948 research outputs found

    Deep learning approaches to aircraft maintenance, repair and overhaul: a review

    Get PDF
    The use of sensor technology constantly gathering aircrafts' status data has promoted the rapid development of data-driven solutions in aerospace engineering. These methods assist, for instance, with determining appropriate actions for aircraft maintenance, repair and overhaul (MRO). Challenges however are found when dealing with such large amounts of data. Identifying patterns, anomalies and faults disambiguation, with acceptable levels of accuracy and reliability are examples of complex problems in this area. Experiments using deep learning techniques, however, have demonstrated its usefulness in assisting on the analysis aircraft health data. The purpose of this paper therefore is to conduct a survey on deep learning architectures and their application in aircraft MRO. Although deep learning in general is not yet largely exploited for aircraft health, from our search, we identified four main architectures employed to MRO, namely, Deep Autoencoders, Long Short-Term Memory, Convolutional Neural Networks and Deep Belief Networks. For each architecture, we review their main concepts, the types of problems to which these architectures are employed to, the type of data used and their outcomes. We also discuss how research in this area can be advanced by identifying current research gaps and outlining future research opportunities

    Deep learning approaches to aircraft maintenance, repair and overhaul: a review

    Get PDF
    The use of sensor technology constantly gathering aircrafts' status data has promoted the rapid development of data-driven solutions in aerospace engineering. These methods assist, for instance, with determining appropriate actions for aircraft maintenance, repair and overhaul (MRO). Challenges however are found when dealing with such large amounts of data. Identifying patterns, anomalies and faults disambiguation, with acceptable levels of accuracy and reliability are examples of complex problems in this area. Experiments using deep learning techniques, however, have demonstrated its usefulness in assisting on the analysis aircraft health data. The purpose of this paper therefore is to conduct a survey on deep learning architectures and their application in aircraft MRO. Although deep learning in general is not yet largely exploited for aircraft health, from our search, we identified four main architectures employed to MRO, namely, Deep Autoencoders, Long Short-Term Memory, Convolutional Neural Networks and Deep Belief Networks. For each architecture, we review their main concepts, the types of problems to which these architectures are employed to, the type of data used and their outcomes. We also discuss how research in this area can be advanced by identifying current research gaps and outlining future research opportunities

    Neural Networks Architecture Evaluation in a Quantum Computer

    Full text link
    In this work, we propose a quantum algorithm to evaluate neural networks architectures named Quantum Neural Network Architecture Evaluation (QNNAE). The proposed algorithm is based on a quantum associative memory and the learning algorithm for artificial neural networks. Unlike conventional algorithms for evaluating neural network architectures, QNNAE does not depend on initialization of weights. The proposed algorithm has a binary output and results in 0 with probability proportional to the performance of the network. And its computational cost is equal to the computational cost to train a neural network

    A case study of vibration fault diagnosis applied at Rolls-Royce T-56 turboprop engine

    Get PDF
    Gas turbine engines include a plethora of rotating modules, and each module consists of numerous components. A component’s mechanical fault can result in excessive engine vibrations. Identification of the root cause of a vibration fault is a significant challenge for both engine manufacturers and operators. This paper presents a case study of vibration fault detection and isolation applied at a Rolls-Royce T-56 turboprop engine. In this paper, the end-to-end fault diagnosis process from starting system faults to the isolation of the engine’s shaft that caused excessive vibrations is described. This work contributes to enhancing the understanding of turboprop engine behaviour under vibration conditions and highlights the merit of combing information from technical logs, maintenance manuals and engineering judgment in successful fault diagnosis

    Quantum-inspired Complex Convolutional Neural Networks

    Full text link
    Quantum-inspired neural network is one of the interesting researches at the junction of the two fields of quantum computing and deep learning. Several models of quantum-inspired neurons with real parameters have been proposed, which are mainly used for three-layer feedforward neural networks. In this work, we improve the quantum-inspired neurons by exploiting the complex-valued weights which have richer representational capacity and better non-linearity. We then extend the method of implementing the quantum-inspired neurons to the convolutional operations, and naturally draw the models of quantum-inspired convolutional neural networks (QICNNs) capable of processing high-dimensional data. Five specific structures of QICNNs are discussed which are different in the way of implementing the convolutional and fully connected layers. The performance of classification accuracy of the five QICNNs are tested on the MNIST and CIFAR-10 datasets. The results show that the QICNNs can perform better in classification accuracy on MNIST dataset than the classical CNN. More learning tasks that our QICNN can outperform the classical counterparts will be found.Comment: 12pages, 6 figure

    Limited Data Rolling Bearing Fault Diagnosis With Few-Shot Learning

    Get PDF
    This paper focuses on bearing fault diagnosis with limited training data. A major challenge in fault diagnosis is the infeasibility of obtaining sufficient training samples for every fault type under all working conditions. Recently deep learning based fault diagnosis methods have achieved promising results. However, most of these methods require large amount of training data. In this study, we propose a deep neural network based few-shot learning approach for rolling bearing fault diagnosis with limited data. Our model is based on the siamese neural network, which learns by exploiting sample pairs of the same or different categories. Experimental results over the standard Case Western Reserve University (CWRU) bearing fault diagnosis benchmark dataset showed that our few-shot learning approach is more effective in fault diagnosis with limited data availability. When tested over different noise environments with minimal amount of training data, the performance of our few-shot learning model surpasses the one of the baseline with reasonable noise level. When evaluated over test sets with new fault types or new working conditions, few-shot models work better than the baseline trained with all fault types. All our models and datasets in this study are open sourced and can be downloaded from https://mekhub.cn/as/fault_diagnosis_with_few-shot_learning/

    A hybrid constructive algorithm incorporating teaching-learning based optimization for neural network training

    Get PDF
    In neural networks, simultaneous determination of the optimum structure and weights is a challenge. This paper proposes a combination of teaching-learning based optimization (TLBO) algorithm and a constructive algorithm (CA) to cope with the challenge. In literature, TLBO is used to choose proper weights, while CA is adopted to construct different structures in order to select the proper one. In this study, the basic TLBO algorithm along with an improved version of this algorithm for network weights selection are utilized. Meanwhile, as a constructive algorithm, a novel modification to multiple operations, using statistical tests (MOST), is applied and tested to choose the proper structure. The proposed combinatorial algorithms are applied to ten classification problems and two-time-series prediction problems, as the benchmark. The results are evaluated based on training and testing error, network complexity and mean-square error. The experimental results illustrate that the proposed hybrid method of the modified MOST constructive algorithm and the improved TLBO (MCO-ITLBO) algorithm outperform the others; moreover, they have been proven by Wilcoxon statistical tests as well. The proposed method demonstrates less average error with less complexity in the network structure

    IEEE Access Special Section Editorial: Big Data Technology and Applications in Intelligent Transportation

    Get PDF
    During the last few years, information technology and transportation industries, along with automotive manufacturers and academia, are focusing on leveraging intelligent transportation systems (ITS) to improve services related to driver experience, connected cars, Internet data plans for vehicles, traffic infrastructure, urban transportation systems, traffic collaborative management, road traffic accidents analysis, road traffic flow prediction, public transportation service plan, personal travel route plans, and the development of an effective ecosystem for vehicles, drivers, traffic controllers, city planners, and transportation applications. Moreover, the emerging technologies of the Internet of Things (IoT) and cloud computing have provided unprecedented opportunities for the development and realization of innovative intelligent transportation systems where sensors and mobile devices can gather information and cloud computing, allowing knowledge discovery, information sharing, and supported decision making. However, the development of such data-driven ITS requires the integration, processing, and analysis of plentiful information obtained from millions of vehicles, traffic infrastructures, smartphones, and other collaborative systems like weather stations and road safety and early warning systems. The huge amount of data generated by ITS devices is only of value if utilized in data analytics for decision-making such as accident prevention and detection, controlling road risks, reducing traffic carbon emissions, and other applications which bring big data analytics into the picture

    Using the modified k-mean algorithm with an improved teaching-learning-based optimization algorithm for feedforward neural network training

    Get PDF
    In this paper we proposed a novel procedure for training a feedforward neural network. The accuracy of artificial neural network outputs after determining the proper structure for each problem depends on choosing the appropriate method for determining the best weights, which is the appropriate training algorithm. If the training algorithm starts from a good starting point, it is several steps closer to achieving global optimization. In this paper, we present an optimization strategy for selecting the initial population and determining the optimal weights with the aim of minimizing neural network error. Teaching-learning-based optimization (TLBO) is a less parametric algorithm rather than other evolutionary algorithms, so it is easier to implement. We have improved this algorithm to increase efficiency and balance between global and local search. The improved teaching-learning-based optimization (ITLBO) algorithm has added the concept of neighborhood to the basic algorithm, which improves the ability of global search. Using an initial population that includes the best cluster centers after clustering with the modified k-mean algorithm also helps the algorithm to achieve global optimum. The results are promising, close to optimal, and better than other approach which we compared our proposed algorithm with them
    • …
    corecore