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Abstract

Deep learning has allowed to create neural networks that can play any game almost
optimally. However, not so many have been trained to play like humans, or more con-
cretely, like one specific person. Most people have recognizable ways of playing specific
games, and imitating those behaviors would allow to create bots that don’t appear to
be artificially generated. Also, by imitating one person behaviors it would be easy to
create bots that play at the same level of quality.

This document, which is a Final Degree Work report for the Bachelor’s Degree in
Video Game Design and Development, presents some techniques to create neural net-
works that can imitate human behaviors using Unity’s ML Agents SDK, an analysis
on what behaviors can be modeled more precisely, what are the training costs and how
good are the results.
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Neural networks have taken a big step in artificial intelligence, allowing to solve
complex problems like playing games optimally, generating images or supressing noise.
However, other fields are still to be explored, like the one that we treat in this document:
imitating human behaviors.

In this document, we will detail the steps for the realization of a neural network model
capable of imitating real player behaviors in simple games, from the programming of the
game that we will use as a test case to the analysis of results.

To obtain the dataset, we will use Unity3D to program a shooter-type game with no
player movement on the stage (Point-and-Click), and random targets. In order to obtain
a reasonable dataset to train the neural network, an NPC behaviour will be programmed
to simulate a large amount of games as the player. That NPC would have recognizable
characteristics in his way of playing. We will use the ML Agents framework, which
allows to simulate games and train directly from them and generate demos for imitation
learning.

The dataset used as input for the neural network is formed by in-game simplified
frames and the key/mouse inputs made in that moment (mouse movement and keys
pressed). Using that dataset, a neural network will be trained to mimic that NPC
by receiving simplified game frames as input, with the objective of obtaining a neural
network that visually reproduces that NPC’s way of playing.

1



2 Introduction

1.1 Work Motivation
This topic was chosen because I found interesting the potential of neural networks in
solving difficult problems and how well they solve them. Also, I wanted to learn to
use neural networks and make them, challenging myself to carry out a complex project.
Since I had some experience using the ML-Agents environment for Unity, it could serve
as a foundation to develop neural networks using reinforcement learning to solve the
problem presented in this document.

On the other hand, one of the main motivations of this work was to conduct a
research article (in parallel, with the Study and Research at the UJI program). I found
interesting that almost every scientific work related to neural networks was oriented to
learn to play optimally specific games, but almost none had the objective of imitating
real players in that games [2] [3], so I decided to investigate deeply in that area.

1.2 Objectives
The main objectives are the following:

• Program a simple shooting game using Unity3D.

• Obtain in-game information from Unity3D to train an agent

• Obtain a trained neural network that can reproduce the movements and reactions
of one specific player.

• Develop and define a framework that allows to imitate real human players in more
complex video games having their games’ data (video games where you can walk or
move in many other ways, games with more complex graphics or a larger amount
of controls).

1.3 Environment and Initial State
This project was intended to be developed with one PC, and trained at the research
laboratory of my supervisor in this TFG to speed up the training process. However,
the fact of not being able to use the laboratory equipment due to the closure of the
university because of COVID-19 delayed some steps of this project.
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Planning and resources evaluation

Contents
2.1 Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Resource Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

The following tasks would be performed iteratively (see Figure 2.1): First, a simple
game will be developed to serve as an example case for the model. Then, different
pre-programmed NPC behaviors will be used as training examples. Using ML Agents, a
neural network will be trained to imitate that NPC. The results obtained in each training
session will be analized to extract conclusions on why the trained network performs well
or not. Then, we will start again with other NPC or neural network structures, until we
gather enough data to extract conclusions and standardize a general model.

2.1 Planning
The simple game programming is expected to take 10 hours of work. Then, several neural
networks will be trained iteratively and analyzed. At the end, we expect to standardize
a framework for more complex behaviors. The memory will be written during all the
process.

2.1.1 Simple game creation

Using Unity3D, the first step is to program a simple 3D video game that serves as the
basis for this project.

The game devised is of the “shooter” type, although in this case it could be compared
more with a “point-and-click”. The player can only move the view with the mouse and

3



4 Planning and resources evaluation

Figure 2.1: Planning graph

Figure 2.2: Initial planning

"shoot" by clicking. The game scenario would be very simple to facilitate training (see
Figure 2.3)

The game screen would have a ratio of 16:9. In this image, the lighter colors cor-
respond to the background and the black with the "enemies" to which you must click.
To ease debugging, there would be a white point to represent the sight, which must be
aligned with the target to be shot. The agent would receive a visual observation (with
no GUI elements) as input.

Like in most shooters, the enemies would have a fixed shape, but the size they look
would depend on their distance and inclination with respect to the player, but in this
case they would not move. They disappear by clicking over them, and after a few seconds
a new enemy appears in another position (the number of enemies will be limited). The
player, when moving the mouse, would move the camera by way of rotation: the sight
remains static in the center of the image but the rest of the elements move in the opposite
direction of the mouse movement. In the case of vertical movements, the rotation has
stops at the zenith and nadir angles, so that you cannot see “upside down”.
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Figure 2.3: Actual screenshot of the final game

2.1.2 NPC Behavior

Within the same game, a very simple NPC will be programmed with sensors (rays or
colliders) that can play games from the previously described game in random condi-
tions. There are many parameters that could define the behavior of different bots, some
examples are:

• Reaction time

• Speed to which the mouse moves

• How many clicks are made on an enemy

• Precision of its movements

• "Tics" (for example, sudden changes in direction)

• Movements made when not seeing enemies

• Order in which you select enemies from the same screen

In addition, to represent the randomness that real human behavior would entail,
each behavior would have a range of imperfection, which could be represented with
more parameters such as a random range or a standard deviation.

The bot, unlike the one we intend to create to imitate him, would receive information
directly from the stage with sensors such as lightning or a frontal collider that detects
collisions with the enemies he has in front of him.



6 Planning and resources evaluation

2.1.3 Obtaining the Dataset

Since we intend to imitate a behavior based on the premise that the one who performs
it could be a human, the dataset to train must be composed of the information that a
human could have of a game: what is seen at each moment, what he has seen in the
previous instant and the actions he has performed in that previous instant. With all
these data, the action to be performed at this precise moment would be obtained.

The fact of receiving previous information allows to model behaviors with reaction
times: it is impossible for a human to react in a frame. The actions allow the movements
to have coherence: there could be an interval in which no enemies were seen on the screen,
remembering the previous actions you could know if it was moving to the left, the right
or it was still.

To obtain this data, it would be necessary to run the game (having the previous bot
playing it) and save each of the images, in addition to the inputs that are being made
(in Unity, this can be found in “Input.GetAxis” in the case of the movement, and in
“Input GetMouseButton or GetMouseButtonDown” in the case of clicks). The Inputs
could be saved in a text file, a table or a csv file.

To save the frames, RenderTextures are obtained from the main camera, “Image.
EncodeToPNG()” is used to format the image and certain functions of the File class to
save files (such as WriteAllBytes). Each frame and input would be assigned a numerical
code to obtain them together. Saving files would be executed in LateUpdate(), which is
recommended as it is executed after the update of each frame and before the next.

2.1.4 Neural network model and training

Training the neural networks is what takes most of the time. This process includes
tuning parameters, designing and balancing rewards and the training itself. In this part
of the process some methods to model the behaviors of the NPCs described in section
2.1.2 are designed.

The proposed neural network, in simple terms, is a classification network [10]: it
receives images (and previous actions) as input and returns the action (or actions) to be
performed in the current frame.

The input consists of the current frame, a certain number of previous frames and
the actions performed on those previous frames. These 3 elements are subjected to
convolutions 1 separately (or other kind of compressions) to simplify the information.
This information is then processed in a simple network with at least one hidden layer,
returning as output the expected action of the current frame, composed of: mouse click
(true or false), horizontal and vertical (these last 2 are normalized values representing
the speed of movement in the 2 axes, that is, the movement of the mouse). Simpler
neural networks could have different architectures, inputs or outputs.

1Convolution is a mathematical operation on two functions that produces a third function expressing
how the shape of one is modified by the other.
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Since in ML Agents all the actions have to be coherent (either discrete or continuous)
and the mouse movement needs to be continuous, discrete actions 2 (clicks or keyboard
inputs) would be expressed as a probability of performing it (from 0 to 1).

To train the network, it will be fed with previous frames and actions, the returned
action will be compared with the real one that has been performed in that frame, and
the error corrected using gradient descent [8].

2.1.5 Analysis of results

Once the neural network is trained, it is necessary to incorporate it into Unity so that
it can play games and receive inputs in real time.

A first way to check the quality of the behavior generated is visually: the neural
network must not only show more or less “intelligent” actions, but must resemble the
original. If the behavior doesn’t look anything like the original in all cases, it would be
discarded.

If they seem similar, we would make graphs with the actions performed in time (x =
time, y = mouse speed on an axis) for each of the 3 actions in order to check if both the
reactions and the speed of the movements fall within the range of imprecision that we
have defined. From multiple simulations in the same conditions, we could know if the
behavior is really similar or not.

After obtaining a result, we would either try to improve it by changing the dataset
or the network structure; or repeat the process with another different NPC.

2.1.6 Framework standardization

In the case that we succeed in obtaining similar behaviors (for one or more agents with
different behaviors), the next step would be to standardize this method to be able to
apply it to more complex games, in which the image has many more elements or there are
many more actions available. In that step we would discuss issues such as the feasibility
of the model, the accuracy of the results, the cost of training in other cases or the
differences between the neural networks in each case (number of layers and neurons per
layer).

Also, whether the trained agents imitate the behaviours well or not, we would discuss
why that techniques do or do not solve well the imitation problem and what could be
done to improve the results.

2.2 Resource Evaluation

The development is intended to be done in an average home PC, but as stated in sec-
tion 1.3 it would be better if a laboratory could be used in parallel. It could be done in

2In ML Agents, continuous actions are float numbers. Discrete actions are expressed as an integer,
where each possible integer represents a different action.



8 Planning and resources evaluation

reasonable amounts of time (1-4 hours of training per model) while also covering other
tasks in parallel.

The only economic cost would be the energy spent in training the neural networks,
which could be little high but viable.

In order to execute any of the trained models that were saved in this project, the only
requirement is using Unity 3D 2019.2.12.f1. However, to train other neural networks
the following requirements must be met:

• Python 3.6

• Tensorflow 1.15

• mlagents 0.11

• keras 2.3.1

These other requeriments are optional if the training is executed CPU-only, but
needed to speed up the process by using GPU:

• Cuda 10.0

• CuDNN 7.6.5

To end with, the system used to train the models has these specifications. They are
not a minimum requirement, but can be used as a reference point:

• OS: Windows 10

• CPU: Intel Core i7-4790

• GPU: NVIDIA GeForce GTX 1050

• RAM: 24 GB
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System Analysis and Design
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In this sections, we will detail which requirements must be acomplished to consider
that the neural network solves its task correctly. Also, we will specify the system used
to develop this work and its minimum specifications.

3.1 Requirement Analysis

3.1.1 Functional Requirements

The following must be fulfilled to provide a realistic imitation:

• The neural network will be able to play indepently the game

• The network will receive as input what is seeing

• The network will receive as input immediate past actions and images

• The network will output the action/s made

• The network will adapt its actions to reaction times of the NPC being imitated

• The network and the NPC would not be differentiated when playing

9



10 System Analysis and Design

3.1.2 Non-functional Requirements

• The network will be scalable to more complex problems

• The network will be decently trained in reasonable time

• The network will be sample efficient when training

3.2 System Design

To train an agent, an environment is needed. The training is executed in a game build,
where the custom bot plays the game and the neural network tries to guess its moves.
After trained, the neural network can be fed into the Agent class and play the game by
itself in the editor. The Figure 3.1 shows the class diagram of the environment:

The scene has one custom Academy (ShootAcademy), a Camera and a Spawner that
creates the enemies randomly in execution time. The camera contains one custom bot
(the abstract class allows to create new bots and test them without changing references),
a movement handler (CameraMovement) which handles the moves made by the bot or
the neural network, a custom Agent that generates and executes trained neural networks,
a visual sensor and a Demo Recorder (when activated, it generates a dataset for Imitation
learning).

Figure 3.1: Class diagram of the training environment
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The classes Academy, Agent, DemoRecorder and Sensor are provided by the ML
Agents SDK [8].

3.3 System Architecture

Figure 3.2: Diagram of the system architecture

ML Agents works using an environment in Unity to train neural networks. The
networks are trained in a python program (executed using the command line) that
communicates with that environment. In the environment, there will be a controller
that allows either the NPC or the trained agent to play the game. A graph will be
displayed in the UI to see live how well the agent is performing.

3.4 Interface Design

To acknowledge how well is the neural net adapting to the bot movement, the guesses
of the bot are displayed in a real time graph alongside the bot’s real move. There is also
a centered sight to better see how the bot behaves. Figure 3.3 shows a complete game
window while training.

The graph displays 3 main lines (see Figure 3.4a): the red one is the move made by
the bot, the blue and green ones are the highest and lowest guess of the bot (since the
bot’s movements are not perfect, these two lines can vary from being almost touching
to being really wide). Other 3 lines are used to show the weighted average move and its
standard deviation.
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The image at the bottom left is what the neural network receives as input. It helps
verify that everything works correctly (Figure 3.4b): if the agent action and the NPC
action look similar, then it’s very likely that the agent would perform well 1.

Figure 3.3: Complete screen of the game

(a) Move Graph (b) Input Vision

Figure 3.4: Debugging UI elements

1Even though sometimes the agent can look like the NPC that imitates during training, when playing
it can behave differently depending on the observations it receives. In section 4.2.5 there is an example
on why this phenomenon can happen.
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In this section, we will detail the development of the project starting from the game
creation, and then describing each step of increased complexity of the behaviour to
imitate, as well as the results obtained in each step.

To avoid confusion, we will refer to the programmed behaviors that we want to
imitate as “bot” or “NPC”, and the generated neural networks that have to learn to
imitate that bot will be called “AI” or “agent”.

4.1 Game Development
The game environment needs to include the ML Agents’ classes (Agent and Academy)
to train and play the game using the network. The game structure is the one shown in
section 3.2.

The camera has an NPC and a trained AI attached: One of them controls its move-
ment automatically, and who does that can be changed in play time. Both of these
classes have getters to 3 variables that correspond to the possible movements: mouse X
movement, mouse Y movement and mouse click, which are used to rotate and shoot.

The Spawner creates randomly and saves references of black planes in the scene,
which correspond to the enemies.

13



14 Work Development and Results

To end with, a Debug Canvas has been added as interface, which draws lines with
the movements made and the ones expected by the neural network. This allows to see
how well the neural network is training.

4.2 Reactive Behaviors

The first human behavior we would analize is reactions, which can be defined as “sudden
changes produced by a stimulus”. To model this behavior, we created a Bot with the
following requirements:

• While not seeing any target, it moves to the left uniformly

• When a target enters the screen, it reacts moving fast towards its center, then
continues moving as normal

At this first step, the bot will only move horizontally, and it will be considered that
is always clicking (so the targets would be destroyed whenever the sight touches them).

4.2.1 Training with Proximal Policy Optimization (PPO)

Proximal Policy Optimization [4] is the first and most simple reinforcement learning
algorithm provided by ML Agents [8]. It uses a neural network to approximate the ideal
function that maps an agent’s observation to the best action it can take in a given state.
Also, it is the fastest algorithm of all provided by ML Agents.

In the following subsections, some training related issues will be taken into account.
At first, we will train our models using this policy (PPO).

4.2.2 Unnecessary actions

It is important not to add more actions than needed, since they would slow down the
training process considerably. Even though it is possible to move in X and Y and perform
clicks, since the bot only moves using the one axis, any additional action would add much
noise to the AI.

That is caused because when training the AI is overfitted with demonstrations with
Y movements of exactly 0, and when that AI is playing any slight up or down movement
would go inside untrained cases, and then causing unexpected behaviors.

Therefore, in this case the neural network would only have 1 action output: the X
axis movement.
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4.2.3 Rewards based in tolerable range

Figure 4.1: Rewards based in
tolerable range.

Our first reward approach is based in tolerable ranges.
This consists in giving positive rewards when the dis-
tance between the guess and the real move is less than
the tolerable range:

-The maximum reward is given (1) if it the distance
is exactly 0

-A reward of -1 is given when the distance is 2,
which is the maximum distance possible (NPC mov-
ing at maximum speed in one direction and the AI in
the opposite direction).

In Figure 4.1, you can see the reward function with
tolerable range = 0.5. In our trainings, tolerable range
was between 0.05 and 0.1: lower tolerable ranges than
0.05 caused the training to become unstable because it
only got negative rewards, and higher tolerable range

Models trained using these rewards are not very time-efficient. If the tolerable range
is too big (the agent receives positive rewards easily), the model doesn’t fit the movement;
if it is too small (receives negative rewards), the agent tends to stay only in the average
movement, and doesn’t react at all. That happens because the average is the point with
biggest chance of reward (the agent is only punished when an impulse occurs).

Curriculum learning 1 does not improve the training performance since with the
initial less exigent punishments, the neural network learns much slower than with higher
ones.

Figure 4.2 shows some of the success cases. From left to right, the first image shows
how the neural network model adapts to the idle movement and the impulses, after
180000 training steps (4100s). The middle image displays an imperfect behavior of the
same model when successive impulses occur. The right image is the same model trained
longer time (10000s, 435000 steps), and how it tends to excessively smooth its impulsive
movements. The causes of these two problems (successive impulses and smoothing) are
discussed in section 4.2.4.

4.2.4 Determinism of the behavior

Since at this point the neural network does not receive past events as input (neither
moves or images), the movements performed by the bot have to be deterministic in
order to train correctly: that is, given a frame, the bot would react with the exact
same move every time (in the impulses, the default movement has a bit of noise in it).
However, by how the bot was made it always took as objective the first image that it
had seen, until destroyed.

1Curriculum learning is a technique provided by ML Agents to train complex behaviors with con-
secutive lessons that increase in difficulty. That way, when the agent learns one task it goes on to the
next lesson.
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Figure 4.2: Bot movement (red) and neural network movement (green)

In some special cases, when a new target spawns nearer to the sight than the current
objective, the bot would not change the target order, and so it would behave differently
depending on the context, as you can see in figure 4.3. These repeated events cause the
neural network to confuse when multiple targets are on screen, and if trained longer, it
tends to do smaller impulses until only moving in the average move.

This issue is solved by making the bot behavior deterministic or adding a movement
memory.

4.2.5 Movement memory

In order to prepare the bot to have reaction times, 25 previous moves distributed in the
last 2 seconds are added as observations. What move is added as observation is critical.

If the real bot movement is added, the bot reaches high rewards very quickly but
doesn’t learn to imitate the bot: that’s because the neural network learns to “mimic”
the last move made by the bot, so it has high chance of reward with only one important
observation. When playing the game with the trained neural network, it would not move
(in the beginning, all the previous moves are 0) until it starts moving in one or another
direction at maximum speed (See Figure 4.4). This happens when the movement starts
increasing in value due to impressions in the returned action of the neural network that
make it believe that it is accelerating in movement.

When using the neural network movement, it learns like before: correctly but a bit
slower. However, the previous moves tend to have noise at first, and the network could
learn to ignore them.

A better approximation would be interpolating the real move with the neural net-
work’s one: at the start, the movement added as observation in the next frames would be
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Figure 4.3: 2 situations that lead to different actions with the same frame

the NPC move. When the AI starts learning to adapt to the context (previous moves),
the movement added would be an interpolation between the AI and the NPC movement
(which would cause the AI to react in time), until the original AI moves are the ones
added as observation. This can be made using curriculum learning: the lesson with least
difficulty is the one where the AI receives past movements of the NPC as observations,
and the hardest one where it receives its own movements as observation.

4.2.6 Rewards based in standard deviation

Figure 4.5:
Weighted average
and standard
deviations of
an irregular
movement

Since trained models using the methods explained in the previous
sections tend to return the most common value, movements with
more noise or imprecissions would not be produced correctly by the
AI: when training, the AI could guess a move some units below
the average of the previous moves but the NPC could have done a
move the same units above the average, causing the network to be
penalized, and causing the AI movement to converge to the average
movement. To model these kind of noises more precisely, the actions
and rewards should be changed.
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Figure 4.4: A badly trained model while training (up) and playing (down)

(a) Points by precision
(b) Reward and punishment
factors by coherence

(c) Deviation factor divided
by Pow(2,(1-coherence)),
with coherence=1

Figure 4.6: Shape of the 3 parameters used for rewards

In this section we propose a reward system based on standard deviations (Figure 4.5):
the relation between standard deviation, average and the actual move would determine
how coherent is a move in a given context.

The coherence of a movement can be defined as how centered it is, in relation to
the average. A movement with maximum coherence (1) would be the exact average,
a movement at a standard deviation distance would have coherence 0, and movements
outside of the standard deviations would be considered “incoherent”. Then, default
movement with noise would be coherent moves, and impulses would be incoherent.

To model the behavior, the agent would do 2 actions instead of one: a maximum and
a minimum guess. The more precisely it encloses the real movement, the higher reward
it gets; if it fails enclosing it, a punish is given.
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Coherent moves give higher punishments if failing and smaller rewards, and incoher-
ent moves (impulses) give high rewards. Given a maximum and minimum values (actions
provided by the neural network), the real move, the average of the last 25 moves, its
standard deviation and the coherence parameter explained in this section, the reward
system follows these rules:

• Coherence is inversely proportional to the reward factor, and directly proportional
to the punish factor : high coherence means lower rewards and higher punishes.

• A movement has higher precision if it’s centered between the maximum and min-
imum, and less if it’s outside. The precision is relative to the difference between
the maximum and minimum values

• The deviation factor is calculated dividing the real standard deviation with the
agent one (max - min)

• The deviation factor is inversely proportional to the coherence

• All the values are clamped to avoid excessively high rewards/punishments or zero
division errors

• The final reward is calculated multiplying precision * factor * deviation factor

Figure 4.7:
Trained model
using SD rewards

In figure 4.6 you can see the shapes of each parameter functions,
used to calculate the final reward.

In this first approach using maximum and minimum estimations,
the network doesn’t fit well the movement: it encloses large areas
continuously (See Figure 4.7). That could happen because it receives
less punishment by enclosing the coherent movement than by fitting
and sometimes failing, and also receives rewards from incoherent
movement. Thus, the neural network finds an equilibrium enclosing
wide ranges to catch high rewards from incoherent moves, at the
cost of getting fewer rewards from coherent moves (which were low
by definition) and not exposing to any punishment from failing to
encase coherent moves.

4.2.7 Rewards based in movement coherence

Since last reward system didn’t make the agent learn correctly, we
need to change the rewards in a way that it worries about adjusting
to the predictable coherent movement while also worrying about not
to miss any impulsive incoherent move.

Rewards based on movement coherence are a simplification of the reward system
exposed on section 4.2.6, where coherent moves can only punish and incoherent moves
can only give rewards. These motivates the agent to receive the least punishments
by enclosing coherent moves, but also to take profit of potential rewards of incoherent
moves.
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Figure 4.8: Coherence-based mod-
els with and different learning rate:
left=2e-3, right=8e-3

The punishments in coherent moves are calcu-
lated multiplying the punish factor, the coherence
(0..1) and the relative distance between standard
deviations, maximum and minimum.

The rewards in incoherent moves are calculated
using the reward factor, the opposite to coherence
and the precision factor shown in section 4.2.6.

Models trained with this system adapt better to
both coherent and incoherent moves, however they
need high learning rate and at least 300000 steps to
see acceptable results (see Figure 4.8). Neverthe-
less, a learning rate higher 2 than 1e-2 can easily
lead to unstable models that don’t learn at all.

4.2.8 PPO hyperparameters

To sum up, the trained models that got decent performance had the following hyperpa-
rameters (they also depend on the reward system):

batch size 32 or 1024 beta 5.0e-3..8.0e-3
buffer size 256 or 8196 epsilon 0.3
hidden units mostly 256 learning rate 1.0e-4..2.0e-3
learning rate schedule mostly linear normalize false
num layers mostly 1 num epoch 3-5
summary freq 1000 time horizon 5-256
extrinsic strength 1.0 extrinsic gamma 0.8..0.9
curiosity strength (opt.) 0.01..0.1 curiosity gamma (opt.) 0.8..0.99
curiosity encoding size
(opt.) 128-256 gail strength 0.01 (not rec-

ommended)

gail gamma 0.95 (not rec.) gail learning rate 0.0005 (not
rec.)

gail encoding size 64 (not rec.) gail use vail true (not rec.)
gail use actions true (not rec.)

4.2.9 Training with Soft-Actor Critic (SAC)

Soft-Actor Critic [6] is the second reinforcement learning policy provided in ML-Agents.
It is characterized for being more sample-efficient and can learn from past experiences.
However, it also executes slower, so the time needed to train a model is very similar
both with PPO and SAC. Also, its training steps can be increased more easily since the
learning rate is recommended to be constant (its Q function converges naturally).

2Learning rate is an hyperparameter that defines the strength of each gradient descent update step
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To compare new methods with SAC and PPO, we’ve added simple linear rewards
that affect the maximum and minimum individually, in addition to rewards based in
movement coherence. These give reinforcement signals when one of the lines is well
positioned, even when the cummulative reward is negative. In Figure 4.9 you can see
a cumulative reward comparison between an agent trained with SAC and other agent
trained using PPO, with rewards based in coherence (see section 4.2.7): SAC converges
to a higher reward than PPO with much less steps.

Figure 4.9: Total rewards of SAC (pink) and PPO (green).

As final result, Figure 4.10 shows a comparison between both trained neural networks:
SAC adapts much better to impulses than PPO, even though PPO also manages to fit
the real move between the two lines. However, when playing neither of them reacts
correctly to targets that appear on the right side (mainly because it is an uncommon
case). After the training both models still have much noise in their default movement,
but it could be corrected by training longer or by rewarding the stability of both agent
lines (maximum and minimum).

Another aspect to take into account is how both methods can be applied using GPUs
to boost the training process. SAC makes better use of the GPU: by training with 3
environments in parallel the training speed doubles (being equally fast as PPO using
CPU) and also improves its efficiency. PPO training using GPU and 3 environments
is almost 2.5 times faster than with CPU or GPU-SAC, but is more likely to produce
an application crash than any other training method (because of GPU overheating or
running out of memory).
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Figure 4.10: Comparison between SAC (left) and PPO (right).

4.2.10 SAC hyperparameters

These parameters were the ones used when training with SAC:

batch size 128 buffer size 200000
buffer init steps 5000 hidden units 256
init entcoef 1.0 learning rate 4.0e-4
learning rate schedule constant max steps 6.0e5
memory size 256 normalize true
num update 1 train interval 5
num layers 1 time horizon 64
sequence length 128 summary freq 1000
tau 0.005 use recurrent false
vis encode type simple pretraining strength 0.4
pretraining steps 20000 extrinsic strength 1.5
extrinsic gamma 0.99 curiosity strength 0.03
curiosity gamma 0.99 curiosity encoding size 128
gail strength 0.03 gail gamma 0.99
gail encoding size 128 use actions true
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4.3 Reaction time
In this section we will cover the development of bots with a behavior similar to the
one presented in last section, but with delayed reactions: when the bot sees a target, it
does not react instantly, but takes a few milliseconds to perform the action. This adds
more complexity to the behavior and to the neural network, since it needs to receive
information from previous frames (Moreover, the reaction time may not be exactly the
same every time).

Even though the AIs with actions based in standard deviation (2 outputs to encap-
sulate a noised movement, see 4.2.6) did well modelling imprecise movements, we won’t
use this method in this section. That’s because not only it would add more complexity
to the task, but it could add much noise when moves are uncertain (if a bot reacts at
0.1-0.3 seconds, the AI would try to encapsulate a possible jump in all that range, and
then if a random point in between was chosen as action each frame, the bot would not do
a perfect impulsive movement. Instead, it would do a strange vibration). This feature
will be solved with better reward systems (see section 4.3.2).

4.3.1 Render Textures

In order to provide the agent past observations, render textures must be used (Camera
observations aren’t useful in this context since they cannot provide past frames as input).
ML Agents allows to provide multiple visual inputs (see 4.11), but they must follow these
requirements:

• Each render texture must have the same width and height 3

• All render textures must be the same size

• All render textures must be either grayscale or not, but there must not be render
textures of each type

• The minimum size is 20x20 pixels

• Each visual input must have an unique name (We use “RenderTarget” for the
current frame and “FrameXXX” for past frames)

• Each visual input’s render texture should not change in execution time 4

With these restrictions, there are two reasonable methods to manage render textures
in Unity:

The first method consists in creating a Render Texture array with the desired frames
in the N-1 position of the array (last frame in position 0, the 5th frame before in position
4...). The current frame isn’t included in the array since it is rendered directly from a

3This requirement also applies when only using one render texture (at least in this ML Agents
version)

4Since there are multiple components of the same type, they cannot be changed reliably in real time
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Figure 4.11: Example of a Render Sensor component.

virtual camera. The missing positions in the array must be filled with other Render
Textures, even though the neural network would not receive them as input. Then, when
a frame ends each render target copies the next frame (iterating the array backwards),
until the current frame is rendered over the render texture at the position 0. This method
is not very optimal and has some errors at the start (render textures appear empty until
frame N, being N the size of the render textures array) but allows to personalize easily
which frames we want to provide as input to the neural network. Also, sometimes the
copying of frames can overlap (frame N is being drawn on frame N+1, but before ending
the process the frame N-1 starts being drawn over frame N).

Other more optimal and safe 5 method is using a list to store previous frames like
a queue (see Figure 4.12 to visualize how it is executed): after each frame, a copy of
the current rendered frame is saved at the start of the list, and the last is deleted if it
exceeds the last frame provided as input. Then, for each frame that the network receives
as input, the corresponding frame in the list is copied over it. With this method, each
frame in the list isn’t modified after being copied from the original.

4.3.2 Reward systems

In this section, we’ve worked using 3 reward systems: tolerable range rewards, reward
based in coherence and standard deviation and rewards after impulse.

Tolerable range

This reward system is the same that was described in section 4.2.3. With delayed
reactions, this system is only effective if they are uniform: all reactions must occur at
the same time. If not, the neural network would consider that is not worth the risk of
doing an impulse if that had high punishments (See Figure 4.14 to see an example of
a high punishment when doing a correct impulse if the bot has non uniform reaction
times).

With this method, the AI learned to do impulses correctly (even some that came
from the right side, which is an exception case) but it didn’t adapt well to the average
movement: it had much more noise than the bot in default moves (See Figure 4.13).

5Even though this method is safer, it is important to ensure that the render textures that won’t be
used again are deleted. Not doing so will cause the memory to overflow, and the environment to stop
without apparent errors.
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Figure 4.12: Render Queue: see that frame 2 isn’t used as input for the neural network.
Red arrows mean that the frame (or Render Texture) at the start is copied over the
Render Texture at the end.

Rewards after impulse

This reward system uses 2 queues, one for the AI and other for the bot. Whenever one of
them does an impulse, instead of giving a score to the moves, they are stored in a queue.
Then, when the other one does another impulse it is compared with the first’s movement
(either the AI or the bot can do the impulse first). If one of them did an impulse but the
other didn’t, after some time the AI would be penalized (either by missing an impulse
or by doing impulses when it shouldn’t).

The results obtained using this reward system were not very good: the agents didn’t
learn to do impulses at all. Since the rewards are given after both impulses are completed,
the AI can get confused about when to do an impulse and how 6. Even though, this

6It is important to use large (0.99-0.995) gamma values for the rewards in this method: a big gamma
parameter means that the agent looks for future rewards.
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Figure 4.13: AI trained with tolerable range rewards. It adapts well to the impulses but
not so much to the normal movement.

method is still the easiest way to model temporal noise, and with better balanced rewards
it should perform well (See Figure 4.14).

Figure 4.14: Case when the AI would receive a double punishment when doing an
impulse: if not using 2 queues, the agent would have a big punish even though the
impulse was correct (the bot can react at either moment)

Rewards based in coherence and standard deviation

Like Tolerable Range rewards, this method has been applied to uniform reaction times.
In our test cases, we have used reaction times between 1 and 8 frames of difference, and
used as input for the AI the last 10 consecutive frames. This method is similar to the
one explained in section 4.2.7, but applied to one action instead of two (the expected
move instead the maximum-minimum guesses).
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This method differentiates between coherent and incoherent moves: when the bot’s
movement is coherent (it is inside the average±standard deviation range), the AI receives
a consistent reward if its move is also inside that range, if not, it receives a punish that
gets higher when the relative distance to that range increases. When the bot’s movement
is incoherent (impulse) there are 3 options:

• If the AI move is closer to the bot’s move than to the average, it receives a high
reward (higher when closer)

• If the AI move is closer to the average move but between the average and the
movement made, it doesn’t receive any reward or punish

• If the AI move is in the opposite direction, it receives a punish

Figure 4.15:
Model trained
with 0.1 sec-
onds of reaction
time using this
method

Using this method we have obtained the better results until this
point (see Figure 4.15), still, it has more problems imitating the
exception cases (for example, when a target appears at the opposite
side).

The quality of this results is very dependent on the precision of
the average and the standard deviation. In section 4.3.2 we explain
how both of them were improved to get better results.

Dynamic average and standard deviation

At this point, to calculate the average and the standard deviation we
were considering the last 60 moves. Each frame, the last move was
deleted, the new one added to the list; then both the average and the
standard deviation were updated. Using this amount of values was
correct in some cases, but when some consecutive impulses happened
they lost precision (see Figure 4.16), thus spoiling the reward system.

To add precision more values are needed, but too much values
would be highly inefficient. To solve both of these problems, we
use dynamic averages and dynamic standard deviations. Dynamic
parameters are calculated using available previous information to
avoid recalculating both values each frame: instead, when adding a
new value, we use the last average (and standard deviation) and incorporate the new
value to obtain the new average (or standard deviation). Both of them have O(1)
computational cost (each frame) instead of O(N).

The dynamic average formula is the following:

an+1 = xn+1 + n · an

n+ 1

Where we obtain the average for the next frame (an+1) from the last average (an),
the new move value (xn+1) and the amount of moves that have been used to calculate
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an (n). Even though the formula can be obtained intuitively, the calculations used are
explained at Appendix A.

The calculations needed to obtain the standard deviation σn+1 of the next frame
require the last standard deviation σn, the new and old averages (an, an+1), the new
move value (xn+1), the amount of moves (n), and the average of all the moves squared
(
∑n

i=1 x2
i

n ). This last parameter can be easily tracked using the dynamic averages ex-
plained above.

The formula (see Appendix B) for the dynamic standard deviation 7 is the following:

vn+1 = vn + a2
n − a2

n+1 −

∑n

i=1 x2
i

n − x2
n+1

n+ 1

The standard deviation is obtained taking the square root of the variance (v): σn = √vn

Even though these two formulas stabilize both values, the standard deviation fails
enclosing the noise of the coherent movement (it should be smaller) when there is a rela-
tively big amount of impulses. To adapt better to the coherent movement, we interpolate
the values of the moves outside of the standard deviation range 8. From several training
sessions, the best interpolation parameter for the real move and its closer standard de-
viation appears to be 0.4 (0.4·move + 0.6·standard deviation). Smaller interpolation
parameters still made the range too big, and bigger interpolation parameters caused the
standard deviation to increase too slowly 9 (a parameter of 1 would cause the standard
deviation to stay at value 0). See Figure 4.16 to view a comparation between smoothed
dynamic standard deviation, pure dynamic standard deviation and the non dynamic
one.

4.3.3 PPO vs. SAC

As we said in section 4.3.2, it is possible to model a correct behavior using a reward
system based in standard deviations and movement coherence. However, it is important
to clarify that all of those good results were obtained using PPO.

Even though SAC was more effective modeling non delayed reactive behaviors (see 4.2.9),
PPO performed better with delayed reactions. This could be caused because how both
algorithms work and because unbalanced rewards:

PPO tends to optimize the agent to have the highest rewards in each situation, but
SAC optimizes it to have an overall higher reward. Agents trained with SAC tend to the
average move, not doing any impulse. PPO follows the impulses since approaching them

7In the formula, the variance is used instead of the standard deviation to simplify the calculations,
but we use only the standard deviation value

8Smoothing values may not be statistically correct for a standard deviation, but since the objective
is to differentiate between Coherent and incoherent moves it is valid for our purpose

9The ideal interpolation parameter is approximately 0.4, however other parameters could work better
with different amounts of noise. Still, this value works well in most of the cases.
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Figure 4.16: Standard variations and average of the same bot using last 60 values (left),
dynamic values (mid) and dynamic values smoothed by a 0.6 interpolation (right)

gives a potentially higher reward in that situation. Still, SAC models had better scores
just by not exposing themselves to the punishments of failing coherent moves (which
were higher than the punishments of failing an impulse). In Figure 4.17 you can see a
comparison between both methods using the same reward conditions.

Figure 4.17: Comparison between an agent trained with SAC (left) and other trained
using PPO (right). The bots in both cases have a reaction time of 0.1 seconds and 0.15
units of noise

At this point, even though PPO performs better, both methods still fail at performing
some impulses, when targets appear at the right side, or when two consecutive targets
appear at the same time, and they don’t adapt to noised reaction times (at least with
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the reward system exposed until this section).

4.3.4 Behavioral cloning

Figure 4.18: Model
trained with BC in 2000
steps. The bot’s impulses
appear deformed because
the agent is the one
playing the game

Behavioral Cloning [7] is the simplest algorithm provided by
ML Agents in terms of difficulty to adjust: it directly copies
the actions given in a demo (which can be recorded in the
editor). However, it has its limitations: since it doesn’t
depend on environment rewards, the programmer cannot
modify its behavior with reinforcement learning. Also, de-
pending on the task, agents trained using these methods
can have chaotic behaviors.

When trained with simple cases (in section 4.3.6, we
treat how the rare cases were suppressed from the train-
ing), they perform really well. Also, the agents can model
temporal noise effectively. The agent in Figure 4.18 is a sim-
ple case at the extreme: it receives the last 9 frames (and
the current) as input and the bot can perform an impulse
at each one of those frames (from 0.01s to 0.15s). The agent
usually does the impulse at the average reaction time of the
bot. It is worth noting that when the agent performs more
or less correctly it’s better to stop training, else it usually
loses precision (see Figure 4.19).

In the next 3 subsections, we will explain some problems
that appeared when using behavioral cloning, and how they
were solved.

4.3.5 Recurrent memory

Figure 4.19: Model
trained with BC in 7000
steps

Recurrent neural network [9] are a feature that allow agents
to have memory and remember past observations. They
have the advantage of being optimized to “choose” what to
remember, at the cost of giving less control to the user. Also,
its training is much slower, and they have worse performance
when infering.

A combination of past render targets, past moves and
recurrent memory can obtain good models (even in some
rare cases), but the resulting neural network is so heavy
that the frame rate drops from roughly 70 fps to 25 fps.
Even though it can perform most of the impulses, it usually
has some strange artifacts (extra impulses) in its behavior
(See Figure 4.20a).
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One problem 10 that appears when using recurrent networks with simpler inputs is
that they are not foolproof: whenever they receive an unexpected input (in most of its
inputs), its behavior can become chaotic. In figure 4.20b you can see an example of this
problem: the neural network appeared to have trained well, but when it received an
empty input for the past moves (at the start, all previous moves are 0), when they were
returned by the recurrent memory, the agent became chaotic.

(a) 20 visual inputs and 25
past moves

(b) 1 visual input and 25 past
moves

Figure 4.20: Agents trained with recurrent memory and behavioral cloning

In conclusion, recurrent neural networks are not recommended for this problem:
behavioral cloning can adapt to the movement without them, and the training sessions
and performance become much slower.

4.3.6 Rare situations

As the game was programmed, targets spawn randomly at the stage. Since they can
appear at any point, this provokes some situations that happen rarely: for instance, with
the bots we have been using most targets appear by entering the screen in the left side
(the bot moves continuously in that direction). However, some targets can spawn at its
right side in a way that they can be seen, this happens approximately 1 in 12 times (the

10According to the ML Agents documentation, recurrent memory is not recommended for continuous
action spaces, which we are using
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bot has a field of view of almost 60º). In figure 4.21 you can see some examples of some
types of situations that appear in game.

Figure 4.21: Some of the different situations the neural network can encounter in the
game

Those rarer cases often suppose a harder task to solve by the neural network, but with
temporal delays sometimes they cause the problem to be too complex to be approximated
by the neural network (see Section 4.3.7). Also, when they appear less times, they are
learned slowly or not at all.

To improve the performance of the network, we can generate some rare cases in
purpose: instead of spawning targets randomly, they can be spawned in the right side
of the field of view, or two targets can be spawned next to each other, etc. Then, how
often each case occurs can be adjusted manually.

Figure 4.22: Neural
network that has di-
verged

This method was intended to make the agents learn faster,
however it served to prove that the structure of the neural net-
work was not enough to solve this problem.

4.3.7 Complexity of the task

Sometimes a task is too complex to solve by one neural network
structure, with behavioral cloning is easy to detect this prob-
lem [1]. These problems need more internal layers (and more
training time) to be solved. For instance, the problem devel-
oped in this section (delayed reactions) needed at least 3 layers
(with any policy) to be solved. When spawning rare cases more



4.4. Discrete actions 33

often, some agents that usually didn’t learn the exceptions didn’t also learn the common
cases: the complexity to perform correctly each case was too high for 3 layers.

When using behavioral cloning this phenomenon occurs like this: the neural network
starts adapting to the most common cases (but fails the least common), then the more
time it is left training, the worse starts doing the common cases until the model diverges
(Figure 4.22) and it starts showing strange behaviors. Sometimes it may cycle around
all the process, but it would never learn.

4.4 Discrete actions

Discrete actions are those that can be represented by whole or boolean values (for exam-
ple, a key can be pressed or not). In this case, we will develop agents with the objective
of predicting if (and when) a bot is going to click, and the bot will always control the
player’s movement (the action of clicking would be controlled by either the AI or the
NPC).

4.4.1 Bot with shaped movements

To create a more complex environment in which the neural network could learn to
imitate the clicks of a bot, it was necessary to implement an NPC that could perform
more complicated movements than in the previous sections. The initial goal was to
create a bot that could follow a target with constant speed and in a given time.

In the project, it corresponds to the “BotOneMove” script. This bot is capable of
choosing targets and directing them in a certain way, which can be edited using Unity
animation curves.

To carry out the movement, an interpolation variable is used that goes from 0 to
1 in the duration of the movement. This variable is used to evaluate the animation
curve at that point X. The animation curve has a domain from 0 to 1, and for it to
work properly 11 f(0)=0 and f(1)=1 must be met. However, intermediate values can
be extended beyond these values (this would result in the NPC moving in the opposite
direction of its target if it is less than 0, or exceeding it by heading for a target if it is
greater than 1).

The movement made in a frame corresponds to the angle to be reached in that frame
minus the angle reached in the previous frame. Finally, a point is determined in the
initial interpolation variable where the bot will perform the click action (only in the case
where it is aiming at a target it can destroy). Some noise can be added to each variable
to simulate the inaccuracy of the bot.

In our trainings, we have used a curve that exceeds the upper limits, and in which the
bot clicks on the highest end (See figure 4.23). This means that when aiming at small

11If the bot has very sharp movement curves or a very short time to perform a movement, it can also
have incorrect behaviors. These would be caused because the camera in the game is designed to have
speed limitations
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Figure 4.23: Horizontal bot movement (left) obtained when using the curve on the right

targets using long moves, the bot would overshoot the target and fire without hitting
the opposite side of the one that started the move.

4.4.2 “Cheat sheet” rewards

As we have seen in the section 4.3.2 with movement queues, not giving instant rewards
but a time later can make it difficult to learn the neural network, plus it is harder to
balance rewards in these cases where there is randomness in the exact moment an event
occurs.

To solve these problems and at the same time accelerate the learning process we have
designed the “cheat sheet rewards”. These rewards are based on that the NPC itself is
the one that determines the accuracy with which the agent has performed the action of
clicking, and it does that before (or after) the NPC has performed it. The reward is
calculated using a simple tolerable range (See 4.2.3) by comparing the difference between
the interpolation value in the frame the bot action is performed and the interpolation
value at which the agent would perform the action.

Whenever the AI or the NPC performs a click action, an event is triggered. There
are several factors to consider when using these rewards:

• If the AI performs an action outside of the tolerable range (or when the agent is
in idle 12 move) is penalized

• An action performed inside the tolerable range is rewarded (the closest it is, the
more the reward)

• Only the first action inside the tolerable range is rewarded, any other extra action
is punished (not doing so would cause the agent to spam the click when it is close
to the tolerable range)

12Idle move corresponds to when the agent isn’t seeking any target
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• If the agent misses a click, the bot sends it a signal that causes it to receive a
punish

This method can be used either with SAC or PPO, and with both algorithms correct
results have been obtained: both the agent and the bot fail and hit certain targets in a
similar way (although not always in the same cases). Nevertheless, there are still a few
occasions in which the agent can perform the click action in some situations where it
should not, without apparent reason (See Figure 4.24).

4.4.3 Discrete and continuous action spaces

When creating agents, Unity allows to use two action spaces: discrete and continuous 13.
In discrete action spaces, there is a set of determined actions represented each one by an
integer; in continuous action spaces, the action is represented with a float (this type of
action is ideal for actions like mouse movement, which movement cannot be represented
accurately using only integers).

However, ML Agents doesn’t allow to combine both action spaces in one agent: all
actions must be either discrete or continuous. If we wanted to create a neural network
that could move and click by itself, its action space type would have to be continuous.
Other option is to use two separate neural networks, one with all discrete actions and
the other with the continuous ones. In this section this problem doesn’t appear since we
only want to imitate the clicking action, but still both methods have been tested.

To model discrete actions using continuous action space type, we consider the mo-
ment the action crosses the 0 line (when one action has negative action and the next
positive value) as the moment when the agent triggers a click event. That can be consider
as a mouse click, when the button is pressed a click event happens; but there cannot be
another event until it is released (it returns to negative values). When using this method
it is usually ideal to provide the agent the last action values as an observation, since it
would tend to stay in positive values when being close to the target (if it fails to hit at
first, the action has to return to negative values to perform another click).

To model discrete actions using discrete action space type, we have 2 actions: not
clicking (0) and clicking (1). We can use the same method as with continuous action
space (only the first consecutive “1” is considered as a click), or take every click action
as an actual click. The second method is more reliable in practice, but produces more
clicks that can cause the bot to receive very low rewards at first that can make the
training session unstable.

In this test case, when using either SAC or PPO, continuous space type has better
results (See figure 4.24 to compare how both methods appear in the debug). Agents
with discrete action spaces tend to perform much many pointless click (during idle
movement) than agents with continuous space type, which usually have a 50-60% success
rate. However, since the environment was designed for continuous space actions, that

13Do not confuse action space with actions to be imitated (clicks in this case): as we will see later,
discrete actions can be modeled using both continuous and discrete action space
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can have caused that the agents with discrete action spaces perform worse than their
continuous counterparts.

Figure 4.24: Discrete action agents: trained with SAC in continuous action space (left),
with SAC but in discrete action space (mid) and with behavioral cloning in continuous
action space (right). Orange lines correspond to the NPC clicks, and purple ones are
click events triggered by the AI

4.4.4 Models with behavioral cloning

Even though behavioral cloning is very effective with time noise (as seen in section 4.3.4),
it has a much harder time when imitating discrete actions. How well or badly it acts
depends entirely on the demonstration 14 provided in the training session.

When using continuous action space, the action to be imitated is not just a boolean
value, but a continuous number that meets the conditions to perform discrete actions
described in section 4.4.3. The easiest way is to assign a random value between -1 and
0 when the NPC is not performing a click, and a random value higher than 0 in the
frame when it is clicking (demonstrations with uniform integer values perform worse).
After less than 10000 steps, the neural network starts performing some clicks, but its
performance is much worse than any model trained using SAC or PPO (see figure 4.24).

Problems that appear when using behavioral cloning in discrete action spaces are
described in the following section.

14In ML Agents, demonstrations are recorded using the actions provided in the heuristic function of
the agent. These demonstrations are intended to be made by a human, but they can also be recorded
from any NPC that can be accessed from the agent script
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4.4.5 The frame problem

Figure 4.25: NPC get-
ting stuck because of
the one frame prob-
lem

The one frame problem occurs in most demonstrations recorded
for behavioral cloning (or GAIL), and it is caused because of
how the information flows in each execution cycle in Unity.

As the game was built (See section 3.3), the AI and the NPC
are connected only through the Camera controller 15. Then, the
information flows in the following way: the NPC makes an action
and it is sent in the first frame, the camera controller receives
it (and actually performs it) in the second frame, and then the
AI reads that action in frame 3. This delay of 1 frame between
the action in the game and the action in the demonstration was
negligible in continuous movements (mouse), however, in this
case it causes the agent to learn to click when the target has
been destroyed.

This problem is not very noticeable when training, but when
using the neural network to perform the clicks it makes the NPC
get stuck at pointing a target (In this section, the NPC is always
the one controlling the movement). Only when the NPC recov-
ers control of the action and destroys the target, the AI does
perform. In figure 4.25 you can see how the NPC gets stuck
and clicks continuously when the AI is in control at the beginning (the first orange line
corresponds to the first NPC click), and just after it recovers control in the click action
(before the last orange line) and destroys the target, the AI performs a click action.

This problem can be solved by connecting the AI and the NPC so that it receives
the information at the same time as the camera, but it is still outperformed by models
trained with SAC and PPO in continuous action spaces.

4.5 Complex movements

In this section we try to create an agent that imitates a more complex movement. To do
so, we have used the bot described in section 4.4.1, but with curves that have different
shapes (see Figure 4.26). In the following training sessions we won’t take into account
the click actions to avoid interferences in the rewards. In this case, the bot always clicks
at an interpolation value of 1, so it always destroys the target at the same time that a
movement ends.

15In latter trainings they were connected to create Cheat Sheet rewards, but the the heuristic function
remained unchanged
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Figure 4.26: Movement curves for seeking target (left) and idle (mid). The right picture
shows the bot’s movement with one seek target in the middle (purple line is vertical
move and red line is horizontal move, both have the same shape).

4.5.1 Debug for 2 axis

The graphics used so far are no longer completely effective in 2-axis movements: even
if the bot can do one of the 2 axis well, if it did the other one wrongly, the movement
obtained would be very different from that of the NPC to be imitated.

Figure 4.27: Shaped movement of the bot (red-purple lines) and a continuous movement
to the left from one agent (green-blue lines) in both of the debug graphics

In this kind of movements, when following targets the direction the bot takes (and
the speed in some sense) is more important than the X and Y components treated
independently. For this reason, the following graph has been created to debug the
bots, showing the direction and speed in each frame. The values shown on it could be
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compared to the functioning of a joystick: the movement is in the direction of the point
with respect to the origin, and the further from the center it is the faster it will move
(See Figure 4.27).

This graph, in addition to the previous one, allows a better understanding of the
progress of a bot during training and helps to find problems to correct.

4.5.2 Angle-Magnitude reward system

The first reward system devised for the task developed in this section was the tolerable
range, but instead of applying it to the difference between each movement it is applied to
the distance in the plane between the points (X, Y) of the NPC and the AI movements.
As we can see in figure 4.28, in the line graph the movements seem to adapt to the shape
(at least in the horizontal ones, which correspond to those of greater magnitude), but
in the plane graph we can see that the movement is much more chaotic than it seemed
(especially due to the noise in the vertical movements).

Figure 4.28: Agent trained with tolerable range, shown in both debug graphs

In order to achieve a reward system that is easier to balance and allows to get agents
with less noise, a method has been designed to create rewards using angle and magni-
tude as parameters. In this way, more weight can be given to one of the 2 parameters
depending on what is intended to be achieved in the agent (or to adjust the rewards
to obtain better results). In Figure 4.28 you can see an example of an agent resulting
from a training with angle-magnitude tolerable range: the AI adapts to the shape of
the movement and follows the same angle although with still too much noise (in the
first frame of a new idle movement it usually does not have much precision, since it is
determined randomly).
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Figure 4.29: Agent trained with angle-magnitude tolerable range

4.5.3 Cheat sheet for movements

The main problem that appears when using tolerable range is that it scores or penalizes
all movements equally, which causes it to: have very significant errors at the beginning
(when the movement is not predictable), adapt more or less well in the center, and then
in the final frames it makes errors again (in this case, because the neural network has
more difficulty in matching movements that are very small in magnitude, and the range
allows it to go further than it should despite being predictable). In addition, in vertical
movements the agent usually has an excess of noise because its magnitude is much lower
than that of the horizontal ones (a solution to this problem is proposed in section 4.5.5).

Weighing the penalties correctly using a traditional reward system may involve taking
into account parameters such as the coherence of the movement as previously seen,
but applied to a linear regression 16 that allows to predict the next movement, and
modifying the weight of the rewards and penalties at each point in the movement to give
more exigency in points where the movement is predictable and less where it is almost
random.

To achieve a similar and easy to modify effect, we have created a “cheat sheet” shaped
reward system (Section 4.4.2) in which you can change the value of the punishment and
reward parameters at each point of the interpolation of a movement by means of curves.
To speed up the process and simplify the task, the movement of chasing a target is
not taken into account, so it has been possible to eliminate the camera (the agent only

16A linear regresion would make sense for the particular movement we are dealing with in this section,
as it can be shaped with straight lines. However, these methods would be too dependent on the concrete
form of the movement and very difficult to generalize
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receives information about the movement it is doing). In the Figure 4.30 you can see
the curves that have been used in the most successful trainings.

Figure 4.30: Curves for tolerable range (left), punish factor (mid) and reward factor
(right)

In figure 4.31 you can see one of the models that best adapts to the NPC’s movement:
it is noticeable that the bot still has some noise and still doesn’t perform very well in
the beginning and at the end of the movements, but it tends to stay near the angle of
the original move. However, in this case we didn’t take into account the seeking cases
and it only uses observations of the NPC movement, so this agent would not be able to
play the game independently.

Figure 4.31: Agent trained with shaped rewards

4.5.4 Movement interdependency

In practically all the agents developed in this section, it has been used as observations
the previous movements made by the NPC, instead of those made by the agent.
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Figure 4.32: Agent trained using its own observations

The problem that presents the interdependence of movements is that in the training
the agent learns from the movements generated by the bot, so it is easier to predict the
next one. Once the agent plays by himself, it must not only perform movements but also
use its previous movements as observations for the next ones. In cases where the agent
has too much noise in its moves, this can cause it to end up getting stuck or making
meaningless moves.

In some of the cases of this section, using observations of the agent (both in full
training and at the end) causes them to move in the correct direction but with con-
stant magnitude (See Figure 4.32). Other agents that have been trained using only
observations of the bot can move very chaotically

Ideally, for a workout to be correct enough, it should end up showing correct behavior
while receiving as observations its own movements rather than those of the bot. In a
perfect training, the agent would end up controlling the movement of the game (and
performing it in a similar way to the NPC). However, none of these 2 conditions could
be achieved in this section.

4.5.5 Trying to improve performance

In this subsection, several experiments that were attempted to correct certain errors that
appeared when training agents from this section are presented.

Mouse sensitivity

The sensitivity of the mouse was intended to give the bot more precision in vertical (Y
axis) movements (which are usually much smaller in magnitude than horizontal ones).
This was achieved by dividing the action of the neural network by a value. Although
it improved the accuracy in most cases, the network was practically prevented from
making minimally fast vertical movements (for example, when a target appears above).
Figure 4.33 shows an example of agent that was trained using a sensitivity of 10: in the
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Figure 4.33: Agent with Y sensitivity of 10

line graph it can be seen that the agent adapts very well to almost all movements with
precision, except when the vertical movement is slightly larger; in the plane graph it is
also visible that the agent doesn’t reach the higher vertical moves (the line is slightly
curved).

Momentum

Figure 4.34: Agent that tends to anticipate next movements

When using the reward curves shown in Figure 4.30, the agents usually “anticipated”
the next move instead of ending the current move well (see Figure 4.34). This was
because the first frame of a move offered a much higher and easier reward than the
last. Momentum is a variable that oscillates between -0.75 and 0.75: starting at 0,
when the agent receives a positive reward, the momentum is increased by 0.125, if it
receives a negative reward, it is decreased. For example, a momentum of 0.75 causes
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positive rewards to be multiplied by 1.75, and negative rewards by 0.25 (and the opposite
happens with negative momentum). Then, if the agent fails some consecutive actions in
the last frames of a movement, the punishments are increased stepwise and the reward
obtained in the first frame of the next movement is reduced considerably (depending on
how many consecutive actions the agent has failed before).

The effectiveness of this parameter is difficult to be appreciated, however, the best
results obtained in this section were trained using momentum.

Angle-Magnitude actions

It also was tried to create a bot that performed actions based on angle and magnitude
(direction and velocity), instead of X movement and Y movement. It was tested using
previous X and Y movements as observations, and previous angles and magnitudes.

Figure 4.35: Agent with angle-magnitude actions (the bot was reversed to avoid crossing
the 0-line)

In theory, imitating the bot with the information presented in this way should have
been trivial for the agent (the angle remains constant throughout the movement, and
the magnitude decreases linearly to 0), but the results obtained were not very different
from those using the X and Y movements as action and observation, they were even
worse (See Figure 4.35). Also, it had difficulties to follow the bot’s movement when the
angle changed crossed the 0 degree line (an angle of 0 degrees corresponded to an action
of -1, and an angle of 360 to +1).
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5.1 Conclusions
In this document, different methods have been presented that allow the creation of
agents through reinforcement learning and behavioral cloning that imitate NPCs with
simple behaviors. However, these methods could not be extended to more complex cases
successfully (non-functional requirement).

Each of the behaviors that have been studied have had very different results depend-
ing on the algorithm provided:

• Instantaneous reactive movements can be replicated using any of the algorithms
provided 1. In the case of the reinforcement learning algorithms is also necessary
a reward system that is usually more complex than the movement itself. Within
the 2 algorithms of this type that are available in ML Agents, SAC usually obtains
better results than PPO.

• In the movements with delayed reactions, the reinforcement learning algorithms
have greater problems to understand the problem, except in the cases in which

1Behavioral cloning was not used for this task since it would be trivial for it to solve, however it
was applied to delayed reactions successfully (instantaneous reactions can be considered as a sub-case of
delayed reactions, with a reaction time of 0)
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the variability of the reaction times is null or practically null. This is because
receiving rewards later than expected can confuse the agent. When the variability
is large, behavioral cloning is usually more successful if the dataset provided is
good enough.

• For discrete actions, we took advantage of the possibility of obtaining information
directly from the bot in order to model its behavior more effectively.In this type of
actions, reinforcement learning algorithms clearly outperform the imitation learn-
ing ones (BC). Also, in our trainings related to discrete actions, continuous action
spaces worked better than discrete action spaces.

• In our attempt to create more complex movements we trained agents to imitate
the shape of a 2-axis movement. However, the agents had difficulties to imitate
the bot with all the available algorithms, and it was not possible to get a good
result in an agent that received its own previous movements as observations.

With these results, on the basis of the functional requirements provided in sec-
tion 3.1.1:

• Some of the neural networks were able to play the game independently under
specific conditions, and hardly ever under any situation.

• The network can receive as input and interpret what the camera is seeing

• The network is able to receive multiple past frames and actions. However, the
more inputs it receives the more easily it can become unstable.

• The network can output one or multiple actions that the player can make

• The network can adapt its actions to reaction times of the NPC (but only if it
receives enough past frames). Behavioral cloning allows to model reaction times
that have more variability.

• Under some circumstances the network and the NPC can hardly be differentiated,
however, when being exposed to rare or untrained situations the network does not
act correctly.

The accomplishment of the non-functional requirements depends on the algorithms
used and the complexity of the task: behavioral cloning is very sample efficient, and
most of the networks that use reinforcement learning algorithms can usually be trained
effectively in reasonable time (less than 1 hour). However, this framework is very difficult
to scale to imitate a little more complex than those studied in this document.
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5.2 Future work
ML Agents is designed to develop simpler behaviors than imitating NPCs (and, of course,
simpler than imitating humans).

On the other hand, ML Agents trainings are executed in the editor in real time, which
not only decreases the quality of the obtained results but also exposes to execution errors
or memory overflows (especially in cases where agents receive multiple previous input
frames).

Most of the time, reinforcement learning algorithms are ineffective for complex im-
itations, since the complexity of the reward systems increases much faster than the
complexity of the behavior. The only exception is when there is access to both past
and future information. This can be caused by imitating a bot whose actions can be
determined sufficiently in advance or by having the information as a separate dataset.
In the second case, there would be no reason to perform real-time training.

As future work, it may be possible to obtain better results with different network
structures trained offline, such as classification neural networks [10], generative adver-
sarial networks [5] or recurrent networks [9]. However, they should be reincorporated to
a game engine to be executed, and they would need to perform in real time.

5.3 Final considerations
Because we have used ML Agents to develop this work, there are sections of the planning
that did not need to be done, or that could not be done:

• Since the training sessions were executed in the editor, there was no need to create
and save datasets 2.

• In ML Agents it’s not possible to create custom neural networks without modifying
its source code, which can be very risky. Configuration files allow to determine the
number of layers and the number of hidden units in each layer. It can also apply
convolutions to image inputs, but only individually.

• Since we were unable to obtain reliable agents after increasing the complexity of
the behavior, the framework was not standardized.

To end with, the project can be accessed and downloaded at the following link:
https://github.com/alexcercos/ML-Agents

The instructions to open and execute the project can be found at Appendix C.

2ML Agents allows to create datasets to be used in imitation learning, however its content cannot
be seen and they cannot be extended

https://github.com/alexcercos/ML-Agents
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ix A
Dynamic average

Starting from the average formula: 1
n

n∑
i=1

xi = an

We solve the equation for an+1:
n∑

i=1
xi = n · an

n∑
i=1

xi − n · an =
n+1∑
i=1

xi − (n+ 1) · an+1 = 0

n∑
i=1

xi − n · an =
n∑

i=1
xi + xn+1 − (n+ 1) · an+1

(n+ 1) · an+1 = xn+1 + n · an

an+1 = xn+1 + n · an

n+ 1

Then, it has been proven that the average of N+1 elements can be obtained with
cost O(1) knowing the average of N elements and the new element.
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ix B
Dynamic standard deviation

Starting from the variance1 formula: 1
n

n∑
i=1

(xi − an)2 = vn

1
n

n∑
i=1

(xi − an)2 − vn = 1
n+ 1

n+1∑
i=1

(xi − an+1)2 − vn+1

We want to solve the equation for vn+1:

(n+ 1)
n∑

i=1
(xi − an)2 − n(n+ 1)vn = n

n+1∑
i=1

(xi − an+1)2 − n(n+ 1)vn+1

(n+ 1)
n∑

i=1
(x2

i − 2xi · an + a2
n)− n(n+ 1)vn = n

n+1∑
i=1

(x2
i − 2xi · an+1 + a2

n+1)− n(n+ 1)vn+1

(n+ 1)(
n∑

i=1
x2

i − 2an

n∑
i=1

xi + na2
n)− n(n+ 1)vn = n(

n+1∑
i=1

x2
i − 2an+1

n+1∑
i=1

xi + (n+ 1)a2
n+1)− n(n+ 1)vn+1

(n+ 1)(
n∑

i=1
x2

i − 2an

n∑
i=1

xi + na2
n) = n(n+ 1)(vn − vn+1) + n(

n+1∑
i=1

x2
i − 2an+1

n+1∑
i=1

xi + (n+ 1)a2
n+1)

(n+ 1)
n∑

i=1
x2

i − 2(n+ 1)an

n∑
i=1

xi + n(n+ 1)a2
n = n(n+ 1)(vn − vn+1) + n

n+1∑
i=1

x2
i − 2nan+1

n+1∑
i=1

xi + n(n+ 1)a2
n+1

(n+ 1)
n∑

i=1
x2

i − 2(n+ 1)an

n∑
i=1

xi + n(n+ 1)a2
n = n(n+ 1)(vn − vn+1) + n

n∑
i=1

x2
i + nx2

n+1 − 2nan+1

n+1∑
i=1

xi + n(n+ 1)a2
n+1

(n+ 1)
n∑

i=1
x2

i − 2(n+ 1)an

n∑
i=1

xi = n(n+ 1)(vn − vn+1 + a2
n+1 − a2

n) + n
n∑

i=1
x2

i + nx2
n+1 − 2nan+1

n+1∑
i=1

xi

n
n∑

i=1
x2

i +
n∑

i=1
x2

i − 2(n+ 1)an

n∑
i=1

xi = n(n+ 1)(vn − vn+1 + a2
n+1 − a2

n) + n
n∑

i=1
x2

i + nx2
n+1 − 2nan+1

n+1∑
i=1

xi

1We use variance instead of standard deviation to simplify the equations: the standard deviation
can be obtained taking the square root of the variance
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n∑
i=1

x2
i − 2(n+ 1)an

n∑
i=1

xi = n(n+ 1)(vn − vn+1 + a2
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n+1 − 2nan+1
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xi
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x2
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∑n

i=1 x2
i

n − x2
n+1

n+ 1

Finally, the standard deviation can be obtained with σn = √vn

It has been proven that the standard deviation of N+1 elements can be obtained
knowing the standard deviation (or variance) of the N previous elements, the new el-
ement, the averages of the N and N+1 elements and the average of the N previous
elements squared, with cost O(1).
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ix C
Instructions for using the project

C.1 Opening the project

The only requirement to use the project is to have Unity 3D 2019.2.12.f1 installed (the
project could work in higher versions, but it is not guaranteed).

There’s a direct link to the main scene at the root of the project, the original can be
found at ./UnitySDK/Assets/ShootingEnv.

C.2 Setting the scene

For the agents to work correctly, its parameters need to be adjusted. In the folder
./UnitySDK/Assets/TFG there are 3 files with information about the project:

• Agents_Parameters.pdf contains all the parameters of the agents that were saved

• Trainings_Complete.pdf contains all the notes and information about all trainings
that were made for this project

• A copy of this document can also be found (Memory.pdf)

C.2.1 Spawners

The Spawn script by default can spawn planes until there are 6 in the scene. The “Spawn
Cases” script can generate rare or common events at will.

Time between spawn determines the frequency at which targets are created (1.5s by
default).
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Height Diff MUST be set to 0 for IMPULSE or RANGE agents, and can be set to
higher values for the other types of bots. It determines the maximum height at which
planes can spawn.

If using Spawn Cases, make sure that Camera Y Axis is the active one (if there are
multiple Camera Axis objects in the scene).

C.2.2 Debug

“GraphCamera” object contains 3 debug options: “show graphic” set to true displays
the a line graph, “show axis” displays the plane graph and “show grid” changes the
background to a grid that allows to see better the movement (it doesn’t affect the bot’s
observations).

C.2.3 Bots

3 bots can be used to compare its behavior to the agents’ ones: BotDelayUniform,
BotOneMove and BotPrecision.

Each one has custom parameters that can be changed for each agent. The parameters
that are not contained in the file Agents_Parameters.pdf were used for training and don’t
influence the behavior in the editor (but it is not recommended to change them).

C.2.4 Agent parameters

The agent parameters can be found at the child object of a Camera Axis (Main Camera).
AgentShoot and BehaviorParameters contain the most important parameters to ex-

ecute the agents. These ones must be set for the agent to work properly:
Y Sensitivity: reduces the Y axis action range (default to 1)
Agent Type: generates different behaviors
Receive observations: type and quantity of observations
Observation Bot-Agent: allows to compare how an agent behaves when the observa-

tions received are from the bot or from the agent itself. 0 corresponds to observations
from the Bot, and 1 from the agent. It can be changed in execution time, but be aware
that some agents don’t behave well using its own observations.

Demo Heuristic: used to record observations. For playing manually the game, it
must be false (and the model in behavior parameters must be none). If using an agent,
it doesn’t have any effect.

Show Std: displays the average and standard deviation lines (for IMPULSE or
RANGE agents).

Click Discrete: used only when executing CLICKONLY agents that use discrete
action space.

Random Restart: puts the agent in a random situation after 1000 frames (Not rec-
ommended to use, especially with agents that only move in the X axis).

Vector Observation Space Size: size of the observation vector
Vector Action Space Size (Continuous): amount of actions
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Vector Action Branches Size (Discrete): only used for discrete CLICKONLY agents:
branches size is always 1, and branch 0 size must be 2.

Model: contains the agent.

C.2.5 Frames

There are 2 types of sensor, Camera (only used in some of the first bots) and Render
Texture.

The sensor used for the current frame is named after its default value (RenderTex-
tureSensor or CameraSensor).

If using previous frames, they must be named "FrameXXX", where XXX corresponds
to the number (for example, the immediate last frame would be Frame001). There need
to be all the Render Texture Sensors with their correct names for the agent to work.

The root object of camera axis contains a Render Texture Handler: Render queue
must contain at least each frame used by the agent with the correct position (the position
number is N-1, for instance the immediate last frame, which is Frame001, is at the
position 0 of the render queue).

The ShootScene contains 3 different Camera Axis already set to be used. Make sure
that only one of the is active, and that the Spawn Cases script contains its reference
(and not one of the inactive ones).
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