2 research outputs found

    Diabetic retinopathy grading with respect to the segmented lesions

    Get PDF
    One of the leading causes of irreversible vision loss is Diabetic Retinopathy (DR). The International Clinical Diabetic Retinopathy scale (ICDRS) provides grading criteria for DR. Deep Convolutional Neural Networks (DCNNs) have high performance in DR grading in terms of classification evaluation metrics; however, these metrics are not sufficient for evaluation. The eXplainable Artificial Intelligence (XAI) methodology provides insight into the decisions made by networks by producing sparce, generic heat maps highlighting the most critical DR features. XAI also could not satisfy clinical criteria due to the lack of explanation on the number and types of lesions. Hence, we propose a computational tool box that provides lesion-based explanation according to grading system criteria for determining severity levels. According to ICDRS, DR has 10 major lesions and 4 severity levels. Experienced clinicians annotated 143 DR fundus images and we developed a toolbox containing 9 lesion-specified segmentation networks. Networks should detect lesions with high annotation resolution and then compute DR severity grade according to ICDRS. The network that was employed in this study is the optimized version of Holistically Nested Edge Detection Network (HEDNet). Using this model, the lesions such as hard exudates (Ex), cotton wool spots (CWS), neovascularization(NV), intraretinal haemorrhages (IHE) and vitreous preretinal haemorrhages (VPHE) were properly detected but the prediction of lesions such as venous beading (VB), microaneurysms (MA), intraretinal microvascular abnormalities (IRMA) and fibrous proliferation (FP) had lower mAPs. Consequently, this will affect the value of grading which uses the segmented masks of all contributing lesions

    Deep learning for diabetic retinopathy detection and classification based on fundus images: A review.

    Get PDF
    Diabetic Retinopathy is a retina disease caused by diabetes mellitus and it is the leading cause of blindness globally. Early detection and treatment are necessary in order to delay or avoid vision deterioration and vision loss. To that end, many artificial-intelligence-powered methods have been proposed by the research community for the detection and classification of diabetic retinopathy on fundus retina images. This review article provides a thorough analysis of the use of deep learning methods at the various steps of the diabetic retinopathy detection pipeline based on fundus images. We discuss several aspects of that pipeline, ranging from the datasets that are widely used by the research community, the preprocessing techniques employed and how these accelerate and improve the models' performance, to the development of such deep learning models for the diagnosis and grading of the disease as well as the localization of the disease's lesions. We also discuss certain models that have been applied in real clinical settings. Finally, we conclude with some important insights and provide future research directions
    corecore