1,562 research outputs found

    The Evolution of a Professional Coach

    Get PDF
    This thesis describes my journey of self discovery and renewal as I reinvented myself from my position as a sales and marketing manager in a corporate setting to that of a professional coach in private practice. I discuss my rationale for change and what precipitated it, how I became a graduate student at the University of Pennsylvania and how the Organizational Dynamics program prepared me to become a coach. I will also detail the role an undiagnosed learning disability played in my life and how I tapped its gifts and utilized my strengths to become my best self. The psychological foundations for change and my role in each of the steps are outlined. The coaching process is thoroughly examined as I coached my first client using the Wilkinsky Normative 9-Step Coaching model. I present my behavioral coaching model and discuss the principles upon which it is based. Real life coaching situations illustrate how the model was applied. Highlights from five professional coaching engagements provide insights into the types of coaching that I am currently practicing. I conclude with insights for readers who may be contemplating following in my path with questions and exercises to start them on their own path toward their passion. Finally, I discuss my future in coaching and where my endeavors may lead me

    동영상 속 사람 동작의 물리 기반 재구성 및 분석

    Get PDF
    학위논문 (박사) -- 서울대학교 대학원 : 공과대학 컴퓨터공학부, 2021. 2. 이제희.In computer graphics, simulating and analyzing human movement have been interesting research topics started since the 1960s. Still, simulating realistic human movements in a 3D virtual world is a challenging task in computer graphics. In general, motion capture techniques have been used. Although the motion capture data guarantees realistic result and high-quality data, there is lots of equipment required to capture motion, and the process is complicated. Recently, 3D human pose estimation techniques from the 2D video are remarkably developed. Researchers in computer graphics and computer vision have attempted to reconstruct the various human motions from video data. However, existing methods can not robustly estimate dynamic actions and not work on videos filmed with a moving camera. In this thesis, we propose methods to reconstruct dynamic human motions from in-the-wild videos and to control the motions. First, we developed a framework to reconstruct motion from videos using prior physics knowledge. For dynamic motions such as backspin, the poses estimated by a state-of-the-art method are incomplete and include unreliable root trajectory or lack intermediate poses. We designed a reward function using poses and hints extracted from videos in the deep reinforcement learning controller and learned a policy to simultaneously reconstruct motion and control a virtual character. Second, we simulated figure skating movements in video. Skating sequences consist of fast and dynamic movements on ice, hindering the acquisition of motion data. Thus, we extracted 3D key poses from a video to then successfully replicate several figure skating movements using trajectory optimization and a deep reinforcement learning controller. Third, we devised an algorithm for gait analysis through video of patients with movement disorders. After acquiring the patients joint positions from 2D video processed by a deep learning network, the 3D absolute coordinates were estimated, and gait parameters such as gait velocity, cadence, and step length were calculated. Additionally, we analyzed the optimization criteria of human walking by using a 3D musculoskeletal humanoid model and physics-based simulation. For two criteria, namely, the minimization of muscle activation and joint torque, we compared simulation data with real human data for analysis. To demonstrate the effectiveness of the first two research topics, we verified the reconstruction of dynamic human motions from 2D videos using physics-based simulations. For the last two research topics, we evaluated our results with real human data.컴퓨터 그래픽스에서 인간의 움직임 시뮬레이션 및 분석은 1960 년대부터 다루어진 흥미로운 연구 주제이다. 몇 십년 동안 활발하게 연구되어 왔음에도 불구하고, 3차원 가상 공간 상에서 사실적인 인간의 움직임을 시뮬레이션하는 연구는 여전히 어렵고 도전적인 주제이다. 그동안 사람의 움직임 데이터를 얻기 위해서 모션 캡쳐 기술이 사용되어 왔다. 모션 캡처 데이터는 사실적인 결과와 고품질 데이터를 보장하지만 모션 캡쳐를 하기 위해서 필요한 장비들이 많고, 그 과정이 복잡하다. 최근에 2차원 영상으로부터 사람의 3차원 자세를 추정하는 연구들이 괄목할 만한 결과를 보여주고 있다. 이를 바탕으로 컴퓨터 그래픽스와 컴퓨터 비젼 분야의 연구자들은 비디오 데이터로부터 다양한 인간 동작을 재구성하려는 시도를 하고 있다. 그러나 기존의 방법들은 빠르고 다이나믹한 동작들은 안정적으로 추정하지 못하며 움직이는 카메라로 촬영한 비디오에 대해서는 작동하지 않는다. 본 논문에서는 비디오로부터 역동적인 인간 동작을 재구성하고 동작을 제어하는 방법을 제안한다. 먼저 사전 물리학 지식을 사용하여 비디오에서 모션을 재구성하는 프레임 워크를 제안한다. 공중제비와 같은 역동적인 동작들에 대해서 최신 연구 방법을 동원하여 추정된 자세들은 캐릭터의 궤적을 신뢰할 수 없거나 중간에 자세 추정에 실패하는 등 불완전하다. 우리는 심층강화학습 제어기에서 영상으로부터 추출한 포즈와 힌트를 활용하여 보상 함수를 설계하고 모션 재구성과 캐릭터 제어를 동시에 하는 정책을 학습하였다. 둘 째, 비디오에서 피겨 스케이팅 기술을 시뮬레이션한다. 피겨 스케이팅 기술들은 빙상에서 빠르고 역동적인 움직임으로 구성되어 있어 모션 데이터를 얻기가 까다롭다. 비디오에서 3차원 키 포즈를 추출하고 궤적 최적화 및 심층강화학습 제어기를 사용하여 여러 피겨 스케이팅 기술을 성공적으로 시연한다. 셋 째, 파킨슨 병이나 뇌성마비와 같은 질병으로 인하여 움직임 장애가 있는 환자의 보행을 분석하기 위한 알고리즘을 제안한다. 2차원 비디오로부터 딥러닝을 사용한 자세 추정기법을 사용하여 환자의 관절 위치를 얻어낸 다음, 3차원 절대 좌표를 얻어내어 이로부터 보폭, 보행 속도와 같은 보행 파라미터를 계산한다. 마지막으로, 근골격 인체 모델과 물리 시뮬레이션을 이용하여 인간 보행의 최적화 기준에 대해 탐구한다. 근육 활성도 최소화와 관절 돌림힘 최소화, 두 가지 기준에 대해 시뮬레이션한 후, 실제 사람 데이터와 비교하여 결과를 분석한다. 처음 두 개의 연구 주제의 효과를 입증하기 위해, 물리 시뮬레이션을 사용하여 이차원 비디오로부터 재구성한 여러 가지 역동적인 사람의 동작들을 재현한다. 나중 두 개의 연구 주제는 사람 데이터와의 비교 분석을 통하여 평가한다.1 Introduction 1 2 Background 9 2.1 Pose Estimation from 2D Video . . . . . . . . . . . . . . . . . . . . 9 2.2 Motion Reconstruction from Monocular Video . . . . . . . . . . . . 10 2.3 Physics-Based Character Simulation and Control . . . . . . . . . . . 12 2.4 Motion Reconstruction Leveraging Physics . . . . . . . . . . . . . . 13 2.5 Human Motion Control . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.5.1 Figure Skating Simulation . . . . . . . . . . . . . . . . . . . 16 2.6 Objective Gait Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.7 Optimization for Human Movement Simulation . . . . . . . . . . . . 17 2.7.1 Stability Criteria . . . . . . . . . . . . . . . . . . . . . . . . 18 3 Human Dynamics from Monocular Video with Dynamic Camera Movements 19 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.3 Pose and Contact Estimation . . . . . . . . . . . . . . . . . . . . . . 21 3.4 Learning Human Dynamics . . . . . . . . . . . . . . . . . . . . . . . 24 3.4.1 Policy Learning . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.4.2 Network Training . . . . . . . . . . . . . . . . . . . . . . . . 28 3.4.3 Scene Estimator . . . . . . . . . . . . . . . . . . . . . . . . 29 3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.5.1 Video Clips . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.5.2 Comparison of Contact Estimators . . . . . . . . . . . . . . . 33 3.5.3 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.5.4 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4 Figure Skating Simulation from Video 42 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.2 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.3 Skating Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.3.1 Non-holonomic Constraints . . . . . . . . . . . . . . . . . . 46 4.3.2 Relaxation of Non-holonomic Constraints . . . . . . . . . . . 47 4.4 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.5 Trajectory Optimization and Control . . . . . . . . . . . . . . . . . . 50 4.5.1 Trajectory Optimization . . . . . . . . . . . . . . . . . . . . 50 4.5.2 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5 Gait Analysis Using Pose Estimation Algorithm with 2D-video of Patients 61 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.2.1 Patients and video recording . . . . . . . . . . . . . . . . . . 63 5.2.2 Standard protocol approvals, registrations, and patient consents 66 5.2.3 3D Pose estimation from 2D video . . . . . . . . . . . . . . . 66 5.2.4 Gait parameter estimation . . . . . . . . . . . . . . . . . . . 67 5.2.5 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . 68 5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 5.3.1 Validation of video-based analysis of the gait . . . . . . . . . 68 5.3.2 gait analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.4.1 Validation with the conventional sensor-based method . . . . 75 5.4.2 Analysis of gait and turning in TUG . . . . . . . . . . . . . . 75 5.4.3 Correlation with clinical parameters . . . . . . . . . . . . . . 76 5.4.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.5 Supplementary Material . . . . . . . . . . . . . . . . . . . . . . . . . 77 6 Control Optimization of Human Walking 80 6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.2.1 Musculoskeletal model . . . . . . . . . . . . . . . . . . . . . 82 6.2.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.2.3 Control co-activation level . . . . . . . . . . . . . . . . . . . 83 6.2.4 Push-recovery experiment . . . . . . . . . . . . . . . . . . . 84 6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 7 Conclusion 90 7.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91Docto

    Guided Autonomy for Quadcopter Photography

    Get PDF
    Photographing small objects with a quadcopter is non-trivial to perform with many common user interfaces, especially when it requires maneuvering an Unmanned Aerial Vehicle (C) to difficult angles in order to shoot high perspectives. The aim of this research is to employ machine learning to support better user interfaces for quadcopter photography. Human Robot Interaction (HRI) is supported by visual servoing, a specialized vision system for real-time object detection, and control policies acquired through reinforcement learning (RL). Two investigations of guided autonomy were conducted. In the first, the user directed the quadcopter with a sketch based interface, and periods of user direction were interspersed with periods of autonomous flight. In the second, the user directs the quadcopter by taking a single photo with a handheld mobile device, and the quadcopter autonomously flies to the requested vantage point. This dissertation focuses on the following problems: 1) evaluating different user interface paradigms for dynamic photography in a GPS-denied environment; 2) learning better Convolutional Neural Network (CNN) object detection models to assure a higher precision in detecting human subjects than the currently available state-of-the-art fast models; 3) transferring learning from the Gazebo simulation into the real world; 4) learning robust control policies using deep reinforcement learning to maneuver the quadcopter to multiple shooting positions with minimal human interaction

    Bayesian modeling of biological motion perception in sport

    Full text link
    La perception d’un mouvement biologique correspond à l’aptitude à recueillir des informations (comme par exemple, le type d’activité) issues d’un objet animé en mouvement à partir d’indices visuels restreints. Cette méthode a été élaborée et instaurée par Johansson en 1973, à l’aide de simples points lumineux placés sur des individus, à des endroits stratégiques de leurs articulations. Il a été démontré que la perception, ou reconnaissance, du mouvement biologique joue un rôle déterminant dans des activités cruciales pour la survie et la vie sociale des humains et des primates. Par conséquent, l’étude de l’analyse visuelle de l’action chez l’Homme a retenu l’attention des scientifiques pendant plusieurs décennies. Ces études sont essentiellement axées sur informations cinématiques en provenance de différents mouvements (comme le type d’activité ou les états émotionnels), le rôle moteur dans la perception des actions ainsi que les mécanismes sous-jacents et les substrats neurobiologiques associés. Ces derniers constituent le principal centre d’intérêt de la présente étude, dans laquelle nous proposons un nouveau modèle descriptif de simulation bayésienne avec minimisation du risque. Ce modèle est capable de distinguer la direction d’un ballon à partir d’un mouvement biologique complexe correspondant à un tir de soccer. Ce modèle de simulation est inspiré de précédents modèles, neurophysiologiquement possibles, de la perception du mouvement biologique ainsi que de récentes études. De ce fait, le modèle présenté ici ne s’intéresse qu’à la voie dorsale qui traite les informations visuelles relatives au mouvement, conformément à la théorie des deux voies visuelles. Les stimuli visuels utilisés, quant à eux, proviennent d’une précédente étude psychophysique menée dans notre laboratoire chez des athlètes. En utilisant les données psychophysiques de cette étude antérieure 3 et en ajustant une série de paramètres, le modèle proposé a été capable de simuler la fonction psychométrique ainsi que le temps de réaction moyen mesurés expérimentalement chez les athlètes. Bien qu’il ait été établi que le système visuel intègre de manière optimale l’ensemble des indices visuels pendant le processus de prise de décision, les résultats obtenus sont en lien avec l’hypothèse selon laquelle les indices de mouvement sont plus importants que la forme dynamique dans le traitement des informations relatives au mouvement. Les simulations étant concluantes, le présent modèle permet non seulement de mieux comprendre le sujet en question, mais s’avère également prometteur pour le secteur de l’industrie. Il permettrait, par exemple, de prédire l’impact des distorsions optiques, induites par la conception de verres progressifs, sur la prise de décision chez l’Homme. Mots-clés : Mouvement biologique, Bayésien, Voie dorsale, Modèle de simulation hiérarchique, Fonction psychométrique, Temps de réactionThe ability to recover information (e.g., identity or type of activity) about a moving living object from a sparse input is known as Biological Motion perception. This sparse input has been created and introduced by Johansson in 1973, using only light points placed on an individual's strategic joints. Biological motion perception/recognition proves to play a significant role in activities that are critical to the survival and social life of humans and primates. In this regard, the study of visual analysis of human action had the attention of scientists for decades. These studies are mainly focused on: kinematics information of the different movements (such as type of activity, emotional states), motor role in the perception of actions and underlying mechanisms, and associated neurobiological substrates. The latter being the main focus of the present study, a new descriptive risk-averse Bayesian simulation model, capable of discerning the ball’s direction from a set of complex biological motion soccer-kick stimuli is proposed. Inspired by the previous, neurophysiologically plausible, biological motion perception models and recent studies, the simulation model only represents the dorsal pathway as a motion information processing section of the visual system according to the two-stream theory, while the stimuli used have been obtained from a previous psychophysical study on athletes. Moreover, using the psychophysical data from the same study and tuning a set of parameters, the model could successfully simulate the psychometric function and average reaction time of the athlete participants of the aforementioned study. 5 Although it is established that the visual system optimally integrates all available visual cues in the decision-making process, the results conform to the speculations favouring motion cue importance over dynamic form by only depending on motion information processing. As a functioning simulator, the present simulation model not only introduces some insight into the subject at hand but also shows promise for industry use. For example, predicting the impact of the lens-induced distortions, caused by various lens designs, on human decision-making. Keywords: Biological motion, Bayesian, Dorsal pathway, Hierarchical simulation model, Psychometric function, Reaction tim

    Automatic Scaffolding Productivity Measurement through Deep Learning

    Get PDF
    This study developed a method to automatically measure scaffolding productivity by extracting and analysing semantic information from onsite vision data

    Imitating reactive human behaviours in games using neural networks

    Get PDF
    Treball final de Grau en Disseny i Desenvolupament de Videojocs. Codi: VJ1241. Curs acadèmic: 2019/2020Deep learning has allowed to create neural networks that can play any game almost optimally. However, not so many have been trained to play like humans, or more concretely, like one specific person. Most people have recognizable ways of playing specific games, and imitating those behaviors would allow to create bots that don’t appear to be artificially generated. Also, by imitating one person behaviors it would be easy to create bots that play at the same level of quality. This document, which is a Final Degree Work report for the Bachelor’s Degree in Video Game Design and Development, presents some techniques to create neural networks that can imitate human behaviors using Unity’s ML Agents SDK, an analysis on what behaviors can be modeled more precisely, what are the training costs and how good are the results

    Psychology: The Science of Human Potential

    Get PDF

    Psychology: The Science of Human Potential

    Get PDF

    Deep Neural Networks for Visual Reasoning, Program Induction, and Text-to-Image Synthesis.

    Full text link
    Deep neural networks excel at pattern recognition, especially in the setting of large scale supervised learning. A combination of better hardware, more data, and algorithmic improvements have yielded breakthroughs in image classification, speech recognition and other perception problems. The research frontier has shifted towards the weak side of neural networks: reasoning, planning, and (like all machine learning algorithms) creativity. How can we advance along this frontier using the same generic techniques so effective in pattern recognition; i.e. gradient descent with backpropagation? In this thesis I develop neural architectures with new capabilities in visual reasoning, program induction and text-to-image synthesis. I propose two models that disentangle the latent visual factors of variation that give rise to images, and enable analogical reasoning in the latent space. I show how to augment a recurrent network with a memory of programs that enables the learning of compositional structure for more data-efficient and generalizable program induction. Finally, I develop a generative neural network that translates descriptions of birds, flowers and other categories into compelling natural images.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/135763/1/reedscot_1.pd
    corecore