) and 42 private patients from our institution (cohort 2).
Prostate gland segmentation was performed using T2-weighted images (T2WIs), although IL segmentation was performed using T2WIs
and coregistered apparent diffusion coefficient maps with prostate patches cropped out. The IL segmentation model was extended to
select 5 highly suspicious volumetric lesions within the entire prostate.
Results: The mask region-based convolutional neural networks model was able to segment the prostate with dice similarity coefficient
(DSC) of 0.88 � 0.04, 0.86 � 0.04, and 0.82 � 0.05; sensitivity (Sens.) of 0.93, 0.95, and 0.95; and specificity (Spec.) of 0.98, 0.85,
and 0.90. However, ILs were segmented with DSC of 0.62 � 0.17, 0.59 � 0.14, and 0.38 � 0.19; Sens. of 0.55 � 0.30, 0.63 � 0.28,
and 0.22 � 0.24; and Spec. of 0.974 � 0.010, 0.964 � 0.015, and 0.972 � 0.015 in public validation/public testing/private testing
patients when trained with patients from cohort 1 only. When trained with patients from both cohorts, the values were as follows: DSC
of 0.64 � 0.11, 0.56 � 0.15, and 0.46 � 0.15; Sens. of 0.57 � 0.23, 0.50 � 0.28, and 0.33 � 0.17; and Spec. of 0.980 � 0.009, 0.969
� 0.016, and 0.977 � 0.013.
Conclusions: Our research framework is able to perform as an end-to-end system that automatically segmented the prostate gland and
identified and delineated highly suspicious ILs within the entire prostate. Therefore, this system demonstrated the potential for assisting
the clinicians in tumor delineation.
� 2020 The Author(s). Published by Elsevier Inc. on behalf of American Society for Radiation Oncology. This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

Prostate cancer (PCa) is themost common cancer inmen
in the United Stated,1 with an estimated 174,650 new cases
and 31,620 deaths expected in 2019.2 Radiation therapy
(RT) is an effective form of prostate cancer (PCa) treatment
and is considered one of the standard treatment options
available. Current practice treats the entire prostate with a
homogeneous dose distribution.3,4 Dose-escalated RT has
been shown to improve biochemical progression-free sur-
vival at the expense of increased acute and late toxicities.5

However, using simultaneous boost technique that limits
the volume of dose-escalation to intraprostatic lesions (ILs)
may allow for improved dosimetry with a potential to
improve the therapeutic ratio as well. A median dose to the
entire gland could prevent disease recurrence in the prostate
from satellite tumors and significantly reduce the side ef-
fects associated with escalated radiation dose to the entire
gland. A boosting dose to the ILs can maintain the effec-
tiveness of focal therapy to treat the ILs that are the main
determinants of tumor progression and prognosis. For this
strategy to be successful, the key requirements included the
ability to accurately and reliably identify clinically signif-
icant tumors within the prostate gland.

Malignant ILs can be identified on magnetic resonance
imaging and are known to correlate with tumor
aggressiveness. Multiparametric magnetic resonance
imaging (mp-MRI) combines anatomic T1- and T2-
weighted imaging (T2WI) with diffusion-weighted
(DWI) and perfusion-weighted sequences and plays an
essential role in the diagnosis, risk stratification, staging,
and treatment guidance in PCa.6 Over the decades,
significant advancements have been made in image
acquisition technologies (including mp-magnetic
resonance imaging [MRI]). These allowed for the visu-
alization of not only structural anatomy but also vascular
and functional properties of the prostate gland. However,
the large amount of data has hindered the reproducibility
and efficacy of image interpretation.7 In addition, inter-
observer variability and clinician fatigue8 can restrict
accurate interpretations before therapeutic interventions.
Therefore, computer-aided diagnostic systems have been
established to help improve clinical practice with MRI-
based automated prostate and IL segmentation.

Recent progress in image segmentation has involved
convolutional neural network (CNN) based models. Many
segmentation models fall into 2 classes. The first class
does not rely on the region proposal algorithm. U-Net,9

for example, is a classic model widely used in biomed-
ical image segmentation tasks. The underlying
fundamentals of the second class rely on region proposals
such as the mask region-based CNN (Mask R-CNN)
model. It is widely used in semantic segmentation, object
localization, and instance segmentation of natural
images.10

Methods and Materials

Patient cohorts

A total of 120 patients were divided into 2 cohorts in
this study. Cohort 1 (public patients) included 78
randomly selected patients from the International Society
for Optics and Photonics-American Association of
Physicists in Medicine-National Cancer Institute Prostate
MR Gleason Grade Group Challenge (PROSTATEx-2
Challenge), which is a data set of prostate MRI studies
conducted by American Association of Physicists in
Medicine along with the International Society for Optics
and Photonics and the National Cancer Institute.11e13

Each patient was read under the supervision of an
expert radiologist with more than 20 years of experience.
Areas of suspicion were indicated by the radiologist using
a point marker. Then MR-guided biopsy was followed in
the suspicious area. Confirmation scans were performed
with biopsy needle in situ to conform the accurate local-
ization. Images were acquired on 2 types of Siemens 3
Tesla MR scanners, the MAGNETOM Trio and Skyra.
Axial T2WIs were acquired using a turbo spin echo
sequence with a resolution of around 0.5 mm in plane and
slice thickness of 3.6 mm. Axial DWI sequences were
acquired using a single-shot echo planar imaging
sequence with a resolution of 2 mm in plane and 3.6 mm
slice thickness and with diffusion-encoding gradients in 3
directions. Three b-values were acquired (50, 400, and
800 s/mm2), and the apparent diffuse coefficient (ADC)
map was calculated using the scanner software. All im-
ages were acquired without an endorectal coil. Each pa-
tient from cohort 1 was proved to have only one lesion.

Cohort 2 (private patients) included 42 patients who
underwent mp-MRI scans at our institution. A transrectal
ultrasound-guided fine-needle biopsy was performed to
confirm the presence of PCa. All images were acquired
using a 3 Tesla MR scanner (Ingenia; Philips Medical
System, Best, the Netherlands). Axial T2WIs were
obtained using fast spin echo (TE/TR: 4389/110 ms, flip
angle: 90 degrees) with a resolution of 0.42 mm in plane
and slice thickness of 2.4 mm. Axial DWIs were obtained
(TE/TR: 4000/85 ms, flip angle: 90 degrees) with a
resolution of 1.79 mm in plane and slice thickness of 0.56
mm. The voxel-wise ADC map was constructed using 2
DWIs with 2 b-values (0, 1000 s/mm2). The radiologists
annotated the ILs in the MR images during the diagnosis,
and the targeted biopsy was performed with the MRI-
defined lesions superimposed using the T2WI on the
transrectal ultrasound images. The ILs were delineated by
3 different clinicians from our institute with the reference
to both radiology and pathology reports for consistency.

Three data sets are traditionally used to build deep
neural network-based models. The training set is used to fit
the model; the validation set provides an unbiased
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evaluation of model fit in selecting model and tuning
model hyper-parameters, and the testing set provides an
unbiased evaluation in the final model fit. For prostate
segmentation, 54 public patients (1085 slices in total and
an average of 20.1 � 1.4 slices per patient) were randomly
selected as the training set. The model was validated using
12 public patients and tested using 12 public patients and
16 private patients, respectively. Compared with the pros-
tate, ILs have more variance in shape, size, and location.
Thus, more patient samples were included in the testing set
to evaluate the robustness of the model performance on the
IL delineation. The model was trained using 45 public
patients (614 slices in total and an average of 13.6 � 2.4
slices per patient) and was validated with 10 public patients
and tested with 23 public patients and 42 private patients.
We also trained the model with mix cohorts of the same 45
public patients and 21 additional private patients (314
slices in total and an average of 15.0 � 5.3 slices per
patient) to compare the model performances.

The long dimension of T2 images was resized to 384,
and the short dimension was resized to keep the same
width-to-length ratio as the original image and padded by
pixels with zero value to extend to the same size of 384.
The ADC map was resampled using bilinear interpolation
and rigidly registered to T2WI using a software developed
in house. All images were normalized slice by slice before
having the histogram equalized. For prostate segmenta-
tion, we used T2WI only in training, validation, and
testing, as the prostate gland can be well-defined by the
morphologic imaging. For IL segmentation, only the re-
gion of the prostate was analyzed that prostate patches
were cropped out based on the results of the prostate
segmentation. Coregistered ADC map and T2WI were
combined as the model inputs (the first channel was T2WI
and the second one was the ADC map).

Extension of the model into 3-dimensional space

Figure 1 shows the 2D Mask R-CNN architecture used
in our paper. A detailed description of network architec-
ture and implementation of the Mask R-CNN model is
provided in Appendix 1 (available online at https://doi.
org/10.1016/j.adro.2020.01.005). in the supplement.
Many models based on 3-dimensional (3D) CNNs14e16

are available for volumetric segmentation. However, we
found it difficult to directly extend the Mask R-CNN
model to perform 3D prostate and IL segmentation as
training was highly resource intensive. Therefore, we
developed a method to extend the model to perform a
more efficient volumetric segmentation.

Prostate segmentation

We found that 2-dimensional (2D) Mask R-CNN intro-
duced false positive in superior/inferior slices beyond the

prostate gland within the pelvic region and false negative in
the apex and base regions of the prostate gland. To train the
model for prostate segmentation, a smallest rectangle area
covering the entire prostate gland to the maximum was
estimated based on the training set. Images with the prostate
gland were masked by the clinician’s contour and were
labeled as “prostate”; the remaining images were masked by
the rectangle area and were labeled as “nonprostate” during
training. For each slice, delineated contours by the model
were scored by the probability of being “prostate” or
“nonprostate,” and the highest scoring contour and its label
was regarded as the final result. This significantly decreased
the false-positive and false-negative rate.

Intraprostatic lesion segmentation

Because prostate cancer is multifocal disease and it is
unknown how many ILs each patient has, we designed the
Mask R-CNN model to perform multifocal PCa seg-
mentation and selected 5 top suspicious ILs for each pa-
tient, which is consistent with the procedure for MRI-
guided prostate biopsy. Each IL was located with a
bounding box and for probability of being a lesion. The
lesion then was delineated on each slice within the
bounding box. Because multiple ILs could be detected on
the same slice, we set a threshold to determine whether
these delineated lesions were represented separate entities
or the same lesion. When the dice similarity coefficient
(DSC) of 2 contours was greater than 0.5, these 2 con-
tours and their bounding boxes were unified into new
ones, and their probability scores were averaged. After
this step, contours on all slices were ranked by their
scores and the highest scoring contour was selected as a
seed contour. Next we only selected the contours on the
adjacent slices having the highest DSC with the seed
contour, and both the DSC and its score were expected to
be larger than the cutoff thresholds. The selected adjacent
contour was regarded as the new seed contour and was
used to find its next superior/inferior adjacent lesion. This
process was iterated until all slices were traversed or no
adjacent contour could be identified. Then these selected
seed contours were combined together to define the IL
volume. Algorithm 1 (available online at https://doi.org/1
0.1016/j.adro.2020.01.005). in supplement describes the
definition of the most suspicious volumetric IL after
contour union in detail. The same procedure was repeated
to define the volume of the next IL until 5 suspicious
lesions were delineated in total. The cutoff threshold of
score and DSC were 0.7 and 0.41, respectively, which
were fine-tuned on the validation set.

Evaluation metrics

The metrics used to evaluate the model included the
DSC, 95th percentile Hausdorff distance (HD), sensitivity
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(Sens.), and specificity (Spec.). DSC (Equation 1) eval-
uates how well 2 binary sets match with a DSC of 1
representing a perfect match of prediction and contoured
mask. HD (Equation 2) measures how far apart 2 subsets
within a metric space are from each other. Sens. (Equation
4), also known as the true positive rate, measures the
proportion of actual positives that are correctly identified;
Spec. (Equation 3), also known as the true negative rate,
measures the proportion of actual negatives that are
correctly identified. We also defined the agreement rate
(Equation 5) as a degree to which model’s segmentation
results concur with clinicians’ segmentation results. The
formulas for these metrics are shown below:

DSCZ
2 ,< ytrue; ypred >

< ytrue; ytrue >þ< ypred; ypred >
ð1Þ

where ytrue is the ground truth contour, ypred is the model’s
contour.

HDðA;BÞZmax
a˛A

fmin
b˛B

fdða;bÞgg ð2Þ

where a and b are points of sets A and B, respectively; and
dða; bÞ is the Euclidean distance between these points;
95th percentile HD says that 95% of min

b˛B
fdða;bÞgis below

this amount. A is the ground truth contour, B is the
model's contour.

Spec:Z
DTNobject

TNobject
ð3Þ

Sens:Z
DTPobject

TPobject
ð4Þ

For prostate segmentation, DTPprostate and DTNprostate

denote the number of slices detecting and not detecting
the prostate, respectively; and TPprostate and TNprostate

denote the total number of slices truly containing the
prostate and not containing the prostate, respectively. In
addition, 161 positive and 73 negative slices were used in
the validation for cohort 1; 156 positive and 84 negative
slices in the testing for cohort 1; and 216 positive and 246
negative slices in the testing for cohort 2. For IL seg-
mentation, DTPIL and DTNIL denote the number of pixels
in the detected lesion and background, respectively,

whereas TPIL and TNIL denote the total number of pixels
within the lesion and background, respectively. Pixels are
counted within the entire prostate. DSC was calculated
based on 3D volume for both prostate and lesion
segmentation.

AgreementZ
dIL

cIL
ð5Þ

where dIL denotes the number of detected lesions having
DSC greater than 0.1 with lesions contoured by clinicians,
cIL denotes the number of lesions contoured by clinicians.

Results

Results of prostate segmentation are shown in Table 1.
We selected the model that achieved the highest DSC on
validation patients and tested the model using both public
and private patients. DSC, 95 HD, Sens., and Spec. were
0.88 � 0.04, 6.05 � 2.39 (mm), 0.93, and 0.98,
respectively on validation patients; 0.86 � 0.04, 6.19 �
2.38 (mm), 0.95, and 0.85, respectively on public testing
patients; and 0.82 � 0.05, 8.94 � 4.09 (mm), 0.95, and
0.90, respectively on private testing patients. Figure 2
shows a sample of prostate segmentation results on
T2WIs by clinician and Mask R-CNN.

Results of IL segmentation are shown in Table 2.
When training with public patients only, agreement, DSC
of detection, Sens., and Spec. were 80%, 0.62 � 0.17,
0.55 � 0.30, and 0.974 � 0.010 respectively on validation

Table 1 Results of prostate segmentation

Evaluation DSC 95 HD (mm) Sens. Spec.

12 public
validation
patients

0.88 � 0.04 6.05 � 2.39 0.93 0.98

12 public testing
patients

0.86 � 0.04 6.19 � 2.38 0.95 0.85

16 private testing
patients

0.82 � 0.05 8.94 � 4.09 0.95 0.90

Abbreviations: DSC Z dice similarity coefficient; Sens. Z sensi-
tivity; Spec Z specificity.

Figure 1 General Mask-RCNN network architecture used in our paper. Predefined anchors with different scales at one location are
shown as purple bounding boxes on the input image. Cubes are represented by kernel size � kernel size � number of filters, above
branch is used for classification, bottom branch is used for segmentation.
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patients; 87%, 0.59 � 0.14, 0.63 � 0.28, and 0.964 �
0.015, respectively on public testing patients; and 47%,
0.38 � 0.19, 0.22 � 0.24, 0.972 � 0.015, respectively on
private testing patients. When training with mix cohorts of
patients, the values were 90%, 0.64 � 0.11, 0.57 � 0.23,
and 0.980 � 0.009, respectively, on validation patients;
83%, 0.56 � 0.15, 0.50 � 0.28, and 0.969 � 0.016,
respectively on public testing patients; and 63%, 0.46
� 0.15, 0.33 � 0.17, and 0.977 � 0.013, respectively, on
private testing patients. Figure 3 shows a sample of IL
segmentation results on T2WIs by clinician and Mask R-
CNN.

To facilitate a more comprehensive and unbiased eval-
uation of the Mask R-CNN’s performance, we trained a 2D
U-Net and a 3D U-Net and calculated the DSCs of the
prostate contours using the same 12 testing patients used for
the prostate segmentation. DSCswere 0.85� 0.03 and 0.83
� 0.07 using 2D U-Net and 3D U-Net, respectively.

Discussion

Conventional research applied classic machine
learning and statistical graph models to prostate and IL

Figure 2 Prostate segmentation results on 3 slices of T2-weighted images from one patient. Ground truth by the clinician (top rows) is
shown with prostate contour and bounding box; mask region-based convolutional neural network prediction (bottom rows) is shown
with bounding box, prostate contour, and prediction class and score.

Table 2 Lesion detection and segmentation results

Training Evaluation DSC of detection Agreement Sens. Spec.

45 public patients 10 public validation patients 0.62 � 0.17 80% 0.55 � 0.30 0.974 � 0.010
23 public testing patients 0.59 � 0.14 87% 0.63 � 0.28 0.964 � 0.015
42 private testing patients 0.38 � 0.19 47% 0.22 � 0.24 0.972 � 0.015

45 public patients þ 21
private patients

10 public validation patients 0.64 � 0.11 90% 0.57 � 0.23 0.980 � 0.009
23 public testing patients 0.56 � 0.15 83% 0.50 � 0.28 0.969 � 0.016
21 private testing patients 0.46 � 0.15 63% 0.33 � 0.17 0.977 � 0.013

Abbreviations: DSC Z dice similarity coefficient; Sens. Z sensitivity; Spec Z specificity.
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segmentation. Neural networkebased models for prostate
and IL segmentation have only been developed during the
past 3 years and are still in need of significant
improvements. We performed a literature review
(Table 3)17-35 of previous works as our baseline and
compared their experiment set ups and results to show the
potential of deep neural networks on prostate and IL
segmentation.

In this study, we provided an unbiased evaluation of
Mask R-CNN’s performance using an independent patient
cohort from our institution. For prostate segmentation, the
validation and testing results showed promise on the
PROSTATEx-2 Challenge data set. When using private
patients as an independent testing cohort, we observed
slightly decreased performance in the DSC, whereas
sensitivity and specificity remained equivalent (Table 1).
We hypothesized that this is due to variations in prostate
delineation among clinicians. Other possible explanations
include variations in image quality and small size of data
set. Although U-Net is a more elegant fully convolutional
network (FCN), it analyzes the entire image as for

segmentation. Mask R-CNN differs from this kind of
segmentation model in that it is based on region proposal
network, which selects regions of interest and then per-
forms pixel-to-pixel segmentation using FCN on the
selected regions of interest. We provided an unbiased
comparison between U-Net and Mask R-CNN using the
same 12 public testing patients. We compared the DSC
calculated by 2D and 3D U-Net with one calculated by
the Mask R-CNN and concluded that Mask R-CNN
slightly outperformed both U-Nets in prostate segmenta-
tion. Mask R-CNN may work better in lesion segmenta-
tion than FCN owing to its ability to detect possible lesion
patches first, instead of a direct pixel prediction.

The segmentation of ILs is challenging owing to the
small volume, prostate tissue heterogeneity, and the often
a subtle appearance of tumor, and this leads to interob-
server variability in defining the ground truth. We first
explored differences between contours by 2 clinicians on
the same lesion in 19 patients. The DSC was sensitive to
the relative size of the target and was generally low in the
evaluation of IL segmentation. The DSC was 0.67 � 0.21,

Figure 3 Lesion segmentation on 2 continuous slices from one patient from our institute, with 2 lesion identified and contoured (green
and red) on T2-weighted images. Ground truth by the clinician (left column) is shown with lesion contour and bounding box; prediction
of 2 agreed candidate lesions by the mask region-based convolutional neural network (right column) is shown with bounding box, lesion
contour, and prediction class and score.
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Table 3 Literature review of publications for the prostate and IL segmentation

Publication Task Method Result Evaluation

Tian et al17 Prostate segmentation Graph cut DSC Z 87.0% � 3.2% MICCAI 2012 Promise12
challenge

Mahapatra and
Buhmann18

Prostate segmentation Super pixel þ random
forests þ graph cut

DSC Z 0.81 MICCAI 2012 Promise12
challenge

Guo et al19 Prostate segmentation Stacked sparse auto-
encoder þ deformable
segmentation

DSC Z 0.871 � 0.042 66 T2WIs

Milletari et al20 Prostate segmentation V-Net þ dice-based loss DSC Z 0.869 � 0.033 Trained with 50 MRI scans
Test with 30 MRI scans

Zhu et al21 Prostate segmentation Deeply supervised CNN DSC Z 0.885 Trained with 77 patients
Tested with 4 patients

Yu et al14 Prostate segmentation Volumetric convolutional
neural network

DSC Z 89.43% MICCAI 2012 Promise12
challenge

Toth and
Madabhushi22

Prostate segmentation Landmark-free AAM DSC Z 88% � 5% Tested with 108 studies

Liao et al23 Prostate segmentation Stacked independent
subspace
analysis þ sparse label

DSC Z 86.7% � 2.2% 30 T2WIs

Vincent et al24 Prostate segmentation AAM DSC Z 0.88 � 0.03 MICCAI 2012 Promise12
challenge

Klein et al25 Prostate segmentation Atlas matching Median DSC varied
between 0.85 and 0.88

Leave-one-out test with 50
clinical scans

Li et al26 Prostate segmentation RW DSC Z 80.7% � 5.1% 30 MR volumes
Kohl et al27 IL segmentation Adversarial networks DSC Z 0.41 � 0.28

Sens. Z 0.55 � 0.36
Spec. Z 0.98 � 0.14

Four-fold cross-validation
on 55 patients with
aggressive tumor lesions

Cameron et al28 IL detection Morphology, asymmetry,
physiology and
size model

Accuracy (Acc.) Z 87% � 1%
Sens. Z 86% � 3%
Spec. Z 88% � 1%

13 patients

Chung et al29 IL segmentation Radiomics-driven CRF Sens. Z 71.47%
Spec.Z 91.93%
Acc. Z 91.17%
DSC Z 39.13%

20 patients

Artan et al30 IL segmentation Cost-sensitive support
vector machine þ CRF

Sens. Z 0.84 � 0.19
Spec. Z 0.48 � 0.22
DSC Z 0.35 � 0.18

21 patients

Artan et al31 IL localization RW Sens. Z 0.51
Jakkard Z 0.44

10 patients

Artan et al32 IL segmentation RW Sens. Z 0.62 � 0.23
Spec. Z 0.89 � 0.10
DSC Z 0.57 � 0.21

16 patients with lesions
in peripheral zone only

Ozer et al33 IL segmentation Relevance vector machine Spec. Z 0.78
Sens. Z 0.74
DSC Z 0.48

20 patients

Artan et al34 IL segmentation Cost-sensitive CRF Sens. Z 0.73 � 0.25
Spec. Z 0.75 � 0.13
Acc. Z 0.71 � 0.18
DSC Z 0.45 � 0.28

10 patients with lesions
in peripheral zone only

Liu et al35 IL segmentation Fuzzy Markov
random fields

Spec. Z 89.58%
Sens. Z 87.50%
Acc. Z 89.38%
DSC Z 0.6222

11 patients

Abbreviations: AAM Z active appearance models; CNN Z convolutional neural network; CRF Z conditional random field; DSC Z dice similarity
coefficient; IL Z intraprostatic lesions; MRI Z magnetic resonance imaging; RW Z random walker; T2WIs Z T2-weighted images; Sens. Z
sensitivity; Spec Z specificity.
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demonstrating high interobserver variability in defining IL
boundaries by trained clinicians. The DSC of our model
was 0.59 � 0.14 when training and testing with the public
cohort, which was in the same order of the comparison
between clinicians’ performances. Most works28-35 on IL
segmentation were performed with less than 25 clinical
scans, and others32,34,35 focused on lesions in the
peripheral zone only. In our study, we validated and
tested the Mask R-CNN model to identify the ILs within
the entire prostatic gland using 75 clinical scans from both
public and private patient cohorts. To the best of our
knowledge, the highest performance was achieved by Liu
et al with DSC Z 0.6222, Sens. Z 87.50%, and Spec. Z
89.58%.35 However, they tested a small cohort of 11
patients, and the study was limited to the lesions in the
peripheral zone. We identified only one study applying
the neural networkebased model for IL segmentation27

with DSC Z 0.41 � 0.28, Sens. Z 0.55 � 0.36, and
Spec. Z 0.98 � 0.14. Similar to this study, we achieved
relatively low Sens. and high Spec. compared with the
classic models. There are 2 explanations of the perfor-
mance of our model: (1) Spec. was calculated based on
the whole prostate volume instead of a single MRI slice,
leading to the high Spec.; (2) classic models predict more
false-positives, whereas Mask R-CNN predicts lesions
with size more close to a real lesion. This can potentially
facilitate PCa diagnosis and treatment (eg, dose-escalated
radiation therapy to the ILs). The performance of Mask R-
CNN dropped when training with patients from cohort 1
and testing with cohort 2. We hypothesize this was due to
the different acquisition parameters of the DWIs between
the 2 patient cohorts, which led to different data distri-
butions between the 2 cohorts. The ADC maps were
created from 3 b values (50, 400, and 800 s/mm2) in
cohort 1, which were different from the 2 b values (0,
1000 s/mm2) in cohort 2. The variability of the signal
intensity values in ADC maps was reduced using the 3-
point b values.36 The model generalization is chal-
lenging considering MR acquisition and reconstruction
techniques are significantly different along with different
types of scanners and imaging protocols. Recent research
has been working on developing generative models.37,38

We investigated how to improve the model generaliza-
tion. We added a small number of the patient data from
cohort 2 and fine-tuned the model using the mixture of
cohort 1 and cohort 2 patients. The results showed an
increase of the average value and a decrease of the vari-
ance of the DSC, Sens., and Spec. when testing with
cohort 2. The overall performance of the model was
improved, indicating that it was a viable solution to
generalize the model by fine-tuning it with a small sample
size of an independent cohort.

Definitive radiation therapy for prostate cancer involves
treating the entire prostate gland with a homogeneous
dose. Newer studies suggest a local control benefit with an
additional simultaneous integrated boost to the ILs using a

number of different radiation therapy techniques (eg,
IMRT, SBRT, brachytherapy). It is in designing the
appropriate IL boost volume that auto segmentation may
add value by decreasing physician labor. Assuming phy-
sicians have adequate experience in mp-MRI interpreta-
tion, they must bring up multiple sequences of the mp-
MRI data set into the appropriate image viewer including,
at minimum, the T2-weighted and the diffusion-weighted
axial images, and scroll through the individual slices to
determine the site of the IL. The performance of IL seg-
mentation in the present study may allow radiation on-
cologists to quickly determine whether or not they are in
agreement with the model prediction. The model predic-
tion can also be served as the secondary check for quality
control. With a relatively high Dice coefficient, the radi-
ation oncologist may feel comfortable accepting the auto
segmentation. In cases where there is little to no agreement
between the physician and the auto segmentation
(including failure to delineate a target), it would also raise
the alarm for the clinician to carefully evaluate and justify
the manually delineated DIL contour.

As health care costs continue to rise at a rapid rate, there
is mounting pressure to cut costs and to improve efficiency.
Contouring is usually the single most time-consuming ac-
tivity for a radiation oncologist, and advances in auto seg-
mentation may make the process more efficient. Overall, the
current performance of IL segmentation is not perfect, but it
does offer the possibility of augment a radiation oncologist
on the IL delineation. As more data are made available, we
may reasonably expect that the performance of IL seg-
mentation will improve over time.

Conclusions

Our research framework is able to work as an end-to-end
system. It automatically segmented the prostate gland and
identified highly suspicious volumetric lesions within the
entire prostate directly from the clinical MRI scans without
human intervention, thereby demonstrating the potential to
assist the clinician in tumor delineation. Future research of
validating imaging findings with histopathologic images to
map spatial extend of tumor foci is warranted for accurate
delineation of ILs for radiation treatment.

Supplementary data

Supplementary material for this article can be found at
https://doi.org/10.1016/j.adro.2020.01.005.
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